

APPENDIX A. SUMMARY OF BASIC STATEMENTS

The complete set of BASIC statements is shown below. CapitCiI letters indicate syntax that is required as shown. Lowercase
letters designate general items. Command parameters enclosed by braces ({}) indicate a required choice. Parameters en
closed by brackets ([]) are optiona I. Ell ipsis marks (...) denote multiple occurrences of the preceding bracketed parameter.
Unless otherwise noted, "variableI' means either a simple or a subscripted variable. If the initial line number of a statement
is enclosed by brackets, the statement may be executed direclHy in the on-line mode of operation.

Statement

line: [Us and/or characters to 132 maximum]

[line] CHAIN xname . ipassword:acct
:acct

[

i password 1
:acctipassword

t[line] CHAIN LINK xname ipassword:acct
:acct

[

iPaSSWord 1
:acct;password

[line] CHANGE �l�{�~�;�r�i�;�:�}� TO letter]
letter TO string

line CLOSE I . l:stream]

C] {a} [characl'ers to end of Ime]

�[�~�:�]�c�o�n�s�t�a�n�J� [[[±]constan

J
]

lineDATAaco.nst " aco.nst .•.
tstnngt tstn ng .

line DEF FN letter (simple v<lriable[,simple variable] ...) = expression

Dine) DIM{:::::;$t} (dimx[;dimx)) [. t:::::;$t} �(�d�i�m�x�[�.�d�i�m�x�)�~� ...

Dine] END

[line] E NDFILE:stream, �{�~�i� ne }

line FOR simple variable = expression TO expression [STEP expression]

[line] GOSUB line

[line] GOTO line

t[Jine] GOTO line [,Iine] •.. ON expression

Dine] IF aconst
l

expr]

�~�
CP-Vonly.

stringt {

expr }
aconst THEN .

operator strexpt {GOTO} Ime

xstrexpt

Appendi x A 53

l] [:l] {variable} r {Var.iable}] ...
line INPUT :stream[;keYJ, stringt L' stnngt

Dine] INPUT = {$ }
any other character

[line] [LET] variable[,variableJ. .. = aconst
xstrexpt { I expreSSion]l

string = strexpt

variable[,variable]. .• = aconst [{ lexpression] l]
, xstrexpt

string = strexpt

Dine] MAT aname = (expression)*aname

[I i ne] MAT aname = ana me

Dine] MAT aname = ana me {±} aname

[line] MAT aname = aname * ana me

[line] MAT aname = CON[(dimx~dimx])]

Dine] MAT ana me = IDN [(d!mx) • J
(dl mx), any characters to end of line

[line] MAT aname = INV (aname[,simple variable])

Dine] MAT aname = SIM (aname[,simple variable])

Dine] MAT aname = TRN (aname)

Dine] MAT aname = ZER[(dimx~dimxJ)]

Dine] MAT GET [:stream[;key],] adescr[,adescr] .. .

Dine] MAT INPUT [:stream[;key],] adescr~adescr] .. .

Dine] MAT PRINT [:stream[;key],] aname[{;} aname] ... [;]

Dine] MAT PUT [:stream[;key],] adescr[,adescr] ...

Dine] MAT READ adescr~adescr] ...

Dine] MAT SIZE aname(dimxGdimx]) ~aname(dimx~dimx])] ...

line NEXT simple variable

t[line] ON expression{~~T~} line~line] ...

[line] OPEN fileid [,]

t
CP-Vonly.

54 Appendi x A

o

TFILE]

[line] PAGE

Dine] PAUSE

[line]{:RINT} [:stream[;key],] [i.XI Slri.ng]
, expression

xstrexpt

,
text strin!~ [xstrexp]

l . J tt
{
'} expression xstrexp
; xstrexp

{;} expressi on

Dine] {:RINT} [:stream[;key]/] USING line [l:~;;:;';on)] ...
, text stn n!~

[line] PUT [:stream[;key],] l:::~~::sion) [, l::~~::sion)] " ..
xstrexpt xstrexpt

[line] {;EM} [characters to end of line]

Dine] READ{va~iable}
stnngt

[line] RESTORE[line]

[line] RETURN

[line] STOP

t
CP-Vonly.

tt ..
Must not begm with a 1+1.

r {variable}] L stri n 9t •.•

Appendi x A 55

APPENDIX B. SUMMARY OF BASIC COMMANDS

The BASIC commands are shown below. Capital letters indicate syntax that is required as shown. Lowercase letters
designate generic items. Command parameters enclosed by braces (II) indicate a required choice. Parameters enclosed by
brackets ([]) are optional. Ell ipsis marks (...) denote mu Itiple occurrences of the preceding bracketed parameter.

t

Command

ACC[OUNT] [name]

BASOC]t

t
BYE

CAT[ALOGl
t

[
ARR[A YSJ] t

CLE[AR] STR[INGS]

O]{ Iine } [{line }] DEL ETE I. I· , I· I· ... Ine
1

- ,ne
2

,ne
3

- ,ne
4

DEL[ETE]xname

ENT[ER BASIC] [L]

EXE [CUTE]t line
1

[-line
2

]

O J~line][{line }] EXT RACT I. I· , I· I· ... ,ne
1

- Ine
2

,ne
3

- ,ne
4

FAS [TJ[time]

FlL[E]~Ac[K]] t

LIS[T] [line] [{line }]
line

1
- Iine

2
'line

3
- line 4 ...

LOA[D] [xname]

NAM[E] [xname]

NU L[L]t [~::~~Y~]s]l
SIM[VARSiJ

PAS [SWORD] [name J

PRO[CEEDJ

REN[UMBER][line
1Lline

2
[,incr J J]

CP-V BASIC only.

56 Appendix B

t

Command

RUN[time]

SAyrE O]{~ER}xname[::~:l -lineJ [l::~:3 -line)]' ..
SET{$ = positive integert }

letter = digits [,Ietter =: digits] ...

STA[TUS]

SYS[TEM]

WEA[VE]t[xname]

WID[TH]digits

CP-V BASIC only.

Appendix B 57

APPENDIX C. BASIC INTRINSIC FUNCTIONS

Function Result

SIN(arg) Calculates sine of argument in radians.

COS(arg) Calculates cosine of argument in radians.

TAN(arg) Calculates tangent of argument in radians.

ATN(arg) Calculates arctangent of unitless argument in radians.

EXP(arg) C I I . If' h' (argument) a cu ates exponentla unctions, t at IS e .

ABS(arg) Calculates absolute value of argument.

LOG(arg) Calculates natural logarithm (base e) of the argument.

LGT(arg) Calculates common logarithm (base 10) of the argument.

SQR(arg) Calcu lates square root of argument.

INT(arg) Acquires the integer part of the argument, that is, the greatest integer that is less than or equal to the

argument.

SGN(arg) Identifies algebraic sign of argument, and produces a -1 for negative arguments, a 0 for 0, and a +1
for positive arguments.

RND(arg) Produces, for each call, the next element of a sequence of uniformly distributed random numbers that are
greater than 0 but less than 1. If arg is 0 for the first RND call of a program, the identi cal sequence of
random numbers wi II be generated if the program is rerun and arg is not changed. Otherwise, an unre-
peatab I e sequence wi II be generated.

DAY(arg) Suppl ies the calendar day. If the argument is 0, the BTM output form is mm/dd (as in 03/07 for March 7)
and the BPMand CP-Voutputform is mon/dd (as in MAR 07). If the argument is nonzero, the output form
is a floating-point number whose integer part represents the month, and whose fractional part represents
the day of the month divided by 100. For example, 3. 07EO represents March 7.

TIM(arg) Supplies the time of day. If the argument is 0, the output form is hh:mm, as in 15:09. If the argument is
nonzero, the output form is a floating-point number whose integer part represents the hour and whose
fractional part represents the minutes divided by 60. For exampl e, 15. 15EO represents 3:09 PM.

YER(arg) Supplies the year. If the argument is 0, the output form is 19yy, as in 1969. If the argument is nonzero,
the output form is a floating-point number whose value is equal to the year, as in 1969.0EO.

MAX(arg)
n

Returns the maximum value in the list of arguments.

MIN(arg)
n

Returns the minimum value in the list of arguments.

TAB(arg) Advances the print device to the column designated by the argument, and shou Id only be used in a PRINT
statement. TAB cannot be used to backspace the print device.

PRC(arg) Specifies the number of significant digits in printed output, and is used only in a PRINT statement. An
argument of 0 specifies 6-significant-digit output format, and a nonzero argument specifies 16-
significant-digit output.

58 Appendix C

The following functions are in CP-V BASIC only.

Function Result

esc (arg) Calculates cosecant of an argument in radians. Overflow results in an error message and termination of
execution.

SEC(arg) Calculates secant of an argument in radians. Overflow results in an error message and termination of
execution.

COT(arg) Calculates cotangent of an argument in rCldians. Overflow results in an error message and termination
of execution.

ASN(arg) Calculates arcsine of a unitless argument, in radians. If the absolute value of the argument is greater
than 1. 0, an error message is printed and execution is terminated. Resolution of results is restricted to
the two quadrants from - TT/2 to TT/2.

ACS(arg) Calculates the arccosine of a unitless argument, in radians. If the absolute value of the argument is
greater than 1.0, an error message is printed and execution is terminated. Resolution of results is re-
stricted to the· two quadrants from ° to TT"

-

HSN(arg) Calculates hyperbolic sine of an argument. Overflow results in an error message and termination of
execution.

HCS(arg) Calculates hyperbolic cosine of an argument. Overflow results in an error message and termination of
execution.

HTN(arg) Calculates hyperbolic tangent of an argument.

L TW(arg) Calculates logarithm, base two, of an argument.

DEG(arg) Converts argument from radians to degrees ..

RAD(arg) Converts argument from degrees to radians.

LE N (strexp) Returns currenl' number of characters in string expression, as floating-poi nt number.
-

V AL(strexp) Returns numeri c value of string expression as floating-point value. Error exit if string expression not numeri c.
-

STR(expression Converts numef'ic value of expression to string format. Optional rstring argument permits speci fie format-
[, rstringJ) tinge If second argument is not used, standard print output format is used.

KEY(arg) Returns the value of the key most recently c:lccessed on the I/O stream specified by the argument.

Appendix C 59

APPENDIX D. SUMMARY OF BASIC OPERATING PROCEDURES

BASIC is always running in one of three modes; edit,
compile, or execute. Compile is a transitory mode, leading
directly to execution, if successfu I, or to edit, if fai lure
occurs. In on-I ine operation, transition from mode to mode
may occur frequently because of operator actions.

The variable context of principal interest during BASIC op
erations includes source text, object code, array and string
storage, DATA list pointing control, GOSUB-RETURN status
control, printer line width control, output precision control,
runfi Ie identification parameters, parametric dimensioning,
and maximum string length.

The I ists below present a summary of the effects of operator
action (command and statement input) on operating mode
and context.

GROUP 1

The following commands do not change operating mode and
affect context only as the individual command explicitly
indicates:

BASIC No context change.

CATALOG No context change.

LIST No context change.

STATUS No context change.

WIDTH Set printer width.

ENTER BASIC Set output precision control.

NAME Runfi Ie identification.

ACCOUNT Runfi Ie identifi cation.

PASSWORD Runfi Ie identification.

SAVE (ON or OVER) Generates text output fi Ie.

FILE (not FILE PACK) Outputs runfi Ie.

NULL (any option) Zeros selected context.

DELETE xname Deletes named fi Ie.

GROUP 2
Input of any of the following commands leaves BASIC in
edit mode, requiring recompilation or normal compilation
of object code before subsequent execution. If a Group 2
command is input while in execution mode, DATA list

60 Appendix D

pointing control and GOSUB-RETURN status are saVf
Other context is modified as indicated.

DELETE Removes line from active use.

EXTRACT Removes program except spec
ified I ine(s).

Line insertion Adds line to active use.

FILE PACK Releases storage of deleted
lines.

LOAD (while in edit Acts as series of line
mode) or WEAVE insertions.

CLEAR ARRAYS or
STRINGS

SET

Re I eases storage.

Sets parametric dimensioning
letter, or maximum string
length.

GROUP 3

Input of any of the following commands leaves BASIC in
edit mode and requires normal compilation of object code
before subsequent execution. Context of DATA list point
ing and GOSUB-RETURN control is set to initial conditions.
Other context is modified as indicated.

LOAD (while in
execute mode)

CLEAR

RENUMBER

New text.

Clears arrays, strings, text,
and object code.

Generates output file of text,
does CLEAR, and loads num
bered text.

GROUP 4

Input of either FAST or RUN initiates normal compilation
of object code from the current program text. Compi lation
is in fast or safety mode as indicated. In addition to object
code generation, string-array space is reallocated, but con
text is saved, as possible, where indicated by new absolute
dimensioning.

If errors occur during compilation, messages are generated
and object code generation is aborted, as is array-string
storage rea Ilocation. Return is in the edi t mode, as per
Group 3.

If no errors occur, execution is initiated at start of program
with DATA list pointing and GOSUB-RETURN control
initialized.

DIRECT STATIEMENTS

There are three cotegories of direct statements, in terms of
operational impact:: DIM statements, statements with in
cluded line-number references, (::md statementswith no line
number references.

DIM, as a direct statement, causes updating of storage re
quirements for armys and strings and returns control in edit
mode. Rules for command Group 2 apply.

Direct statements without line references are compi led and
executed independently of other program text or object
code. If errors occur, messages ore output and execution
is aborted. Control is returned to console in same mode as
before input of direct statement.

Direct statements with line references require presence of
object code. If mode at input is execute, the direct state
ment is compi led and executed. If mode is edit, recompi la
tion of program is initiated. Compilation is aborted by any
error, in which case return is in 13dit mode. If recompila
tion is successfu I, direct statement is compi led and exe
cuted. Return to console is in execute mode.

ON-LINE VERIFII[:ATION

On-line verification is a general term for various functions
that may be performed in checking out and debugging a
program. The following example~; are typical:

>GO TO 35

>PRINT A(l, 1),
A(1,2),A(5,5)

>LET A1 = 12.5
>GO TO 20

Branch to a desired statement
within a program and proceed
with execution.

Verify assignment of values in an
array.

Modify a value then continue at
selected point.

Under CP-V, any VCJlid BASIC stah3ment, except for DATA,
DEF, Image, FOR, or NEXT, may be typed without a leading
line number. This will indicate that the statement should
be executed immediately.

In BTM BASIC, thEl statements DATA, DEF, DIM, Image,
FOR, NEXT, GOTO .•• ON, and ON •.. GOTO, may
not be direct.

Under BTM, when in the editing mode, attempted use of the
direct statement capability will result in the error message

RUN? ILLEGAL

DESK CALCULATOR MODE

InCP-VBASIC, the desk calculator mode can be entered.
from the editing mode simply by typing direct statements.

In BTM BASIC, the programmer enters the desk calculator
mode by giving a CLEAR command followed by RUN or FAST.

The desk-calculator mode uses the computer in the simplest
and most direct manner, working without a stored program
or stored data. The problem to be solved is usually com
bined with a PRINT statement, preceded if necessary by a
LET or another form of an assign statement. Typical exam
ples of BASIC in the desk-calculator mode are

>PRINT 1.085 3.6

>PRINT SQR (12 * 12 + 15 * 15)

>PRINT LOG(SIN (5.12))

>PRINT SQR (87)

PROCEED

PROCEED is a command to return to an interrupted activity
(see Chapter 4). Three responses are possible: (1) immedi
ate return to interrupt point, (2) recompile and return to
IInext statement ll

, or (3) indicate ILLEGAL and return to
console in edit mode. The response depends on the cate
gories of commands that have been input since the interrupt.
In general, PROCEED is legal only if execution of a pro
gram has been interrupted; it always term inates the interrupt
state. If any Group 3 or 4 commands have been input since
BREAK key activation, PROCEED is illegal.

If Group 2 commands have been input since BREAK key ac
tivation, and PROCEED is legal, recompilation is initiated.
Errors during recompi lation cause error message generation,
abort object code generation and array-string storage re
allocation, and cause return to console in edit mode. If
recompilation is successful, execution is initiated at the
IInext statement ll of the interrupted and modified program.

If only Group 1 commands have been input since BREAK key
activation, PROCEED causes return to the interrupted
activity.

BREAK-PROCEED LOGIC

In Batch/BTM BASIC, BREAK may interrupt execution at any
point, but PROCEED resumes execution only if intervening
console actions have not modified object code. In CP-V
BASIC, only C LEAR, LOAD, or RENUMBER, or fai lure to
correct a diagnosed error prohibit PROCEED from resuming
execution following a BREAK.

If a BREAK occurs during execution of a statement, that
statement is fully executed and the line number of the next
statement to be executed is saved before user is given con
sole control. PROCEED then returns to the saved I ine num
ber. If tha t line has been ed i ted out or is not an executab I e
statement, execution resumes at the next executable line.
If a BREAK occurs in response to an input statement (after
a ? prompt character), execution is halted.

Append ix D 61

APPENDIX E. FORMAT OF BINARY DATA FILES FOR PUT AND GET OPERATIONS

The PUT and MAT PUT operations in BASIC create data
files in the internal format described in Table 3 with a
physical record size of 120 bytes.

Table 3. Internal Format of Data Files

Byte Coding Meaning

0 X'3C' Phys i ca I record.

Table 3. Internal Format of Data Fil'es (cont.)

Byte Coding Meaning

n+2 X'BD'

n~3,n+4 Physical In numerical order,
record number from O.

1 Checksum Sum of bytes in record, no t Normally a record contains 112noncontrol bytes (14floating
point values or aconsts). The last record in a fi Ie may con
tain fewer used bytes but still contains 120 total bytes. The
control word - bytes n+ 1 to n+4 - is repeated in this case as
bytes 116 to 1 19.

counting checksum byte.

2,3 Record size Number of bytes used
(120 or less), including
contro I bytes.

4 .•. n Data Either doubleword
floating-point or aconst
doubleword or: both.

n+1 X'3C' End of phys i ca I or
logical record.

KEY= X'001000'

00000 3C090078
00004 00000000
00008 00000000
OOOOC 00000000
00010 00000000
00014 00000000

. 00018 00000000

. 0001C 00000000

KEY= X'002000'

00000 3CA60070
00004 00000000
00008 00000000
OOOOC 00000000
00010 C9D1D2D3
00014 E4E5E6E7
00018 F3F4F5F6
0001C 00000000

Figure 7.

62 Appendix E

120

41100000

41300000
41500000
41700000
41900000
00000000
41800000
3CBDOOOO

120

41600000
41400000
41200000
0001C1C2
0001D4D5
0001E8E9
0001F7F8
3CBDOO01

Figure 7 shows a file containing three records of numeric
and aconst data, with the record contents given in hexa
decimal format. The values were created with the program
shown in Figure 8. In Figure 7, the value 1 occupies words 1
and 2 of record 1000, the aconst ABCDEF occupies words 13
and 14 of record 2000, and the aconst 7890 occupi es words 25
and 26 of the same record but followed in word 27 byanend
of-record control word forced there by the flush operation.

BYTES

00000000 41200000
00000000 41400000
00000000 41600000
00000000 41800000
00000000 00000000
00000000 41900000
00000000 41700000

BYTES

00000000 41500000
00000000 41300000
00000000 41100000
C3C4C5C6 0001C7C8
D6D7D8D9 0001E2E3
00000000 0001F1F2
F9FOOOOO 3CBDOO01

Contents of Sample Fi Ie

KEY= X'003000' 120 BYTES

00000 3C030028 41100000 00000000
00004 00000000 41300000 00000000
00008 00000000 3CBDOO02 00000000
OOOOC 00000000 0001C1C2 C3C4C5C6
00010 C9D1D2D3 0001D4D5 D6D7D8D9
00014 E4E5E6E7 0001E8E9 00000000
00018 F3F4F5F6 0001F7F8 F9FOOOOO
0001C 00000000 3CBDOOO2

Figure 7. Contents of Sample Fi Ie (cont.)

100 OPEN 'PUT',O
110 PUT 1,2,3,4,5,6,7,8,9,0
120 PUT 0,9,8,7,6,5,4,3,2,1

41200000
41400000
41100000
0001C7C8
0001E2E3
0001F1F2
3CBDOO01

l30 PUT 'ABCDEF',' GH IJKL' , 'HNOPQR ' , , STUVWX' , 'YZ '
140 PUT '123456', '7890'
150 PUY'>'d-
160 PUT 1,2,3,4,**
170 CLOSE 0
180 END

Figure 8. Program Used to Generate Figure 7

Appendix E 63

APPENDIX F. I/O CONTROL

Source statements and INPUT (except INPUT :stream) data
is read via M:SI. Data output produced by LIST and PRINT
(except PRINT :stream) is written via M:SL. These DCBs
are normally defaulted to the terminal in the on-line mode.

BASIC will not honor assignments to or from magnetic tape.

If M:SI or M:SL has been assigned by a CP-V SET command
(on-line) or !ASSIGN (off-line) the source input or list
output will be modified accordingly. It is generally inad
visable to alter these I/O assignments.

Normal DCB assignments are shown in Table4. Anex,-, .,;e
of using SET to assign a DCB is

! SET M:SL/FILE6

The above SET command given before calling BASIC causes
LIST or PRINT output to be assigned to FILE6.

Since BASIC expects an I/o stream to be expl ici tly opened
to a file specified in an OPEN statement, it is not possible
to SET any of the four DCBs used for stream I/o before
calling BASIC.

Table 4. Normal DCB Assignments

Monitor DCB Definition Assignment

CP-V & BPM M:SI Source Input Users Conso Ie or Card Reader
M:EI Stream 1 File
M:EO Stream 2 File
M:CI Stream 3 File
M:LO Stream 4 File
M:DO Diagnosti c Output Users Console or Line Printer
M:SO Source Output (Save, File, Load. Renumber) File
M:SL List/Print Output Users Console or Line Printer

BTM M:EO Stream 1 File
M:EI Stream 2 File
M:CI Stream 3 File
M:SO Source Output (Save, File, Load, Renumber) File

64 Appendi x F

APPENDIX G. BASIC CONCORDANCE PROGRAM

The-BASIC Concordance program takes any BASIC source
program and produces a listing of th4~ following items along
with the line numbers on which they are used:

1. Line number refelrences

2. User-defined functions

3. Arrays

4. Strings

5. Simple variables

For each use of one of these items, the concordance output
will contain an entry of the line number of the use. Thus,
multiple appearances of a line number may occur for a
single item in the output.

The program does not discriminate between string scalars
and string arrays, but rather classifies both as strings.
(Note that the same letter ca nnot be used as both a stri ng
scalar and a string array, thus no confusion can result.) The
program does discrimi nate between nonstring arrays and
simple variables with the same name, since these are two
different entities.

Dummy arguments in user-defined function definitions are
not displayed, in order to prevent confusion between these
dummies and normal simple variables of the same name.

The source language for the Concordance program is Xerox
Extended FORTRAN IV. It existsas one program containing
the main program and seven internal subprograms. The
source deck must be compiled into a relocatable object
module (ROM). The ROM must then be linked to form a
load module. During the I inking process, a record for the
DCB F: 1 must appear in the assign/merge record for the
log·-on account. This can be accomplished by using the
!SET command (if on-line) or the !ASSIGN command (if in
batch) for F: 1 prior to the LINK command.

To IJse the program, the user must sel' or assign F: 1 to indi
cate the location of the BASIC source program to be used
as input. This may be a file on disk or labeled magnetic
tape or any input device capable of transmitting a BASIC
source program. After setting F: 1, the load module created
by the linking process is invoked. Output will appear on
the default destination for M:LO. If the user wishes to di
vert' the output, he mCIY do so by sett'j ng or assigning F: 108
prior to invoking the load module.

At the completion of processing, the following terminal mes
sage wi II be output:

STOP 1

The program expects as input a BASIC source program that
can be compiled by the Xerox BASIC compiler supplied with

either CP-V or B TM with error diagnosis. Certain errors that
would be detected by those compilers are also detected by
the Concordance program. If such is the case, the output
line will be preceded by the message

ILLEGAL SYNTAX ON LINE XXX

where xxx is the sequential record number of the line in
question in the input file.

Certain other syntactic errors that would be diagnosed by
the compiler are not detected by the Concordance program
and may cause extraneous entries in the output.

If an irrecoverable read error occurs in processing the input,
the following message wi II be output:

IRRECOVERABLE READ ERROR ON LINE XXX

where xxx is as described above.

Example:

!FORT4 SOURCE ON BO
OPTIONS> NS
!SET F:l
!LINK BO ON BACON
! SET F: 1 PROG
!BACON.

The first and second I ines of the above example cause
compi lation of the concordance program from the fi Ie
SOURCE, previously created by a batch job (see the BPM/
BP,RT Reference Manual, 900954). Next, the F:1 DCB
is set into the assign/merge record. The load module
BACON is then formed by the !LINK command, using the
file BO (created by the FORTRAN compilation) as input.
The user may then assign F: 1 to any BASIC program fi Ie
(e. g., PROG) by use of a lSET command (on-I ine) or
!ASSIGN command (off-line). The concordance program
is then executed by giving the command !BACON. This is
followed by a concordance listing such as the one shown
below. Note that the linking process need be done only
once, but F: 1 must be reassigned each time that a new con
cordance is to be produced.

LINg NUHBER REFERENCES

8: Lf2 44
66: 6 54 62

USER DEFINE FUNCTIONS
NONE

ARRAYS
NONE

STRINGS
NONE

Appendix G 65

STlJIlLE VARIABLES

A: 12 14
[: 2 8

22 24
X: 37
A1 : 3 3

STOP 1

66 Appendix G

14
20 20

5 5

20 20

7

The BASIC Concordance program can be run as an executing
Extended FORT RAN IV program in any Xerox operating system
that contains the Xerox Extended FORTRAN IV processor.

A source deck (-34 element) and binary relocatable deck
(-24 element) of the BASIC concordance are avai lable
from the Xerox Software Library (Catalog No. 706292).

APPENDIX H. EBCDIC CHARACTER CODES

r-'

EBCDIC
Value Character Meaning Remarks

0 NUL null o through 31 are control codes.
1 SOH start of header On 2741 terminals, SOH is PRE.
2 STX start of text On 2741 terminals, STX is BY.
3 ETX end of text On 2741 terminals, ETX is RES.
4 EaT end of transmission On 2741 terminals, E aT is ATTN.
5 HT horizontal tab 0,6,7,9-11 and 14-15 are idles for

2741 terminals.
6 ACK acknowledge (positive)
7 BEL bell
8 BS or EOM backspace or end of message EOM is used only on Xerox Keyboard/
9 ENQ enquiry Printers Models 7012,7020,8091,

10 NAK negative acknowledge and 8092.
11 VT vertica I tab
12 FF form feed
13 CR carriage return CR outputs CR and LF.
14 SO shift out
15 SI shift in

16 DLE data I ink escape
17 DCl device control 1 On Teletype terminals, DCl is X-ON.
18 DC2 device control 2 On 2741 terminals, DC2 is PN.
19 DC3 devi ce control 3 DC3 is RS on 2741s, X-OFF on Teletypes.
20 DC4 device control 4 On 2741 terminals, DC4 is PF.
21 LF or NL line feed or new line LF outputs CR and LF.
22 SYN sync
23 ETB end of t'ransmission block On 2741 terminals, ETB is EOB.
24 CAN cancel
25 EM end of medium
26 SUB substitute Replaces characters with parity error.
27 ESC escape
28 FS fi I e separator 16, 17,22,24,25, and 27-30 are idles for
29 GS group separator 2741 terminals.
30 RS record separator
31 US unit separator

32 LF only I ine feed only 32 throug h 47 are used for output on I y.
33 FS These codes are dupl i cates of the labe I
34 GS entries that caused activation. These
35 RS entries output a single code only and
36 US are not affected by any special func-
37 EM tional processing
38 /
39 t
40 =
41 CR only carriage return on I y
42 IE aT
43 IBS
44)
45 HT tab code only
46 ILF only line feed only
47 SUB

48 ESC F end of file 48 through 63 cause specia I functions
49 CANCEL delete all input and output to be performed.

1 50 ESC X del ete input line

Appendix H 67

EBCDIC
Value Character Meaning Remarks

51 ESC P toggle half-duplex paper tape mode
52 ESC U togg Ie restri ct upper case
53 ESC (upper case shift
54 ESC) lower case shift
55 ESC T toggle tab simulation mode
56 ESC S toggle space insertion mode
57 ESC E toggle echo mode
58 ESC C toggle tab relative mode
59 ESC LF I ine continuation 59 toggles the backspace edit mode for
60 X-ON start paper tape 2741 terminals.
61 X-OFF stop paper tape
62 ESC R retype
63 ESC CR I ine continuation

64 SP blank
65
66
67
68
69
70
71
72
73
74 ¢ or' cent or accent grave Accent grave used for left single quote.
75 period On Model 7670, \ notavailable, and
76 < less than i = 180.
77 (left parenthesis
78 + plus
79 lor: vertical or broken bar On Model 7670, : notavailable, and ! = 90.

80 & ampersand
81
82
83
84
85
86
87
88
89
90 ! exclamation point On Model 7670, ! is I •
91 $ dollars
92 * asterisk
93) right parenthesis
94 ; semicolon
95 ~or-' tilde or logical not On Model 7670, ~ is not available,

and. = 106.
96 - minus, dash, hyphen
97 / slash
98
99

100
101
102
103
104
105

68 Appendix H

EBCDIC
Value Character Meaning Remarks

106 circumflex On Model 7670 A is,. On Model 7015
107 , comma A is " (caret).
108 % percent
109 - underl ine Underline is sometimes called "break
110 > greater than character"; may be printed along
111 ? question mark bottom of character line.

112
113
114
115
116
117
118
119
120
121
122 colon
123 # number
124 @ at
125 I apostrophe (single quote)
126 = equals
127 " quotation mark

128
129 a
130 b
131 c
132 d
133 e
134 f
135 g
136 h
137 i
138
139
140
141
142
143

144
145 j
146 k
147 I
148 m
149 n
150 0

151 p
152 q
153 r
154
155
156
157
158
159
160
161 _.

Appendix H 69

EBCDIC
Value Character Meaning Remarks

162 s
163 t
164 u
165 v

166 w

167 x

168 y
169 z
170
171
172
173
174
175 I logical and

176
177 \ backslash
178 { left brace On 2741 terminals,{ is output as (.
179 i right brace On 2741 terminals,} is output as).
180 [left bracket On Model 7670,[is ~. OnModeI7015,[is I.
181] right bracket On Model 7670,] is I. On Model 7015,] is •.
182
183
184
185
186
187
188 [I eft bracket
189] right bracket
190 lost date lost data
191 -, logical not

192 SP blank Output only.
193 A
194 B
195 C
196 D
197 E
198 F
199 G
200 H
201 I
202
203
204
205
206
207

208
209 J
210 K
211 L
212 M
213 N
214 0
215 P
216 Q

217 R

70 Appendix H

EBCDIC
Value Character Meaning Remarks

218
219
220
221
222
223

224 - minus Output only.
225
226 S
227 T
228 U
229 V
230 W
231 X
232 y
233 Z
234
235
236
237
238
239

240 a
241 1
242 2
243 3
244 4
245 5
246 6
247 7
248 8
249 9
250
251
252
253
254
255

Appendix H 71

APPENDIX I. SAMPLE BASIC PROGRAMS

This a?pendix contains sample programs of varying degrees
of complexity, showing a few of the many possible appli
cations of Xerox BASIC. The reader may find it helpful to
consider alternative methods or other applications of the
techniques used in these programs.

SNOWFLAKE SIMULATION

The program shown in Figure 9 simulates the almost infin
ite variety of geometric forms assumed by snowflakes. Each
"flake" is formed by adding random accretions adjacent to
two radii approximately 60 degrees apart in a square matrix.
A second sector is formed by "rotati ng" the first one clock
wise by 60 degrees and the pattern is then replicated in
the remaining quadrants of the matrix. The contents of the
matrix are then printed, with an asterisk representing the
value 1. The BREAK key is used to stop the snowstorm.

WORD GUESSING GAME (CP-V)

The program shown in Figure 10 picks a word at random
from a previously created file named WORDS. Such a file
is easily built using the Edit subsystem; see the Edit BUILD
command in the CP-V ITS Reference tv\anual 90 09 07.
The terminal user attempts to guess what word has been
chosen. Any letters guessed correctly are printed by the
program, until the entire word is typed correctly by the user.
It should be easy to think of ways to make the game more
interesting.

LOAN INTEREST CALCULATION (CP-V)

This program, shown in Figure 11, calculates monthly pay
ments for loans made at a given rate of interest and repaid
over a specified time period. Note that the printing of the
initial explanatory information isomitted if the user simply
gives a carriage return following the first prompt (see lines
100-140). The user is requested to type values for princi
pal, monthly payment, interest rate, and total number of
months. If one of these parameters is entered as zero,
its value is calculated from the other three.

CELLULAR AUTOMATA

The program shown in Figure 12 demonstrates the behavior
of a type of cellular automata. Such automata are rep
resented by using numeric values to simulate the states of

72 Appendix I

"cells" in a regular geometric patternsuchasa grid of unit
squares. The automata simulated by this program we'
devised by mathematician John Horton Conway and described
by tv\artin Gardner in the October, 1970 issue of Scientific
American magazine.

In this simulation, a cell is either "al ive" or "dead". Living
cells are displayed by printing an asterisk and dead cells
are shown as blanks. Each cell has a neighborhood com
prising 8 contiguous cells (4 orthogonal and 4 diagonal). A
dead cell becomes alive onlyifithas exactly 3livingneigh
bors, and a living cell remains alive only if it has either
2 or 3 living neighbors. All changes in state are considered
to occur simultaneously throughout the entire grid. Each
successive configuration is called a "generation".

The terminal user defines the initial configuration by typing
the X, Y coordinates of all I iving cells (e. g., 1,1 2,1 3,1
4,1 5,1 or 1,1 2,1 2,2 2,3 3,2). The program then appl i es
the transition rules for each generation and displays the re
sult. The BREAK key is used to halt the program.

This program stores the X, Y coordinates of all living cells
as a "sparse matrix", to reduce array storage requirements,
and the display is automatically positioned to minimize the
printing of blank lines or columns.

MAGIC SQUARES

The program shown in Figure 13 generates and displays
"magic squares" of odd order, by a method attributed to
Bachet de Meziriac. Using this method, integers 1 through
N**2 are arranged in N diagonal rows. This diamond
shaped pattern is then transformed into a square array by
converting row and column coordinates to 'their residues
modulo N. The result is a magic square of order N in which
the summation of each of the columns, rows, and main di
agonals is equal to (N**3+N)/2.

ARITHMETIC COMBINATIONS

This program, shown in Figure 14, shows the various ways
in which positive integers can be added to form a given
sum. Note that combinations such as 1+2 and 2+ 1 are not
considered identical, although the program can easily be
modified to treat such combinations as being the same.

100 0 I M A (63,53) & ,':SET PO I NT PROBAB I LI TY DENS lTY
120 P==Ri\lO (1) 12+.1 & r1AT A=ZER & ,'(SET FL,AJ<E SIZE
150 FOR R=2,'(I NT (RND (1) ,',10+ 1) TO 32 STEP 2 & "(BU I LD TWO R,A[) I I
170 A (Fi,R/2+15) ,A (R,48-R/2) =1 & NEXT R & '''(BUILD ACCRETIONS
200 FOR R=2 TO 30 STEP 2 & FOR C=R/2+2 TO 32 & IF A(R,C-2)=0 THEN 250
230 I F R~~D (1) <P THEN 250 & A (R, C) , A (R, 54-C) =1
2S0 NEXT C & NEXT R & ,'(ROTATE SECTOR 50 DEGREES
230 FOR R=2 TO 30 STEP 2 & FOR C=18+R/2 TO 48-R/2 STEP 2 & IF A(R,C) =0 THEN 320
310 A(R+C-R/2-15,49-R/2+.5*(C-(18+R/~))=1
:~Q() NE/(T C & NEXT R & ,',REPLICATE QU,A[)RANT
::::50 FOF~ R=2 TO 32 STEP 2 & FOR C=32 TO 52 & IF A(R,C) .. O THEN 390
2S() A(54-R,C) ,A(54-R,54-C) ,A(R,54-C) =1
= 30 ~JE XT C & NE XT R & ; & ,':PR I NT FL,AJ<E
430 FOR R=2 TO 52 STEP 2 & F=O & FOR C=2 TO 52 & IF A(R,C) =0 THEN 490 & F=1
480 ; TAB (C) 11,'(" TAB (0)
480 NEXT C & IF F.=O THEN 520 & ;
520 NEXT R & ; & ; & ; & GOTO 120

Figure 9. Snowflake Simulation

100 OPEN "WORDS" TO :1, INPUT & ENDFILE:l!,130 & INPUT :1;9999.999,K
130 K=I<EY (1)
140 INPUT : 1; INT (RND (1) ,'(K+ll ,R$ & R=LEN (R~»)
150 ; II I'M TH I NK I NG OF A" R II -LETTER WORD. II 8 ;" WHAT DO YOU TH I NK IT I S II ;

180 INPUT G$ & IF G$=R$ THEN 340 & G-LEN(G$) & ON SGN(G-R)+2 GOTO 220, 270, 240
220 ;" TOO SHORT,"; & GO TO 250
240 ; "TOO LONG,";
250 ; "TRY AGAIN II

; & GOTO 180
270 FOR I = 1 TO G & IF G$ (: I , 1) =R$ (: I , 1) THEN 300 & G$ (: I , 1) • I - '

300 NEXT I & ; "YOU GOT THESE RIGHT: II; & ;G$ & GOTO 250
340 ; "THAT'S RIGHT! II; & ; "WOULD YOU LIKE TO TRY ANOTHER"; & INPUT A$
370 IF A$ (: 1, 1) .. "Y II THEN 140 & ; "THANKS FOR PLAYING THE GAME ••• " & ;

Figure 10. Word Guc~ssing Game (CP-V)

Appendix I 73

100 ; & ; 'EXPLAIN'; & INPUT A$ & IF A$(:l,U='Y' THEN 160
140 IF A$(:l,ll='y' THEN 160 & GOTO 310
15() ; 'The value of any variable typed as zero l.Ji II be calculated,'
170 ; 'using the other three inputs to obtain the result. Type all'
lEO; 'non-numer'ic inputs as either YES or NO. If no variable is'
ISO;' input as zero, a schedule wi II be printed. If a yearly'
200 ; 'schedule is wanted, you may have the interest calculated for'
210 ;' the tax year or for any other 12-month period. Respond to'
220 ; 'the question "MONTH STARTED" by typing the number (l to 12)'
230 ;' for the month of the first payment. To obtain a cumulative'
240 ; '12-month schedule, respond by typing the value 1.' & ;
250 .', S-=SCHEDULE
270 .', P=PRINCIPAL
280 ,'. M=~10NTHLY PAYMENT
2S0 .'. I=INTEREST PER YEAR (e.g., 6 and 112 percent is 6.S)
300 .', N=NUMBER OF MONTHS
310 ; & ;' PR I NC I P AL= '; & INPUT P & ;' MONTHL Y PAYMENT = '; & INPUT M
~GO ; 'ANNUAL INTEREST RATE='; & INPUT I & I=INT(I*lE4/12+.S)/lE6
330 ;' NO. OF MONTHS='; & INPUT N & IF P=O GO TO 570 & IF M=O GO TO 620
4:':;\} I F 1=0 GOTO 570 & IF N=O GO TO 460 & GOTO 830
4ED N1 = (LOG(M) -LOG(M-P*I)) /LOG(l+I) & N=INT(N1+.99) & ;
480 ;USING 500,N
C:.t)() :~~O. OF MONTHS = tItItI
510 12=M*N1-P & T1=I2+P & ; & ;USING SSO,I2,P,T1
550 :TOT INT = tltItItItI.tItI TOT PRIN = tltItItItI.tItI TOTAL = tltItI##tI.##
SSO GOTO 770
~,70 P=M:': ((1+1) ~':-:'N-1) / ((1+I) ",~"N~'(I1 & ; & ;USING 600,P
COO :PRINCIPAL '" $#tltI#tI.tItI
GI0 GOTO 770
G20 ,'1= I NT ((P~'((1+ II ,'o':N": II ((1+ II)'o':N-11 +. OOS))'(100) !l00 &
640 ;USING 650,M
650 :PAYMENT == $tltltI.tItI
GGO GOTD 770
G70 1=23*(N*M-P)/ (N*P)/12 & FOR U=l TO S
GSO 11= ((1+1) ~'(~':N~':I1 / ((I+U ':,":N-U - (M/P)
700 12=((I+1)**(2*N)-(I+ll**N-I*N*(1+1)**(N-1))/((1+1)**N-1)**2
710 13=1-11112 & 1=13 & NEXT U & ; & ;USING 760,1)'(1200
750 :ANNUAL INTEREST = tI#,tI#%
770 ; & ; 'SCHEDULE'; & INPUT S$ & IF S$(:l,l)='Y' THEN 830
810 IF S$(:1,1)='y' THEN 830 & GO TO 1410
830 A=1, 12=0,13=O,L=36,L1=0,L2=1,P1=0,P2=0,P3=0,P8='MONTH',T1=0
840 ; 'MONTH STARTED='; & INPUT C & U=13-C & ; 'PRINTED MONTHLY';
880 INPUT S$ & IF S$(:1,1)='Y' THEN 920 & IF S$(:1,1)='y' THEN 920
910 P8=' YEAR',C=l
920 ; & ; & ;USH~G 600,P & ;USING 6S0,M & ;USING 760,1)'(1200
970 ;USING SOO,N & ;
5S0 11= I NT ((P·':I +. (05) ~'(100) 1100 & P4= I 1+P & IF P>M GOTO 1030 & M=P4
1030 B=P4-M & 12=11+12,13=11+13 & Pl=M-11,P2=P1+P2,P3=Pl+P3
1080 Tl=Tl+M & IF L1=0 GOTO 1120 & IF L1<=L GOTD 1170 & L=48 & &
1120 ; & ;USING 1140,P8
1140 :tItItItItI INT PRIN TOT INT TOT PRIN TOTAL BALANCE
1150 L1=1 & ;
1170 IF A=N GOTO 1360 & IF B=O GOTO 1360 & IF S$(:l,l)='Y' THEN 1240
1200 IF S$(:1,1)='y' THEN 1240 & IF A<U GOTO 1340 & U=U+12
1230 GO TO 1310
1240 IF L2=1 GOTO 1280 & IF A<=U GOTO 1310 & U=U+12,C=l,I2=ll,P2=P1
1270 ;
1280 ; 'YEAR'L2 & ; & L2=L2+1
1310 ;USING 1320,C,I3,P3,I2,P2,T1,B
1320 :tltltI #tI##.#tI tltI#tI.tItI ##tI##.tItI #####.## #####.## #####.##
1330 C=C+1,L1=Ll+1,I3=0,P3=0
1340 P~B,A=A+l & GOTO 990
1360 ;USING 1320,C,I3,P3,I2,P2,T1,B & IF B>O GOTO 1410 & ;
1390 ;USING 1400,M
1400 :LAST PAYMENT = $#tI#.##
V~~lO END

Figure 11. Loan Interest Calculation (CP-V)

74 Appendix I

100 DIM X (l000) , Y (l000) , S (l000) & B1,B2,183=0 & GOSUB 1170
130 F,FI-0 & ; 'Ho~J many generations per display'TAB(O) & INPUT F2
150 ;' How many po i nts wi I I you def i ne' TAB (0) & INPUT N1 & N2=N1
130 ; 'Enter X, Y coordinates for'N1' points' & FOR A=l TO N1
210 INPUT X (A) ,Y (A) & S (A) -I & NEXT A & B3=N1, F=F+1, F1=F1+1
250 GaSUB 800
260 FOR J-l TO N1 & X=X(J), Y-Y(~ & GOSUB 610
230 IF K>3 THEN 330 & IF Kc2 THEN 330 & B1-B1+1 & GO TO 340
330 S (J) -0, 82=B2·d
340 FOR M=l TO 3 ~; FOR N-1 TO 3 & IF M"(N-4 THEN 410
370 X=X (J) +M-2, Y=:Y (J) +N-2 & GOSUB 610
330 IF Kc>3 THEN 410 & GOSUB 730
410 NEXT N & NEXT M & NEXT J & J=l & FOR I :=1 TO N2
4GO IF S (I) -0 THEN 480 & S (J) =1, X (J):::X (I), Y (J) .. Y (I), J=J+1
480 NEXT I & N1,N~~=J-1, F==F+1, F1=F1+1 & IF F1<F2 THEN 530
510 GOSU8 800
520 F1==0
530 81, B2, 83=0 & IF Q==O THEN 560 & GO TO 260
550 ; 'All cells are empty!'
570 ; '00 you want to define a new configuration'TAB(O) & INPUT C9
590 IF C9=' YES' THEN 130 & STOP
510 K==O & FOR 1=1 TO N1 & X2=X (I), Y2=Y (I) & IF Y2<>Y THEN 660
550 IF X2=X THEN 710
550 IF X2<X-1 THEN 710 & IF X2>X+1 THEN 710 & IF Y2<Y-1 THEN 710
GSO IF Y2>Y+1 THEN 710 & K-K+1
710 NEXT I & RETURN
730 FOR Z=l TO N2 & IF X<>X (Z) THEN 770 & IF Y<>Y (Z) THEN 770
7GO GOTO 790
770 NEXT Z & N2==N2+1, Y (N2) =Y, X (N2) :::X, S (N2) =1, B3 ... B3+1
790 FIETURN
800 R1,C1=1000, R2,C2=-R1 & ; & ; & ; 'Gener'ation'F & FOR 1 .. 1 TO N1
850 R=Y(I), C-X(I) & IF R>R1 THEN 880 & R1GR
880 IF RcR2 THEN 900 & R2-R
300 IF C>C1 THEN 920 & C1=C
920 IF C<C2 THEN 940 & C2=C
940 NEXT I &C3=2 & IF (C2-Cll c35 THEN 990 & C3=1
930 ; 'Horizontal compression in display!'
S30 IF (C2-C1) <70 THEN 1020 & C4= (C1+C2) 12, C1=C4-35, C2=C4+35
1010 ; 'Horizontal display overflow!'
1020 FOR R-R1 TO R2 & FOR C=C1 TO C2 & FOR I =1 TO N1
1050 IF Y (I) oR THEN 1080 & IF X (I) <>C THEN 1080
1070 ;TAB((C-C1+1)"(C3) '~"'TAB(O)
1080 NEXT I & NEXT C & ; & NEXT R & Q",B1+B3
1130 ;USING 1140, Bl,82,B3,81+B3
1140 :### Survived, ### Died, ### Born, ### Total
1150 81,82,83.0 & RETURN
1170 ; & RETURN

Figure 12. Cellular Automata

100 DIM A(lS.lS) ~; ; 'TYPE AN ODD NUMBER FROM 3 TO 15';
120 INPUT N & IF N<3 THEN 380 & IF N>15 THEN 120
150 IF INT (N/2) -Nl2 THEN 120 & RO=INT (N+1+N/2) , CO=INT (N-N/2)
170 FOR R=l TO N g; FOR C=l TO N & RI-RO+R+N-C, Rl .. Rl-INT (RUN) "(N
200 Cl=CO+R+C. Cl~Cl-INT(Cl/N)*N & IF Rl>O THEN 230 & Rl=N
230 IF C1>O THEN ~~SO & Cl=N
250 A (R1, C1) =C+R,"N-N & NEXT C & NEXT R & ; & FOR 1.1 TO N
300 FOR J=l TO N 6; ; TAB (4"'J) ,A(I,J)' 'TAB (0) & NEXT J & ; S ;
350 NEXT I & ; & COTO 120
380 END

Figure 13. Magic Squares

Appendix I 75

100 OIr'1 i< (15) [) f1AT K=ZER
12U ;' THIS PROGRAM LISTS THE WAYS IN WHICH POSITIVE INTEGERS C.AN BE'
L?C> ; 'SUMMED TO OBTAIN .ANY INTEGER FROM 2 THROUGH 15'
140 ;' PLEASE TYPE AN INTEGER FROM 2 TO 15'; & INPUT N & ;
170 K(ll=N, L=2, M=O
leo IF K(ll =1 THEN 220 [) K(I)=K(l)-l, K(2l=K(2)+1 & GOSUB 340
210 GOTO 180
220 FOR J=2 TO L [) IF K(J) <>1 THEN 260 & NEXT J & GOTO 310
~G0 K(l,=K(J) -1, K(J)=l. K(J+1) =K (J+1l +1 & IF J<L THEN 290 & L=L+l
;~so C.,oSUB 340
:::.::(, GO TO 180
~::1() ; [) ;' TOT AL NUMBER OF WAYS TO SUM' N' IS' 2)h'((N-1) -1 & END
:::>+0 ·::SU8R TO PR I NT SUMMAT I ON
:::;:;0 FOR 1=1 TO L & ;K (I) , 'TftB (0) & IF I=L THEN 400 & ;' +'TftB (0)
330 NEXT I
400 ;' .'N [) RETURN

Figure 14. Arithmetic Combinations

76 Appendix I

INDEX

!'-Jote: For each en'fry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

! prompt, 41
symbol, 12

A
ABS function, 58
absolute dimensions" 33
account, 26
ACCOUNT command, 37
aconst, 8,5,9,20,24,26,29
ACS function, 59
addition, 1
advanced features, 19
a!phanumeric constant, 8,5,9,22
argument, 8,24
arithmetic operators, 8
array

addition and subfTaction, 35
dimensioning, 20,32-35
elements, 41
name, 35,36

ASN function, 59
assignment of values, 9
assignment statement, 1
asterisk, 2,12,13,15-17
ATN function, 58

B
BASIC command, 41
BASIC concordance program, 65
batch mode, 43
BCD input, 27
BCD output, 28
binary file format, 62
binary input, 27
binary output, 27
blank line, 3
blanks, 5,4, 11
branches, 10
BREAK key, 18,28,41,42,61
BYE command, 42

c
CATALOG command, 37
CHAIN LINK statement, 32
CHAIN statement, 32
CHANGE statement, 25
CL.EAR command, 39/ 6
CL.OSE statement, 28
coding sheet, 43
coefficient matrix, 36

colon, 12,21,26
comma, 11,2-4, 16
commentary, 17
condi tion operators, 10
conditional branching, 10
consecutive operators, 8
conti nuation of PRI NT statements, 11
conventions, 7
COS function, 58
COT function, 59
CSC function, 59
current dimensions, 33-36

o
data fi les, 62
DATA statement, 15,9,25
DAY function, 58
DCB assignments, 64
debugging, 61,41
decimal point, 12,7,9, 13
decrement, 16
DEF statement, 24
default name for the runfile, 41
defi ned functions, 24
DE G function, 59
DE LETE command, 38
desk calculator mode, 61, 1,2
determinant calculation, 36
DIM statement, 20,33
dimension, 19,20,33
dimensioning a string array, 21
direct statement, 61
division, 2
dollar sign, 9,20-22
double asterisk, 2,8, 15, 16,29-31
dummy argument, 24

E

EBCDIC
codes, 67
conversion, 25

edit mode, 60,61
edi ti ng area, 5
empty text string, 4
END statement, 18
ENDFILE statement, 28
ENTER BASIC command, 7,40
equals sign, 9
error messages, 47
errors, 5
ESC key, 41,42
exclamation points, 13

Index 77

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

EXECUTE command, 41
execution of a program, 40
EXP function, 58,4
explicit string expressions, 22
exponentiation, 2
expression, 8, 12
extended precision, 40
EXTRACT command, 38

F
FAST command, 40
field shift, 11, 12
fi Ie/FILE

access, 26
command, 39
definition, 26
identification, 24,26
input, 29
names, 5,6
output, 30
positioning, 27

fixed-point notation, 7
floating-point notation, 7,8, 13
FOR statement, 16,2
format characters, 12
function, 8

G
GET statement, 28
GOSUB statement, 25
GOTO ••• ON statement, 10
GOTO statement, 10

H
HCS function, 59
HSN function, 59
HTN function, 59

I/o assignments, 64
I/O flushing, 31
I/o stream, 26-30,64
identification, program, 17
identity matrix, 34,36
IF ••• THEN statement, 10
IF statement, 4
Image statement, 12, 13
implicit dimensions, 20
implicit string expression, 22
increment, 16
indexed variable, 2,3
ini tial value, 16

78 Index

IN PUT statement, 15,4, 16,23,29
input values, 7
INT func tion, 58,8
intrinsic functions, 58,8

K
key, 26-30
KEY function, 59
key interval, 30

L
largest key value, 26
LEN function, 22,59
LET statement, 9, 1-3
letter E, 13
LGT function, 58
limi t value, 16
line numbers, 7,2
LIST command, 38
literal text string, 4
LOAD command, 37
loading a program, 6
LOG function, 58
log-on request, 1
loop, 16,3
loop nesting, 17
lower case characters, 31
L TW function, 59

M
MAT GET statement, 33
MAT INPUT statement, 33
MAT PRINT statement, 33
MAT PUT statement, 33
MAT READ statement, 34
MAT SIZE statement, 34
matrix

assignment functions, 34,35
defi ni tion, 19
inversion, 36
operations, 32,33

MAX function, 58
maximum string length, 40
messages to the user, 5
MIN function, 58
minus sign, 1,3,4,7,12
multiplication, 2
multistatement capability, 19

N
NAME command, 39
names, 1

Note;.. For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

nested loops, 17
new line, 5
NEXT statement, 16,2
nonexistent key, 29
nu!I/NULL

command, 41
records, 30
string, 12

numeric

o

array, 20,21
matrix, 20
vector, 20

OFF command, 42
01\.1 ••• GOTO statement, 10
OPEN statement, 27
operati ng mode, 60
operator, 8
order of execution, 110
out-of-data condition, 28
output

p

format, 11
format characters, 11
numbers, 7
precision, 7

packed format, 11,34
page length, 13
PAGE statement, 13
para lie I assignments, 9
parentheses, 2, 8
password/PASSWORD

command, 37
defini tion, 26

PAUSE statement, 18
period, 7
plus sign, 1,8, 12
PRC function, 7,58
PRINT

statement, 11,3,7,12,30
width, 40

printing text, 12
PRINTUSING statement, 12, 13,30
PROCEED command, 42,61
program modification, 5
prompt, 4
punctuation, 4, 11, 12,30
PUT statement, 29

o
question mark, 4, 15
quotation marks, 11
quotes, 4,5,8

R
RAD function, 59
READ statement, 15
regular format, 11,34
REM statement, 17
RENUMBER command, 38
rereading data, 25
residual data, 30,27
RESTORE statement, 25
resuming execution following a BREAK, 61
RETURN statement, 25
RND function, 58
rounding, 7, 17
RUN command, 40,6
runfi Ie, 41

s
safe mode, 40
sample programs, 72
SAVE ON command, 39,5
SA VE OVER command, 39,5
scalar multiplication, 35
SEC function, 59
semicolon, 3,4,11,26,30,34
separator, 4
sequence of operations, 8
sequential fi les, 26
serial assignments, 9
SET command, 40
SGN function, 58
simple constant, 7
simple variable, 8,9,33,41
simultaneous equations, 36
SIN function, 58
single asterisk, 15, 16,29,30
slash, 2
spacing between fields, 11
SQR function, 58
STATUS command, 41
STOP statement, 18
STR function, 59
stream number, 26-29
string

array, 20,21
array elements, 41
comparison, 23
INPUT mode, 23
input/output, 23
litera I, 8
matrix, 20,9
scalar, 9,20,21,41
variables, 22
vector, 20,9

strings of excess length, 9
subroutine, 25
subscript, 20,33
subscripted variable, 19

Index 79

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

substri ng, 21
subtraction, 1
symbolic names,
SYSTEM command, 42

T
TAB function, 4, 11,58
TAB (0), 11
TAN function, 58
term ina I, 1,31
text

arrays, 34
edi ti ng area, 39,6
stri ng in a PRINT statement, 12

TFI LE, 27,37
TIM function, 58
time limit, 40
trai Ii ng zeros, 13

80 Index

u
unused fields, 16
up-arrow, 2,8
update mode, 27,28

v
VAL function, 59,22
variable, 1
vector, 19,35,36

w
WEAVE command, 38
WIDTH command, 40, 13

y

YER function, 58

Honeywell Information Systems
In the U.S.A.: 200 Smith Street. MS 486. Waltham. Massachusetts 02154
In Canada: 2025 Sheppard Avenue East. Willowdale. Ontario M2J 1 W5

In Mexico: Avenida Nuevo Leon 250. Mexico 11. D.F.

22227, 5C1178, Printed in U.S.A. XK14, Rev. 0

