


























































































































where each of the s. is an equivalence set of the form 
I 

(v 1,v2,v
3
,···,v

m
) 

Each equivalence set specifies that a!! the v. are to be assigned the same storage location. 
the following three forms: I 

1. A scalar or array name. For arrays, the location referenced is that of the first element. 

The v_ mav be one of i I 

2. An array element, where the subscripts are unsigned integers. For example, the statements 

DIMENSION A(3, 3) 

REAL B, C, A, X(ll) 

EQUIVALENCE (A(l, 3), B), (C, X(l» 

would make Band A(l,3) equivalent, and, similarly, C and X(l) equivalent. 

When multiple subscripts are to be used in an EQUIVALENCE statement, that statement must be preceded by a 
DIMENSION statement in which the array is declared. 

3. An array name followed by an unsigned integer element count enclosed in parentheses. The meaning of this 
count is as follows: the location of the first element of the array is denoted as position 1; the element immedi­
ately following is position 2i and so on. Thus, if X is a 3 x 3 array, X(l) means the same as X(l, 1); X(3) is 
two elements beyond X and refers to X(3, 1), where the size (in words) of an element is dependent on the type 
of X (see "Allocation of Variable Types"). 

REAL B, C, A(3,3) 

EQUIVALENCE (A(7), B) 

would make A(l, 3) and B equivalent. 

See also "Interactions of Storage Allocation Statements", below, for further rules concerning equivalences 
that cannot be implemented. 

Example: 

The effect of the statements 

DIMENSION W(3), X(3,3), LC(7) 

REAL W,X 

INTEGER Lei J 

REAL * 8 ELSIE 

COMPLEX C 

EQUIVALENCE ryJ, LC(2), ELSIE), (X(6), J, C(3» 

is to cause the indicated equivalences: 

Word 

2 

3 

4 

5 

6 

7 

8 

9 

Variables - Set 1 

LC(l) 

LC(2) = W(l) = ELSI E1 

LC(3) = W(2) = ELSI E2 

LC(4) = W(3) 

I r{t:,.\ --'-I 
LC(6) 

LC(7) 

Variables - Set 2 

X(l,l) 

X(2, 1) = C1 
X(3, 1) = C2 

X(1,2) 

Xl? ?) . '\-,-, 
X(3,2) = J 

X(1,3) 

X(2,3) 

X(3,3) 

where the arrangement of set 1 has no bearing on the arrangement of set 2. 
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The statement 

EQUIVALENCE (LC(2), W), (W(l), ELSIE), (C(3), J), (J, X(6» 

has the same results as the EQUIVALENCE statement in the previous example, and the set (J, X(3,2)is the 
same as the set (J, X(6)) in this case. 

INTERACTIONS OF STORAGE ALLOCATION STATEMENTS 

No storage allocation declaration is permitted to cause conflicts in the arrangement of storage. Each COMMON 
and EQUIVALENCE statement determines the allocation of the variables referenced in them Therefore, no 
EQUIVALENCE set should contain references to more than one variable than has previously been allocated. When 
this is not followed, such references are either redundant or contradictory. The redundancy is normally ignored; 
the contradictory reference is not allowed. 

In all cases, the storage allocation sequence specified in a COMMON statement takes precedence over any 
EQUIVALENCE specifications. Consequently, EQUIVALENCE statements are not allowed to define conflicting 
allocations of COMMON storage; that is, two variables in the same COMMON block or in different COMMON 
blocks can not be made equivalent. 

It is permissible for an EQUIVALENCE to cause a segment of the COMMON region to be lengthened beyond the 
upper bound established by the last item defined to be in that segme~t. However, it is not permissible for an 
EQUIVALENCE declaration to cause a segment to be lengthened beneath the lower bound established by the first 
item declared to be in that segment. Both conditions are demonstrated in the exampl es below. 

COMMON /BLK 1/A(5), B/BLK2/E(4), H, Y(2,2) 

DIMENSION Z(lO), V(5) 

EQUIVALENCE (A, Z), (V(4), E(2» 

The first EQUIVALENCE set is a permissibie extension of the biock BLK1, whereas the second set illegally defines 
an extension of the block BLK2. The declared storage allocation would appear os shown below. 

Item 

2 

3 

4 

5 

6 

7 

8 

9 

10 

BLK1 

A(l) = Z(l) 

A(2) = Z(2) 

A(3) = Z(3) 

A(4) = Z(4) 

A(5) = Z(5) 

B = Z(6) 

Z(7) 

Z(8) 

Z(9) 

Z(lO) 

BLK2 (illegal extension) 

V(l) 

V(2) 

E(l) + V(3) 

E(2) = V(4) 

E(3) = V(5) 

E(4) 

H 

Y(l, 1) 

Y(2, 1) 

Y(1,2) 

Y(2,2) 

Note: Assume all items are of the same data type. 
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The fact that COMMON segments may be lengthened by EQUIVALENCE declarations in no way nullifies the 
requirement that labeled COMMON blocks of the same name, which are defined in separate programs or sub­
programs comprising portions of an executabl e program, contain the identical number of words. 

EXTERNAL Statement 

The EXTERNAL statement has the form 

EXTERNAL Pl' P2' P3'···' Pn 

where the p. are subprogram identifiers. 
I 

The EXTERNAL statementdeclares,asa subprogram, names that might otherwise be classified implicitly as scalars, 
so that they may be passed as arguments to other subprograms (see tlArguments and Dummies" in Chapter 8). For 
example, if the subprogram name F appears in the statement 

CALL ALPHA(F) 

but appears in no other context to indicate that it is a subprogram, it would be implicitl y classified as a scalar. 
The EXTERNAL statement can be used to avoid this. 

Examples: 

EXTERNAL ABS, DABS 

CALL COMPRE (ERROR, ABS, DABS, X) 

In this example the subprogram identifiers ABS and DABS are used as arguments in the subprogram COMPRE. 

CALL SUBR (ERROR, ABS(X, V), ALPHA, X) 

In this example the subprogram named IA~BS is not an argument; it is executed first, and its result becomes the argu­
ment. In this situation an EXTERNAL statement is not required. 

BLOCK DATA Subprograms 

SDS FORTRAN IV-H permits variables in labeled COMMON to be initialized in a special program called c BLOCK 
DATA subprogram, which begins with a statement of the form 

BLOCK DATA 

and may contain only declaration statements (described in this chapter) and DATA statements described below. The 
subprogram must be terminated with an END statement. Since BLOCK DATA subprograms may not be called by other 
programs, they have no names nor are they executed in the usual sense. 

Example: 

BLOCK DATA 

COMMON /BLK1/A, S,C, D 

REAL B(5, 5)/25*9300./, D/3765.) 

COMPLEX A/(4.3, 2.4)/ 

END 

When initializing variables in labeled COMMON, complete declarations should be included for all the variables 
in each COMMON block, so that: 

1. The position within the block of those variables that are being initialized will be correctly established. 

2. The size of each COMMON block will correspond to the size declared in all other programs that use it. 

Data may be entered into more than one COMMON block in a single BLOCK DATA subprogram. 
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DATA Statement 

The DATA statement has the form 

where 

S. is a data set specification of the form 
I 

variabl e-I i st/constant-I i st/ 

The primary purpose of the DATA statement is to give names to constants: for example, instead of referring to rr as 
3.141592653589793 at every appearance, the variable PI can be given that value with a DATA statement and used 
instead of the longer form of the constant. This also simplifies modifying the program, if a more accurate value is 
required. 

Giving PI a value with a DATA statement is somewhat different from giving it a value with an assignment statement. 
With the DATA statement the value is assigned when the program is loaded; with the assignment statement, PI re­
ceives its value at execution time. 

Consider another exampl e that profits even more from the use of the DATA statement: An ARCTAN function can be 
written using a power series expansion. The efficient way to program this in FORTRAN is with a DO loop, stepping 
through the constants. But constants cannot be subscripted, and the timing of the routine is adversel y affected if an 
array must be initialized each time into the routine using assignment statements, such as: 

C(O) 0 

C(l) .1243549945 

C (2) . 24477 86631 

etc. 

Here, the DATA statement can be used to great advantage. It is not recommended that the DATA statement be used 
to give "initial" values to variables that are going to be changed. This causes proper initialization of the program 
to depend on loading and disallows restarting the program once it has changed these values. Good programming 
practice dictates that such initial ization be done with executabl e statements, e. g., with assignment statements. 

The effect of the DATA statement is to initialize the variables in each data set to the values of the constants in the 
set I in the order listed. For exampl e, the statement 

DATA X, A, L/3. 5, 7, • TRU E./, ALPHA/O/ 

is equival ent to the assignment statements 

X = 3.5 

A=7 

L = . TRUE. 

ALPHA = 0 

except that the DATA statement is not executable; its assignments take place upon loading. 

Variable and constant lists in DATA statement may be constructed as described in the following two sections. 

DATA Variable list 

A DATA variable list is similar to an input list (see Chapter 6), in that it may contain scalars or subscripted or unsub­
scripted arrays. It may not contain implied DO loops. Subscripts must be integers. 
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DATA Constant List 

A DATA constant I ist is of the form 

C 1 ' C 2' C 3' ••• , C m 

where 

the C. are either constants or repeated groups of constants in the following forms: 
J 

c 

r*c 

where 

c is a signed or unsigned constant of an appropriate type (see below) 

is an unsigned integer repeat count, whose value (nonzero) indicates the number of times the group 
is to be repeated 

The constant may be any of the forms described in Chapter 2, including literal constants.t The type of the constant 
must be the same as the type of the variable that it is initializing. The following rules apply in DATA statements: 

1. Integer, real, double-precision and complex variables may be initialized with constants of those types. 

2. Logical constants may be expressed as .TRUE. and .FALSE. or abbreviated as T and F. 

3. Literal constants may be used with any type of variable, although integer is recommended. A literal constant 
is broken up on a character-by-character basis and depends on the number of words of storage occupied by the 
variable (see "Allocation of Variable Types", Chapter 7). That is, an integer variable requires 4 characters, 
a complex variable -8 characters, and a double-complex variable, 16 characters. 

Variable items will be initial ized as required to use up the characters specified. If there are insufficient char­
acters in any literal constant to fill the last variable used, it will be filled out with trailing blanks. 

4. A constant may not be used for more than one variable list item. 

The following examples illustrate some of the features described above: 

INTEGER MM(3) 

COMPLEX C1,C2 

DATA MM/ABCDEF 1, IGH1/,C 1, C2/(17. 8, -4.0), (17.8, -4.0) 

The above DATA statement causes the following assignments to be made: 

MM(l) = 4HABCD 

MM(2) = 2HEF 

MM(3) = 2HGH 

Cl = (17.8,-4.0) 

C 2 = (17. 8, -4. 0) 

The constant I ist must completely satisfy the variable I ist and there may not be any remaining unused constants. 

Dummy variables and variables in blank COMMON cannot be initial ized with the DATA statement. Variables in 
labeled COMMON may be initialized, but only in a BLOCK DATA subprogram. 

If a labeled COMMON variable is initialized in more than one program, its value will depend on which program is 
loaded last. This practice is not recommended. 

tThe size of I iteral constants is I imited to 16 characters in a DATA constant list. 
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8. PROGRAMS AND SUBPROGRAMS 

A complete set of program units executed together as a single job is called an executable program. An executable 
program consists of one main program and all required subprograms. Subprograms may be defined by the programmer, 
as described in this section, or may be preprogrammed and contained in the run-time or system libraries. 

MAIN PROGRAMS 

A main program is comprised of a set of SDS FORTRAN IV-H statements, the first of which (other than comment lines) 
cannot be one of the following statements, and the last of which is an END statement. 

a FUNCTION statement 

a SUBROUTINE statement 

a BLOCK DATA statement 

Main programs may contain any statement except a FUNCTION, SUBROUTINE, ENTRY, or BLOCK DATA statement. 
Once an executable program has been loaded, execution of the program begins with the first executable statement 
in the main program. 

SUBPROGRAMS 

Subprograms are programs which may be called by other programs; they fall into the two broad classes of functions 
and subroutines} These may be further classified as follows: 

Functions 

Statement functions 

FUNCTION subprograms 

Basic external functions 

Assembly language functions 

Subroutines 

SUBROUTINE subroutines 

Assembly language subprograms 

A function is referenced by the appearance of its identifier within an expression and returns a value (see Chapter 2). 
Subroutines are referenced with CALL statements and do not necessarily return a value (see Chapter 5). A number of 
library functions and subroutines are included in SDS FORTRAN IV-H. These are described at the end of this section. 

STATEMENT FUNCTIONS 

Statement functions are functions that can be defined in a singl e expression. A statement function definition has 
the form 

where 

f is the name of the function 

d. is the identifier of a dummy scalar variable (see below) 
I 

e is an arithmetic or logical expression 

tThe BLOCK DATA subprogram, which is neither a function nor a subroutine, is also provided (see Chapter 7). 
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A statement function must have at least one dummy argument. Statement function dummies are treated only as 
scalars; they cannot be dummy arrays or subprograms (see "Arguments and Dummies" in this chapter). The expression 
e should contain at least one reference to each dummy. The identifier f may not appear in the expression, since 
this would be Ci ieCUiSive definition. References to other statement functions rna)' be made onl y to previousl y de-
fined functions. 

Examples: 

F(X) = A * X ** 2 + B * X + C 

EI(THETA) = CMPLX(COS(THETA), SIN(THETA» 

AVG(PT, NUM, TOT) = 3 *(PT + NUM)/fOT + 1 

Since each di is merely a dummy and does not actually exist, the names of statement function dummies may be the 
same as the names of other variables in the program. Note, however, that if a statement function dummy is named 
X, and there is another variable in the program called X, then the appearance of X within the statement function 
expression refers to the dummy. The only relation between a statement function dummy and any other quantity with 
the same name is that they will both have the same type. This enables the programmer to declare the types of state­
ment function dummies using explicit (or implicit) type statements. 

The statement function itself is typed like any other identifier: it may appear in an explicit type statement; if it 
does not, it will acquire implicit type (see "Implicit Declarations" in Chapter 7). 

A statement function may be referenced only within the program unit in which it is defined. Statement function 
definitions must precede all executable statements in the program in which they appear. 

FUNCTION Subprograms 

Functions that cannot be defined in a single statement may be defined as FUNCTION subprograms. These subpro­
grams are introduced by a FUNCTION statement, of the form 

or 

type FU NCTI ON f(d l' d
2

, d
3

, ••• ,d n) 

where 

f 

d. 
I 

type 

is the identifier of the function 

is a dummy argument of any of the forms (except asterisk), described in "Arguments and Dummies;; later in 
th i s chapter 

is an optional type specification, which may be any of the following: t 

INTEGER 

REAL 

DOUBLE PRECISION 

COMPLEX 

LOGICAL 

Every FUNCTION subprogram must have at least one dummy. Values may be assigned to dummies within the 
FUNCTION subprogram, with certain restrictions (see "Arguments and Dummies"). 

A FUNCTION subprogram must contain at least one RETURN statement. A RETURN statement should be the last 
statement in a FUNCTION subprogram; i. e., it should be the last statement executed for each execution of the 
FUNCTION. 

tSee also "Operational Size Specifications ll in Chapter 7. 
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The identifier of the function must be assigned a value at least once in the subprogram as the argument of a CALL 
statement, a DO control variable, the variable on the left side of an arithmetic statement, or in an input list (READ 
statement) within the subprogram. 

Within the function the identifier of a FUNCTION subprogram is treated as though it were a scalar variable and 
should be assigned a value during each execution of the function. The value return for a FUNCTION is the last 
one assigned to its identifier prior to the execution of a RETURN statement. 

A FUNCTION subprogram may contain any FORTRAN statement except a SUBROUTINE statement, another FUNC­
TION statement, or a BLOCK DATA statement. 

FUNCTION statement examples: 

INTEGER FUNCTION DIFFEQ (R, S, N) 

REAL FUNCTION IOU (W, X, Y, Zl, Z2) 

FUNCTION EXTRCT (N, A, B, C, V) 

LOGICAL FUNCTION VERDAD(E, F, G, H, P) 

FUNCTION subprogram examples: 

COMPLEX FUNCTION GAMMA (Z, N) 

COMPLEX Z 

M = 1 

GAMMA = Z 

DO 5 J = N, 10 

M = M * J 

5 GAMMA = GAMMA * (Z + J) 

GAMtv'iA = M * N + Z / GAMMA 

RETURN 

END 

SUBROUTINE Subprograms 

SUBROUTINE subprograms, like FUNCTION subprograms, are self-contained programmed procedures. Unlike 
FUNCTIONS, however SUBROUTINE subprograms do not have values associated with them and may not be refer­
enced in an expression. Instead, SUBROUTINE subprograms are accessed by CALL statements (see Chapter 5). 

SUBROUTINE subprograms begin with a SUBROUTINE statement of the form 

SUBROUTINE p(d
1
, d2, d

3
,.·., d

n
) 

or 

SUBROUTINE p 

where 

p is the identifier of the subroutine 

d. is a dummy argument of any of the forms described in "Arguments and Dummies" later in this chapter. 
I 

Note that while a FUNCTION must have at least one dummy, a SUBROUTINE need have none. 

A SUBROUTINE subprogram must contain at least one RETURN statement; a RETURN statement should be logically 
the last statement in a SUBROUTINE subprogram (that is, it should be the last statement executed for each execution 
of the SUBROUTINE). 

A SUBROUTINE subprogram may return values to the calling program by assigning values to the d. or to variables 
in COMMON storage. I 
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A SUBROUTINE subprogram may contain any F0RTRAN statements except a FUNCTION statement, another SUB­
ROUTINE statement, and/or a BLOCK DATA statement. The SUBROUTINE subprogram may use one or more of its 
arguments to return values to the calling program. The SUBROUTINE name must not appear in any other statement 
!_ LL_ CI IDDr'\IIT'''-11: ______ _ 
III IIIIC ")VUI"VVllI'IL I-'I~IUIII. 

ENTRY Statement 

The normal entry into a subprogram is at the SUBROUTINE or FUNCTION statement that defines it. Execution be­
gins at the first executable statement following the SUBROUTINE or FUNCTION statement. It is also possible to 
enter a subprogram at some other point, by using the ENTRY statement, which has the form 

ENTRY p 

or 

ENTRY p(d l' d2, d3, ... ,d n) 

where 

p is the name of the entry point 

d. is a dummy argument of any of the forms discussed in "Arguments and Dummies", later in this chapter 
I 

When control is transferred to a subprogram through an ENTRY statement, execution begins at the first exe{:utable 
statement following the ENTRY statement. The ENTRY statement itself is nonexecutable and does not affect the 
flow of the program in which it appears. That is, program flow can pass through an ENTRY statement. For example, 

SUBROUTINE FINISH(N) 

END FILE N 

ENTRY REWIND(N) 

REWIND N 

FLAG(N) = 0 

RETURN 

END 

The dummy arguments in an ENTRY statement need not agree with those in the FUNCTION on SUBROUTINE state­
ment, nor with those in other ENTRY statements. However, they may agree, if desired. The following statements 
provide further clarification. 

1. When the same dummy name appears in an ENTRY statement" and in the FUNCTION or SUBROUTINE statement, 
it does not refer to two separate entities; it represents the same quantity and, as such, must agree in class and 
type between the two entry points (e. g., one cannot be real and the other integer). 

2. When a dummy name appears at more than one entry point, it need not appear in the same position in the 
dummy list or correspond to the same argument in the calling program. 

3. When a subprogram is entered, all the dummies in the SUBROUTINE, FUNCTION, or ENTRY statement are set 
up to correspond to the arguments in the call of that statement, thereby overriding any previous correspondence 
that may have existed. In the example shown above, if the calls 

CALL FINISH (3) 

CALL REWIND (5) 

were made, the statement REWIND N would be interpreted as REWIND 3 the first time and as REWIND 5 the 
second. 

Dummy correspondents that are set up by any call on a SUBROUTINE, FUNCTION, or ENTRY statement remain in 
effect during all subsequent calls on any entry point in the subprogram, unless overridden by the appearance of the 
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same dummy name in a later entry point. Thus, it is permissible to "initialize" a dummy with one call and make 
use of this initialization on subsequent calls. For example, 

23 

14 

CALL SUB1 (A, B,C, D, E, F) 

CALL SUB2(G, H, &23) 

CALL SUB3(& 14) 

STOP ISUB2 ERROR 1 

STOP ISUB3 ERROR 1 

The following actions are taken in the above example: 

SUBROUTINE SUB1(U, V,W,X, Y/Z) 

RETURN 

ENTRY SUB2(W, T, *) 

U = V*W + T 

ENTRY SUB3(*) 

x = W * y**Z 

IF (U > X) RETURN 1 

RETURN 

END 

1. The call on SUB1 initializes U, V, W,X, Y, and Z to correspond to A, B, C, D, E and F, respectively. 

2. The calion SUB2 sets T to correspond to H and changes W to correspond to G instead of C. The two assign­
ment statements executed are thus equivalent to 

A = B*G + H 

D = G * E**F 

Then, if A is greater than D, ietUiii is to statement 23; otherwise, a normal return is taken to the statement 
following the call on SUB2. 

3. The call on SUB3 then changes the alternate return to statement label 14, leaving all other correspondences 
as they were. Onl y one assignment statement is executed, which is 

D = G * E**F 

Then, if A is greater than D, return is to statement 14; otherwise, a normal return is taken. 

4. Note that, if SUB3 were called before SUB2, the action of SUB2 would be unchanged, however, in SUB3 the 
dummy W would still correspond to C. Then, the assignment statement would have the effect 

D = C * E**F 

It is an error to reference a dummy argument that has never been initialized. In the above example, if SUB3 were 
called without having called SUB1, the dummies U, W,X, Y, and Z would not correspond to anything. Care should 
be taken to avoid situations of this sort. 

The following rules also apply to ENTRY statements: 

1. The result of a FUNCTION is returned only in the FUNCTION name, never in the ENTRY name. The ENTRY 
name serves onl y to identify the location of the entry point and should not be used within the subprogram. In 
this sense, it is similar to a SUBROUTINE name. 

2. ENTRY statements do not al ter the rul es concerning placement of statement functions. Statement functions 
may appear after an ENTRY statement only if they still appear before the first executable statement in the 
subprogram. 

3. No subprogram may refer to itself, either directly or indirectly through any of its entry points, nor may it refer 
to any subprogram whose RETURN statement has not been executed. 
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4. Like FUNCTION and SUBROUTINE names, ENTRY names are normally available to any program in the 
executabl e program. 

5. An ENTRY statement may not appear in a main program. 

6. Prior to being referenced in an executable statement, every dummy must have appeared in a SUBROUTINE, 
FUNCTION, or ENTRY statement. In the following example, use of X is correct; use of Y is not. 

SUBROUTINE ALPHA (X) 

X=Y 

ENTRY BETA (X, Y) 

7. If any of the dimensions of an adjustable dummy array are in the dummy list of an ENTRY statement, then the 
array name must also appear there (see "Adjustables Dimensions" in this section). 

ARGUMENTS AND DUMMIES 

Dummy arguments provide a means of passing information between a subprogram and the program that called it. 
Both FUNCTION and SUBROUTINE subprograms may have dummy arguments. A SUBROUTINE need not have any, 
however, while a FUNCTION must have at least one. Dummies are merely IIformal ll parameters and are used to 
indicate the type, number, and sequence of subprogram arguments. A dummy does not actually exist, and no stor­
age is reserved for it; it is only a name used to identify an argument in the calling program. An argument may be 
any of the following: 

a scalar variable 

an array el ement 

an array name 

an expression 

a statement label 

a constant of any type (including literal) 

a subprogram name 

A dummy itself may be classified 'vvithin the subprogram as one of the following: 

a scalar variable 

an array 

a subprogram 

an asterisk denoting a statement label 

The chart below indicates the permissible kinds of correspondence between an argument and a dummy. 

Dummy 
Argument 

scalar subprogram asterisk array 

scalar or array element yes yest no no 

expression yes no no no 

statement label no no no yes 

array name yest yes no no 

litera I consta nt yest yes no no 

subprogram name no no yes no 

tA correspondence of this kind may not be entirely meaningful (see IIDummy Arrays"). 
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A statement label argument is written as 

&k 

where k is the actual statement label and the ampersand distinguishes the construct as a statement label argument 
(as opposed to an integer constant). 

Within a subprogram, a dummy may be used in much the same way as any other scalar, array, or subprogram identi­
fier with certain restrictions; namely, dummies may not appear in the following types of statements: 

COMMON 

EQUIVALENCE 

DATA 

NAME LIST 

The reason for the above restriction is that dummies do not actually exist. Furthermore, classification of a dummy 
as a scalar, an array, or a subprogram identifier occurs in the same manner as with other (actual) identifiers, in both 
implicit and explicit classifications (see "Classification of Identifiers" in Chapter 7). 

In general, dummies must agree in type with the arguments to which they correspond. For example, the following 
situation is in error because the types of the arguments and the dummies do not agree. 

COMPLEX C FUNCTION F (LL, CC) 

LOGICAL L LOGICAL LL 

X = F (C, L) COMPLEX CC 

Reversing the order of either the arguments in the calling reference or the dummies in the FUNCTION statement 
would eliminate the error in this example. 

There are two exceptions to the rul e of type correspondence: 

1. A statement number passed as an argument has no type. 

2. A SUBROUTINE name (as opposed to a FUNCTION name) has no type. 

All arithmetic or logical expressions appearing as actual arguments in the calling program are first evaluated and 
then placed in a temporary storage location. The address of that temporary storage location is then p~ssed as the 
argument (this action is referred to as "call by value "). For all other arguments the actual address of the argument 
is passed (this is referred to as "call by name"). 

NOTE: All constants are passed by name; therefore, if the called subprogram stores into a dummy corresponding 
to a constant in the calling sequence, that constant will be changed. Obviously, this is not recommended. 

DUMM Y SCALARS 

Dummy scalars are single valued entities that correspond to a single element in the calling program. Dummies that 
are not declared (implicitly or explicitly) to be arrays or subprograms are treated as scalars. 

DUMMY ARRAYS 

A dummy argument may be defined as an array, by the presence of its identifier in any array declaration within the 
subprogram (the fact that a calling argument is an array does not in itself define the corresponding dummy to be an 
array). A dummy array does not actually occupy any storage, it merely identifies an area in the calling program. 
The subprogram assumes that the argument supplied in the calling statement defines the first (or base) element of an 
actual array and calculates subscripts from that location. 
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Normally, a dummy array is given the same dimensions as the argument array to which it corresponds. This is not 
necessary, however, and useful operations can often be performed by making them different. For example, 

DIMENSION A(lO, 10) 

CALL OUT (A(1,6)) 

SUBROUTINE OUT (B) 

DIMENSION B(50) 

In this case, the l-dimensional dummy array B corresponds to the last half of the 2-dimensional array A (i. e., 
elements A{1,6) through A(lO, 10». However, since an array name used without subscripts as an argument refers 
to the first element of the array, if the calling statement were 

CALL OUT{A) 

the dummy array B would correspond to the first half of the array A. 

Arguments that are literal constants are norma II y received by dummy arrays. A literal constant is stored as a con­
secutive string of characters in memory, and its starting location is passed as the argument address. For instance, 
in the example 

CALL FOR('PHILIP MORRIS') 

the following correspondences hold: 

M{l) = 4HPHIL 

M(2) = 4HIPt>M 

M(3) = 4H ORRI 

M(4) = 4H Sb'b'b 

SUBROUTINE FOR(M) 

DIMENSION M (5) 

t·II(5) is undefined and should nor be referenced 

where-o represents the character blank. Literal constants are filled out with trailing blanks to the nearest word 
boundary {multiple of four characters}. Therefore, passing such a constant to a dummy of a type that occupies more 
than one word per elementt (e.g., double precision) may result in dummy elements that are only partially defined. 
For this reason, integer arrays are recommended. 

If an array corresponds to something that is not an array or a literal constant, the latter will correspond to the first 
element of the array. This is true whether the calling argument is an array and the dummy is not, or vice versa. 
For example, if the calling argument is a scalar and the dummy is an array, references in the subprogram to elements 
of the array other than the first element will correspond to whatever happens to be stored near the scalar. Care must 
be taken in creating correspondences of this nature since they may depend upon a particular impl ementation. 

ADJUSTABLE DIMENSIONS 

Since a dummy array does not actually occupy any storage, its dimensions are used only to locate its elements, not 
to allocate storage for them. Therefore, the dimensions of a dummy array do not have to be defined within the sub­
program in the normal manner. Instead, any or all the dimensions of a dummy array may be specified by dummy 
scalar variables rather than by constants. This permits the calling program to supply the dimensions of the dummy 
array each time the subprogram is called. The following statements demonstrate adjustable dimensions: 

DIMENSION P(1O,5), Q(9, 3) FUNCTION SUM (R, N, M) 

x = SUM(P, iO,5) DIMENSiON R(N, M) 

Y = SUM(Q, 9,3) 

tSee "Allocation of Variable Types" in Chapter 7. 
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Only a dummy array can be given adjustable dimensions, and the dimensions must be specified by dummy integer 
scalars. The variables used as adjustable dimensions may be referenced elsewhere in the subprogram but should not 
be changed. In particular, the appearance of any of these variables in the dummy list of a succeeding ENTRY 
statement constitutes a change. Therefore, an ENTRY statement may not contain any dimensions of an adjustable 
array itself. The appearance of the array name in the ENTRY statement causes the array bounds to be recomputed 
(see II ENTRY Statement ll

). 

DUMMY SUBPROGRAMS 

A dummy subprogram must correspond to an argument that is a subprogram name, and it is the onl y kind of dummy 
that can do so. The dummy name merel y serves to identify a cI osed subprogram whose actual location is defined by 
the calling program. Therefore, a call on a dummy subprogram is actually a call on the subprogram whose name is 
specified as the argument. A dummy subprogram is classified in the same manner as any other subprogram (see 
IIClassification of Identifiers ll in Chapter 7). 

Example: 

EXTERNAL SIN, DSIN, SQRT, DSQRT 

A = DIFF(SIN, DSIN, X) 

B = DIFF(SQRT, DSQRT, y) 

FUNCTION DIFF(F, DF, Z) 

DOUBLE PRECISION DF 

DIFF = DABS(F(Z) - DF(DBLE(Z») 

RETURN 

END 

A subprogram identifier, to be passed as an argument, must previously appear in an EXTERNAL statement (otherwise, 
it may be classified as a scalar variable). 

LIBRARY SUBPROGRAMS 

SDS FORTRAN IV-H includes a number of library subprograms. These are specially recognized by the compiler, 
which generates special machine codes for them. Most of the I ibrary subprograms are functions, al though several 
utility subroutines are also provided 

BASIC EXTERNAL FUNCTIONS 

The basic external function subprograms evaluate commonly used mathematical functions. These subprograms have 
a special type that is known to the compiler. This type is not necessarily the same as the type it would acquire by 
implicit typing rules. The arguments to these functions must have the proper type, as shown in Table 8. 

Table 8 lists the function subprograms provided by SDS FORTRAN IV-H. When a formula is shown in the column 
IIDefinition of Function ll

, it is not necessarily the formula that is actually used in implementing the function; it is 
intended only to clarify the definition of function. 

ADDITIONAL LIBRARY SUBPROGRAMS 

In addition to the functions listed in Table 8, the following subprograms are supplied in the SDS FORTRAN IV-H 

library: 

Form: 

CALL EXIT 

*EXIT* is typed on the I isting output device and the job is terminated. 
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Table 8. Basic External Functions 

Function I Number or I Type or 
I ... 
I I ype or I 

'"' /:- -.1.-LJE: ri F! j I i OF! I 
Name Arguments Argument Result of Function 

ABS 1 Real*4 Real*4 Absolute value 

AItMG 1 Complex*8 Real*4 Imaginary part of argument expressed as a 
real value. 

AINT 1 Real*4 Real*4 Integer part of argument expressed as a 
real value. 

ALOG 1 Real*4 Real*4 Natural logarithm (base e). 

ALOGlO 1 Real*4 Real*4 Common logarithm (base 10). 

AMAXO N? 2 Integer*4 Real*4 Maximum value for integer val ues. 

AMAX1 N? 2 Real*4 Real*4 Maximum value for real values. 

AMINO N? 2 Integer*4 Real*4 Minimum value for integer values. 

AMIN1 N ?2 Real*4 Real*4 Minimum value for real values. 

AMOD 2 Real*4 Real*4 Arg 1 (mod arg2). Evaluated as 

arg 1 - arg2 * AINT (arg 1/arg2) 

(i .e., the sign is the same as arg1) 
Function undefined if arg

2 
= O. 

ATAN 1 Real*4 Real*4 } Arctangent in radians. Arg 1 = ordinate (y), 
ATAN2 2 Real*4 Real*4 arg2 = abscissa(x). If arg2 not present, 1 is 

assumed. Resul t (R) is arctangent of 
arg 1/arg2 quadrant allocated in the 
range -11" < R ~ 11" i ATAN{O,O) = O. 

CABS 1 I Complex*8 Real*4 Complex absolute value 0. e., modulus}. 

CABS(x+iy) = Jx2+y2 

CCOS 1 Complex*8 I Complex*8 Complex cosine. CCOS(Z) = (eiZ+e -iZ)/2. 

CDABS 1 Complex*16 I Real*8 Double-complex absolute value (modulus). 

I i See CABS. I CDCOS 1 Complex*16 I Complex*16 Doubl e -compl ex cosi ne. See CCOS. ! 
CDEXP 1 Complex*16 Complex*16 Double-complex exponential. See CEXP. 

CDLOG 1 Complex*16 Complex*16 Double-complex natural logarithm 
(base e). See CLOG. 

CDSIN 1 Complex*16 Complex*16 Doubl e-complex sine. See CSIN. 

CDSQRT 1 Complex* 16 Complex* 16 Double-complex square root. See CSQRT. 

CEXP 1 Complex*8 Complex*8 Complex exponential (e**arg). 
C EX P(x+iy) = EXP(x) (COS(y) + i SIN(y». 

CLOG 1 Complex*8 Complex*8 Complex natural logarithm (base e). 
CLOG (Z) = CLOG(x+iy) = u + iv 
=In Z + i ATAN(y, x), allocated such 
that -11" < v :$ 11". 

CMPLX 2 Real*4 Complex*8 Converts two non-compl ex numbers to a 
complex number. CMPLX(x, y) = x + iy. 

CONJG 1 Complex*8 Complex*8 Complex conjugate. CONJG(x+iy) 
= x - iy (has no effect if arg not complex). 

COS 1 Real*4 Real*4 Cosine of angle in radians. 
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Function 
Name 

CSIN 

CSQRT 

DABS 

DATAN 
DATAN2 

DBLE 

DCMPLX 

DCONJG 

DCOS 

DEXP 

DFLOAT 

DIM 

DLOG 

DLOGlO 

DMAXi 

DMIN1 

DMOD 

DSIGN 

DSIN 

DSQRT 

DTANH 

EXP 

FLOAT 

lABS 

IDIM 

INT 
IFIX 
IDINT 

ISIGN 

MAXO 

Number of 
Arguments 

1 

1 
2 

1 

2 

2 

1 

N ~2 

N > 2 

2 

2 

1 

1 

1 

1 

2 

1 
1 
1 

2 

N ~2 

Table 8. Basic External Functions (cont.) 

Type of 
Argument 

Complex*8 

Complex*8 

Real8* 

Real*8 
Real*8 

Real*4 

Real*8 

Complex*16 

Real*8 

Real*8 

Integer*4 

Real*4 

Real*8 

Real*8 

Real*8 

Real*8 

Real*8 

Real*8 

Real*8 

Real*8 

Real*8 

Real*4 

Integer*4 

Integer*4 

Integer*4 

Real*4 
Real*4 
Real*8 

Integer*4 

Integer*4 

Type of 
Result 

Complex*8 

Complex*8 

Real*8 

Real*8 
Real*8 

Real*8 

Complex*16 

Complex*16 

Real*8 

Real*8 

Real*8 

Real*4 

Real*8 

Real*8 

Real*8 

Real*8 

Real*8 

Real*8 

Real*8 

Real*8 

Real*8 

Real*4 

Real*4 

Integer*4 

Integer*4 

Integer*4j 
Integer*4 
Integer*4 

Integer*4 

Integer*4 

Definition 
of Function 

iZ -iZ 
Complex sine. CSIN{Z) = {e _ e )/(20 

Complex square root. CSQRT{Z) = u + iv 

= e{ln Z)/2, allocated such that u ~ O. 

Double-precision absolute value. 

Double-precision arctangent in radians. 
See ATAN. 

Argument converted to double precision. 

Converts two non-compl ex numbers to a 
double-complex number. See CMPLX. 

Double-complex conjugate. See CONJG. 

Double-precision cosine of angle in radians. 

Double-precision exponential (e**arg). 

Argument converted to double precision. 
Same as DBLE, but used with integer 
arguments. 

Positive difference. DIM{x, y) = max{x-y, 0) 

Double-precision natural logarithm 
(base e). 

Double-precision common logarithm 
(base 10). 

Double-precision maximum value. 

Double-precision minimum value. 

Double-precision arg
1 

(moa arg
2

). See 
AMOD. 

Doubl e-prec i si on magnitude of arg 1 with 
sig~ ?f arg20 If arg

2 
is zero, the sign is 

posItive. 

Double-precision sine of angle in radians. 

Double-precision square root (positive 
value). 

Double-precision hyperbolic tangent. 

Exponential (e**arg). 

Argument converted to a real value. 

Integer absolute val ue. 

Integer positive difference. 
IDIM{j, k) = j - MIN(j, k). 

Argument converted to an integer value. 

Integer magnitude of arg 1 with sign of 
arg

2
• If arg

2 
is zero, the sign is positive. 

Integer maximum value. 
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Tabl e 8. Basic External Functions (cont.) 

Function Number of Tvoe of Tvoe of Definition 
I i 

,. 
I 

,. 
I Name Arguments Argument result of Function 

MAX1 N ~ 2 Real*4 Integer*4 Integer maxi mum val ue. 

MIND N ~ 2 Integer*4 Integer*4 Integer minimum value. 

MINl N ~ 2 Real*4 Integer*4 Integer minimum value. 

MOD 2 Integer*4 Integer*4 Arg 1 (mod arg
2

)· Evaluated as 

arg 1 - arg2 * [arg 1/arg2] 

where the brackets indicate integer part; 
i. e., the sign is the same as argl. 
Function is undefined if arg

2 
= o. 

REAL 1 Complex*8 Real*4 Real part of a complex number. 

SIGN 2 Real*4 Real*4 Magnitude of arg 1 with sign of arg2. 
If arg

2 
is zero, the sign is positive. 

SIN 1 Real*4 Real*4 Sine of angle in radians. 

SNGL 1 Real*8 Real*4 Argument converted to a value with 
real (single) precision. 

SORT 1 Real*4 Real*4 Square root (positive value). 

TANH 1 Real*4 Real*4 Hyperbolic tangent. For compl ex, 

TANH(Z) = SINH(Z)/COSH(Z) 
Z -Z Z -Z) = (e - e )/(e + e 

SLITET - Sense Light Test 

Form: 

CALL SLITET (n, v) 

where 

n is an integer expression specifying which sense I ight is to be tested ( 1 ::; n ::; 4) 

v is an integer variable in which the result of the test will be stored 

Sense light n is tested. If the sense light is on, the value 1 will be stored in Vi if it is off, the value 2 will be 
stored. Following the test, the sense light will be turned off. 

SLITE - Set Sense Light 

Form: 

CALL SLITE (n) 

where 

is an integer expression (0 ~ n::; 4) 

If n is 0, all sense lights will be turned off; if n is 1, 2, 3, or 4, the corresponding sense light will be turned 011. 

OVERFL -Floating Overflow Test 

Form: 

CALL OVERFL (s) 
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where 

s is an integer variable into which will be stored the result of the test 

If a floating overflow has occurred, s is set to 1; if no overflow condition exists, s is set to 2. If a floating 
underflow condition exists, s is set to 3. The machine is left in a no overflow {underflow} condition following 
the test. Overflow and underflow are defined in the Sigma computer reference manual. 

DVCHK - Divide Check 

Form: 

CALL DVCHK (s) 

where 

s is an integer variable into which will be stored the resul t of the test 

This is another entry to the OVERFL subprogram described above. 

DUMP 

A call to the DUMP subprogram has the form 

CALL DUMP(A 1, B1, F 1"'" An' B n' F n) 

where 

A and B are variable data names that indicate the limits of storage to be dumped; either A or B may repre­
sent upper or lower limits. The arguments A and B should be in the same program {main program or 
subprogram} or same COMMON block. 

F. is an integer indicating the dump format desired: 
I 

F. = 0 Hexadecimal 
I 

2 Logical*4 

4Integer*4 

5 Real*4 

6 Real*8 

7 Complex*8 

8 Complex* 16 

9 Literal 

any other value of Fi is illegal. 

If the argument F is omitted, it is assumed to be zero, and the dump will be in hexadecimal format. 
n 

A call to this subroutine causes the indicated limits of storage to be dumped and execution to be terminated. 

PDUMP 

A call to the PDUMP subprogram has the form 

where 

A, B, and F are the same as for DUMP 

This call causes the indicated I imits of storage to be dumped and execution to be continued. 
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APPENDIX A. SDS SIGMA FORTRAN IV-H CHARACTER SETS 

The standard character set for use with SDS Sigma FORTRAN IV and FORTRAN IV-H is the EBCDIC (Extended Binary­
Coded-Decimal Interchange Code). This character set is illustrated in Table 9. 

Table 9. SDS EBCDIC 
(Extended Binary-Coded-Decimal Interchange Code) 

9-Channel 9-Channel 
EBCDIC Magnetic Tape EBCDIC Magnetic Tape 

Character Card Code Hexadecimal Code Character Card Code Hexadecimal Code 

A 12-1 C1 Blank Blank 40 
B 12-2 C2 ¢' (a) 12-2-8 4A 
C 12-3 C3 12-3-8 4B 
D 12-4 C4 < 12-4-8 4C 
E 12-5 C5 ( 12-5-8 40 
F 12-6 C6 + 12-6-8 4E 
G 12-7 C7 I 12-7-8 4F 
H 12-8 C8 & 12 50 
I 12-9 C9 
J 11-1 01 I (a) 11-2-8 5A 
K 11-2 02 $ 11-3-8 5B 
L 11-3 C3 * 11-4-8 5C 
M 11-4 D4 ) 11-5-8 5D 
N 11-5 D5 ; 11-6-8 5E 
0 11-6 D6 , (a) 11-7-8 5F 
P 11-7 D7 - 11 60 
Q 11-8 D8 
R 11-9 D9 / 0-1 61 
S 0-2 E2 , 0-3-8 6B 
T 0-3 E3 % 0-4-8 6C 
U 0-4 E4 - (a) 0-5-8 6D 
V 0-5 E5 > 0-6-8 6E 
W 0-6 E6 ? (a) 0-7-8 6F 

I 

X 

I 
0-7 E7 

y 0-8 E8 : 2-8 7A 
Z 0-9 E9 II 3-8 7B 
0 0 FO @ 4-8 7C 
1 1 F1 I 5-8 7D 
2 2 F2 = 6-8 7E 
3 3 F3 II (a) 7-8 7F 
4 4 F4 
5 5 F5 
6 6 F6 
7 7 F7 
8 8 F8 
9 9 F9 

(a) This character is not included in the SDS Standard 56-graphic character set, used by some line printers. 

The SDS Sigma internal hexadecimal representation (in memory) of every character is the same as the magnetic tape 
representation. However, it is not advisable for the FORTRAN programmer to take advantage of these numeric 
representations since this tends to make the program machine-dependent. 
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APPENDIX B. SDS SIGMA FORTRAN IV-H STATEMENTS 

Statement Executable Nonexecutabl e Page 

ASSIGN X 18 

Assignment X 15 

BACKSPACE X 46 

BLOCK DATA X 58 

CALL X 20 

COMMON X 52 

COMPLEX X 50 

CONTINUE X 24 

DATA X 59 

DIMENSION X 49 

DO X 21 

DOUBLE PRECISION X 50 

END X 25 

END FILE X 46 

ENTRY X 64 

EQUIVALENCE X 55 

EXTERNAL X 58 

FORMAT v 33 /\ 

FUNCTION X 62 

GOTO X 17 

IF X 19 

IMPLICIT X 49 

INTEGER X 50 

LOGICAL X 50 

NAMELIST X 30 

PAUSE X 24 

PRINT X 29 

PUNCH X 29 

READ X 29 

REAL X 50 

RETURN X 21 

REWIND X 46 

STOP X 25 

SUBROUTINE X 63 

Statement Function 
Definition X 61 

WRITE X 1,28, 
29,30 
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A 
A format, 34, 38, 39 
Acceptable FORTRAN II Statements, 28, 29 
Additional library subprograms, 72-74 
Adjustable dimensions, 68, 69 
Allocation of variable types, 54-56 
Alphanumeric data, 38 
Alphanumeric strings, 6, 7, 31, 38 
Ampersand (&) 

in NAME LIST input/output, 32 
in statement label argument, 67 

Arguments to subprograms, 20, 58, 62-66, 68, 69 
Arithmetic 

assignment statements, 15 
expressions, 9, 12 
IF statement, 22 

Arrangement of COMMON, 31, 52-55 
Array 

dec larations, 47-50 
elements, 7, 32, 48, 56 
identifiers, 7, 26, 48, 50, 67 
storage, 45, 48 
subscripts, 7, 8, 59, 60 
unsubscripted, 8, 27, 59, 60 
variables, 48, 54 

Assembly language programs, 61 
ASSIGN statement, 18, 19 
Assigned GO TO statement, 17, 18 
Assignment statements, 15 

label, (see ASSIGN statement) 
Asterisk (*) 

double operator (exponentiation), 11, 12 
in dummy list, 21, 66 
in size specification, 11, 12 
operator (multiplication), 11, 12 

Auxi I iory I/O statements, 26, 46 
BAC KSPACE, 46 
END FILE, 46 
REWIND, 46 

B 

BACKSPACE statement, 46 
Basic externa I functions, 50, 61, 70-72 
BCD input/output, 26, 28 
BCD records, 28 
Binary input/output, 29-31 
Binary records, 29, 30 
Blank ( ) 

COMMON, 52-54, 58, 60 
in column 6, 1 
in identifiers, 7 
in statements, 31, 45, 60, 61 

BLOC K DATA statement, 61, 63, 64 
BLOCK OAT A subprograms, 58, 60 
Bui It-in functions (see Intrinsic functions) 
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c 
C in column 1, 
CALL statement, 20, 61, 63 
Calling sequences, 67, 68 
Card Codes, 75 
Carriage control for printed output, 31, 46 
Character 

sets, 1, 75 
strings, 4, 25, 31, 34, 38, 39 

Characters in column 1, 
Classification, 

of data types, 7, 8 
of identifiers, 6, 7 
of constants, 4, 5 

Coding form, 1, 2 
Co lumn 1 characters, 
Comments, 1 
COMMON block identifiers, 47, 58 
COMMON 

referencing of data, 55 
COMMON statement, 31, 48, 52-54, 57, 67 
Compiler, 26, 69 
COMPLEX 

data, 4, 5, 6, 51 
statement, 15, 60 
type declaration, 11,12,15,50 

Computed GO TO, 18 
Conditione! trensfer, 19 
Conflicting and redundant declarations, 47 
Constants, 4-6, 13, 59, 60, 67, 68 
Continuation line, 1, 25 
CONTINUE statement, 24 
Control statements, 17-25 

ASSIGN, 17, 18 
CALL, 20 
CONTINUE, 24 
DO, 21-23 
END, 25 
GO TO, 17-19, 22 
IF, 19, 20 
PAUSE, 22, 24, 25 
RETURN, 21, 22 
STOP, 22, 25 

Conversion 

o 

format, (see Format) 
in assignment statements, 11, 15 
input/output, (see Format specifications), 28 

o format, 34, 35 
Dangling comma, 32 
Data constant list, 60 
OAT A statement, 49, 54, 59, 60, 67 
Data types 

comp lex, 4, 51 
double complex, 4, 51 
double precision, 4, 51 



integer, 4, 37, 51 
literal, 3, 4 
logical, 4, 36, 38 
rea I, 4, 34, 35, 51 

Data values, 4, 50 
Data variable list, 59, 60 
Dec larati on statements, 47, 58 

array, 47, 48, 50 
COMMON, 47, 57, 58 
DATA, 47 
DIMENSION, 47, 49, 56-58 
EQUIVALENCE, 47, 55-58, 67 
EXTERNA L, 58 
explicit type statements, 47 
IMP LIC IT, 47 
NAME LIST, 47 

Digits, 1 
DIMEN SION statement, 48, 49, 56, 57 
Dimensions of arrays, 7, 47, 66, S8, 69 
Displacement, 55 
DO statement, 21-23 
DO implications 

in DATA statements, 27 
in I/O lists, 26, 27, 31, 59 

Dollar sign (S) 
as letter, 1 

DO loops, 22, 23, 59 
Double complex, 4, 6, 11, 12, 15, 51 
DOUBLE PRECISION 

data, 4, 5, 51 
statement, 15, 60 
type dec loration, 11, 12, 15, 50 

Dummy arguments; 62-66 
array, 48, 62, 65, 67, 68 
sca lar, 62, 66, 67 
subprogram, 62, 66, 67, 69 

Dummy identifiers, 31, 67 
DUMP, 73 
DVCHK, 73 

E 
E format, 34, 35 
EBCDIC character set, 75 
END statement, 25, 58, 61 
END = form of READ, 30, 32 
END FILE statement, 46 
End-of-fi Ie, processing, 30 
ENTRY statement, 64, 65, 69 
EQUIVALENCE statement, 47, 55-58, 67 
ERR = form of READ, 30, 32 
Evaluation hierarchy, 14 

arithmetic, 14 
logical, 14 

Executable statements, 17,47,51 
EXIT, 72 
Explicit 

dec larations, 73 
type statements, 48, 50-52, 62 

Exponentiation, 9, 10, 11, 12, 
Expressions, 9, 10, 11, 12, 20 

arithmetic, 9, 12, 13 

evaluation hierarchy, 9, 10, 13 
logical, 9, 11, 13, 15 
mixed, 11, 15 
relational, 9, 12, 13 

Extension of COMMON, (see EQUIVALENCE statement) 
EXTERNAL statement, 58, 69 

F 
F format, 34, 35 
FA LSE, 6, 38 
Fixed-point data, (see INTEGER data) 
Floating overflow, (see OVERFL) 
Floating-point data, (see Real data and Double-precision 

data) 
FORMA T processor, 44, 45 
FORMAT statement, 26-30, 33-45 
FORMA T and list interfacing, 44, 45 
Format specifications (input/output), 26, 31-43 

A, 34, 38-39, 44 
D, 34, 35, 44 
E, 34, 35, 44 
F, 34, 35, 44 
G, 34, 36, 37, 44 
H, 34, 39, 40, 44 
I, 34, 37, 44 
L, 34, 38, 44 
P, 34, 41-42 
parenthesized, 43, 44 
quote marks (I), 34, 40, 44 
slash (/), 34, 40, 44 
T, 34, 41, 44 
X, 34, 40, 41, 44 

FORMATs stored in arrays, 45 
Formatted (BCD) input/output, 28 
FORTRAN II statements, 28, 29 
FORTRAN IV-H statements, 25, 75 
FORTRAN program, 1, 25 
FUNCTION statement, 47, 51, 52, 61-65 
Function references, 8, 13, 21, 65 
Functions, 8, 47, 50, 61 

basic external, 69, 70, 72 
library, 8, 69, 70-72 
statement, 47, 61, 63 

FUNCTION subprograms, 61-63 

G 
G format, 34, 36, 37 
GO TO statements, 17, 18, 22 

assigned, 17 

H 

computed, 17, 18 
unconditional, 17 

H format, 34, 39, 40 
in Hollerith constants, 
in literal constants, 

Hierarchy (see Evaluation hierarchy) 
Hollerith specifications, 28, 31, 34, 39, 40, 45 
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I format, 34, 37 
Identifiers, I, .JI, 47, 49, 51, 62, 67 

c lassi fi cation of, 47-51, 63 
IF statements, 19, 20, 22 

arithmetic, 19 
logical, 19, 20, 22 

IJKLMN rule of typing, 7, 8 
Implicit declarations, 47, 49 
IMPUCIT statement, 1, 49-51, 58, 62 
Implicit type, 49, 50, 62, 69 
Implied DO loops, (see DO implications) 
Inherent type, 7, 8, 69 
Initialization of variables, 50, 58-60 
In-line functions, (see Intrinsic functions) 
Input format, 32, 33 
Input/output conver~ion, (see Format specifications) 
Input/output lists, 27, 31, 59 

DO-implied lists, 26, 27 
spec ia I lists, 27 

Input/output statements, 26-33 
auxiliary, 46 
BAC KSPACE, 46 
END FILE, 46 
FORMAT, 33-45 
formatted (BCD), 28 
intermediate (binary), 29 
READ, 29, 30 
REWIND, 46 
unit assignments, 27-29 
WRITE, 26, 29, 30 

INTEGER 
data, 4, 25, 37 
statement, 15, 59-60 
type declaration, 11, 12, 15 

Interaction of storage allocation statements, 57, 58 
Intermediate (binary) input/output, 29, 30 

L 
L format, 34, 38 
Label assignment statements, (see ASSIGN statement) 
Labeled COMMON, (see Blank COMMON) 
Labels, 1, 17,18,19 

as arguments to subprograms, 21, 66 
assigned, 18, 19 

Letters, 1 
Library subprograms, 61, 69-74 
Limits on values of quantities, 4, 5, 6 
List items, 26 
Literal constants, 6, 25, 60, 68 
Litera I data, 4 
Litem I specification, 34 
LOGICAL 

data, 4, 36, 38, 51 
expressions, 11, 13, 14 
IF statements, 22 
operators, 13, 14 
statement, 60 
type declaration, 13 
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M 
Magnitude of data, (see Format statements) 
1 J • "", ""'.t"' " [VIOl n program, L I, L;J, 0 I 

Mixed expressions, 11, 12 
Multiple data identifiers, 26 
Multiple entry, (see ENTRY statement) 

N 
NAME LIST statement, 30, 31, 67 
Names, (see Identifi ers) 
Nested DO loops, 23, 24 
Nested repetitions in FORMATs, 43, 45 
Nonexecutable statements, 17, 33 
Nonstandard RETURN, 21 
Numeric input strings, 28 

o 
Operators 

arithmetic, 9, 10 
logical, 9 
relational, 9, 12 

Optional size specifications, 51 
Output format, 31 
Output lists, (see Input/Output lists) 
OVERFL, 72 
Overflow, (see F looting overflow) 

p 

P specification (scale factor), 34, 41, 42 
Parenthesized format specifications, 10, 14, 34, 41, 43, 44 
PAUSE statement, 22, 24, 25 
PDUMP, 73 
Precedence of operations, (see Evaluation hierarchy) 
Precision of data, 4, 5 
PRINT statement, 29 
Program 

executable, 25, 53, 58, 61 
main, 25, 61 

PUNCH statement, 29 

Q 
Quotation mark (I) 

format, 34, 40 
in literal constant, 34 

R 
Range (of a DO), 22-24 
READ 

formatted (BCD), 27 
intermediate (binary), 29 
NAMELIST, 32 
statement, 26, 29, 30-33, 44, 45 

REAL 
data, 4, 34, 35, 42, 51, 60 



statement, 15 
type declaration, 11, 12, 15 

Records, input/output, 28, 30, 32 
Redundant declarations, 47 
References to array elements, 48, 49 
Relational expressions, 12, 13 
Relational operators, 12 
Rep lacements, (see Assignment statements) 
RETURN statement, 21, 22, 62, 63 
REWIND statement, 46 

s 
Sampl e program, 2, 3 
Scalar variables, 32, 47, 50, 56, 69 
Scale factor (P specifi cation), 41 
Sense lights, (see SLITET and SLITE) 
Sequence numbers, (see Sample program) 
Slash (/) 

FORMAT specification, 28, 33, 34, 42, 43 
in COMMON statement, 52, 53 
in DATA statement, 50, 59 
operator (division), 11 
NAME LIST statement, 31 

SLITE, 72 
SLITET, 72 
Specia I characters, 
Standard unit assignments, 27 
Statement functions, 47, 61, 62 
Statement labels, (see Labels) 
Statements 

executable, 21,26,47, 49, 51, 61, 62, 64 
nonexecutable, 64 
position of, 51, 52 

STOP statement, 22, 25 
Storage a I location dec larati ons 

COMMON statement, 47, 52, 57, 63 
EQUIVALENCE statement, 47, 52, 57 

Subexpressions, 9,10,12,13 
Subprogram definitions, 47, 61 
Subprogram identifiers, 47, 67, 69 

as arguments, 58, 66, 69 
Subprograms, 21, 61-63, 69 
SUBROUTINE statement, 21, 61, 63-65 
Subroutine subprograms, 20, 61, 63-66, 69 
Subscripts, 7, 8, 48, 49, 56, 59, 60 

T 
T format, 34, 41 
. TRUE., 6, 38 

Truncation, 15 
Type dec larations, 49, 50 
Type statements, 62 

COMPLEX, 49-51 
DOUBLE PRECISION, 50, 51 
INTEGER, 49-51 
LOGICAL, 49-51 
position of, 49, 51 
REAL, 49-51 

Types of data, (see Data types) 

u 
Unconditional GO TO statement, (see GO TO statements) 
Unimplementable allocation declarations, 

TYPE, 50 
COMMON, 56, 57 
EQUIVALENCE, 56, 57 

Unit assignments, 27 
Unlabeled COMMON, (see Blank COMMON) 
Unsubscripted arrays, 

y 

I/O lists, 8, 26, 27 
subprogram arguments, 67, 68 

Variables, 4, 15, 19, 31, 32, 47, 48, 52, 54 
array, 7, 8, 31, 32, 48, 54, 55, 69 
scalar, 7, 31, 32, 48, 69 

Vertical line spacing, (see Carriage control) 

w 
WRITE 

x 

formatted (BCD), 28 
intermediate (binary), 29-31 
NAME LIST, 26, 31, 32 
statement, 26, 30, 31, 33, 44 

X format specifications, 34, 40, 41 

z 
Zero 

in column 6, 
tests for, 19 
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