

where each of the s. is an equivalence set of the form
I

(v 1,v2,v
3
,···,v

m
)

Each equivalence set specifies that a!! the v. are to be assigned the same storage location.
the following three forms: I

1. A scalar or array name. For arrays, the location referenced is that of the first element.

The v_ mav be one of i I

2. An array element, where the subscripts are unsigned integers. For example, the statements

DIMENSION A(3, 3)

REAL B, C, A, X(ll)

EQUIVALENCE (A(l, 3), B), (C, X(l»

would make Band A(l,3) equivalent, and, similarly, C and X(l) equivalent.

When multiple subscripts are to be used in an EQUIVALENCE statement, that statement must be preceded by a
DIMENSION statement in which the array is declared.

3. An array name followed by an unsigned integer element count enclosed in parentheses. The meaning of this
count is as follows: the location of the first element of the array is denoted as position 1; the element immedi­
ately following is position 2i and so on. Thus, if X is a 3 x 3 array, X(l) means the same as X(l, 1); X(3) is
two elements beyond X and refers to X(3, 1), where the size (in words) of an element is dependent on the type
of X (see "Allocation of Variable Types").

REAL B, C, A(3,3)

EQUIVALENCE (A(7), B)

would make A(l, 3) and B equivalent.

See also "Interactions of Storage Allocation Statements", below, for further rules concerning equivalences
that cannot be implemented.

Example:

The effect of the statements

DIMENSION W(3), X(3,3), LC(7)

REAL W,X

INTEGER Lei J

REAL * 8 ELSIE

COMPLEX C

EQUIVALENCE ryJ, LC(2), ELSIE), (X(6), J, C(3»

is to cause the indicated equivalences:

Word

2

3

4

5

6

7

8

9

Variables - Set 1

LC(l)

LC(2) = W(l) = ELSI E1

LC(3) = W(2) = ELSI E2

LC(4) = W(3)

I r{t:,.\ --'-I
LC(6)

LC(7)

Variables - Set 2

X(l,l)

X(2, 1) = C1
X(3, 1) = C2

X(1,2)

Xl? ?) . '\-,-,
X(3,2) = J

X(1,3)

X(2,3)

X(3,3)

where the arrangement of set 1 has no bearing on the arrangement of set 2.

56 EQUIVALENCE Statement

The statement

EQUIVALENCE (LC(2), W), (W(l), ELSIE), (C(3), J), (J, X(6»

has the same results as the EQUIVALENCE statement in the previous example, and the set (J, X(3,2)is the
same as the set (J, X(6)) in this case.

INTERACTIONS OF STORAGE ALLOCATION STATEMENTS

No storage allocation declaration is permitted to cause conflicts in the arrangement of storage. Each COMMON
and EQUIVALENCE statement determines the allocation of the variables referenced in them Therefore, no
EQUIVALENCE set should contain references to more than one variable than has previously been allocated. When
this is not followed, such references are either redundant or contradictory. The redundancy is normally ignored;
the contradictory reference is not allowed.

In all cases, the storage allocation sequence specified in a COMMON statement takes precedence over any
EQUIVALENCE specifications. Consequently, EQUIVALENCE statements are not allowed to define conflicting
allocations of COMMON storage; that is, two variables in the same COMMON block or in different COMMON
blocks can not be made equivalent.

It is permissible for an EQUIVALENCE to cause a segment of the COMMON region to be lengthened beyond the
upper bound established by the last item defined to be in that segme~t. However, it is not permissible for an
EQUIVALENCE declaration to cause a segment to be lengthened beneath the lower bound established by the first
item declared to be in that segment. Both conditions are demonstrated in the exampl es below.

COMMON /BLK 1/A(5), B/BLK2/E(4), H, Y(2,2)

DIMENSION Z(lO), V(5)

EQUIVALENCE (A, Z), (V(4), E(2»

The first EQUIVALENCE set is a permissibie extension of the biock BLK1, whereas the second set illegally defines
an extension of the block BLK2. The declared storage allocation would appear os shown below.

Item

2

3

4

5

6

7

8

9

10

BLK1

A(l) = Z(l)

A(2) = Z(2)

A(3) = Z(3)

A(4) = Z(4)

A(5) = Z(5)

B = Z(6)

Z(7)

Z(8)

Z(9)

Z(lO)

BLK2 (illegal extension)

V(l)

V(2)

E(l) + V(3)

E(2) = V(4)

E(3) = V(5)

E(4)

H

Y(l, 1)

Y(2, 1)

Y(1,2)

Y(2,2)

Note: Assume all items are of the same data type.

Interactions of Storage Allocation Statements 57

The fact that COMMON segments may be lengthened by EQUIVALENCE declarations in no way nullifies the
requirement that labeled COMMON blocks of the same name, which are defined in separate programs or sub­
programs comprising portions of an executabl e program, contain the identical number of words.

EXTERNAL Statement

The EXTERNAL statement has the form

EXTERNAL Pl' P2' P3'···' Pn

where the p. are subprogram identifiers.
I

The EXTERNAL statementdeclares,asa subprogram, names that might otherwise be classified implicitly as scalars,
so that they may be passed as arguments to other subprograms (see tlArguments and Dummies" in Chapter 8). For
example, if the subprogram name F appears in the statement

CALL ALPHA(F)

but appears in no other context to indicate that it is a subprogram, it would be implicitl y classified as a scalar.
The EXTERNAL statement can be used to avoid this.

Examples:

EXTERNAL ABS, DABS

CALL COMPRE (ERROR, ABS, DABS, X)

In this example the subprogram identifiers ABS and DABS are used as arguments in the subprogram COMPRE.

CALL SUBR (ERROR, ABS(X, V), ALPHA, X)

In this example the subprogram named IA~BS is not an argument; it is executed first, and its result becomes the argu­
ment. In this situation an EXTERNAL statement is not required.

BLOCK DATA Subprograms

SDS FORTRAN IV-H permits variables in labeled COMMON to be initialized in a special program called c BLOCK
DATA subprogram, which begins with a statement of the form

BLOCK DATA

and may contain only declaration statements (described in this chapter) and DATA statements described below. The
subprogram must be terminated with an END statement. Since BLOCK DATA subprograms may not be called by other
programs, they have no names nor are they executed in the usual sense.

Example:

BLOCK DATA

COMMON /BLK1/A, S,C, D

REAL B(5, 5)/25*9300./, D/3765.)

COMPLEX A/(4.3, 2.4)/

END

When initializing variables in labeled COMMON, complete declarations should be included for all the variables
in each COMMON block, so that:

1. The position within the block of those variables that are being initialized will be correctly established.

2. The size of each COMMON block will correspond to the size declared in all other programs that use it.

Data may be entered into more than one COMMON block in a single BLOCK DATA subprogram.

58 EXTERNAL Statement/BLOCK DATA Subprograms

DATA Statement

The DATA statement has the form

where

S. is a data set specification of the form
I

variabl e-I i st/constant-I i st/

The primary purpose of the DATA statement is to give names to constants: for example, instead of referring to rr as
3.141592653589793 at every appearance, the variable PI can be given that value with a DATA statement and used
instead of the longer form of the constant. This also simplifies modifying the program, if a more accurate value is
required.

Giving PI a value with a DATA statement is somewhat different from giving it a value with an assignment statement.
With the DATA statement the value is assigned when the program is loaded; with the assignment statement, PI re­
ceives its value at execution time.

Consider another exampl e that profits even more from the use of the DATA statement: An ARCTAN function can be
written using a power series expansion. The efficient way to program this in FORTRAN is with a DO loop, stepping
through the constants. But constants cannot be subscripted, and the timing of the routine is adversel y affected if an
array must be initialized each time into the routine using assignment statements, such as:

C(O) 0

C(l) .1243549945

C (2) . 24477 86631

etc.

Here, the DATA statement can be used to great advantage. It is not recommended that the DATA statement be used
to give "initial" values to variables that are going to be changed. This causes proper initialization of the program
to depend on loading and disallows restarting the program once it has changed these values. Good programming
practice dictates that such initial ization be done with executabl e statements, e. g., with assignment statements.

The effect of the DATA statement is to initialize the variables in each data set to the values of the constants in the
set I in the order listed. For exampl e, the statement

DATA X, A, L/3. 5, 7, • TRU E./, ALPHA/O/

is equival ent to the assignment statements

X = 3.5

A=7

L = . TRUE.

ALPHA = 0

except that the DATA statement is not executable; its assignments take place upon loading.

Variable and constant lists in DATA statement may be constructed as described in the following two sections.

DATA Variable list

A DATA variable list is similar to an input list (see Chapter 6), in that it may contain scalars or subscripted or unsub­
scripted arrays. It may not contain implied DO loops. Subscripts must be integers.

DA TA Statement 59

DATA Constant List

A DATA constant I ist is of the form

C 1 ' C 2' C 3' ••• , C m

where

the C. are either constants or repeated groups of constants in the following forms:
J

c

r*c

where

c is a signed or unsigned constant of an appropriate type (see below)

is an unsigned integer repeat count, whose value (nonzero) indicates the number of times the group
is to be repeated

The constant may be any of the forms described in Chapter 2, including literal constants.t The type of the constant
must be the same as the type of the variable that it is initializing. The following rules apply in DATA statements:

1. Integer, real, double-precision and complex variables may be initialized with constants of those types.

2. Logical constants may be expressed as .TRUE. and .FALSE. or abbreviated as T and F.

3. Literal constants may be used with any type of variable, although integer is recommended. A literal constant
is broken up on a character-by-character basis and depends on the number of words of storage occupied by the
variable (see "Allocation of Variable Types", Chapter 7). That is, an integer variable requires 4 characters,
a complex variable -8 characters, and a double-complex variable, 16 characters.

Variable items will be initial ized as required to use up the characters specified. If there are insufficient char­
acters in any literal constant to fill the last variable used, it will be filled out with trailing blanks.

4. A constant may not be used for more than one variable list item.

The following examples illustrate some of the features described above:

INTEGER MM(3)

COMPLEX C1,C2

DATA MM/ABCDEF 1, IGH1/,C 1, C2/(17. 8, -4.0), (17.8, -4.0)

The above DATA statement causes the following assignments to be made:

MM(l) = 4HABCD

MM(2) = 2HEF

MM(3) = 2HGH

Cl = (17.8,-4.0)

C 2 = (17. 8, -4. 0)

The constant I ist must completely satisfy the variable I ist and there may not be any remaining unused constants.

Dummy variables and variables in blank COMMON cannot be initial ized with the DATA statement. Variables in
labeled COMMON may be initialized, but only in a BLOCK DATA subprogram.

If a labeled COMMON variable is initialized in more than one program, its value will depend on which program is
loaded last. This practice is not recommended.

tThe size of I iteral constants is I imited to 16 characters in a DATA constant list.

60 DATA Statement

8. PROGRAMS AND SUBPROGRAMS

A complete set of program units executed together as a single job is called an executable program. An executable
program consists of one main program and all required subprograms. Subprograms may be defined by the programmer,
as described in this section, or may be preprogrammed and contained in the run-time or system libraries.

MAIN PROGRAMS

A main program is comprised of a set of SDS FORTRAN IV-H statements, the first of which (other than comment lines)
cannot be one of the following statements, and the last of which is an END statement.

a FUNCTION statement

a SUBROUTINE statement

a BLOCK DATA statement

Main programs may contain any statement except a FUNCTION, SUBROUTINE, ENTRY, or BLOCK DATA statement.
Once an executable program has been loaded, execution of the program begins with the first executable statement
in the main program.

SUBPROGRAMS

Subprograms are programs which may be called by other programs; they fall into the two broad classes of functions
and subroutines} These may be further classified as follows:

Functions

Statement functions

FUNCTION subprograms

Basic external functions

Assembly language functions

Subroutines

SUBROUTINE subroutines

Assembly language subprograms

A function is referenced by the appearance of its identifier within an expression and returns a value (see Chapter 2).
Subroutines are referenced with CALL statements and do not necessarily return a value (see Chapter 5). A number of
library functions and subroutines are included in SDS FORTRAN IV-H. These are described at the end of this section.

STATEMENT FUNCTIONS

Statement functions are functions that can be defined in a singl e expression. A statement function definition has
the form

where

f is the name of the function

d. is the identifier of a dummy scalar variable (see below)
I

e is an arithmetic or logical expression

tThe BLOCK DATA subprogram, which is neither a function nor a subroutine, is also provided (see Chapter 7).

Programs and Subprograms 61

A statement function must have at least one dummy argument. Statement function dummies are treated only as
scalars; they cannot be dummy arrays or subprograms (see "Arguments and Dummies" in this chapter). The expression
e should contain at least one reference to each dummy. The identifier f may not appear in the expression, since
this would be Ci ieCUiSive definition. References to other statement functions rna)' be made onl y to previousl y de-
fined functions.

Examples:

F(X) = A * X ** 2 + B * X + C

EI(THETA) = CMPLX(COS(THETA), SIN(THETA»

AVG(PT, NUM, TOT) = 3 *(PT + NUM)/fOT + 1

Since each di is merely a dummy and does not actually exist, the names of statement function dummies may be the
same as the names of other variables in the program. Note, however, that if a statement function dummy is named
X, and there is another variable in the program called X, then the appearance of X within the statement function
expression refers to the dummy. The only relation between a statement function dummy and any other quantity with
the same name is that they will both have the same type. This enables the programmer to declare the types of state­
ment function dummies using explicit (or implicit) type statements.

The statement function itself is typed like any other identifier: it may appear in an explicit type statement; if it
does not, it will acquire implicit type (see "Implicit Declarations" in Chapter 7).

A statement function may be referenced only within the program unit in which it is defined. Statement function
definitions must precede all executable statements in the program in which they appear.

FUNCTION Subprograms

Functions that cannot be defined in a single statement may be defined as FUNCTION subprograms. These subpro­
grams are introduced by a FUNCTION statement, of the form

or

type FU NCTI ON f(d l' d
2

, d
3

, ••• ,d n)

where

f

d.
I

type

is the identifier of the function

is a dummy argument of any of the forms (except asterisk), described in "Arguments and Dummies;; later in
th i s chapter

is an optional type specification, which may be any of the following: t

INTEGER

REAL

DOUBLE PRECISION

COMPLEX

LOGICAL

Every FUNCTION subprogram must have at least one dummy. Values may be assigned to dummies within the
FUNCTION subprogram, with certain restrictions (see "Arguments and Dummies").

A FUNCTION subprogram must contain at least one RETURN statement. A RETURN statement should be the last
statement in a FUNCTION subprogram; i. e., it should be the last statement executed for each execution of the
FUNCTION.

tSee also "Operational Size Specifications ll in Chapter 7.

62 Subprograms

The identifier of the function must be assigned a value at least once in the subprogram as the argument of a CALL
statement, a DO control variable, the variable on the left side of an arithmetic statement, or in an input list (READ
statement) within the subprogram.

Within the function the identifier of a FUNCTION subprogram is treated as though it were a scalar variable and
should be assigned a value during each execution of the function. The value return for a FUNCTION is the last
one assigned to its identifier prior to the execution of a RETURN statement.

A FUNCTION subprogram may contain any FORTRAN statement except a SUBROUTINE statement, another FUNC­
TION statement, or a BLOCK DATA statement.

FUNCTION statement examples:

INTEGER FUNCTION DIFFEQ (R, S, N)

REAL FUNCTION IOU (W, X, Y, Zl, Z2)

FUNCTION EXTRCT (N, A, B, C, V)

LOGICAL FUNCTION VERDAD(E, F, G, H, P)

FUNCTION subprogram examples:

COMPLEX FUNCTION GAMMA (Z, N)

COMPLEX Z

M = 1

GAMMA = Z

DO 5 J = N, 10

M = M * J

5 GAMMA = GAMMA * (Z + J)

GAMtv'iA = M * N + Z / GAMMA

RETURN

END

SUBROUTINE Subprograms

SUBROUTINE subprograms, like FUNCTION subprograms, are self-contained programmed procedures. Unlike
FUNCTIONS, however SUBROUTINE subprograms do not have values associated with them and may not be refer­
enced in an expression. Instead, SUBROUTINE subprograms are accessed by CALL statements (see Chapter 5).

SUBROUTINE subprograms begin with a SUBROUTINE statement of the form

SUBROUTINE p(d
1
, d2, d

3
,.·., d

n
)

or

SUBROUTINE p

where

p is the identifier of the subroutine

d. is a dummy argument of any of the forms described in "Arguments and Dummies" later in this chapter.
I

Note that while a FUNCTION must have at least one dummy, a SUBROUTINE need have none.

A SUBROUTINE subprogram must contain at least one RETURN statement; a RETURN statement should be logically
the last statement in a SUBROUTINE subprogram (that is, it should be the last statement executed for each execution
of the SUBROUTINE).

A SUBROUTINE subprogram may return values to the calling program by assigning values to the d. or to variables
in COMMON storage. I

Subprograms 63

A SUBROUTINE subprogram may contain any F0RTRAN statements except a FUNCTION statement, another SUB­
ROUTINE statement, and/or a BLOCK DATA statement. The SUBROUTINE subprogram may use one or more of its
arguments to return values to the calling program. The SUBROUTINE name must not appear in any other statement
!_ LL_ CI IDDr'\IIT'''-11: ______ _
III IIIIC ")VUI"VVllI'IL I-'I~IUIII.

ENTRY Statement

The normal entry into a subprogram is at the SUBROUTINE or FUNCTION statement that defines it. Execution be­
gins at the first executable statement following the SUBROUTINE or FUNCTION statement. It is also possible to
enter a subprogram at some other point, by using the ENTRY statement, which has the form

ENTRY p

or

ENTRY p(d l' d2, d3, ... ,d n)

where

p is the name of the entry point

d. is a dummy argument of any of the forms discussed in "Arguments and Dummies", later in this chapter
I

When control is transferred to a subprogram through an ENTRY statement, execution begins at the first exe{:utable
statement following the ENTRY statement. The ENTRY statement itself is nonexecutable and does not affect the
flow of the program in which it appears. That is, program flow can pass through an ENTRY statement. For example,

SUBROUTINE FINISH(N)

END FILE N

ENTRY REWIND(N)

REWIND N

FLAG(N) = 0

RETURN

END

The dummy arguments in an ENTRY statement need not agree with those in the FUNCTION on SUBROUTINE state­
ment, nor with those in other ENTRY statements. However, they may agree, if desired. The following statements
provide further clarification.

1. When the same dummy name appears in an ENTRY statement" and in the FUNCTION or SUBROUTINE statement,
it does not refer to two separate entities; it represents the same quantity and, as such, must agree in class and
type between the two entry points (e. g., one cannot be real and the other integer).

2. When a dummy name appears at more than one entry point, it need not appear in the same position in the
dummy list or correspond to the same argument in the calling program.

3. When a subprogram is entered, all the dummies in the SUBROUTINE, FUNCTION, or ENTRY statement are set
up to correspond to the arguments in the call of that statement, thereby overriding any previous correspondence
that may have existed. In the example shown above, if the calls

CALL FINISH (3)

CALL REWIND (5)

were made, the statement REWIND N would be interpreted as REWIND 3 the first time and as REWIND 5 the
second.

Dummy correspondents that are set up by any call on a SUBROUTINE, FUNCTION, or ENTRY statement remain in
effect during all subsequent calls on any entry point in the subprogram, unless overridden by the appearance of the

64 Subprograms

same dummy name in a later entry point. Thus, it is permissible to "initialize" a dummy with one call and make
use of this initialization on subsequent calls. For example,

23

14

CALL SUB1 (A, B,C, D, E, F)

CALL SUB2(G, H, &23)

CALL SUB3(& 14)

STOP ISUB2 ERROR 1

STOP ISUB3 ERROR 1

The following actions are taken in the above example:

SUBROUTINE SUB1(U, V,W,X, Y/Z)

RETURN

ENTRY SUB2(W, T, *)

U = V*W + T

ENTRY SUB3(*)

x = W * y**Z

IF (U > X) RETURN 1

RETURN

END

1. The call on SUB1 initializes U, V, W,X, Y, and Z to correspond to A, B, C, D, E and F, respectively.

2. The calion SUB2 sets T to correspond to H and changes W to correspond to G instead of C. The two assign­
ment statements executed are thus equivalent to

A = B*G + H

D = G * E**F

Then, if A is greater than D, ietUiii is to statement 23; otherwise, a normal return is taken to the statement
following the call on SUB2.

3. The call on SUB3 then changes the alternate return to statement label 14, leaving all other correspondences
as they were. Onl y one assignment statement is executed, which is

D = G * E**F

Then, if A is greater than D, return is to statement 14; otherwise, a normal return is taken.

4. Note that, if SUB3 were called before SUB2, the action of SUB2 would be unchanged, however, in SUB3 the
dummy W would still correspond to C. Then, the assignment statement would have the effect

D = C * E**F

It is an error to reference a dummy argument that has never been initialized. In the above example, if SUB3 were
called without having called SUB1, the dummies U, W,X, Y, and Z would not correspond to anything. Care should
be taken to avoid situations of this sort.

The following rules also apply to ENTRY statements:

1. The result of a FUNCTION is returned only in the FUNCTION name, never in the ENTRY name. The ENTRY
name serves onl y to identify the location of the entry point and should not be used within the subprogram. In
this sense, it is similar to a SUBROUTINE name.

2. ENTRY statements do not al ter the rul es concerning placement of statement functions. Statement functions
may appear after an ENTRY statement only if they still appear before the first executable statement in the
subprogram.

3. No subprogram may refer to itself, either directly or indirectly through any of its entry points, nor may it refer
to any subprogram whose RETURN statement has not been executed.

Subprograms 65

4. Like FUNCTION and SUBROUTINE names, ENTRY names are normally available to any program in the
executabl e program.

5. An ENTRY statement may not appear in a main program.

6. Prior to being referenced in an executable statement, every dummy must have appeared in a SUBROUTINE,
FUNCTION, or ENTRY statement. In the following example, use of X is correct; use of Y is not.

SUBROUTINE ALPHA (X)

X=Y

ENTRY BETA (X, Y)

7. If any of the dimensions of an adjustable dummy array are in the dummy list of an ENTRY statement, then the
array name must also appear there (see "Adjustables Dimensions" in this section).

ARGUMENTS AND DUMMIES

Dummy arguments provide a means of passing information between a subprogram and the program that called it.
Both FUNCTION and SUBROUTINE subprograms may have dummy arguments. A SUBROUTINE need not have any,
however, while a FUNCTION must have at least one. Dummies are merely IIformal ll parameters and are used to
indicate the type, number, and sequence of subprogram arguments. A dummy does not actually exist, and no stor­
age is reserved for it; it is only a name used to identify an argument in the calling program. An argument may be
any of the following:

a scalar variable

an array el ement

an array name

an expression

a statement label

a constant of any type (including literal)

a subprogram name

A dummy itself may be classified 'vvithin the subprogram as one of the following:

a scalar variable

an array

a subprogram

an asterisk denoting a statement label

The chart below indicates the permissible kinds of correspondence between an argument and a dummy.

Dummy
Argument

scalar subprogram asterisk array

scalar or array element yes yest no no

expression yes no no no

statement label no no no yes

array name yest yes no no

litera I consta nt yest yes no no

subprogram name no no yes no

tA correspondence of this kind may not be entirely meaningful (see IIDummy Arrays").

66 Arguments and Dummies

A statement label argument is written as

&k

where k is the actual statement label and the ampersand distinguishes the construct as a statement label argument
(as opposed to an integer constant).

Within a subprogram, a dummy may be used in much the same way as any other scalar, array, or subprogram identi­
fier with certain restrictions; namely, dummies may not appear in the following types of statements:

COMMON

EQUIVALENCE

DATA

NAME LIST

The reason for the above restriction is that dummies do not actually exist. Furthermore, classification of a dummy
as a scalar, an array, or a subprogram identifier occurs in the same manner as with other (actual) identifiers, in both
implicit and explicit classifications (see "Classification of Identifiers" in Chapter 7).

In general, dummies must agree in type with the arguments to which they correspond. For example, the following
situation is in error because the types of the arguments and the dummies do not agree.

COMPLEX C FUNCTION F (LL, CC)

LOGICAL L LOGICAL LL

X = F (C, L) COMPLEX CC

Reversing the order of either the arguments in the calling reference or the dummies in the FUNCTION statement
would eliminate the error in this example.

There are two exceptions to the rul e of type correspondence:

1. A statement number passed as an argument has no type.

2. A SUBROUTINE name (as opposed to a FUNCTION name) has no type.

All arithmetic or logical expressions appearing as actual arguments in the calling program are first evaluated and
then placed in a temporary storage location. The address of that temporary storage location is then p~ssed as the
argument (this action is referred to as "call by value "). For all other arguments the actual address of the argument
is passed (this is referred to as "call by name").

NOTE: All constants are passed by name; therefore, if the called subprogram stores into a dummy corresponding
to a constant in the calling sequence, that constant will be changed. Obviously, this is not recommended.

DUMM Y SCALARS

Dummy scalars are single valued entities that correspond to a single element in the calling program. Dummies that
are not declared (implicitly or explicitly) to be arrays or subprograms are treated as scalars.

DUMMY ARRAYS

A dummy argument may be defined as an array, by the presence of its identifier in any array declaration within the
subprogram (the fact that a calling argument is an array does not in itself define the corresponding dummy to be an
array). A dummy array does not actually occupy any storage, it merely identifies an area in the calling program.
The subprogram assumes that the argument supplied in the calling statement defines the first (or base) element of an
actual array and calculates subscripts from that location.

Arguments and Dummies 67

Normally, a dummy array is given the same dimensions as the argument array to which it corresponds. This is not
necessary, however, and useful operations can often be performed by making them different. For example,

DIMENSION A(lO, 10)

CALL OUT (A(1,6))

SUBROUTINE OUT (B)

DIMENSION B(50)

In this case, the l-dimensional dummy array B corresponds to the last half of the 2-dimensional array A (i. e.,
elements A{1,6) through A(lO, 10». However, since an array name used without subscripts as an argument refers
to the first element of the array, if the calling statement were

CALL OUT{A)

the dummy array B would correspond to the first half of the array A.

Arguments that are literal constants are norma II y received by dummy arrays. A literal constant is stored as a con­
secutive string of characters in memory, and its starting location is passed as the argument address. For instance,
in the example

CALL FOR('PHILIP MORRIS')

the following correspondences hold:

M{l) = 4HPHIL

M(2) = 4HIPt>M

M(3) = 4H ORRI

M(4) = 4H Sb'b'b

SUBROUTINE FOR(M)

DIMENSION M (5)

t·II(5) is undefined and should nor be referenced

where-o represents the character blank. Literal constants are filled out with trailing blanks to the nearest word
boundary {multiple of four characters}. Therefore, passing such a constant to a dummy of a type that occupies more
than one word per elementt (e.g., double precision) may result in dummy elements that are only partially defined.
For this reason, integer arrays are recommended.

If an array corresponds to something that is not an array or a literal constant, the latter will correspond to the first
element of the array. This is true whether the calling argument is an array and the dummy is not, or vice versa.
For example, if the calling argument is a scalar and the dummy is an array, references in the subprogram to elements
of the array other than the first element will correspond to whatever happens to be stored near the scalar. Care must
be taken in creating correspondences of this nature since they may depend upon a particular impl ementation.

ADJUSTABLE DIMENSIONS

Since a dummy array does not actually occupy any storage, its dimensions are used only to locate its elements, not
to allocate storage for them. Therefore, the dimensions of a dummy array do not have to be defined within the sub­
program in the normal manner. Instead, any or all the dimensions of a dummy array may be specified by dummy
scalar variables rather than by constants. This permits the calling program to supply the dimensions of the dummy
array each time the subprogram is called. The following statements demonstrate adjustable dimensions:

DIMENSION P(1O,5), Q(9, 3) FUNCTION SUM (R, N, M)

x = SUM(P, iO,5) DIMENSiON R(N, M)

Y = SUM(Q, 9,3)

tSee "Allocation of Variable Types" in Chapter 7.

68 Arguments and Dummies

Only a dummy array can be given adjustable dimensions, and the dimensions must be specified by dummy integer
scalars. The variables used as adjustable dimensions may be referenced elsewhere in the subprogram but should not
be changed. In particular, the appearance of any of these variables in the dummy list of a succeeding ENTRY
statement constitutes a change. Therefore, an ENTRY statement may not contain any dimensions of an adjustable
array itself. The appearance of the array name in the ENTRY statement causes the array bounds to be recomputed
(see II ENTRY Statement ll

).

DUMMY SUBPROGRAMS

A dummy subprogram must correspond to an argument that is a subprogram name, and it is the onl y kind of dummy
that can do so. The dummy name merel y serves to identify a cI osed subprogram whose actual location is defined by
the calling program. Therefore, a call on a dummy subprogram is actually a call on the subprogram whose name is
specified as the argument. A dummy subprogram is classified in the same manner as any other subprogram (see
IIClassification of Identifiers ll in Chapter 7).

Example:

EXTERNAL SIN, DSIN, SQRT, DSQRT

A = DIFF(SIN, DSIN, X)

B = DIFF(SQRT, DSQRT, y)

FUNCTION DIFF(F, DF, Z)

DOUBLE PRECISION DF

DIFF = DABS(F(Z) - DF(DBLE(Z»)

RETURN

END

A subprogram identifier, to be passed as an argument, must previously appear in an EXTERNAL statement (otherwise,
it may be classified as a scalar variable).

LIBRARY SUBPROGRAMS

SDS FORTRAN IV-H includes a number of library subprograms. These are specially recognized by the compiler,
which generates special machine codes for them. Most of the I ibrary subprograms are functions, al though several
utility subroutines are also provided

BASIC EXTERNAL FUNCTIONS

The basic external function subprograms evaluate commonly used mathematical functions. These subprograms have
a special type that is known to the compiler. This type is not necessarily the same as the type it would acquire by
implicit typing rules. The arguments to these functions must have the proper type, as shown in Table 8.

Table 8 lists the function subprograms provided by SDS FORTRAN IV-H. When a formula is shown in the column
IIDefinition of Function ll

, it is not necessarily the formula that is actually used in implementing the function; it is
intended only to clarify the definition of function.

ADDITIONAL LIBRARY SUBPROGRAMS

In addition to the functions listed in Table 8, the following subprograms are supplied in the SDS FORTRAN IV-H

library:

Form:

CALL EXIT

EXIT is typed on the I isting output device and the job is terminated.

Library Subprograms 69

Table 8. Basic External Functions

Function I Number or I Type or
I ...
I I ype or I

'"' /:- -.1.-LJE: ri F! j I i OF! I
Name Arguments Argument Result of Function

ABS 1 Real*4 Real*4 Absolute value

AItMG 1 Complex*8 Real*4 Imaginary part of argument expressed as a
real value.

AINT 1 Real*4 Real*4 Integer part of argument expressed as a
real value.

ALOG 1 Real*4 Real*4 Natural logarithm (base e).

ALOGlO 1 Real*4 Real*4 Common logarithm (base 10).

AMAXO N? 2 Integer*4 Real*4 Maximum value for integer val ues.

AMAX1 N? 2 Real*4 Real*4 Maximum value for real values.

AMINO N? 2 Integer*4 Real*4 Minimum value for integer values.

AMIN1 N ?2 Real*4 Real*4 Minimum value for real values.

AMOD 2 Real*4 Real*4 Arg 1 (mod arg2). Evaluated as

arg 1 - arg2 * AINT (arg 1/arg2)

(i .e., the sign is the same as arg1)
Function undefined if arg

2
= O.

ATAN 1 Real*4 Real*4 } Arctangent in radians. Arg 1 = ordinate (y),
ATAN2 2 Real*4 Real*4 arg2 = abscissa(x). If arg2 not present, 1 is

assumed. Resul t (R) is arctangent of
arg 1/arg2 quadrant allocated in the
range -11" < R ~ 11" i ATAN{O,O) = O.

CABS 1 I Complex*8 Real*4 Complex absolute value 0. e., modulus}.

CABS(x+iy) = Jx2+y2

CCOS 1 Complex*8 I Complex*8 Complex cosine. CCOS(Z) = (eiZ+e -iZ)/2.

CDABS 1 Complex*16 I Real*8 Double-complex absolute value (modulus).

I i See CABS. I CDCOS 1 Complex*16 I Complex*16 Doubl e -compl ex cosi ne. See CCOS. !
CDEXP 1 Complex*16 Complex*16 Double-complex exponential. See CEXP.

CDLOG 1 Complex*16 Complex*16 Double-complex natural logarithm
(base e). See CLOG.

CDSIN 1 Complex*16 Complex*16 Doubl e-complex sine. See CSIN.

CDSQRT 1 Complex* 16 Complex* 16 Double-complex square root. See CSQRT.

CEXP 1 Complex*8 Complex*8 Complex exponential (e**arg).
C EX P(x+iy) = EXP(x) (COS(y) + i SIN(y».

CLOG 1 Complex*8 Complex*8 Complex natural logarithm (base e).
CLOG (Z) = CLOG(x+iy) = u + iv
=In Z + i ATAN(y, x), allocated such
that -11" < v :$ 11".

CMPLX 2 Real*4 Complex*8 Converts two non-compl ex numbers to a
complex number. CMPLX(x, y) = x + iy.

CONJG 1 Complex*8 Complex*8 Complex conjugate. CONJG(x+iy)
= x - iy (has no effect if arg not complex).

COS 1 Real*4 Real*4 Cosine of angle in radians.

70 Library Subprograms

Function
Name

CSIN

CSQRT

DABS

DATAN
DATAN2

DBLE

DCMPLX

DCONJG

DCOS

DEXP

DFLOAT

DIM

DLOG

DLOGlO

DMAXi

DMIN1

DMOD

DSIGN

DSIN

DSQRT

DTANH

EXP

FLOAT

lABS

IDIM

INT
IFIX
IDINT

ISIGN

MAXO

Number of
Arguments

1

1
2

1

2

2

1

N ~2

N > 2

2

2

1

1

1

1

2

1
1
1

2

N ~2

Table 8. Basic External Functions (cont.)

Type of
Argument

Complex*8

Complex*8

Real8*

Real*8
Real*8

Real*4

Real*8

Complex*16

Real*8

Real*8

Integer*4

Real*4

Real*8

Real*8

Real*8

Real*8

Real*8

Real*8

Real*8

Real*8

Real*8

Real*4

Integer*4

Integer*4

Integer*4

Real*4
Real*4
Real*8

Integer*4

Integer*4

Type of
Result

Complex*8

Complex*8

Real*8

Real*8
Real*8

Real*8

Complex*16

Complex*16

Real*8

Real*8

Real*8

Real*4

Real*8

Real*8

Real*8

Real*8

Real*8

Real*8

Real*8

Real*8

Real*8

Real*4

Real*4

Integer*4

Integer*4

Integer*4j
Integer*4
Integer*4

Integer*4

Integer*4

Definition
of Function

iZ -iZ
Complex sine. CSIN{Z) = {e _ e)/(20

Complex square root. CSQRT{Z) = u + iv

= e{ln Z)/2, allocated such that u ~ O.

Double-precision absolute value.

Double-precision arctangent in radians.
See ATAN.

Argument converted to double precision.

Converts two non-compl ex numbers to a
double-complex number. See CMPLX.

Double-complex conjugate. See CONJG.

Double-precision cosine of angle in radians.

Double-precision exponential (e**arg).

Argument converted to double precision.
Same as DBLE, but used with integer
arguments.

Positive difference. DIM{x, y) = max{x-y, 0)

Double-precision natural logarithm
(base e).

Double-precision common logarithm
(base 10).

Double-precision maximum value.

Double-precision minimum value.

Double-precision arg
1

(moa arg
2

). See
AMOD.

Doubl e-prec i si on magnitude of arg 1 with
sig~ ?f arg20 If arg

2
is zero, the sign is

posItive.

Double-precision sine of angle in radians.

Double-precision square root (positive
value).

Double-precision hyperbolic tangent.

Exponential (e**arg).

Argument converted to a real value.

Integer absolute val ue.

Integer positive difference.
IDIM{j, k) = j - MIN(j, k).

Argument converted to an integer value.

Integer magnitude of arg 1 with sign of
arg

2
• If arg

2
is zero, the sign is positive.

Integer maximum value.

library Subprograms 71

Tabl e 8. Basic External Functions (cont.)

Function Number of Tvoe of Tvoe of Definition
I i

,.
I

,.
I Name Arguments Argument result of Function

MAX1 N ~ 2 Real*4 Integer*4 Integer maxi mum val ue.

MIND N ~ 2 Integer*4 Integer*4 Integer minimum value.

MINl N ~ 2 Real*4 Integer*4 Integer minimum value.

MOD 2 Integer*4 Integer*4 Arg 1 (mod arg
2

)· Evaluated as

arg 1 - arg2 * [arg 1/arg2]

where the brackets indicate integer part;
i. e., the sign is the same as argl.
Function is undefined if arg

2
= o.

REAL 1 Complex*8 Real*4 Real part of a complex number.

SIGN 2 Real*4 Real*4 Magnitude of arg 1 with sign of arg2.
If arg

2
is zero, the sign is positive.

SIN 1 Real*4 Real*4 Sine of angle in radians.

SNGL 1 Real*8 Real*4 Argument converted to a value with
real (single) precision.

SORT 1 Real*4 Real*4 Square root (positive value).

TANH 1 Real*4 Real*4 Hyperbolic tangent. For compl ex,

TANH(Z) = SINH(Z)/COSH(Z)
Z -Z Z -Z) = (e - e)/(e + e

SLITET - Sense Light Test

Form:

CALL SLITET (n, v)

where

n is an integer expression specifying which sense I ight is to be tested (1 ::; n ::; 4)

v is an integer variable in which the result of the test will be stored

Sense light n is tested. If the sense light is on, the value 1 will be stored in Vi if it is off, the value 2 will be
stored. Following the test, the sense light will be turned off.

SLITE - Set Sense Light

Form:

CALL SLITE (n)

where

is an integer expression (0 ~ n::; 4)

If n is 0, all sense lights will be turned off; if n is 1, 2, 3, or 4, the corresponding sense light will be turned 011.

OVERFL -Floating Overflow Test

Form:

CALL OVERFL (s)

72 Library Subprograms

where

s is an integer variable into which will be stored the result of the test

If a floating overflow has occurred, s is set to 1; if no overflow condition exists, s is set to 2. If a floating
underflow condition exists, s is set to 3. The machine is left in a no overflow {underflow} condition following
the test. Overflow and underflow are defined in the Sigma computer reference manual.

DVCHK - Divide Check

Form:

CALL DVCHK (s)

where

s is an integer variable into which will be stored the resul t of the test

This is another entry to the OVERFL subprogram described above.

DUMP

A call to the DUMP subprogram has the form

CALL DUMP(A 1, B1, F 1"'" An' B n' F n)

where

A and B are variable data names that indicate the limits of storage to be dumped; either A or B may repre­
sent upper or lower limits. The arguments A and B should be in the same program {main program or
subprogram} or same COMMON block.

F. is an integer indicating the dump format desired:
I

F. = 0 Hexadecimal
I

2 Logical*4

4Integer*4

5 Real*4

6 Real*8

7 Complex*8

8 Complex* 16

9 Literal

any other value of Fi is illegal.

If the argument F is omitted, it is assumed to be zero, and the dump will be in hexadecimal format.
n

A call to this subroutine causes the indicated limits of storage to be dumped and execution to be terminated.

PDUMP

A call to the PDUMP subprogram has the form

where

A, B, and F are the same as for DUMP

This call causes the indicated I imits of storage to be dumped and execution to be continued.

Library Subprograms 73

APPENDIX A. SDS SIGMA FORTRAN IV-H CHARACTER SETS

The standard character set for use with SDS Sigma FORTRAN IV and FORTRAN IV-H is the EBCDIC (Extended Binary­
Coded-Decimal Interchange Code). This character set is illustrated in Table 9.

Table 9. SDS EBCDIC
(Extended Binary-Coded-Decimal Interchange Code)

9-Channel 9-Channel
EBCDIC Magnetic Tape EBCDIC Magnetic Tape

Character Card Code Hexadecimal Code Character Card Code Hexadecimal Code

A 12-1 C1 Blank Blank 40
B 12-2 C2 ¢' (a) 12-2-8 4A
C 12-3 C3 12-3-8 4B
D 12-4 C4 < 12-4-8 4C
E 12-5 C5 (12-5-8 40
F 12-6 C6 + 12-6-8 4E
G 12-7 C7 I 12-7-8 4F
H 12-8 C8 & 12 50
I 12-9 C9
J 11-1 01 I (a) 11-2-8 5A
K 11-2 02 $ 11-3-8 5B
L 11-3 C3 * 11-4-8 5C
M 11-4 D4) 11-5-8 5D
N 11-5 D5 ; 11-6-8 5E
0 11-6 D6 , (a) 11-7-8 5F
P 11-7 D7 - 11 60
Q 11-8 D8
R 11-9 D9 / 0-1 61
S 0-2 E2 , 0-3-8 6B
T 0-3 E3 % 0-4-8 6C
U 0-4 E4 - (a) 0-5-8 6D
V 0-5 E5 > 0-6-8 6E
W 0-6 E6 ? (a) 0-7-8 6F

I

X

I
0-7 E7

y 0-8 E8 : 2-8 7A
Z 0-9 E9 II 3-8 7B
0 0 FO @ 4-8 7C
1 1 F1 I 5-8 7D
2 2 F2 = 6-8 7E
3 3 F3 II (a) 7-8 7F
4 4 F4
5 5 F5
6 6 F6
7 7 F7
8 8 F8
9 9 F9

(a) This character is not included in the SDS Standard 56-graphic character set, used by some line printers.

The SDS Sigma internal hexadecimal representation (in memory) of every character is the same as the magnetic tape
representation. However, it is not advisable for the FORTRAN programmer to take advantage of these numeric
representations since this tends to make the program machine-dependent.

74 Appendix A

I

APPENDIX B. SDS SIGMA FORTRAN IV-H STATEMENTS

Statement Executable Nonexecutabl e Page

ASSIGN X 18

Assignment X 15

BACKSPACE X 46

BLOCK DATA X 58

CALL X 20

COMMON X 52

COMPLEX X 50

CONTINUE X 24

DATA X 59

DIMENSION X 49

DO X 21

DOUBLE PRECISION X 50

END X 25

END FILE X 46

ENTRY X 64

EQUIVALENCE X 55

EXTERNAL X 58

FORMAT v 33 /\

FUNCTION X 62

GOTO X 17

IF X 19

IMPLICIT X 49

INTEGER X 50

LOGICAL X 50

NAMELIST X 30

PAUSE X 24

PRINT X 29

PUNCH X 29

READ X 29

REAL X 50

RETURN X 21

REWIND X 46

STOP X 25

SUBROUTINE X 63

Statement Function
Definition X 61

WRITE X 1,28,
29,30

Appendix B 75

A
A format, 34, 38, 39
Acceptable FORTRAN II Statements, 28, 29
Additional library subprograms, 72-74
Adjustable dimensions, 68, 69
Allocation of variable types, 54-56
Alphanumeric data, 38
Alphanumeric strings, 6, 7, 31, 38
Ampersand (&)

in NAME LIST input/output, 32
in statement label argument, 67

Arguments to subprograms, 20, 58, 62-66, 68, 69
Arithmetic

assignment statements, 15
expressions, 9, 12
IF statement, 22

Arrangement of COMMON, 31, 52-55
Array

dec larations, 47-50
elements, 7, 32, 48, 56
identifiers, 7, 26, 48, 50, 67
storage, 45, 48
subscripts, 7, 8, 59, 60
unsubscripted, 8, 27, 59, 60
variables, 48, 54

Assembly language programs, 61
ASSIGN statement, 18, 19
Assigned GO TO statement, 17, 18
Assignment statements, 15

label, (see ASSIGN statement)
Asterisk (*)

double operator (exponentiation), 11, 12
in dummy list, 21, 66
in size specification, 11, 12
operator (multiplication), 11, 12

Auxi I iory I/O statements, 26, 46
BAC KSPACE, 46
END FILE, 46
REWIND, 46

B

BACKSPACE statement, 46
Basic externa I functions, 50, 61, 70-72
BCD input/output, 26, 28
BCD records, 28
Binary input/output, 29-31
Binary records, 29, 30
Blank ()

COMMON, 52-54, 58, 60
in column 6, 1
in identifiers, 7
in statements, 31, 45, 60, 61

BLOC K DATA statement, 61, 63, 64
BLOCK OAT A subprograms, 58, 60
Bui It-in functions (see Intrinsic functions)

76 Index

INDEX

c
C in column 1,
CALL statement, 20, 61, 63
Calling sequences, 67, 68
Card Codes, 75
Carriage control for printed output, 31, 46
Character

sets, 1, 75
strings, 4, 25, 31, 34, 38, 39

Characters in column 1,
Classification,

of data types, 7, 8
of identifiers, 6, 7
of constants, 4, 5

Coding form, 1, 2
Co lumn 1 characters,
Comments, 1
COMMON block identifiers, 47, 58
COMMON

referencing of data, 55
COMMON statement, 31, 48, 52-54, 57, 67
Compiler, 26, 69
COMPLEX

data, 4, 5, 6, 51
statement, 15, 60
type declaration, 11,12,15,50

Computed GO TO, 18
Conditione! trensfer, 19
Conflicting and redundant declarations, 47
Constants, 4-6, 13, 59, 60, 67, 68
Continuation line, 1, 25
CONTINUE statement, 24
Control statements, 17-25

ASSIGN, 17, 18
CALL, 20
CONTINUE, 24
DO, 21-23
END, 25
GO TO, 17-19, 22
IF, 19, 20
PAUSE, 22, 24, 25
RETURN, 21, 22
STOP, 22, 25

Conversion

o

format, (see Format)
in assignment statements, 11, 15
input/output, (see Format specifications), 28

o format, 34, 35
Dangling comma, 32
Data constant list, 60
OAT A statement, 49, 54, 59, 60, 67
Data types

comp lex, 4, 51
double complex, 4, 51
double precision, 4, 51

integer, 4, 37, 51
literal, 3, 4
logical, 4, 36, 38
rea I, 4, 34, 35, 51

Data values, 4, 50
Data variable list, 59, 60
Dec larati on statements, 47, 58

array, 47, 48, 50
COMMON, 47, 57, 58
DATA, 47
DIMENSION, 47, 49, 56-58
EQUIVALENCE, 47, 55-58, 67
EXTERNA L, 58
explicit type statements, 47
IMP LIC IT, 47
NAME LIST, 47

Digits, 1
DIMEN SION statement, 48, 49, 56, 57
Dimensions of arrays, 7, 47, 66, S8, 69
Displacement, 55
DO statement, 21-23
DO implications

in DATA statements, 27
in I/O lists, 26, 27, 31, 59

Dollar sign (S)
as letter, 1

DO loops, 22, 23, 59
Double complex, 4, 6, 11, 12, 15, 51
DOUBLE PRECISION

data, 4, 5, 51
statement, 15, 60
type dec loration, 11, 12, 15, 50

Dummy arguments; 62-66
array, 48, 62, 65, 67, 68
sca lar, 62, 66, 67
subprogram, 62, 66, 67, 69

Dummy identifiers, 31, 67
DUMP, 73
DVCHK, 73

E
E format, 34, 35
EBCDIC character set, 75
END statement, 25, 58, 61
END = form of READ, 30, 32
END FILE statement, 46
End-of-fi Ie, processing, 30
ENTRY statement, 64, 65, 69
EQUIVALENCE statement, 47, 55-58, 67
ERR = form of READ, 30, 32
Evaluation hierarchy, 14

arithmetic, 14
logical, 14

Executable statements, 17,47,51
EXIT, 72
Explicit

dec larations, 73
type statements, 48, 50-52, 62

Exponentiation, 9, 10, 11, 12,
Expressions, 9, 10, 11, 12, 20

arithmetic, 9, 12, 13

evaluation hierarchy, 9, 10, 13
logical, 9, 11, 13, 15
mixed, 11, 15
relational, 9, 12, 13

Extension of COMMON, (see EQUIVALENCE statement)
EXTERNAL statement, 58, 69

F
F format, 34, 35
FA LSE, 6, 38
Fixed-point data, (see INTEGER data)
Floating overflow, (see OVERFL)
Floating-point data, (see Real data and Double-precision

data)
FORMA T processor, 44, 45
FORMAT statement, 26-30, 33-45
FORMA T and list interfacing, 44, 45
Format specifications (input/output), 26, 31-43

A, 34, 38-39, 44
D, 34, 35, 44
E, 34, 35, 44
F, 34, 35, 44
G, 34, 36, 37, 44
H, 34, 39, 40, 44
I, 34, 37, 44
L, 34, 38, 44
P, 34, 41-42
parenthesized, 43, 44
quote marks (I), 34, 40, 44
slash (/), 34, 40, 44
T, 34, 41, 44
X, 34, 40, 41, 44

FORMATs stored in arrays, 45
Formatted (BCD) input/output, 28
FORTRAN II statements, 28, 29
FORTRAN IV-H statements, 25, 75
FORTRAN program, 1, 25
FUNCTION statement, 47, 51, 52, 61-65
Function references, 8, 13, 21, 65
Functions, 8, 47, 50, 61

basic external, 69, 70, 72
library, 8, 69, 70-72
statement, 47, 61, 63

FUNCTION subprograms, 61-63

G
G format, 34, 36, 37
GO TO statements, 17, 18, 22

assigned, 17

H

computed, 17, 18
unconditional, 17

H format, 34, 39, 40
in Hollerith constants,
in literal constants,

Hierarchy (see Evaluation hierarchy)
Hollerith specifications, 28, 31, 34, 39, 40, 45

Index 77

I format, 34, 37
Identifiers, I, .JI, 47, 49, 51, 62, 67

c lassi fi cation of, 47-51, 63
IF statements, 19, 20, 22

arithmetic, 19
logical, 19, 20, 22

IJKLMN rule of typing, 7, 8
Implicit declarations, 47, 49
IMPUCIT statement, 1, 49-51, 58, 62
Implicit type, 49, 50, 62, 69
Implied DO loops, (see DO implications)
Inherent type, 7, 8, 69
Initialization of variables, 50, 58-60
In-line functions, (see Intrinsic functions)
Input format, 32, 33
Input/output conver~ion, (see Format specifications)
Input/output lists, 27, 31, 59

DO-implied lists, 26, 27
spec ia I lists, 27

Input/output statements, 26-33
auxiliary, 46
BAC KSPACE, 46
END FILE, 46
FORMAT, 33-45
formatted (BCD), 28
intermediate (binary), 29
READ, 29, 30
REWIND, 46
unit assignments, 27-29
WRITE, 26, 29, 30

INTEGER
data, 4, 25, 37
statement, 15, 59-60
type declaration, 11, 12, 15

Interaction of storage allocation statements, 57, 58
Intermediate (binary) input/output, 29, 30

L
L format, 34, 38
Label assignment statements, (see ASSIGN statement)
Labeled COMMON, (see Blank COMMON)
Labels, 1, 17,18,19

as arguments to subprograms, 21, 66
assigned, 18, 19

Letters, 1
Library subprograms, 61, 69-74
Limits on values of quantities, 4, 5, 6
List items, 26
Literal constants, 6, 25, 60, 68
Litera I data, 4
Litem I specification, 34
LOGICAL

data, 4, 36, 38, 51
expressions, 11, 13, 14
IF statements, 22
operators, 13, 14
statement, 60
type declaration, 13

78 Index

M
Magnitude of data, (see Format statements)
1 J • "", ""'.t"' " [VIOl n program, L I, L;J, 0 I

Mixed expressions, 11, 12
Multiple data identifiers, 26
Multiple entry, (see ENTRY statement)

N
NAME LIST statement, 30, 31, 67
Names, (see Identifi ers)
Nested DO loops, 23, 24
Nested repetitions in FORMATs, 43, 45
Nonexecutable statements, 17, 33
Nonstandard RETURN, 21
Numeric input strings, 28

o
Operators

arithmetic, 9, 10
logical, 9
relational, 9, 12

Optional size specifications, 51
Output format, 31
Output lists, (see Input/Output lists)
OVERFL, 72
Overflow, (see F looting overflow)

p

P specification (scale factor), 34, 41, 42
Parenthesized format specifications, 10, 14, 34, 41, 43, 44
PAUSE statement, 22, 24, 25
PDUMP, 73
Precedence of operations, (see Evaluation hierarchy)
Precision of data, 4, 5
PRINT statement, 29
Program

executable, 25, 53, 58, 61
main, 25, 61

PUNCH statement, 29

Q
Quotation mark (I)

format, 34, 40
in literal constant, 34

R
Range (of a DO), 22-24
READ

formatted (BCD), 27
intermediate (binary), 29
NAMELIST, 32
statement, 26, 29, 30-33, 44, 45

REAL
data, 4, 34, 35, 42, 51, 60

statement, 15
type declaration, 11, 12, 15

Records, input/output, 28, 30, 32
Redundant declarations, 47
References to array elements, 48, 49
Relational expressions, 12, 13
Relational operators, 12
Rep lacements, (see Assignment statements)
RETURN statement, 21, 22, 62, 63
REWIND statement, 46

s
Sampl e program, 2, 3
Scalar variables, 32, 47, 50, 56, 69
Scale factor (P specifi cation), 41
Sense lights, (see SLITET and SLITE)
Sequence numbers, (see Sample program)
Slash (/)

FORMAT specification, 28, 33, 34, 42, 43
in COMMON statement, 52, 53
in DATA statement, 50, 59
operator (division), 11
NAME LIST statement, 31

SLITE, 72
SLITET, 72
Specia I characters,
Standard unit assignments, 27
Statement functions, 47, 61, 62
Statement labels, (see Labels)
Statements

executable, 21,26,47, 49, 51, 61, 62, 64
nonexecutable, 64
position of, 51, 52

STOP statement, 22, 25
Storage a I location dec larati ons

COMMON statement, 47, 52, 57, 63
EQUIVALENCE statement, 47, 52, 57

Subexpressions, 9,10,12,13
Subprogram definitions, 47, 61
Subprogram identifiers, 47, 67, 69

as arguments, 58, 66, 69
Subprograms, 21, 61-63, 69
SUBROUTINE statement, 21, 61, 63-65
Subroutine subprograms, 20, 61, 63-66, 69
Subscripts, 7, 8, 48, 49, 56, 59, 60

T
T format, 34, 41
. TRUE., 6, 38

Truncation, 15
Type dec larations, 49, 50
Type statements, 62

COMPLEX, 49-51
DOUBLE PRECISION, 50, 51
INTEGER, 49-51
LOGICAL, 49-51
position of, 49, 51
REAL, 49-51

Types of data, (see Data types)

u
Unconditional GO TO statement, (see GO TO statements)
Unimplementable allocation declarations,

TYPE, 50
COMMON, 56, 57
EQUIVALENCE, 56, 57

Unit assignments, 27
Unlabeled COMMON, (see Blank COMMON)
Unsubscripted arrays,

y

I/O lists, 8, 26, 27
subprogram arguments, 67, 68

Variables, 4, 15, 19, 31, 32, 47, 48, 52, 54
array, 7, 8, 31, 32, 48, 54, 55, 69
scalar, 7, 31, 32, 48, 69

Vertical line spacing, (see Carriage control)

w
WRITE

x

formatted (BCD), 28
intermediate (binary), 29-31
NAME LIST, 26, 31, 32
statement, 26, 30, 31, 33, 44

X format specifications, 34, 40, 41

z
Zero

in column 6,
tests for, 19

Index 79

