
Xerox BASIC
Sigma 5-9 Computers

Language and Operations

Reference Manual

901546

@ Xerox Corporation, 1974

Xerox BASIC
Sigma 5-9 Computers

language and Operations

Reference Manual

90 15 46G

August 1974

XEROX

File No.: 1 X23
XK14, Rev. a

Printed in U.S.A.

ii

NOTICE

This publication is a revision of the Xerox BASIC/LN,OPS Reference Manual for Sigma 5-9 Computers, Publication
Number 90 15 46F (dated July 1973). A change in text from that of the previous manual is indicated by a vertical
bar in the margin of the page.

RELATED PUBLICATIONS
Title Publ ication No.

Xerox Sigma 5 Computer/Reference Manual 90 09 59

Xerox Sigma 6 Computer/Reference Manual 90 17 13

Xerox Sigma 7 Computer/Reference Manual 90 09 50

Xerox Sigma 8 Computer/Reference Manual 90 17 49

Xerox Sigma 9 Computer/Reference Manual 90 17 33

Xerox Batch Processing Monitor (BPM)/BP, RT Reference Manual 900954

Xerox Batch Processing Monitor (BPM)/OPS Reference Manual 90 11 98

Xerox Batch Time-Sharing Monitor (BTM)/TS Reference Manual 90 1577

Xerox Control Program-Five (CP-V)/TS Reference Manual 900907

Xerox Control Program-Five (CP-V)/OPS Reference Manual 90 1675

Manual Content Codes: BP batch processing, LN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

1.

2.

CONTENTS

BEGINNING BASIC

Introduction _______________ _
Symbolic Names __ _
Addition and Subtraction ________ _

1
1
1

Multiplication and Division__ 2
Exponentiation 2
Indexed Repetition __ .___________ 2
Print Formatting_______ 3
Tabbing 4
Data Input from a Terminal __ 4
Error Messages _______ 5
Program Modification __________ _
Saving a ProgrClm ____ . _______ _
Loading and Running a Saved Program ____ _

ELEMENTARY FEATURES OF BASIC

5
5
6

7

Elements of a B,A,SIC Program _____ . 7
Li ne Numbers ___ _ 7
Number Ranges 7
Simple Constants _____________ 7
Simple VariCibles _________ . ____ 8

Arithmetic Operators 8
Intrinsic Functions --------- 8
Arithmetic E.xpressions 8
String Literal 8
Alphanumeric Constants __ . ____ --- 8
String Scalars (CP-V Only). _______ 9

Assignment Statements ________ . ___ 9
LET ___ . 9

Branching ______________ . ___ 10
IF ... THEN 10
ON •.. GOTO 10
GOTO ... ON---- 10
GOTO 10

Data Output 11
PRINT ________ _ __ 11

PRINTUSING and :(Image)-- 12
PAGE --- 13

Data Input 15
DATA and READ______ 15
INPUT__________ 15

Looping 16
FOR and NEXT 16

Miscellaneous Statements 18
REM or * 18
PAUSE, STOP, or END 18

4.

3. ADVANCED FEATURES OF BASIC 19

Multiple Statements per Source Line _____ 19
Other Elements of a BASIC Program ______ 19

Subscripted Vmiables --.'-__ 19
DIM 20

Character Stri ng Mani pu lation 21
User-Defined Functions 24

DEF 24
Rereading Data 25

RESTORE 25
Branching to a Subroutine 25

GOSUB and RETURN 25
Character Conversion 25

CHANGE 25
Fi Ie Manipulation 26

Fi Ie Nomenclature 26
I/o Stream Numbers 26
Keyed and Sequential Access 26
Unkeyed I/o in the Update Mode 27
OPEN ________ . __ ~. ________ 27

ENDFILE 28
CLOSE 28
GET 28
PUT 29
INPUT 29
PRINT 30
PRINTUSING _ 30
I/o Residue 30
I/O Flushing 31
Lower Case Text 31

Running Consecutive Programs 32
CHAIN 32
CHAIN LIN K 32

Matri x Operations 32
MAT GET 33
MAT PUT 33
MAT INPUT 33
MAT PRINT 33
MAT READ 34
MAT SIZE 34
Assignment Functions 34

BASIC COMMANDS 37

ACCOUNT and PASSWORD 37
CATALOG 37
LOAD and WEAVE 37
LIST 38
DELETE and EXTRACT 38
RENUMBER 38
NAME and FILE 39
SAVE 0 N and SAVE OVER 39
CLEAR 39
SET 40
ENTER BASIC 40
WIDTH 40
RUN and FAST 40
BREAK and ESC 41
STATUS 41
BASIC 41
NULL 41
EXECUTE 41
PROCEED 42
SYSTEM, BYE, and OFF 42

iii

5. BATCH PROCESSING 43 FIGURES
6. BASIC MESSAGES 47

l. Use of PAGE Statements in CP-V 14
INDEX 77

2. Nested Loops 17

APPENDIXES 3. INPUT Residue Example (CP-V Only) 31

A. SUMMARY OF BASIC STATEMENTS 53 4. Coding Sheet with Sample Program 43

B. SUMMARY OF BASIC COMMANDS 56 5. Deck Setup for BASIC Batch Processi ng
C. BASIC INTRINSIC FUNCTIONS 58 (BTM or BPM) 44

D. SUMMARY OF BASIC OPERATING 6. Deck Setup for BASIC Batch Processi ng (CP-V) __ 45
PROCEDURES 60

Group 1 60 7. Contents of Sample File 62
Group 2 60
Group 3 60 8. Program Used to Generate Figure 7 63
Group 4 60
Direct Statements 61 9. Snowflake Simulation 73

On-line Verification 61
Desk Ca Iculator Mode 61 10. Word Guessing Game (CP-V) 73

Proceed 61
Break-Proceed Logic 61 1l. Loan Interest Calculation (CP-V) 74

E. FORMAT OF BINARY DATA FILES FOR
12. Cell ular Automata 75 PUT AND GET OPERATIONS 62

F. I/O CONTROL 64 13. Magic Squares 75

G. BASIC CONCORDANCE PROGRAM 65
14. Arithmetic Combinations 76

H. EBCDIC CHARACTER CODES 67

1. SAMPLE BASIC PROGRAMS 72

Snowflake Simulation 72 TABLES
Word Guessing Game (CP-V) 72
Loan Interest Calculation (CP-V) 72 l. Order of Arithmetic Operations 8
Cell ular Automata 72 2. Condition Operators 10
tv\agic Squares 72 3. Internal Format of Data Files 62
Arithmetic Combinations 72 4. Normal DCB Assignments 64

iv

1. BEGINNING BASIC

INTRODUCTION

To use a computer, the user must learn a language the
computer understands. Xerox Sigma 5-9 computers under
stand several languages. Most of these are meant for some
special purpose such as the solution of scientific, engineer
in!~, or business problems. BASIC is intended as an all
purpose language. Although BASIC is often called a
"beginner's language", the comput<otional power of a given
BAS IC program depends a great dea I on the exper i en ce of
the user. An experienced BASIC user should have no diffi
culty in creating very powerful programs.

Because of its similarity to ordinary English, BASIC is a
good language for users who are no~ professional program
mers and who may hClve no particuklr interest in the internal
workings of the computer. Many BASIC programmers never
see the computer they are programming, but commun i cate
by means of a teletypewriter terminal at a remote location.
To use a terminal, the user must diell the telephone number
of a Sigma 5-9 time-·sharing computer and wait for a log-on
request to be printed on the teletypewriter. The user must
then type his account number, identifier, and account pass
word (if any), fo II owed by a carri a~ge return. An examp Ie
is shown below.

XEROX CP-V AT YOUR SERVICE
OR AT 14:32 JUN 28,'73
LOGON PLPASR: 39,PAT

14:34 OG/28/73 99 43-25 [lJ

!RIlSIC
VgR.COl
>

As shown above, the computer types a page heading and
then an exclamation mark to indicate that it is ready for an
executive-level command. The user types the word BASIC
to indicate that he wants to use tlhe BASIC subsystem.
BASIC then responds with a > to indicate that it is ready
to accept input from the user terminal.

SYMBOLIC NAMES

BASIC recognizes symbolic names representing mathemati
cal variables. Such names may consist of a single letter
of the alphabet or a letter followed by a single digit from 0
through 9:

x
y

B4

The following are nojr valid names in BASIC:

XX
Y23
LW

ADDITION AND SUBTRACTION

Suppose you want to add a series of numbers such as 27.3,
14.1, 6.0, 3.5, and 36.25. One way of doing this is by
placing BASIC in the "desk calculator" mode by typing a
PRINT statement expressing the desired addition. BASIC
will respond by computing the indicated sum and printing
the tota I when a carriage return is typed:

>PRINT 2703+1401+6+3.5+36025
8701500

>

Since BASIC statements cannot be continued from one line
to the next, this method will work only if all of the numbers
to be added can be typed on a single line of 132 characters.
The consequences of this restriction can be avoided by let
ting part of the sum be represented by a symbol i c variabl e
such as the letter P:

>LET P=27 03+1401+6
>PRINT P+3.5+36.25

87.1500
>

The symbol ic variabl e P could have been redefined to rep
resent the final sum before typing the PRINT statement

>LET P=27.3+14.1+6
>P=P+3.5+36.25
>PRINT P

87.1500
>

The statement

>P=P+3.5+36 0 25

is not a mathematical equation in the usual sense. A LET
statement in BASIC is actually an "assignment" statement
specifying that the current value of the symbol to the left
of the "equals" sign is to be replaced by the value of the
expression to the right of the equals sign. Note that the
word LET in an assignment statement is optional.

Quantities can be subtracted by using a minus sign rather
than a pi us sign

>PRINT 10-13
-3
>

As in addition, symbols may be used to represent values in
an expression involving subtraction:

>LET A=10, B=13
>PRINT A-B
-3
>

Beginning Basic

Note that more than one value assignment may be made in
a single LET statement, as shown above, if a comma is used
to separate each such assi gnment. If the above assi gnment
had been written as

>LET B=A+3, A=10

the value of B would be unpredictable, because BASIC
executes LET statements from left to ri ght, and A is not as
signed the value 10 until the second assignment of the LET
statement is performed.

MULTIPLICATION AND DIVISION

Multiplication and division can be done in much the same
way as addition and subtraction. The asterisk is used to in
dicate multiplication, and the slash is used to indicate di
vision. Thus, the product of 2 and 4 could be obtained as
shown be I ow •

>PRINT 2*4
8

>

Parentheses can be used to group two or more quantities:

>PRINT 3*(4+5)
27

>

Without the parentheses, the above PRINT statement would
have produced the value 17 rather than 27, because BASIC
would then assume that the val ue 5 was to be added to the
product of 3 and 4. It would not be possible to avoid the
use of parentheses by a rearrangement of the above expres
sion to put the addition to the left of the multiplication,
as in:

>PRINT 4+5*3

This statement would produce the value 19 rather than the
desired 27, since BASIC performs any indicated multipl i ca
tion or division before doing addition or subtraction unless
the order of precedence is indicated explicitly by means of
parentheses.

Nested parentheses are eval uated from the innermost to the
outermost:

>PRINT 2*(3+4*(5+6))/7
13.4286

>

In the above example the "innermost" subexpression is 5+6.
This sum is evaluated first and the result is multiplied by 4
and then added to 3 before the multiplication by 2 is per
formed. The final operation before printing is the division
by 7. Note that the result is rounded to 6 significant digits •

EXPONENTIATION
Exponentiation is indicated by use of the up-arrow operator
(t) or the double asterisk (**):

>PRINT 10**2
100

>

Within the same level of parenthesization, exponentiation
takes precedence over any other indicated operation. That
is, it is performed before multiplication, division, addition,
or subtraction unless this would conflict with the grouping
indicated by parentheses:

>PRINT 2**2*3**(4-2)
36

>

In the above example, the first operation performed by
BASIC is the raising of 2 to the second power. The sum of 4
and -2 is then computed and the quantity 3 is raised to this
power. The final operation before printing is the multipl i
cation of 4 (the square of 2) by 9 (the square of 3).

INDEXED REPETITION

Many applications of BASIC require a series of operations
to be performed more than once. To make this as easy as
possible, two special statements are provided: FOR and
NEXT. The FOR statement specifies the conditions under
which the repetition is to be done and the NEXT statement
indicates the end of the series of BASIC statements that is
to be repeated. FOR and NEXT must be used in the "com
pile and execute" mode rather than the desk calculator
mode. For this reason, each I ine of the program must begin
with a unique number ranging from 1 to 99999. Line num
bers need not be contiguous, but lines are executed in as
cending order. Many BASIC programmers prefer to begin
each program with line 100 and make each I ine number a
multiple of 10, allowing room for changes and additions to
the program at a later time.

In the program shown below, FOR and NEXT statements are
used to cause BASIC to print three I ines. Note that RUN is
typed following the program rather than preceding it.

>10 FOR I=l TO 3
>20 PRINT I
>30 NEXT I
>RUN
10:12 JUN 07 RUN2BAA o ••

1
2
3

30 HALT
>

In the above example, the indexed variable "I" in the FOR
statement is assigned an initial value of 1 (by the number 1
following the equals sign). Instead of the letter I, any

2 Multiplication and Division/Exponentiation/Indexed Repetition

letter of the alphabet could have been used, but the letters
I through N have become traditional in FOR sl'atements.
When the NEXT statement is executed followinn the print
ing of the first line, j'he value of I is incremented by 1
automatically and the loop is executed again. Note that
the FOR statement ini Hates execution of the loop but is not
a part of it. When the NEXT statement is executed fo"ow
ing the printing of the second line, I is again incremented
by 1 and the loop is executed for the third time. When
the NEXT statement is executed following the printing of
the third line I is not incremented, !;ince the limiting value
of 3 has been reached, and the loop is not executed again.
Since 4 is greater than 3, the limiting value following the
word TO, the loop is not executed Clgain. The message 30
HALT indicates that line 30 was the last line executed in
the program.

Often in programming FOR and NEXT loops, one may take
advantage of the fact that the indexed variable changes in
va lue as the loop is repeated Iy executed. This is i" ustrated
by the following example.

>10 FOR I=1 TO 4
>20 PRINT I**3
>30 NEXT I
>RUN
10:13 JUN 07 RUN2BAA ••.

1
8
27
64

30 HALT
>

In the above example, the cube of the indexed variable is
printed each time the loop is execuh~d.

The values of symbolic: variables used within a loop can be
changed during execu'tion of the loop" as illustrated by the
following program which prints the first 8 terms of a
Fibonacci series. Note that the statements within the loop
are typed indented, to make the exhmt of the loop more
readi Iy apparent. This optional practice is especially
recommended for nested loops.

>10 LET J=O, K=1
>20 FOR I=K TO 8
>30 PRINT ,J
>40 M=J, J=K. K=K+M
>50 NEXT I
>RUN
10:14 JUN 07 RUN2BAAo ••

o
1
1
2
3
5
8
13

50 HALT
>

AI though the va lue of K varies as the above program is exe
cuted, this does not affect I, since the initial value of I is
determi ned onl y when the FOR statement is executed and
the loop is first entered. Note the use of an optional form
of the LET statement, without the word LET, in line 40 of
the program.

You may use a LET statement to alter the value of the
indexed variable within a loop, in addition to the incre
ment added automatically whenever the NEXT statement
is execu ted.

>10 FOR I=1 TO 10
>20 LET I=2*I
>30 PRINT I
>40 NEXT I
>RUN
10:19 JUN 07 RUN2BAA •••

2
6
14

40 HALT
>

In the above program, the initial value of I is 1, as specified
by the FOR statement. The LET statement doubles this value
and the N EXT statement adds 1 to it. Thus, I has the val ue 3
at the beginning of the second execution of the loop and 7
at the start of the third execution of the loop. When the
NEXT statement is executed for the third time, I is not in
cremented because the I imit of 10 has been exceeded, and
loop execution stops.

PRINT FORMATTING

The statement

>PRINT

causes BASIC to print a single blank line. The statement

>PRINT X

causes the value of X to be printed, beginning in column 2.
Column 1 is reserved for a possible minus sign. The statement

>PRINT X.Y

causes BASIC to print the value of X, beginning in column 2,
and the value of Y on the same I ine, beginning in column 16.

If closer spacing is wanted, a semicolon can be used in
place of a comma. The statement

>PRINT X;Y

causes BASIC to print the value of X, beginning in column 2,
followed by the val ue of Y with 3 or 4 col umn5 separa
ting the two, 50 that the value of Y wi" begin in an
even-numbered column.

Print Formatting 3

If a value is negative, a minus sign precedes it.

>PRINT X;Y;Z;N4
5 -10 300 20.5000

:>

A combination of formats can be used.

>PRINT X,Y;Z
5 -10 300

>

If the user does not want the first value to print in column 2
he can use a comma or semicolon following the word PRINT.

>PRINT ,X;Y
5 -10

>

The statement

>PRINT 'THESE WORDS'

could be used to print TH ESE WORDS beginning in column 1.

TABBING

The TAB function is used in PRINT statements to advance
the output device to a specified column. For example, the
statement shown below causes the teletypewriter to advance
to column 12 and print the word HERE.

>PRINT TAB(12)"HERE"
HERE

>

Note that HERE is a literal text string, identified as such
by enclosure in quotes. Either single or double quotes
(i.e., 'THIS' or "THIS") may be used to enclose a literal
text string.

A symbol ic or I iteral value may be used in the same PRINT
statement as a I iteral text string (either with or without a
TAB expression). However, since an expression must not
follow another expression immediately, a symbol ic or I it
eral value must not be used next to a TAB expression. To
avoid this difficulty, one can use an empty text string
(e.g., "") to separate two expressions in a PRINT statement.

>PRINT TAB(6)""X" APPLES"
5 APPLES

>

Note that column 6 will be blank only if X is positive.

If a comma or semicolon is used to separate a TAB expres
sion from a following expression as in the statement

>10:) T'i-~T:.'':' ~'A·~ (~i) ,X

BASIC wi II perform the TAB function but wi II assume that
the punctuation is only being used as a separator.

4 Tabbing/Data Input from a Terminal

A TAB expression may contain symbolic as well as literal
values, allowing great flexibility in line format. This
capability is very useful in programming for graphic output.

For example, the following program produces a graphic plot
of a damped sine wave:

>100 X=X+.7,K=EXPC-X/15)
>110 PRINT TAB(15+15*K*SIN(X»"*"
>120 IF X<15 THEN 100
>RUN
10:43 JUN 07 RUN2BAA",

*
*

>I-

*
*

*
*

*
*

*
*

*
:+

'I'

*
*

*
120 HALT

>

In this example, the EXP intrinsic function returns the value
of e (the quantity 2.7183 •.•) raised to the power of the
argument. The IF statement causes BASIC to return to
statement 100 unless the current value of X is equal to or
greater than 15.

DATA INPUT FROM A TERMINAL

The IN PUT statement is used to sol icit input via the user
terminal. A question mark is printed by BASIC to prompt
the user.

>100 PRINT 'ENTER LENGTH AND WIDTH'
>110 INPUT L,W
>120 PRINT 'AREA='L*W
>RUN
10:46 JUN 07 RUN2BAA .••
ENTER LENGTH AND WIDTH
? 5, 10
AREA= 50

120 HALT
>

In the above example BASIC prints a request to type values
for length and width. The values 5 and 10 are typed fol
lowing the prompt character. Note that the comma after
the value 5 is optional. A single blank would be sufficient
to separate the two values.

ERROR MESSAGES

BASIC messages to the user are explained in Chapter 6.
Most of these messages inform the user of a syntox error ina
program line, a logicol error in program structure, or a prag
mati c error in prograrn executi on. Syntax errors are detected
when a I ine is typed, logical errors are detected at compile
time, and pragmatic errors are detected at run time.

If I'he user types

>100 X=2Y

BASIC prints the message

100 BAD FORMAT

on the following line. The user can correct the line by
retyping

>100 X=2*Y

The program shown below contains CI FOR statement without
a corresponding NEXT statement.

>100 FOR I=1 TO 5
>110 PRINT ,'X='I; 'Y='I**3
>120 END
>RUN
10:49 JUN 07 RUN2BAA .•.

MISSING NEXTSTMT
>

When the above pro!)ram is compiled, BASIC prints the
message

MISSING NEXTSTMT

The user can correct l'he program by typing

>115 NEXT I

and then recornpil ing by typing anol'her RUN command.

In executing the following program, a divisor becomes zero, .
causing BASIC to print the message shown below.

>100 FOR X=1 TO 2
>110 FOR Y=1 TO 4-X
>120 Z=1/(Xt2+3*X*Y-X-Yt2)
>130 PRINT X,Y,Z
>140 NEXT Y
>150 NEXT X
>RUN
10:52 JUN 07 RUN2BAj~ . .•

1 1 .500000
1 2 .500000

120 DIV BY ZERO
>

The user can correct I'his by typing

>115 IF Xt2+3*X*Y-X-Yt2<>0 THEN 120
>116 Z=" INF."
>117 GOTO 130
>

Note that line 116 above assigns a six-character I iteral text
string to the name Z. Z then denotes an alphanumeric
constant, or "aconst", as discussed in Chapter 2,

PROGRAM MODIFICATION

A line in a program can be changed by retyping the entire
line. A new line can be added to a program by typing it,
giving it any unused line number within the desired area of
the existing program.

>100 R=12, Y=-12 0 5
>110 Y=Y+l, X=SQR(Rt2-Yt2)
>120 PRINT TAB(36-X)'*'TAB(36+X)'*'
>130 IF Y<11.5 THEN 110
>

The user could add a line between 1,10 and 120, using any
line number from 111 through 119.

>115 X=1.7*X
>

If the user wanted to combine lines 110 and 115, in the
above example, he could do so by retyping line 110 and
deleting line 115 by typing the line number followed by
a carriage return.

>110 Y=Y+l, X=1.7*SQR(Rt2-Yt2)
>115
>

Other methods of program modification are discussed in
Chapter 4.

SAVING A PROGRAM

To save a program for future use, the SAVE ON command
can be used:

>SAVE ON FILENANE
>

In the above example, the current contents of the text
editing area are saved in a fi Ie named FILE NAME if a fi Ie
does not already exist with that name. If a fi Ie with that
name does exist, the save does not occur and an error mes
sage is produced.

If the user wants to unconditionally save a program for fu
ture use, he can use the SAVE OVER command:

>100 PRINT "HELLO, THIS IS 'FILENAME'."
>SAVE OVER FILENAME
>

In this example, the current contents of the text editing
area are unconditionally saved in a file named FILENAME.
If a fi Ie with that name already exists, it is replaced with
the new fi lei nforma ti on.

File names may consist of up to 11 characters. They must
not begin wi th a si ngle quote (') or double quote (") char
acter and must not contain blanks, un less the entire fi Ie

Error Messages/Program Modification/Saving a Program 5

name is delimited by quotes. Examples of valid file names
are

>S'AVE OVER "FILE NAME"
>SAVE ON ELEPHANTINE
>SAVE OVER ?@" I#t!
>5AVE ON 2+2=4
>SAVE OVER THIS(2)
>

LOADING AND RUNNING A SAVED PROGRAM

Before loading a program, it is good practice to use the
CLEAR command to clear the text editing area.

6 Loading and Running a Saved Program

If CLEAR is not used the loaded program will be combined
with whatever happens to be in the text editing area. Aftel
a program has been loaded it can be executed by giving a
RUN command

>CLEAR
>LOAD FILENAME
>RUN
11:14 JUN 07 FILENAME ...
HELLO, THIS IS 'FILENAME' 0

100 HALT
>

2. ELEMENTARY FEATURES OF BASIC

In the following chapters, certain conventions have been
adopted for defining the BASIC commands. Capital letters
indicate command words that are required inthe literal form
shown. Lowercase letters are figurative representations of
constants, step numbers, etc. Command parameters enclosed
by braces ({ }) indicate a required choice. Parameters en
closed by brackets ([J) are optional. Ellipsis marks (...)
si gnify optiona I repeti ti ons of the preceding bracketed
paramej-er. BASIC recognizes the period as a decimal
poin!", not as a terminator.

ELEMENTS OF A BASIC pnOGRAM

There are a number of elements common to most BASIC
programs. These are: line numbers, ~,imple constants and
variables, arithmetic operators, expressions, and intrinsic
functions. In addition to these, BASIC programs involving
text manipulation often use alphanumeric constants as well
as string literals, variables, and expressions. String vari
ables and expressions are not permitted in BTM BASIC.

LINE NUMBERS

Every line in a BASIC program must begin with a unique in
teger. Li ne numbers may range from one through 99999 but
need not be contiguous, allowing for insertions. Lines are
executed in ascending sequence, except where the sequence
of execution is modified by branching or looping. Leading
zeros are permilted in liine numbers but are not required.

NUMBER RANGES

Because BASIC converts all input values to an internal
double precision floating-point binary format, the appear
ance of input values and output values may differ due to
rounding during input conversion. An example of this round
ing is shown be low.

>X=lllllllllllllll
>PRIJilT X
1.11111E+1L~

>.Y=1/1000
>PRIJIlJ.' Y

1.00000E-03
>Z=3E4
>PRINT Z

30000

INPUT

BASIC handles input numbers within a range of 5.398* 10 t -79
throuflh 7. 237*lOt75, and zero. Up to 16 significant deci
mal digits can be input.

OUTPUT

Output numbers are printed in fields of varying widths ac
cross the page according to the following rules.

1. Numbers are left-justified in their fields.

2. Positive numbers are preceded by a blank, negative
numbers by a minus sign.

3. If the number is a whole number (integer) whose mag
nitude is less than 1,000,000,000 (109), it is printed
in from 1 through 9 positions after a blank or a minus.

4. If the number is nonintegral or its magnitude is greater
than or equal to 109 (for example, -10.5, .5, 123.45,
or 10 12), its most significant part will be rounded to 6
or 16 digits according to the PRC function and will be
treated as follows:

a. If, after rounding, the absolute value of the num
ber is greater than or equal to 0.1 but less than
106 or 10 16, the number is printed, in 8 or 18
print positions, in fixed-point notation; that is, its
form will be a blank or minus, a maximum of 6 or
16 integer digits, followed by the decimal point
and a maximum of6 or 16 digits.

b. If, after rounding, the absolute value of the num
ber is less than 0.1 or greater than 106 or 10 16,
the number is printed in floating-point (scientific)
notation; that is, its form wi II be a blank or minus,
the most significant integer digit, a decimal point,
5 or 15 decimal digits, followed by the letter E, a
plus or minus, and a 2-digit exponent.

PRECISION CONTROL

In the editing mode, output precision can be controlled by
means of the ENTER BASIC command (see Chapter 4).

Output precision can also be controlled by use of the PRC
intrinsic function in a PRINT statement. Used by itself or
embedded in a series of other PRINT elements, PRC(l) sets
the output precision to 16 significant figures. This precision
remains in effect unti I reset to the default value of six by a
PRC (0) or an ENTER BASIC command. An example is shown
below.

>LET I=1/30
>PRINT I

3.33333E-02
>PRINT PRC(1) ,I

3.333333333333333E-02
>PRINT I

3.333333333333333E-02
>PRINT PRC(O);I

3.33333E-02
>

SIMPLE CONSTANTS

A simple constant (that is, a nonvarying quantity) is
composed of digits that stand alone, have an embedded
decimal point, or are preceded or followed by a decimal
poi nt. For example, 2, 7.8, .5, and 12 are simple con
stants in BASIC.

Elementary Features of BASIC 7

Simple constants may be modified byfloating-pointnotation,
as in 2. 5E-15, where the E denotes that the number that pre
cedes it is to be multiplied by 10 to the plus or minus power
following the E. Accordingly, the number 2. 5E-15 is really
the number. 0000000000000025. The plus sign is optional
for posi ti ve powers.

SIMPLE VARIABLES

A simple variable is denoted either by a single letter or by
a letter and a digit from 0 through 9. This convention al
lows the programmer a total of 286 simple variables. For
example, A and W3 are simple variables. Note that if the
letter-and-digit combination is used, the letter must pre
cede the number.

ARITHMETIC OPERATORS

BASIC uses common mathematical symbols to denote arith
metic operations. These arithmetic operators are shown in
Table 1 below. Note that either the up-arrow (or circum
flex) or double asterisk is a 1I0wed as an exponentiation op
erator. The use of the double asterisk is convenient for
batch operation, since the up-arrow requires an overpunch
if cards are used as the input medium.

Table 1. Order of Arithmetic Operations

Order Symbol Explanation

1 for ** Exponentiate

2 * and / Mu Itiply and Divide

3 + and - Add and Subtract

The table also shows the order of precedence of the various
operations. When no operation takes precedence over
another, the computer wi II perform operati ons from left to
right. The order of operations may be altered by use of
parentheses. Use of pa~entheses is advised if the sequence
of operations seems questionable.

Note that an operator of order 1 or 2 may be followed by
an operator of order 3, but that no other cases of consecu
tive operators are permitted.

INTRINSIC FUNCTIONS

BASIC provides a total of 34 intrinsic functions, 15 of which
may not be used in BTM BASIC. The functions are I isted in
Appendix C. When a function is used in a statement, the
three-letter function name must be followed by an expres
sion or value enclosed in parentheses. This expression or
value is called the "argument" of the function. The value
of the argument is either used directly in the function cal
culation, or signals the computer to perform the calculation
ina predeterm i ned manner. The purpose of most of the
functions is obvious and familiar. The INT function is often
used to acquire the integer part of a calculated number.
For example, INT(A), where A is computed to be 2.675,
wou Id produce the number 2. The INT function maya Iso

8 Elements of a BASIC Program

be used to obtain three significant digits (with rounding) as
in the following example:

>50 LET S=INT((A*100)+.5)/100
>

When statement 50 is executed, S is assigned the va lue
2.68.

ARITHMETIC EXPRESSIONS

The term "expression", often abbreviated "expr", represents
a simple constant, simple or subscripted variable (see Chap
ter 3), or function reference that may stand alone or may be
used in any combination when separated by the symbols for
addition, subtraction, multiplication, division, and exponen
tiation. The components may also be enclosed by parenthe
ses. The symbols + and - may also be the initial character
of an expression and may immediately follow a left paren
thesis. Some typical expressions are

and

A+1
(B-X)/D

(2tX)+SIN(Y)

STRING LITERAL

A string literal in a BASIC program is any sequence of text
characters, including blanks, enclosed by single or double
quotes. If a string literal is enclosed by single quotes, a
single quote must not appear in the string. A para lIel ru Ie
applies to the use of double quotes. Examples of string
literals are shown be low.

>100 PRINT 'THIS IS A STRING LITERAL'
>110 PRINT "THIS IS 'ANOTHER ONE'"
>120 PRINT 'AND THIS IS "A THIRD"'

ALPHANUMERIC CONSTANTS

Besides the simple constants previously mentioned, BASIC
a 1I0ws symbol ic names such as X, R, or K2 to be assigned
string I iterals of up to six characters. Such symbols are then
called "alphanumeric constants" or "aconsts". For example,

>100 A='ACONST'
> 11 0 Z = , SPA CE 3 '
>120 X6=' X RAY'
>

An "aconst value" can be assigned via a LET, INPUT, READ,
GET, MAT READ, MAT INPUT, or MAT GET statement and
can be tested, for equality or inequality only, via an IF
statement.

>100 IF A='ALPHA' THEN 200
>110 IF A<>'OMEGA' THEN 300
>

An aconst value may occur in unquoted form as em ele
ment of a DATA statement or in the response to an I N PUT
request. If an element begins with a digit, plus or minus
sign, or decimal point ;'t is assumed to be a number. If
it starts with any other character, or i:; enclosed in quotes,
it is ossumed to be an aconst va lue.

Example:

> 1 00 D A T A 5, '5', • 5, 'F I VE '
>

The first and third elements in the Clbove example are
treated as numbers. The second ane! last are treated as
oconst va lues.

Similar rules apply to elements entered in response to an
INPUT request, except that in CP-V eiASIC if the input is
ossigned to string variables (see below) oil elements are
interpreted as strings.

STRING SCALARS (CP-V Only)

String scolars are denoted by 0 letter Clnd dollar sign. A
string scolar consists of up to 132 charClcters comprising a
single string. A string vector is 0 one,·,dimensionol array,
each element of which is a single string. A string motrix
is 0 two-dimensional army of such elements. String vec
tors and matrixes are discussed in Chapter 3. To avo id
conflict, the same letter must not be used to designate a
string scalar and a strin~1 (or numeric) orray.

Examples of string scalars are

>100 A$='A STRING'
>110 B$='ANOTHER STRING'
>

String scalars can be compared for relative magnitude as
well as equa I i ty.

>100 A$='THIS'
>110 B$='THAT'
>120 IF A$=B$ THEN 200
>130 IF A$>B$ THEN 300
>

In this example, the comparison of A$ and B$ fails on the
third character. Thus, since the character "A" is lower in
the EBCDIC code than "I" (see Appendix H) a branch to
line 300 is taken.

ASSIGNMENT STATEMENTS

Th is section discusses the assignment of simple variab les,
alphanumeric constants, and string scalars. The assignment
of values to vectors and matrixes is explained in Chapter 3.

LET The LET statement replaces the current va lue of the
,variable(s) on the left of the equals sign with that of the
expression on the right of the equals si£jn.

LET statements have the genera I form

[I ineJ [LETJvariable[,voriableJ. " :=: expression-,

C-----------------------·--------1

[, variable[,variableJ. .. = expression]

where

variable is either a simple variable, an a Iphanu-
meric constant, or a stri ng sca lar.

expression is an arithmetic expression (see'l\rith-
metic Expressions", above) if the variable is a
simple variable. For alphanumeric constants, ex
pressions are either string literals of up to six
characters or else string expressions assigning
strings of upto six characters (see "Character String
Man ipu lation" I Chapter 3).

For string scalars, expressions are either string ex
pressions or string literals of up to 72 characters
or the limit set by a SET S command (see "SET",
Chapter 4). Strings of excess length are truncated
to the maximum permitted.

Arithmetic operations can be performed by use of the LET
statement.

>100 A=A+1
>110 B=At2
>

Lines 100 and 110 above could be combined into a single
statement.

>100 A=A+1, B=At2
>

Such serial Clssignments are executed from left to right.
Thus, if A is initially 2 "hen B will be assigned a value
of 9. Parallel assignments can also be made.

>110 A,B,C=D*E
>110 F,G=F+1
>

Note that line 110 above is equivalent to

>110 F=F+1, G=F
>

Other examples of LET statements are shown below.

>100 P,A1,Q3=4*ATN(1), A=l, B=5
>110 C='STRING'
>120 D$='A LONG STRING'
>130 E$=C, F=D$
>

In executing line 130 above, aconst F is assigned the string
A LONG because of the aconst length limitation.

Assignment Statements 9

BRANCHING

Normally BASIC executes program lines in ascending order,
beginning with the lowest numbered line. The statements
discussed below cause BASIC to alter the normal order of
execution, either condi tiona Ily or unconditionally. (See
also "Branching to a Subroutine", in Chapter 3.)

IF ... THEN The IF ... THEN statement provides a
conditional branching capability. If the test condition
specified in the IF ... THEN statement is true, then the
next line executed is that specified in the IF ... THEN
statement. Otherwise, the statement following the IF
THEN statement in the normal sequence is executed.

The form of the IF ... THEN statement is

[I ine~ IF expr operator expr{~H~~O} line

The condition to be tested is specified between the IF and
the TH EN (or GOTO) of the statement. The line to which
BASIC is to branch on a true test is specified after THEN
(or GOTO). An expression may be a simple constant,
variable, alphanumeric constant, literal string or string
scalar, or a compound arithmetic expression. The oper
ators that may be specified are given in Table 2.

Table 2. Condition Operators

Operator Explanation

= Equa I to

>< or < > Not equal to

< Less than

> Greater than

< = or = < Less than or equa I to

> = or = > Greater than or equa I to

Examples of IF ... THEN statements are given below:

>100 IF X<2 THEN 120
>110 IF Y='EUREKA' THEN 130
>120 IF A$>Z$ THEN 140
>130 IF SIN(X+J)<=COS(X*K) GOTO 100
>140 IF B=C THEN 110
>

ON ... GOTO If many different branches are to be
taken according to the value of some expression, the use
of a separate IF ... THEN statement (see above) for each
branch becomes unwieldy. To overcome this inconven
ience, BASIC provides the ON ... GOTO and GOTO ...
ON statements.

10 Branching

ON ... GOTO takes the form

[line]ON expr {~~T~}line[, line]. ..

where

expr is any arithmetic expression.

line[, line]. .. isa list of program line numbers.

When the statement is executed, the expression is eva lu
ated and, if necessary, truncated to an integer. If the re
sulting value is 1, a branch is made to the first line
specified in the list. If the value is 2, a branch is made to
the second line specified, and so on. If the value is less
than 1 or greater than the total number of lines specified
in the I ist, no branch is taken and the next statement in the
norma I sequence is executed.

ON ... GOTO may not be used as a direct statement in
BTM BASIC.

Example:

>100 ON SGN(X)+2 GOTO 150.250,200
>

In the above example, if X is negative ct branch to line 150
is taken, if X is 0 a branch to line 250 is taken, and if X is
positive a branch to line 200 is taken.

GOTO ... ON This statement is identical in opera-
tion to ON GOTO (see above) and may not be used
as a direct statement in BTM BASIC. It has the form

[line]GOTO line[' line]. .. ON expression

Examples:

>100 GOTO 140,160,180 ON Y
>110 GOTO 200,250,300 ON Z+3
>

GOTO The GOTO statement can be used to alter the
normal sequence of program execution unconditiona lIy. The
GOTO statement has the form

[lineJGOTO line

GOTO is generally used in conjunction with a conditional
branch such as IF ... THEN (see above). An example is
shown below.

>100 IF TIM(1)<>12 THEN 100
>110 PRINT 'LUNCHTIME'
>120 IF TIM(1)=12 THEN 120
>130 GOTO 100
>

DATA OUTPUT

PRINT The PRINT statement tells the computer to print
out the current value of () variable, the results of a calcu
lation; a message, or any combination ::>f these items. The
output is produced on a I ine printer, typewriter, card punch,
magnetic tape, Teletype,. or other device. The PRINT
statement has the general form

[I ine] {PR/NT} expression(s), or text string(s) 'II~
[
---~--------

-commas or semicolons

where the word PRINT is usually followed by the name of
the item that is to be printed. Notice that a semicolon can
be used in place of the word PRINT; this abbreviation is
especiolly useful in the desk-calculator mode. Two sample
print statements are

>60 PRINT Xl,X:2
> '7 0 'NO REAL ROOTS'
>

Line 60 will print out the calculated values of the variables
Xl and X2. Line 70 wi II cause the message enclosed by
single quotation marks to be printed out. Note that a string
of text must be enclosed by either single or double quota
tion marks. Blanks may be used within the string and wi II
be reproduced in the output as presented. More than one
text string may be present in a PRINT statement. Each
separate string, however, must be enclosed by quotation
marks.

A PRINT statement may contain a reference to an intrinsic
function. For example

>1220 PRINT SQR(X)

will calculate and print the square root of the variable X,
while

>1230 PRINT X;SQR(X)
>

will print the current value of the variable, followed by its
square root.

PRINT can also contain variables, providing that the
variabi es have been defined in statements preceding the
PRINT. The following statement is an example of this
use of PRINT.

Simi larly, the statement

•
>1260 PRINT (7/8)t14

will give the value of the fraction 7/8 raised to the 14th
power.

The word PRINT, used olone in a stat,ement, causes the
printer to advance the paper by one line. An example is
shown below.

> 1+ 50 PRINT

PRINT FORMATS

Punctuation marks in the PRINT statement (commas and
semi colons) define the desired appearance, or format, of
the printed output. The punctuation marks tell the print
device at which position to start printing. BASIC has two
types of output format, regular and packed. Regular for
mat is specified by using commas to separate elements in
the PRINT statement; packed format is specified. by using
semicolons.

Regular Format. When the regular format is specified by
~,sing commas to separate the elements in the PRINT state
ment, the print I ine is thought of as consisting of a series
of 14-character fields. Each comma causes a shift to the
next field. For example,

>4040 PRINT A,B,C

wi" cause the va I ues of A, B, and C to be pri nted at
14-character i nterva Is, as in

1 5 4
>

When the regular format option is specified, at least two
blanks follow the last printed character. In some cases,
this spacing may cause an extra field shift.

Packed Format. Packed format, which is specified by using
semicolons to separate the elements in the PRINT statement,
causes the printed output to be compressed on the page by
reducing the spacing between fields. Each semicolon
causes a field shift that is either two or three positions in
length, so thot the shift reaches an even-numbered position.
For example, statement 4040 above could be written as

>4040 PRINT A;B;C

with the resultant output of

1 4
>

Additional Format Considerations. It is important to note
the difference between the TAB function and the output
format characters. TAB causes output to be printed at a
specified position, and is most useful in providing columnar
output. The output format characters (, and;) cause the
output to be printed at intervals that depend on the number
of preceding (printed) characters.

If a PRINT statement terminates with a TAB to a column to
the left of the current print position, e. g., TAB(O), the
I ine is not printed until a subsequent PRINT is executed.
This allows effective continuation of PRINT statements,
except in the direct mode.

Data Output 11

An exp: ~sion may not follow another expression ina PRINT
statement, but a text string literal may be used anywhere.
Thus, a null string (two quotes) may be used to separate
two expressions. For example,

>~:i PHINT A(1)III1B(2)

If a PRI NT statement ends wi th a punctuation mark, the
appropriate field shift takes place and subsequent printing
starts at that point on the same print line. Otherwise, sub
sequent printing starts on a new line. t All printing is left
justified in its field. If a field shift places a field in a
position to extend beyond the last allowed print position,
a new line is generated and the field is printed on the new
line.

This procedure is modified when printing text. If a text
string overflows the last position, the string is truncated
at that point and the remainder is printed on the next
line.

Text strings may extend beyond any number of field
boundaries. If neither a comma nor a semicolon appear
on either side of a text string in a PRINT statement, no
spacing wi II occur before or after the string in the pri nted
output.

Format characters may be used alone in PRINT statements,
or they may be used in any number and combination to
cause appropriate field shifts.

PRINTUSING and: (Image) As an a Iternati ve to use of the
PRINT statement (see above), BASIC provides another
method of specifying the format of printed output. This
method makes use of a PRI NTUSIN G statement and an
associated Image statement. The PRINTUSING statement
contains parameters to be inserted into the print positions
specified by the referenced Image statement.

PRINTUSING takes the general form

[I ' 1 {PRINTUSING}
IneJ ;USING line[, expression(s) or-~

L text stri ng(s)]

where the line number that follows the command word desig
nates the Image statement into which this PRINTUSING's
parameters will be embedded. Notice that a semicolon can
be substituted for the word PRINT. Twosample PRINTUSING
statements are shown below, one with the word PRINTUSING
and the other with the abbreviated form ;USIN G.

>50 PRINTUSING 75,X,SQR(X),'SQ. ROOT'
>50 ;USING 75.X,SQR(X). 'SQ. ROOT'

tIn CP-V BASIC, a line ending with a punctuation mark
is not printed until execution of the next PRINT state
ment that does not end with a punctuation mark.

12 Data Output

Both of these statements perform the same action, of course.
The parameters of line 50, that is, the current val ue of X,
the square root of X, and the text string 'SQ. ROOT', will
be embedded, from left to right, in the designated fields of
line 75 (a field is a group of character positions that is
treated as a distinct unit). Note that commas are used to
separate parameters in PRIN TUSIN G.

The Image statement (identified as such by a colon after
the line number) complements the PRINTUSING statement
in that Image statements depict the final printed appearance
of PRINTUSING parameters. An Image statement has the
form.

line :[#s and/or characters to 132 max.]

where the characters that follow the required colon are
governed by the following rules.

1. Each digit position is designated by a # symbol. Also,
text strings to be derived from the PRIN TUSIN G state
ment are indicated by # symbols. For example, the
statements

>50 PRINTUSING 75,X,SQR(X),'SQ. ROOT'
>75 :IF X=#, # IS ITS ########
>

wi II generate the following output (assuming X is cur
rently 4):

IF X=4, 2 IS ITS SQ. ROOT
>

2. If a field is preceded by a plus sign, positive values
are preceded by a plus sign and negative values by a
minus sign. On the other hand, if a field is preceded
by a minus sign, positive values are preceded by a
blank, negative values by a minus sign. For example,
the statements

>5 :-##, -##, +##, +##, ##
>14 PRINTUSING 5,-19,+20,-21,20,99

wi II generate

-19, 20, -21, +20, 99
>

If a field is preceded neither by a plus sign nor by a
minus sign and the associated value is negative, a
minus will be printed in the first position and any re
maining positions of the field wi II contain asterisks.

3. The decimal point is denoted by a • symbol. For ex
ample, the statements

>3 :#.# AND -.## ALSO +###.
>23 PRINTUSING 3, 1.2, -1/4, 100.435

wi II generate

1.2 AND -.25 ALSO +100.
>

4. If a field contains () decimal point, the user may
also append four troil ing exclamation points to
signify floating-point notation. (If more or fewer
thon four exclamation points ore shown, they will
be printed literally in the output.) BASICdeter
mines the need for floating-point n:)tation according
to the rules given for the PRINT statement. The
four lis provide for a letter E, a plus or minus sign,
and a two-digit exponent. Note that a decimal
point may be placed anywhere in the field, but that,
on printing, it will follow the first digit. The position
of the floating-point notation remoins unchanged.
For exampl e, the statements

>98 PRINTUSING 99, 1/30, 2/30
>'1g : VALUES ARE #.##!!!! AND +###.!!!!

wi II generate

VALUES ARE 3.33E-02 AND +6.67E-02
>

5. Except for the #, period, and ! symbols, characters
that follow the colon wi II be printed exactly as shown,
with spacing as provided by blanks in the Image
stotement.

6. TE~xt strings may be inserted in fields containing deci
mal points or specifying floating-point notation. In
addition, if the field is preceded by an algebraic
sign, its position will be preemp·ted by the text string.
Fc)rexample, the stcltements

>11 :THE VALUE IS -#.####
>47 PRINTUSING 11,'TOO BIG'
>

will generate

THE VALUE IS TOO BIG
>

If a text string is larger .. han its corresponding field, it
wi II be truncated on the right.

In addition to the above rules, printing is subject to the
following conventions.

1. If the field to the left of a decimal point is not large
enough to contain a numeric value, asterisks are in
serted in the printed output as a warning to the pro
grammer. For example, the statements

>50 PRINTUSING 75, X, SQR(X), 'SQ. ROOT'
>75 :IF X=#, # IS ITS ########
>

will generate, assuming an X value of 25,

IF X=*, 5 IS ITS SQ. ROOT
>

2. If an Imoge field is lorger than necessary, the printed
output will show blanks preceding expression values
and following text string values up to the required
number of positions in the field.

3. If a PRINTUSING statement specifies more values
than there are fields in the complementary Image
statement, the Image statement is repeated Iy used
until all PRINTUSING values are printed. For ex
ample, the statements

>8 :N=#####
>90 PRINTUSING 8, 1, 4, gO, 81777

wi II generate

N= 1
N= 4
N= ':)0
N=81777
>

4. If a PRINTUSING statement specifies fewer values
than there are fields in the complementary Image
statement, the printout will be terminated at the
first unused field of the Image statement. For example,
the statements

>9 :######## CASES ##.# RESULTS
>103 PRINTUSING 9, 'NO MORE'

wi II generate

NO MORE CASES
>

Whenever a PRINTUSING statement is executed, printing
starts at the I eft of a new line. Val ues are rounded approx
imately prior to printout. Although the programmer may
specify numeric fields greater than 16 characters in length,
only 16 significant digits are output (with trailing zeros to
fill out the field) for the fractional part of values.

Note that PRINTUSING is not affected by the WIDTH com
mand (see Chapter 4) and wi" accept up to 132 character
posi tions.

PAGE t The PAGE statement can be used to advance the
paper to the top of the next page. Fi gure 1 shows how
PAGE and PRINT statements might be used in CP-V to pro
duce a page of tobular data.

Note that before BASIC is called, a PLATEN command is
used to set the page length to 16 lines rather than the stan
dard 54 I ines per page. A PLATEN ,0 command given
prior to calling BASIC would have caused both PAGE
statements to be ignored. (For a more detailed discus
sion of the PLATEN command, see the Xerox CP-V/TS
User's Guide, 90 16 92).

t
CP-Vand BPM only.

Data Output 13

!PLATEN ,16

!BASIC
> 100 PAGE
>110 PRINT ,'X', 'X SQUARED', 'X CUBED'
>120 PRINT
>130 X=X+1
>140 PRINT ,X, Xt2, Xt3
>150 IF X<10 THEN 130
>160 PAGE
>RUN
13:32 JUN 08 RUNEBAA ...

13:32 06/08/72 35&101 24-26 [3J

x X SQUARED

1 1
2 4
3 9

4 16
5 25
6 36
7 49
8 64
9 81
10 100

13:33 06/08/72 356101 24-26 [4J

160 HALT
>

X CUBED

1
8
27
64
125
216
343
512
729
1000

Figure 1. Use of PAGE Statements in CP-V

14 Data Output

11ATA INPUT

DATA and READ The data values used in the execution
of a program may be contained in a DATA statement. They
are called into use at appropriate times by the READ state
ment. READ and DATA are used in combination with each
other.

DA T A statements form a chained I ist of constants that the
READ statement accesses from left to ri~;Jht, top to bottom.
DA TA takes the form

line DATA [constan t] ~ [constant] J. ..
Simple constants may be preceded by a plus or minus sign.
DATA statements may also contain alphanumeric constants
or text strings. An empty field after DATA, as in

>1250 DATA

or an empty field between commas or after a terminating
commo, as in

>1260 DATA 1,2,3,,5
>1.270 DATA 6,7,8

implies a value of zero.

DATA statements may appear anywhere in a BASIC program,
and do not have to be consecutive. However, it is good
practice to group the DATA statements at the end of the
program, thereby makin~1 it possible to add as many state
ments as are needed to contai n the datu val ues wi thout
disrupting the order of the preceding stlJtements.

READ assigns (in consecutive order) the values in the DATA
statement{s) to the variables I isted in the READ statement.
The form of the READ statement is

[line] READ vori abl e [,variab I e] •.•

There is no comma following the final variable in the list.

Example:

>555 READ B,C,D

If a READ statement requests data after the I ist of constants
in the DATA statement h(lS been exhausted, execution of
the program ceases and a message is out-put to the program
mer advising him of the out-of-data condition.

The list of variables fol/owing a READ !itatement may in
clude either of two special entities. A single asterisk means
to take an error exit if the current DATA statement list has
not been completely read. A double asterisk means to skip
any unread elements in the current DATA statement'.

Examples:

>500 READ X,Y,**
>510 READ A,B,C,*,D,E,F

Suppose the program inc I udes these DATA statements:

>1000 DATA 1,2,31.5
>1010 DATA 3,4,5,6
>1020 DATA 7,8,9

When line 500 is executed, 1 is read into X, 2 is read
into Y, and the 31.5 is skipped. When 510 is executed, 3 is
read into A, 4 into B, and 5 into C. The single asterisk
is encountered with 6 left in statement 1010 and the error
message EXTRA INPUT results.

INPUT The INPUT statement requests data from a source
that is externa I to the program, that is. te I etype un it,
card reader, console, or other input device. (INPUT
d iHers from READ in that when using READ, the DATA
statement and its data values are contained within the
program itself.) Data may be stored in an external me
clium for two reasons: either the data is unknown when
the program is wr i tten but will be suppl i ed when the
l:Jrogram is run, or the amount of data is too I arge for
incl usion in the body of the program. The INPUT state
ment takes the form

[line] INPUT variableLvoriable] ...

There is no comma following the final variable in the list.
When the INPUT statement is executed, data values are
read into the computer from the externa I storage med i um
cmd are assigned, one at a time, to the variables designated
In the INPUT statement. It should be emphasized that data
is stored as it is received, and that the variables are satis
fied (that is, associated with the data) in the order in
which they ore specified. Some sample INPUT statements
ore shown below.

>100 INPUT X
>110 INPUT A,B,Z,Y,R3
>120 INPUT B(1 ,N), C(N), N
>130 INPUT N, B(l,N), C(N)

In the above example, every time statement 100 is ex
ecuted, the computer will supply a data value to the
variable X. Statement 110 will supply data values to A,
B, Z, Y, and R3, in that order, from the list of data
suppl ied by the programmer. Statements 120 and 130
wi" very probably not be equivolent, even though the
same variables are specified in both. They will not be
equivalent even if the data values are supplied in the
same order os the variables were given, unless the value
of N is not changed by executi on of either of the IN PUT
statements.

When data input is required, the user is signaled by a II 7 11

character.

The data values that satisfy the variables in INPUT are
contained in a I ist of data separated by commas or blanks.
If the I ist begins with a comma (or in the case of commas
with no intervening nonblank characters), the computer

Data Input 15

understands that a z'::'a value precedes the comma. For
example, the computer interprets

,5 ,3 1+

as meaning the values 0,5,3, and 4. Similarly, if the list
ends with a comma, as in

1 2 3,

the computer will assign the variables in the INPUT state
ment the data values 1,2,3, and 0. Finally, the list

5 ,1 , ,~) 1 2

will be interpreted as data values 5,1,0,5,1, and 2.

After the entire list of variables in an INPUT statement is
satisfied, control passes to the next program statement. If
at the time, the current I ine of input val ues has not been
exhausted, the remaining values will be accessed by the
next INPUT statement executed.

The list of variables in an INPUT statement may include the
special entities, asterisk and double asterisk, used to act
on unused fields in I ines entered for input. The double
asterisk means skip any unused fields. The single asterisk
means take an error exit if unused fields remain in the line
of input.

Examples:

>200 INPUT A,B,**,C,D

means input to A and B, skip anything left in the current
input line, and input to C and D from the next line.

>210 INPUT A,B,*

means input to A and B. Error exit if the input I ine is not
exhausted.

If the input I ines shown above are entered in response to
statement 100, etc., and N = 2 prior to executing state
ment 100, the result is as follows:

X=O
A=5 B=3 Z=4 Y=1 R3=2
B(1,2)=3 C(2)=0 N=5
N=1 B(1,1)=0 C(1)=5

The values 1 and 2 are pending for any subsequent INPUT
statement.

Note: In BTM on-line BASIC, with INPUT via the users
console, if a portion of an input I ine is unused at
the end of execution, it will be interpreted as new
source input and, because of its form, will cause
an error message (e.g., BAD FORMAT).

In the batch mode, with input data via the card reader,
if there are unused data cards at the end of program

16 Looping

execution, a Monitor error message will result and any re
maining activities prior to the next job card will be aborted.

lOOPING

FOR and NEXT BASIC provides the programmer with sti II
another method for specifying data values for variables. This
method defines a loop using FOR and NEXT statements. A
loop is a portion of a program written in such a way that it
will execute repeatedly until some test condition is met. A
FOR and NEXT loop causes execution of a set of steps for
successive values of a variable until a limiting value would
be exceeded. Such values are specified by establishing an
initial value for a variable together with a limit value, and
an increment or decrement that is used 1'0 modify the vari
able each time the loop is executed. When the I imit is ex
ceeded, an exit condition built into the loop allows the
computer ta proceed to the following body of the program.
FOR and NEXT loops, therefore, have three main components.

1. An initial value expression for the variable used by
the formula.

2. A limit value expression beyond which the variable
may not be incremented (or decremented).

3. An optional increment or decrement expression value
to be added to (or subtracted from) the val ue of the
variable for each pass through the loop (except the
last).

The FOR statement defines loop parameters. It gives the
initial value of the variable, the expression for the limit
value that the variable may not exceed and that cause the
loop to terminate, and (optionally) the increment or decre
ment expression. If the step increment or decrement is not
given in the FOR statement, it is assumed to be +1. The
FOR statement takes the form

line FOR simple variable = expression TO

Lexpression [STEP expression]

The expression preceding TO specifies the initial value of
the variable, the expression following TO gives the limit
ing value, and the expression following STEP gives the
increment or decrement. The computer eval uates the
initial value expression only once, when the FOR statement
is executed. The other two expressions are also evaluated
when FOR is executed, but, additionally, are reevaluated
every time the NEXT statement is executed. A sample FOR
statement is shown below in the discussion of NEXT.

The NEXT statement returns program execution to the be
ginning of a FOR and NEXT loop after the indexed simple
variable has been incremented. NEXT has the form

line NEXT simple variable

Note that the simple variable in the NEXT statement must
be specified exactly as it appeared in the FOR statement.

It is possible to branch into or out of a FOR-N EXT loop at
any point.

Example:

>11:1 ·;re) :.) T =: 1 ;"c) //

>1 ~ ,) IT' r >:_, --':1"','.; iI, f)
>1 ~ (j :-.i, : J~: '~i 1-

">

In the above example, a branch to line 140 is taken when
the value of I reaches 3, rather them waiting for the loop
to terminate at I = 5.

The easiest way to understand a FOR and NEXT loop is to
follow one through its entire sequence of operations, as in
the following statements.

>50 FOR X=2 TO 11 STEP 3
>60 PRINT X, 2tX
>70 NEXT X

Statement 50 sets thel initial value of X to 2 and specifies
that X thereafter will be incremented by 3 each time the
loop is performed unl'il X has the limiting value 11.

Statement 60 causes the computer to print out the current
vCllue of the variablE~ X and the result of 2X. Statement70
causes the computer t'o return to statrement 50, where it picks
up the next value of X, that is, +5, The computer then
prints 5 and 32 and clgain goes to NEXT which returns it to
FOR. When X attains the I imit val ue of 11, statement 60
wi" be executed and control wi" pass to 70. The computer
wi r I again try to increment X by 3, but as the upper limit
of variable X wi II have been reached, the computer wi II
"fa II through" statement 70 and control wi II pass to the next
stcltement. At this point, X wi 1/ helve the value 11, the
last value that does not exceed the terminal value.

Fractional values may be used in FOR-NEXT loops. When
this is done, there is the chance th<Jt an expected iteration
may not occur because of rounding, as in the following
statements:

10 FOR I=.l TO .4 STEP .1

50 NEXT I

This loop wi II be executed only for I =-= • 1, .2, and. 3 be
cause the rounded value of I is slightly over .4 on the last
try. To get four iterations in this example, use

10 FOR I=.l TO .41 STEP .1

Loops may be contained within other loops (nested), but
the loops may not "cross ". This exclusion is illustrated in
Figure 2.

BASIC allows loop nesting to 26 levels, that is, the BASIC
program may contain no more than 26 FOR statements whose
corresponding NEXT statements have not yet been encoun
tered in compilation.

correct ----_---+-___ I

incorrect

Figure 2. Nested Loops

FOR W

FOR X

NEXT X

FOR Y

FOR Z

NEXT Y

NEXT Z

NEXT W

MISCELLANEOUS STATEMENTS

REM or .:. The REM (Remark) statement a Ilows the pro-
grammer to interject commentary anywhere in the program
without· affecting its execution. Remarks may be used to
identify the complete program, or, more important, the
function or purpose of various sections of the program. The
Remarks statement takes the form

[line] { ~EM } [commentary]

Notice that a ,Remarks statement is i ndi cated by an asterisk
(*) or the word REM. The commentary portion of the state
ment may include any characters up to the end of the line
If commentary is omitted, REM or * wil/ produce a dummy
line in the program.

Examples:

>100 REN THIS IS A RENARK
>110 *THIS IS ALSO A REMARK

Looping 17

Branching to a Remarks statement is allowed and is
recommended when blanching to a closed subroutine. Such
uSe of a Remarks statement serves to identify the subloutine.
It also allows statements to be inserted at the beginning of
the subroutine, if unused line numbers exist between the
Remarks statement and the first executable statement of the
subroutine.

PAUSE, STOP, or END PAUSE, STOP, or END can be
used to halt program execution at any point. The line num
ber of the halt is printed when program termination occurs.
Chapter 4 outl ines methods for resuming operation of a
halted program (see "PROCEED").

18 Miscellaneous Statements

PAUSE, STOP, and END have the form

Dine]

Dine]

[lineJ

PAUSE

STOP

END

Any number of these may be used in a program, or none at
a II. If none is used, the program wi II normal I y ha I t after
the highest numbered line has been executed. If a branch
into an infinite loop occurs, as shown in the example below,
the BREAK key can be used to hal t execution.

>100 INPUT A
>110 PRINT A
>120 GOTO 100
>

3. ADVANCED FEATURES OF BASIC

For simpl icity, explanations in previous chapters have
covered only the essential features of BASIC program ele
ments. This chapter contains additional information on
these elements and explains advancl9d features of BASIC.

MULTIPLE STATEMENTS PER SOURCE LINE

BASIC programs are organized as numbered statements.
Many sequences of stotements are always executed in se
quence. That is, statements in the middle of the sequence
are never reached by a GOTO, GOSUB, or RETURN. Se
quences of statements of this type may be written in a
packed form (more thon one per line).

The form is

[line] statement\statement

or

[I i ne] statement ~~ statement

Examples:

>1 n I'.'J ~" : 1 ,,/i \ T' j,' I !.' :7' A
»0.1=1) \ <"Jj;,' T,3 It !?:'7!!ARF
> J () '; =! + 1 r, no '1' (! 5 0

Restri cti ons:

DATA and Image statements must be numbered and be the
only statement on the line.

The statements END, GOSUB, GOTO (without ON),
PAUSE, REM, RETURN, and STOP may occur only as the
last element in a line.

The multistatement capabi lity is adv<lntageous not only in
saving memory and file space for the user, but also in al
lowing grouping of related short statements and insertion of
remarks on the same line asa statement (as in line 20 above).

OTHER ELEMEINTS OF A BASIC PROGRAM

The additional program elements presented below give the
user greater flexibi lity in using the statements explained in
Chapter 2, and also augment the capabi lities of the new
statements described in this chapter.

SUBSCRIPTED VARIABLES

In addition to simple variables, BASIC also provides for
subscripted variables. A subscripted variable denotes an
element of an array, that is, a list 01" table of data. The

individual values within the array are called array elements.
We refer to an array element by specifying the name of the
array (always a single letter) and the position of the ele
ment in the array. For example, the fourth element in the
array named L is denoted by L(4). The val ue inside the
parentheses is called the subscript, and is represented by an
express i on that can be reduced by the computer to a sing Ie
integer val ue. (Subscript expressions are eval uated to inte
gervalue after adding 2- 12 .) Subscripts range from 1 through
the maximum allowed dimensioned value.

Arrays can have either one or two dimensions. A one
dimension array is called a vector and is characterized by
a single subscript. The subscript denotes the position of the
desired array element in the list of data. Sample vector
array el ements are A(l) and B(J + 3).

When an array has two dimensions, it is called a matrix.
Data in a matrix is thought of as being arranged in rows
and columns. Each element in a matrix is identified by
two subscri pts separated from each other by a comma. The
first subscript specifies the row number and the second
specifies the column number. For example, C(K, L) and
D(M+2, N+3) denote matrix array elements.

As a further example of matrix notation, consider the fol
lowing table, which lists expenses for a four-day car trip.

Row

2

3

4

5

Column

~ Item

Gas, oil

Tolls

Food

Lodging

Misc.

June 5

21.29

1.32

11. 18

10.05

1.35

2 3 4

June 6 June 7 June 8

20.84 19.42 6.08

.86 .40 .07

12.83 14.39 5.06

12.78 10.35 .00

.44 .90 .10

If we consider the table to be a matrix called E, the amount
($10. 05) spent for lodging on June 5 would be represented
by E(4, 1), and the amount ($5.06) spent for food on June 8
would be represented by E(3,4).

DIMENSIONING

A dimension is the largest val ue that a subscript may attain
for a given subscripted variable (array). This limit tells
the computer how many storage units of the computer's
memory to allocate for the array. Dimensions are specified

Advanced Features of BASIC 19

explicitly in the DIM statement, but the user may make
array references without corresponding DIM statements. In
such cases, impl icit dimensions are used. Impl icit d imen
sions are: 10 storage units for a vector and 100 storage
units for a matrix (that is, a 10 by 10 matrix). If the pro
gram uses MAT statements (explained later), the dimensions
of all arrays referred to in these statements must be explicitly
defined in D 1M statements.

DIM There are three reasons for expl i citl y specifying
the dimensions of an array.

1. The user may wish to allocate more space for his array
than allowed by impl icit dimensions. Thus, DIM A(18)
would reserve 18 storage units for the vector A.

2. The user may wish to restr i ct the reserved storage space
for each array to its exact dimensions, thereby conserv
ing space. For example, DIM B(3,4) reserves 12 storage
units for matrix B, thereby leaving for other use the re
maining 88 units that would have been allocated by im
plicit dimensions.

3. The user may wish to use a given array in a MAT
statement.

The DIM statement takes the form

[] {
letterSt} . [{letterSt}

line DIM letter (dimx[,dlmx]), letter ~

L(dimX~dimX])J ...
where

letter or letterS
dimensioned.

is the name of the array being

dimx is a dimension expression that denotes the
maximum number of row or column elements in
the array.

Dimension expressions may not contain user-defined func
tions, array references, letter digit variables, or letters
that have not been set (see "SET" in Chapter 4), and are
evaluated during compi lation (not during execution) by
truncating to an integer value after adding 2- 12 . If di
mensions for more than one array are specified in a DIM
statement, they are separated by commas. A gi ven array
may be dimensioned only once in a BASIC program via a
DIM statement. DIM statements may appear anywhere in a
BASIC program. A sample DIM statement is given below.

>10 DIM M(3,3), V(128)

A string scalar may not appear in a dimension statement.
To avoid conflict, the same letter may not be used for both
a string sca lar and a string array or numeric array.

t
CP-Vonly.

20 Other Elements of a BASIC Program

VECTORS

Numeric Vectors. A numeric vector is a one-dimensional
array containing numeric or aconst data elements. The
name of a numeric vector consists of a single alphabetic
character. An element is referenced by a subscript expres
sion denoting the relative position of the desired el ement
(see "Subscripted Variables", above).

>100 A(1)=3.14, B(A(1))='LARGER'
>110 A(2)=SIN(A(1)-1), B(2)=1
>115 IF A(1)<A(B(A(1)-B(2))+1) THEN 150
>120 PRINT B(A(B(2)))

String Vectors. t A string vector is a one-dimensional array
containing text string elements. The name of a string
vector consists of an alphabetic character followed by a
dollar sign. An element is referenced by a subscript ex
pression denoting the relative position of the desired ele
ment. The subscript expression may be followed by a
substring expression specifying the beginning and length
of the desired substring (see "Character String Manipula
tion", below).

>100 DIM A$(3)
>110 A$(1)='ABCDEFGH'
>120 A$(2)=A$(1:2)
>130 A$(3)=A$(2:3.4)

In the above example, vector element A$(2) is assigned the
string BC DEFG Hand A$(3) is assigned DEFG. Note that
all string arrays must be dimensioned via a DIM statement.

MATRIXES

Numeric Matrixes. A numeric matrix is a two-dimensional
array containing numeric or aconst data elements. The
name of a numeric matrix consists of a single alphabetic
character. An element is referenced by a pair of sub
script expressions, separated by a comma, denoting the
row and column of the desired element (see IISubscripted
Variables ll

, above):

>100 A(1,1)=1, A(1,2)=2
>110 A(1,3)='THREE', A(2.7)=5
>115 IF A(1,1»A(1.2) THEN 150
>120 PRINT A(1,A(2,7)-A(1,2))

String Matrixes. t A string matrix is a two-dimensional
array containing text string data elements. The name of
a string matrix consists of an alphabetic character followed
by a dollar sign. An element is referenced by a pair of
subscript expressions, separated by a comma, denoting the
row and column of the desired element. The subscript pair
may be followed by a substring expression specifying the
beginningand length of the desired substring (see "Character
String Manipulation", below):

>100 DIM A$(2,2)
>110 A$(1,1)='ZEITGEIST'
>120 A$(1,2)=A$(1.1:3,6)
>130 A$(2.1:1,2)=A$(1,2:3)

In the above example, A$(l, 2) is assigned the string ITGEIS
and A$(2, 1) is assigned GE. Note that all string arrays
must be dimensioned via a DIM statement.

CHARACTER STRING MANIPULATION

In Batch/BTM BASIC .. strings are I irnited to alphanumeric
constants up to six characters long cmd to text strings in
PRINT statements. C P-V BASIC permits strings up to 132 char
acters long and provides capabi lity for

1. Referencing string variables.

2. Using string expressions.

3. Assigning a charocter string variable.

4. Assigning length or numeric value of a string variable
to a simple or subscripted variable.

5. Converting a numeric value to :;tring format.

6. Concatenating strings.

7. Comparing strings.

8. Using strings in input/output stCitements.

9. Generating alphcmumeric constonts from strings for file
identification.

10. Establ ish ing maximum string I ength and storage require
ments (see "SET" in Chapter 4).

REFERENCING STRING VARIABLES

Strings are identified by a letter and dollar sign followed
by () further identification of the type of string specified:
string scalar, string array, string array element, or sub
string. Examples of each of these are given at the end of
this discussion. Strings may also be combined in expressions
for the purpose of string concatenation.

String scalars have the form

t
letter$ or $Ietter

A string scalar may no't appear in a dimension statement.
To ClVO i d confl i ct, the same letter mClY not be used for both
a string scalar and a stTing array or numeric array.

t Allowed for compatibility with AOO BASIC.

String array elements are subscripted variables. They have
the form

letter$ (expr[,exprJ)

where the optional expression denotes a matrix element. A
string with only one expression is a vector element.

String arrays may be explicitly dimensioned. The form for
dimensioning a string array is

DIM letter$ (dim[,dimxJ)

Substrings are marked by a colon preceding an expression.

letterS (:expr l[,expr 2J)

where

expr indicates the position of the first character
of the substring.

expr 2 indicates the length of the substring in num-
ber of characters. If expression 2 is omitted, the
substring includes all characters from the indexed
character to the end.

If a string is an element of a vector or a matrix, then the
form of the substr i ng is

letter$ (expr l[,expr 2J : rexpr 31[,expr 4J)

where

expr 1 and expr 2
element.

are the indexes of a string array

expr 3 is the index, or string position, or the first
character of the substring.

expr 4 is the length, or number of characters in
the substring. Again, if expression 4 is omitted
the string consists of all characters from the in
dexed character to the end of the string.

String examples are

p$

H$(1)

B$(2,3)

A$ (: 4)

A$(:4,1)

String scalar.

String vector element.

Stri ng matr i x element.

Substring consists of all characters from
the fourth to the last character of A$.

Substr i ng cons i sts of fourth chara cter
of A$.

B$ (2 ,3 : 5 ,2) Substring consists of the fifth and
sixth characters of string matrix ele
ment B$(2,3).

Other Elements of a BASIC Program 21

STRING EXPRESSIONS

String expressions may be used in C P-V BASIC as arguments
for string functions; PUT, PRINT, and PRINTUSING state
ments; string concatenations; string comparisons; and as fi Ie
identifiers in OPEN and CHAIN statements. They must be
explicitly stated in the PUT, PRINT, and PRINTUSING
statements, but may be in either implicit or explicit format
ina II other cases.

The impl icit string expression (strexp) has the form

{

string }
tstring
var'
ST R (expr Grstr i ng]) t {string } J + tstring

~~~'(expr [,rstring]) ... 

where var' is a variable containing an alphanumeric constant. 

Implicit string expressions are always to the right of the 
relation operator in string assignment statements and 
comparisons. 

Expl icit string expressions (xstrexp) are required to avoid 
ambiguity on whether or not string processing is called for. 
The form of this expression is 

{ 
$(strexp) } 
string + strexp 

where the dollar sign resolves the ambiguity that arises if 
the first character is a letter character (as in STR or in a 
variable). An impl icit expression may be used only in a 
statement where the syntax is unambiguous in indicating 
str i ng processi ng. 

Examples: 

LET Z$ B(2,3) + A$(:5) 

PRINT $(B(2,3) + A$(:5» 

PRINT B(2,3) + A$(:5) 

PRINT "ABC" + A$ 

implicit string 
expression 

explicit string 
express ion 

ILLEGAL! 
ambiguous 
syntax 

ILLEGAL 

ASSIGNING CHARACTER STRINGS TO STRING VARIABLES 

Simple variables provide storage for just one doubleword; 
therefore, a simple variable is limited to representing an 
alphanumeric constant (maximum of six characters). 

In CP-V BASIC, character strings more than six characters 
long must be assigned to string variables (letter$). Strings 
up to six characters are considered alphanumeric constants 
and may be assigned to simple or subscripted variables. 

22 Other Elements of a BASIC Program 

STRING LENGTH AND VALUE ASSIGNMENTS 

For these assignments,CP-VBASIC provides two intrinsic 
functions: LEN (for length) and VAL (for value). LEN 
and VAL may only be used in assignment statements. The 
assignments are made to simple or subscripted (not string) 
variables and have the form 

Dine] LET var[,var] ... -c:sfunct(strexp) 

where sfunct is LEN or VAL. Both assignments can be made 
in one statement, separated by a comma as in the example 

>25 Kl=LEN(W$(2,3», K2=VAL(W$(2,3» 

in which the length of the matrix string element WS(2, 3) is 
assigned to the simple variable K 1, and its numerical value 
to K2. The arguments for both functions must be string ex
pressions. If the character string specified for VAL does 
not represent a correctly formatted decimal constant, an 
error message is generated and execution terminates. 

CONVERSION TO A STRING 

The output conversion routine automati call y converts an ex
pression to string format, but in manipulating text it may be 
desirable to have the same conversion performed internally, 
for example to store an evaluated expression in a fi Ie or 
embedded as a substring within a text string. The string
conversion routine is available in CP-V BASIC for this pur
pose. It has the form 

[I ineJ LET string -= STR (expr[,rstring]) 

where STR is the string-conversion function. 

The replaceable-string (rstring) argument is optionally used 
to indicate the image of the desired format. If the rstring 
option is not used, format is that for print output conversion. 

Li ke the output conversion, string-conversion is governed 
by the setting of the precision flag. The string wi II have a 
leading blank if it is nonnegative, but wi /I not contain 
trailing blanks. The minimum length for string is two bytes; 
maximum length is 22 bytes for long precision and 12 bytes 
for short precision. 

Examples of STR (conversion-to-string) statements are 

>10 A$=STR(3 0 5,#o#) 
>20 H$(1:9)=STR(SQR(X» 
>30 LET W$(2,3)=STR(Al+Bl*COS(X» 

STRING ASSIGNMENT AND CONCATENA nON 

Another string, an alphanumeric constant, a string converted 
expression (see above), or a concatenation of any or all of 
these may be assigned to a string. The form of the string
assignment and concatenation statement is 

[I ineJ [LET]strin = {strexp } [+ {strexp }J ... 
g xstrexp xstrexp 



where strexp is an imp/i cit string expression and xstrexp an 
expHcit string expression (see "Strin~1 Expressions ", above). 

Examples: 

>100 DIM A$(2) 
>110 A$(l)='ONE'. A$(2)='TWO' 
>120 B$=A$(l)+' AND '+A$(2) 
>130 B$=B$+'"I 

The left string is given a value and a length consistent with 
the items to the right of the equals si gn. If the right con
tains only one term, the statement pe'rforms string assign
men't. If the right side contains two <Dr more terms, con
catena'tion occurs in the order given. If the maximum 
string length is exceeded, the string is truncated. 

If assignment is to a substring whose current length is less 
than n-l, where n is the first character of the target sub
string, then the gap to character n-l is filled with blanks. 
If target-substring length is specified and the number of 
characters transferred is less than this specified length, then 
the gap from the last character transferred to the specified 
length is also filled with blanks. Chclracters in excess of 
spec i fj ed I ength are not transferred. 

STRIN G C OMPARISOI"-J 

Strings are compared for identity or "magnitude II in IF ••• 
THEN or GOTO statements. The form of the statement is 

[I ineJ IF string oper {strexp } {THIEN } line 
xstrexp GOTO 

where oper is a condition operator (strexp and xstrexp were 
explained under "Strin!:l Expressions "). Examples are 

>10 IF W$(:l)='lW' GOTO 99 
>20 IF W$<>STR(Xl*Yl+3) THEN 40 
>30 IF R$>STR(O) GOTO 85 
>40 IF A$<"DOG"+B$(1:9) THEN 120 

Strings are compared from left to right as character pairs. 
In comparing characters, the EBCDIC collating sequence is 
followed (see Appendix H). A blank is the lowest charac
ter, followed by nonalphanumeric churacters. Alphabetic 
lette:rs are next, in the order ABC ••• YZ. Digits are the 
highest elements in the collating sequence. If one string is 
short'er than another, the shorter string is "extended II with 
blanks for comparison. Note that a string may be com
pared to an aconst: 

IF A$=Z THEN :LOO 

The string comparison c:apabi I ity of C P-V BASIC makes it 
possible to sort BCD files alphabetically: 

~~o IVPU~=~ & 2nDFIL~ :1, 140 
>11,) ,'{=() F-, OP/,'fj 'FILj~' TO :l,Il'!PU']'i/J:'DIlTF' 
>11'1 FiPU'.T' :1"C:t. \*Il:7I'1'IALI~FJ'F'Y(l)'/'() 1 
>1 ;:>:l I!/ ,,--) U 'j' : 1. ; i: 1"'7 Y (1 ) , A ~~ ,? ;~ 

>1 2 ::i U' A~; ::>1 G ~' ,Ir: N 1 3 0 f., (70 TO 1 2 0 

>1 ~n ;: 1 , A. S F, ;: 1 ; K E.Y (1 ) - 1 ,:J :~ 
:;.1 J:, ii' = 1 f, G (! 'P 0 1 2 0 
>1/). 0 T F };' = 1 'I' ;-, L' iii 11 0 
> 

The example shown above reads a file named FILE and 
sorts the records into ascending alphabetic order. Note that 
this program would have to be modified considerably to sort 
large files quickly, and will not workunlessall recordshave 
keys that are consecutive integers (see "Keyed and Sequential 
Access ", below). 

STRING INPUT/OUTPUT 

Explicit string expressions and text strings may be used in 
input/output statements in the form used for expressions and 
alphanumeric constants in Batch/BTM BASIC, subject to 
the general rules governing strings. That is, a run-time 
error results if a text stTing (more than six characters) is 
provided as input to a nonstring variable; or nonstring in
put (neither a text string nor an alphanumeric constant) is 
provided to a string. The statements used are IN PUT, 
PUT, READ, GET, DATA, PRINT, MAT PUT, MAT GET, 
MAT READ, PRINTUSING, and MAT INPUT. 

Examples: 

>140 MAT GET :3, A$(2,3), B$ 
>500 DATA 'ONCE UPON', "A TIME" 
>885 PUT V$, W$(l), X$(l,A)+'?' 
>910 READ H$(l), H$(2), H$(3) 
>700 GET :3;K,W$(Al,A2), X$ 
>750 PRINT $("IT'S "+STR(A)+B$) 
>760 PRINT USING 100, H$(l), C$ 
>800 PRINT :4,A$(l,l),A$(l,2) 
>400 MAT PUT A$, B$, C$ 
>410 MAT GET A$(2,3), V$ 
>420 MAT READ F$(4), G$ 
>430 MAT INPUT W$, X$ 
>440 MAT GET A$, B 
>445 PRINT :l,B$(2,3:4,5);At2 

Line 440 requires that the data file have the correct number 
of string array elements to fill A$, immediately followed by 
numeric data to fill numeric array B. 

The examples above show cases of string input/output only. 
The forms are similar to those described earlier for nonstring 
input/output. In CP-V BASIC, statements may mix (with 
appropriate caution) string and nonstring items in the same 
statement, as shown in Appendix A. 

STRING INPUT MODE CONTROL 

Normall y, when a string is reached in the I ist for an IN PUT 
statement, the next data field in the record is accessed. 
Blanks and commas are treated as field separators unless 
they occur within quoted fields. An al ternate form is pro
vided in which an entire input line, or record, is treated 
as a single field. 

The form for switching string INPUT mode is 

[lineJINPUT={$ } 
any other character 

INPUT = $ switches to full record input mode. Each input 
referenced to a string accesses a full record and treats it 
as a single string (as though it were enclosed in quotes). 
If a record has been partially input (for numeric assign
ment) and a reference to a string follows, the remainder. 
of the record is treated as a single field. 

Other Elements of a BASIC Program 23 



INPUT -c X (any character but S) switches back to normal 
input mode, which is the default. 

String input mode is changed only by these explicit state
ments and remains as set through successive operations 
within BASIC unti I expl icitly reset. 

Strings including characters whose EBCDIC value is less 
than 64 (blank) can be input, but trai I ing characters of 64 
or less are ignored and a null (EBCDIC zero) is interpreted 
as an end-of-string. Caution is advised in using control 
characters (see Appendix H) in input strings. 

GENERATION OF ACONSTS FROM STRINGS 

A string or string expression may be assigned to a simple or 
subscripted variable, but only six characters will be trans
ferred and the rest truncated. If the stri ng conta i ns fewer 
than six characters, trai ling nulls are generated to satisfy 
the aconst format. 

Examples: 

>A1=P$ 
>A2=B$(:4) 
>A3=$('NO. '+C$(A4)) 

This provides an indirect means to assign strings as external 
names or file identifiers by first assigning strings to simple 
variables. 

STRING EXPRESSIONS AS FILE IDENTIFIERS 

In CP-V BASIC, string expressions may be used to designate 
the name, password, and account for file identification in 
OPEN and CHAIN statements. The string expressions must 
not result in text strings exceeding 11 characters for name 
or 8 characters for account and password. 

Examples: 

>120 OPEN 'FILE'+A$(:I,l) TO :l,INPUT 
>340 CHAIN B$(N): 'ABC'; 'SECRET' 

In line 120 above, if A$ = 112345671 and I = 3 then 1 FILE3 1 

is opened. 

USER-DEFINED FUNCTIONS 

DEF If the programmer wants to make use of a function 
that is not included in the set of BASIC intrinsic functions, 
or if he intends to make repeated use of an involved ex
pression, he may define the function in a DEF statement 

24 Other Elements of a BASIC Program 

and make reference to it according to a name he designates. 
The form of the D EF statement is 

line DEF FN letter(simple variable[,sirnple ~ 

Lvariable] ... ) :cc expression 

where 

letter provides a unique name for the function. 

simple variable is a dummy argument appearing in 
parentheses to the left of the equals sign. These 
only serve to identify which of the simple vari
ables in the expression to the right of the equal 
sign are arguments. There must be at least one 
such argument, although it is not necessary that 
any or all of the arguments appear in the expres
sion. Each time the function is evaluated, current 
argument values will be substituted for these terms 
in the expression. There is no comma following 
the final simple variable in the list. 

The following examples illustrate typical DEF formats: 

>65 DEF FNA(X)=X+B*X 
>100 DEF FNB(X)=X*SIN(FNA(X+C)) 
>120 DEF FNX(XO,X1,X2)=XO*X1*X2/K 
>550 X=FNX(1,2 0 3)+FNB(Y+3.14) 

Line 550 is an example of how the functions defined in lines 
100 and 120 might be used later in the program. The var i -
able X to the left of the equals sign is a different entity from 
the dummy variables X in the DEF statements. 

DEF statements may appear anywhere in the BASIC program, 
including those cases in which the function is referenced 
prior to its definition. 

BASIC checks DEF statements for identical simple variables 
in the I ist of dummy arguments, undefined functions, multi
defined functions, and consistency between the number of 
arguments suppl ied by the programmer when the function is 
called (referred to) and the number of arguments in the 
DEF statement. However, it is the responsibility of the 
programmer to avoid circular definitions in and among the 
DEF statements. Improper uses of DEF are shown below. 

Case 1. Circular definition within statement: 

>1200 DEF FNA(X)=X+FNA(X) 

Case 2. Circular definition among statements: 

>1400 DEF FNA(X)=X+FNB(X) 
>1450 DEF FNB(X)=X*FNC(X) 
>1500 DEF FNC(X)=FNA(X)/X 



REREADING DA"f A 

RESTORE The RESTORE statemenj" alters the normal 
sequence of DATA statement accession. DATA statements 
are normally accessed as the preceding DATA statement is 
exhausted. For example, of the following set of DATA 
statements, 

>100 DATA 1,2,3,4 
>110 DATA 5,6,7,8 
>120 DATA 9,10,11,12 

statement 110 will be accessed only ofter data value 4 in 
statement 100 has been assigned to a variable, and state
ment 120 will be accessed after dato value 8 in the 
preceding statement is assigned. RESTORE allows the 
programmer to alter this sequence by directing the com
puter (via a I ine number) to a specified DATA statement 
from which data accession will proceed in the normal 
manner. 

The RESTORE statement is frequently used for accessing 
data that will be used several times in the program, and 
el iminates the need for writing dupl kate DATA statements 
when the same data is to be accessed more than once. The 
form of the RESTORE s"tatement is 

[I ineJ RESTORE [line] 

where the second "line" must be the line number of a valid 
DATA statement in the program. Some sample RESTORE 
statements are given below. 

>740 RESTORE 125 
>900 RESTORE 

If the I ine number is omitted in the RESTORE statement (as 
in Ii ne 900 above), the computer wi" return to the first 
DATA statement in the program. 

BRANCHING TO A SUBROUTINE 

GOSUB and RETURN The GOSUB and RETURN state-
ments provide subroutine capability in BASIC. A subroutine 
is a section of the main program that completes a specific 
task. GOSU B, in the main body of the program, directs 
the computer (via a line number) to the first statement of 
the subroutine. After the subroutine has been executed, 
RETURN directs the computer to the statement following 
GOSUB, where the main program continues. The form of 
GOSUB and RETURN are 

[I ine] 

[I i ne] 

GOSUB 

RETURN 

line 

where RETURN is the last executed statement of the 
subroutine. 

Some sample GOSUB and RETUR N statements are shown 
below. 

>10 GOSUB 500 

>525 RETURN 

The RETURN statement does not contain the I ine number of 
the statement following GOSUB. BASIC remembers its 
place in the program. 

An attempt to execute a RETURN statement before a 
GOSUB statement is executed causes output of an appro
priate error message. Execution of too many GOSUBs 
before a RETURN also causes an error message to be printed. 
The program may execute up to 20 GOSUB statements before 
a RETURN is needed. 

CHARACTER CONVERSION 

CHANGE The CHANGE command (CP-Vonly) can be 
used to convert string characters to equivalent EBCDIC 
values and vice versa. To convert a string to EBCDIC, the 
command has the following form: 

line CHANGE TO letter [ . ] {string } 
xstrexp 

Examples: 

>10 CHANGE A$ TO B 
>50 CHANGE $('246'+C$) TO D 

The string characters are converted to EBCDIC values stored 
in the vector specified by the letter. The letter must repre
sent a vector dimensioned by a DIM statement. The current 
dimension of the vector is set to the number of string char
acters converted. 

Assuming that A$ = IA 11 when line 10 above is executed, 
the decimal equivalent of IAI (i.e., 193) is stored in B(1) 
and the equivalent of III (i.e., 241) is stored in B(2). Dec
imal equivalents of all EBCDIC characters are I isted in 
Appendix H. 

To convert a vector to a stri ng, the foil owi ng form is used: 

Dine] CHANGE letter TO string 

The elements of the spec i fi ed vec tor are converted to c har
acters and placed in the specified string or substring. The 
current dimension of the vector is used, If a value has a 
fractional part, it is truncated. 

Example: 

>15 CHANGE X TO Y$ 

Assuming X has the elements 193, 241, 90, and 7, the 
characters IAI, Ill, I!I, and Ibell l will be stored in YS. 

Rereading DATA/Branching to a Subroutine/Character Conversion 25 



FILE MANIPULATION 

Files are made up of records, each of which may contain 
one or more data elements. A file may be organized as a 
consecutive sequence of records or as a set of records ar
ranged according to sort keys. The data in fi les may exist 
in a "print" form (BCD)or in the form used within the com
puter (binary). BASIC allows operations on BCD and binary 
files with sequential or keyed access. Files are also used 
to store and fetch BASIC programs. The BASIC statements 
OPEN, CLOSE, GET, PUT, ENDFILE, and special forms of 
PRIN T and IN PUT provide fi Ie manipulating capabi lity. 

FILE NOMENCLATURE 

Fi les may have names of up to 11 characters. In BTM/BPM 
BASIC only two forms are allowed. Names may be enclosed 
in quotes (single or double) or may be aconsts (limited to 
six characters) stored in simple variables. In CP-V BASIC 
a name may also be any string expression (see Chapter 5) 
of up to 11 characters. It is advisable to restrict the charac
ters to letters and digits if the files are to be accessed by 
processors other than BASIC. 

The name may be optionally followed by a password of up 
to eight characters and/or an account identifier of up to 
eight characters. An account should not be specified for 
output operations, since output will not be permitted on 
other users' accounts. 

The general form for file identification in an OPEN state
ment is 

name [;passwordJ[:accountJ 

Examples: 

"DATAFILE" 
A1;'SECRET' :'12345678' 

In the second example, the simple variable A 1 must contain 
a name as an aconst. 

Passwords are used for fi Ie security, and the account is used 
to input data created in other users' accounts. A password 
is preceded by a semicolon and an account number is pre
ceded by a colon. If both account and password are speci
fied, the order of their appearance is optional. 

The term 'fileid' will be used for name [;passwordJ[:accountJ 
in describing forms of the OPEN and CHAIN statements. 

I/O STREAM NUMBERS 

Files are "opened" to specified input/output "streams". 
An I/o stream is a means of transferring data between a 
BASIC program and the computer's fi Ie system. In some 
ways an I/o stream is I ike a bank teller's window that may 
be "closed" when not in use and, when "open ", may be 
assigned a specific function such as paying or receiving. 
BTM on-line BASIC currently permits three I/o streams. 

26 File Manipulation 

BPM (Batch) and CP-V BASIC permit four streams. Only 
one file can be opened on a given stream number at one 
time, but the same stream number may be used to open 
another file later, closing the currently open file. The 
stream number is specified in the OPEN statement and may 
be any expression which evaluates to a legitimate stream 
number. Fractional values are truncated to integers, and 
expressions which do not result in integer values 1 to 4 
should generally be avoided. 

KEYED AND SEOUENTIAL ACCESS 

BASIC allows file access in either sequential or keyed form. 
All files created by BASIC are actually keyed but they may 
be sequentially written and read without expl icit references 
to keys. Sequential fi les created without keys may be read 
sequentially. 

A "key" is a means of selecting a specific record in a file. 
A II records in BAS IC fi I es are arranged in ascend i ng order 
according to the numeric value of the record keys. If a 
file is created without explicit keys, the first record writ
ten is given a key of 1, the second record will have a key 
of 2, and so on. A key is not part of the contents of a 
record but is used to identify the record, in much the same 
way that a license plate identifies an automobile. 

The keys used in BASIC are numbers in the range 0.001 to 
9999.999. Sequential files are created with keys 1.000, 
2.000, ... (these keys are compatible with the keys, or 
"sequence numbers ", used in the Xerox Edit processor). 

The key value for a given I/O operation can be set by ex
plicit reference to the key, using any arithmetic expression. 
The value is multiplied by 1000, rounded to an integer, 
and the result used as a three-byte binary key. If a subse
quent operation on the same file does not reference an ex
plicit key, the key value is incremented by one for each 
record accessed. 

If an output statement wi th an exp I i cit key creates more 
than one record, the subsequent records have keys incre
mented by one per record. If an input statement with an 
explicit key requires more than one record of data, records 
are read sequentia II y starti ng at the record wi th the refer
enced key. 

The user can determine the largest key value in any filevia 
a few BASIC statements. For example, suppose the user 
wants to extend a fi I e named FILE 1 and wants to know the 
last key value of the file before doing so. He can use the 
following sequence of statements to do this: 

>OPEH 'FILE1' TO :1,INPUT 
>INPUT :1;9999,A 

>;KEY(l) 
It 

>CLOSE :1 
> 

KEY NOT FOUND 



The example indicates that a 4 is the largest key value in 
the fi Ie named FILEl (see the third-from-Iast line). To find 
the largestkeyvalue in any other file, simplysubstitutethe 
appropriate fi Ie name in the first I ine of the above example. 

UNKEYIED I/O IN THE UPDATE MODE 

When a fi Ie is opened in the updalfe mode (see "Binary File 
Update II and "BCD File Update" below) a BASIC program 
may input data from the fi Ie or may replace existing data 
records wi th new information. The most straightforward 
way of updating an old record is to specify the key of the 
record, in a PRINT or PUT statement (PRINT for BCD files 
and PUT for binary files). It is po:;sible to update records 
without specifying a key, however file positioning is not 
separately maintained for input and output operations. For 
example, if a PUT is followed by a GET and no key is 
specified in the GET statement, anlY data left over from a 
previous GET is input first (i. e., residual data from the 
I ast record read). Then the record accessed is the next one, 
in ascending key sequence, after the last record PUT. An 
unkeyed PUT fol lowing a GET replaces the last record 
accessed. 

An unkeyed PRIN T following an INPUT replaces the last 
record accessed. An unkeyed INPUT following a PRINT 
accesses the next rHcord after exhausting all data in a 
previously INPUT record. 

In general, it is adviisable to specify keys in all UPDATE 
operations. 

OPEN The OPEN statement performs the following fj Ie 
management functions: 

1. Designates that "the named fi Ie is to be opened for BCD 
or binary input, output, or update. 

2. Assigns the file Iro an I/O streclm number. 

3. If a fi Ie is to be opened for output (PUT or PRINT is 
specified) and an old file of the same name exists, 
the old fi Ie is deleted when thH new fi Ie is opened. 
If a fi Ie is to be opened for input and the same fi Ie is 
currently open for output, the file is closed for output 
before being opened for input. Re-opening a fi Ie for 
input repositions the file to the first record. A file 
may be open for input on more than one I/o stream at 
the same time. 

4. Indicates whether an existing fi Ie may be written over 
if a fi I e of the same name is to be open for output. 

5. Positions the opened file at its starting point. (A file 
opened for output is initialized as an empty file.) 

6. Declares a fi Ie as a TFILE if thE~ OPEN statement so 
indicates. TFILES are released at the end of a terminal 
session or, in batch operations, at the end of the JOB. 
The TFILE directive is ignored if the fi Ie has a 
password. 

BINARY IN PUT 

The OPEN statement for binary input has the form 

[I ine]OPEN fi I eid[,] TO :stream, G ET[[,J TFILE] 

Example: 

>120 OPEN 'DATA' TO :3, GET 

This opens the file on I/o stream 3 and does not declare 
the fi Ie temporary. 

DEFAULT FORM FOR BINARY IN PUT 

An abbreviated form may be used for binary input. 

[line]OPEN fileid[,JI[any characters) 

This is equivalent to 

[I ine]OPEN fileid TO : 1, GET 

BCD INPUT 

The OPEN statement for BCD input has the form 

[lineloPEN fileidL]TO :stream, INPUT[L] TFILEJ 

Example: 

>1 2 SOP;' iJ 'I l' ' rry (1 : 1. 11'/]' U ~ ~ 

This opens the file named IT to I/O stream 1 for BCD input. 

BINARY OUTPUT 

The OPEN statement for binary output has the form 

[line]OPEN fileid[,] TO :stream, PUT ,{g~ER}[[JTFIL~ 

Example: 

>130 OPEN 'OUTF' TO :A(I),PUT,OVER,TFILE 

If A (I) = 4, this opens "OUTF" to stream 4 for binary output 
(PUT). OVER indicates that an old fi Ie named OUTF is to 
be written over if present. TFILE indicates this is a tempo
rary file, to be released at end of job. 

DEFAUL T FORM FOR BINARY OUTPUT 

An abbreviated form may be used for binary output. 

[line]OPEN fileid['] 0 (any characters] 

This is equivalent to 

[line]OPEN fileid TO :2,PUT,OVER,TFILE 

File Manipulation 27 



BCD OUTPUT 

The OPEN statement for BCD output has the form 

[I inelOPEN fileidLlTO :sl'eam, PRINTLl (~~E0:=J 
c::::: [LlTFILE] -----

Example: 

>140 OPEN 'BCDOUTFILE' TO :4, PRINT ON 

The 'ON' directive means if an old file exists with name 
BCDOUTFILE, it is not to be overwritten. 

BINARY FILE UPDATE 

To update a binary file, use the form 

[line]OPEN fileid[,]TO :stream, GET[,]UPDATE~ 

L_ [[, JTFILE] 

This opens an existing binary fi Ie in the update mode, 
allowing input (GET) and output (PUT) on the file. 

Example: 

This opens file BIN to I/o stream 2 for input or output. 

BCD FILE UPDATE 

To update a BCD file, use the form 

[line]OPEN fileid[']TO :stream, INPUT[,]UPDATE~ 

L~[[,]TFILE] 
This opens an existing BCD fi Ie in the update mode, allow
ing input (INPUT) and output (PRINT) on the file. 

Example: 

This opens file SESAME to I/O stream 3 for input or output. 

ENDFI LE The ENDFILE statement allows the user to 
branch to a designated I ine number in his program when an 
out-of-data condition occurs or a specified keyisnotfound. 
The form of the ENDFILE statement is 

[I ineJE ND FILE :stream,{E
I
" b } 
Ine num er 

The "stream" may be any expression. If the expression 
eva luates to a legitimate stream number, endfi Ie control 
will be applied to any GET or INPUT via that stream. 

28 File Manipulation 

If the expression evaluates to zero, endfile control applies 
for READ and for IN PUT from the card reader in the off
line (batch) mode. However, I/O stream zero can be 
specified to provide endfile branching when an end-of-file 
(i.e., an F) is INPUT from the user terminal. 

The "stream" expression is followed by a "line number" 
(not an expression) or the letter "E". E indicates reset to 
normal error exit. A "line number" indicates the location 
(in the user's program) to transfer to on the out-of-data 
condition. 

Example: 

>100 OPEN "FILE" TO :1, INPUT 
>110 ENDFILE :1, 150 
>120 INPUT :1, A$ 
>130 PRINT A$ 
>140 GOTO 120 
>150 CLOSE :1 

Note that modification and recompilation of a program that 
has been interrupted by use of the BREAK key wi II reset 
endfile control to an error exit. To restore endfile control 
after a program interruption, type the desired ENDFILE 
statement (or statements) as a direct statement just before 
resuming program execution unless the desired EN DFILE state
ment will be re-executed within the program. 

CLOSE The CLOSE statement closes the file on the in-
dicated I/o stream. 

[line]CLOSE :stream 

This closes the open file, if any, on the indicated stream 
number. 

Example 

>200 CLOSE :N 

If N = 3, stream 3 is closed. 

The following forms may also be used. 

[I ine]CLOSE I[any characters](equival ent to CLOSE: 1) 

[I ine]CLOSE O[any charactersJ(equivalent to CLOSE :2) 

Files may also be implicitly closed by an OPEN statement 
and are closed on leaving BASIC. Files may be left open 
through execution of several programs. 

GET The GET statement retrieves binary data from files 
created by PUT statements. Data is assigned to specified 
variables as it is received from the file via the indicated 
I/o stream. Access may be sequential or keyed. GET has 
the form 

[I ine] G ET[:stream[;key],] variabl e['variableJ. " " 

A defau I t form can be used 

GET variable ••• 

This is equivalent to 

GET :1, variable ••• 



The variables may be simple or subscripted. There is no 
comma following the final variable in the list. As in READ 
and INPUT, the varIable list may include either of the 
special entities * or **. The single asterisk causes an error 
exit if the current record has not been exhausted of data. 
The double asterisk causes any unused data in the current 
record to be di scarded. 

Attempts to GET on an I/o stream which is not open for 
binary input or to use an illegal I/O stream number will 
terminate the run with an appropriCite error message. 

The specification of a nonexistent key or an attempt to 
read beyond end-of-,fi Ie gives an OUT OF DATA error 
exit and message. This exit may be mod ified by the user 
via ENDFILE (see above). 

A GET statement may require reading more than one record 
to satisfy the variable list. If the GET statement has the 
key value n, the records read are olccessed sequentially 
storting with n. 

If a keyed GET is followed by a nonkeyed GET, records 
are accessed sequentially starting with the keyed record. 

Example: 

>100 OPEN "PUTFILE" TO :3, GET 
>110 ENDFILE :3, 150 
>120 GET :3. A1, B4, C7 
>130 PRINT A1*(B4-C7) 
>140 GOTO 120 
>150 CLOSE :: 3 

The form of the PUT stotement is 

[lin~]PUT[:strearn[;keyJ,J fexpr }[fexpr }n ... - aconst aconst U 
This statement writes data into a file in internal (binary) 
format. The expression following the colon indicates the 
I/o stream (thus, because of an OPEN statement, the 
fi Ie to be written on). The optional expression preceded 
by a semicolon designates the key. If a key is designated, 
the fi rst items wri tten wi II be to a record wi th that key 
value. A PUT statement may genenJte more thon one rec
ord. If so, and if the statement contains the explicit 
key n, the records generated wi II hJve keys of value n, 
n + 1, • .. 

A defaul t form can be used 

[J ineJ PUT{expr -} [{expr }] .•. 
aconst. aconst 

This is equivalent to 

[I ine] PUT :2,{ex
p

r t} [,{expr tl']··· 
acons acons 

The data values to be entered into the file may take the 
form of an expression or an alphanumeric constant. There 

is no comma following the final expression or aconst in the 
list. Some sample PUT statements are shown below. 

>880 PUT "ERICEL",55,72 
>881 PUT :1,TIM(X),DAY(X),YER(X) 
>882 PUT FNH(A1)+P*Q 

The FNH in statement 882 is an example of a user-defined 
function. These are explained under "User-Defined Func
tions", earlier in this chapter. 

PUT statements can be used to write on files opened for PUT 
or opened for GET, UPDATE. In the case of updates, rec
ords can be inserted or replaced using the key option. In 
newly created fi les, the key option can also be used to write 
records in a nonsequential order and to replace previously 
wri Hen records by repeati ng a PUT wi th the same key. 

The form of PUT and GET records is described in Appendix E. 
These records generally include 14 data values, but short 
records may be created by use of keyed PUT statements or 
as the I ast record wri Hen before c I os i ng the fi I e or us i ng 
the flushing technique (see "I/O Flushing II below), 

Example of keyed PUT statement: 

>300 PUT :4;121,A,B,C,D,E,F,~ 

C -
-G,H,K,J,K,L,M,N,O,P 

This statement wi II cause BASIC to write a record via I/o 
stream number 4 with the key 121 and the values contained 
in the simple variables A to N. The values in 0 and P wi /I 
be the first two values written on record 122. If the next 
PUT statement does not include a key, writing wi II continue 
on record 122. (This example was chosen to indicate the 
caution that should be used in mixing keyed and non keyed 
output statements. ) 

If a PUT statement does not fi II the current output record, 
that record is not normally output until it is later filled, a 
keyed PUT is executed, or a CLOSE is executed. Short 
records may be forced out by using the special expression 
"** II (see "I/a Flushing ", below). 

A PUT statement may result in an error message if the se
lected I/o stream is not open in the proper mode, an illegal 
stream number is sel ected, or an out-of-range key is 
selected. 

INPUT The action of an INPUT statement for file input 
is analogous to that of a normal IN PUT statement (see 
"INPUT", Chapter 2) except the BCD input is routed from 
an open fi Ie through a specified I/O stream rather than from 
the terminal (on-line) or card reader (off-line). Sequential 
or keyed access is permitted. The form ofa file INPUT 
statement is 

[line] INPUT [:stream[;keyJ J input list 

Example: 

>250 INPUT :3,A(1),A(2),** 

File Manipulation 29 



The "input I ist II is the same as for normal IN PUT statements. 
One line constitutes one record and a single INPUT state
ment may access several records sequentially. If the INPUT 
statement specifies a key, reading starts at the beginning 
of the keyed record. 

Attempts to input a specific keyed record that does not 
exist, -(if no ENDIFLE is in effect) or to use an I/O stream 
not open for BCD input or an illegal I/O stream will result 
in an error exit and message. 

An attempt to IN PUT beyond the end-of-fj Ie gives an OUT 
OF DATA error exit. This exit may be modified by the 
user by means of an ENDFILE statement (see above). 

BASIC will read records consisting of one or more blanks, 
and in the keyed mode it will read keyed null records. 

PRINT The action of the PRIN T statement for fi I e out-
put is analogous to that of a normal PRINT statement (see 
"PRINT", Chapter 2) except the BCD output is routed 
to an open fi Ie via a specified I/o stream. Sequential or 
keyed output is permitted. The form of the file PRINT 
statement is 

. {PRINT} [lIne] ; [:stream[;key],] print list 

Notice that a semicolon may be substituted for the word 
PRINT. The first expression in the PRINT statement is the 
optional I/o "stream" number. The optional second ex
pression is the "key" value. The "print list" allows any 
arguments acceptable in a normal PRINT statement. 

A record is generated for each line of print (governed by 
WIDTH, see Chapter 4), thus one statement may generate 
more than one record. If the print I ist ends with punctua
tion, a partial record is formed. The record is output if a 
full I ine is formed, a PRINT on the same stream ends with
out punctuation, or any PRINT is executed on a different 
I/o stream (or to the terminal). In general, it is bad prac
tice to end a file PRINT statement with punctuation (comma 
or semicolon) or a TAB(O). 

If a PRINT statement generates more than one record, the 
key is incremented by 1 for each record. This should be 
particularly noted if files are generated with later updates 
in mind or when in the update mode. If it is likely that 
multirecord PRINT statements wi II be used, the fi Ie should 
be created as a keyed file with key increments large enough 
to allow insertions and replacements without inadvertent 
overwri tes. 

Examples: 

>400 PRINT :4;I,1,2,3,4,5,6,7,8 
>410 PRINT :4;I+1,9,10,11,12 

30 File Manipulation 

Statement 400 generates two records with keys 1 and 1+1. 
Then statement 410 generates a new record with key 1+ 1. 

If the file is created with a key interval of 10 records, it 
might be generated or updated as follows. 

>400 PRINT :4;10*I,1,2,3,4,5,6,7,8 
>410 PRINT :4;10*(I+1),9,10,11,12 

In this case, statement 400 generates records with keys lor 
and 101+ 1. Statement 410 generates a record wi th key 101+ 10. 

PRINTUSING The action of the PRINTUSING statement 
for file output is analogous to that of a normal PRINTUSING 
statement (see "PRINTUSING and :(Image)", Chapter 2) 
except the BCD output is routed to an open file via a speci
fied I/O stream. Sequential or keyed output is permitted. 
The form of the file PRINTUSING statement is 

[ . ]{PRINT} line; [:stream[;key],JUSING line~ 

COr {express~on}J ... L text stn ng 

Notice that a semicolon may be substituted for the word 
PRINT. 

Examples: 

>100 PRINT :l;K, USING 200, X, Y4 
>110 ;:2,USING 250,"Z=",Z 

I/O RESIDUE 

In executing GET, INPUT, or READ statements the current 
record mayor may not be exhausted of data, depending on 
the amount of data contained in that record. Normally, 
any residual data remaining in a record is retained for use 
by a subsequent GET, INPUT, or READ. The use of a sing Ie 
asterisk in a GET, INPUT, or READ causes BASIC to take 
an error exit if residue occurs. A double asterisk causes 
any residue to be discarded. 

In the example shown in Figure 3 the user loads, I ists, and 
runs a program named LISTFILE. The data used by LISTFILE 
is contained in a fi Ie named FILE, the contents of which 
are displayed in the example through use of the Edit sub
system. See the Xerox Edit (for CP-V)/Reference Manual 
(90 16 33) for an explanation of how Edit is used to create, 
display, and alter files. When executed, the program 
LISTFILE opens FILE to stream 1 and prompts the user to type 
an emp loyee number. It then inputs a header record to B$ 
and inputs t-he first field of each subsequent record to E$(l) 
until it finds one beginning with 76540. The INPUT :1, 
** statement in line 70 causes unwanted residue to be dis
carded. Line 100 inputs the remaining data from the 
selected record. 



!EDIT 
EDIT HERE 
*EDIT FILE 
'kTS 1-4 
'EMPL NO. NAME SOC SEC NO. 
10712 JACK 468-54-234 123GRT 876-0987 
76540 MIKE 654-87-932 123KIU 654-6543 
87654 TED 432-65-876 987PIP 876-6543 
*END 

!BASIC 
>LOAD LISTFILE 
>LIST 10-110 
10 DIM E$(5) 
20 OPEN 'FILE' TO :1, INPUT 
30 INPUT N$ 
40 INPUT :1, B$ 
50 INPUT :1, E$(l) 
60 IF E$(l)=N$ THEN 90 
70 INPUT :1, ** 
80 GOTO 50 
90 ;B$ 
100 INPUT :1,E$(2),E$(3),E$(4),E$(5) 
110 ; E$ ( 1 ) , E$ ( 2) ,E$ ( :3 ) ,8$ ( 4 ) , E$ ( 5 ) 
>RUN 
09:22 
?76540 
EMPL NO. 
76540 

JUN 09 LISTFILEoo. 

NAME 
MIKE 

110 HAL'I' 
> 

SOC SEC NO. 
654-87-932 

ADDRESS 

ADDRESS 
123KIU 

PHONE' 

PHONE 
654-6543 

Figure 3. INPUT Residue Example (CP-V Only) 

I/O FLUSHING 

If (1 PUT statement does not fi II the current output record, 
that record is not normally output unti I it is fi lied by a 
subsequent PUT, a keyed PUT is executed, or a CLOSE is 
executed. 

The wri ti ng of short n~cords can be forced by use of the 
double asterisk (see Figure 8, Appendix E). This capability 
is useful primari Iy in the update mode. 

EX(lmples: 

>320 PUT :4:;N,A(1),A(2),A(3),** 

This ensures that a three-element record with a key value 
of 4 is immediately output. 

>440 PUT :l.**,A,B,C,**,D,E,F,** 

ThIS ensures that two short records are output, with three 
elements each. In this case, if a p(lrtial record was pend
ing prior to executing the statement, it is output first as a 
short record. 

LOWER CASE TEXT 

CP-V BASIC allows the use of lower case characters in text 
strings. This capability is often useful in manipulating BCD 
files that are to be output on a 2741 Selectric typewriter 
terminal or other device capable of printing both upper case 
and lower case letters. A teletypewriter terminal can gen
erate lower case characters for input to the computer by 
use of the 0 ) control code, and can return to upper case 
by use of the @( control code, but prints all alphabetic 
characters as upper case. 

The program shown below wi II read a fi Ie composed of upper 
case text sentences and convert it to lower case except for 
the fi rst I etter of each sentence. It assumes that a II sen
tences end with a period. 

>1:] 0 //~~; = '/1'] C"T).~·'.."I(::·.!} ~/)'. rl/ ·.~i~()J)·:'·JF::""'~n:':·l,r·! ~V:.Y~~ , 
>11 () '-I :': = , -:'1 >cch; f Cj' 1 i ~j: ~ lr-'llO))C!r ,:; t 11 V'i'! 2-: v 7: ' 

>1 70 l-;)l}t.i~"=:: C ··'~.!i~l":J.rrJ.~·' : 1., 25G 
>1?n ; t T:JJ~LJ:t ,-,l//'l-" ~'~!ll (0) [; J/':IJ[.,n r-,~4. 

>1/1:1 ,) TJ,"~' i\; F' ~~ ;/ () : 1, T..'.' PUT ;/ n fI!l ':' >: f, ,n = 1 
>1 5 I') T ,-,' 1" [J i)/ : 'I • I! ::: r, E, = 7 .• ;> {,' (!' r_: ) 

>lrc YO]? I=l ~"O 1, 
>:1 7 (I I 7' '? :.: (: • 1. ) =' r ?! l.'i,',: 240 
>1 n ') IP .:1= I) 'i'.!;';' 1 J Cl r., 2'= (; f, C/7~'C 24:1 

>:? () n I r ,? ": (:.T • 1 ) < > Ii ~', (: ,1 • ~.) ':' .":: f.' 2?~· 

» 1 r;:' <'; (: I • 1 ) = L;: (: ,I , 1) [, r () j" 0 2 l~ 0 
> :2 :2 I) i r::.: ): 'I' ,] F, T i<' P ~'; (: I • 1 ) < >' .' 'J' 1,' I:' ,',' 2 l~ 0 
>2JO P=1 
>? 'I I) ,.T;: T I G ;: 1. , H t; F, GOT () 1~) 0 
>251) rLO,'::7':' : 1 

File Manipulation 31 



RUNNING CONSECUTIVE PROGRAMS 

CHAIN CHAIN directs the computer to acquire and 
run another program of a series of programs without future 
action by the programmer. The format of the CHAIN state
ment is 

[

.password 1 
[line] CHAIN xname ipassword:acct 

:acct 

:acct ipassword 

where name (and, optionally, password and acct) is the 
identity of a program as defined in the discussion of the 
OP EN statement. 

When executed, CHAIN produces the following results: 

1. The current program is discarded, but the values of its 
simple variables are retained. 

2. The named program is obtained, compi led, and exe
cuted if possible. 

3. Output buffers are flushed. 

Note that only the simple variables computed by the pro
gram are retained when CHAIN is executedi all array values 
and dimension information are lost. A sample CHAIN 
statement is shown below. 

>950 CHAIN "PART2" :A;P 

In BTM BASIC if 'A' chains to 'B', after RUN is issued and 
execution is complete, the repeat of the run starts with 'A'. 
In CP-V BASIC the second run executes 'B'. 

CHAIN LINK The CHAIN LINK statement (CP-V only) 
differs from the CHAIN statement in that it preserves array 
and string values. The CHAIN statement retains only the 
simple variables and discards the rest of the program. 

The form of the statement is 

[

iPaSSWord 1 
ipassword :acct 

[line] CHAIN LINK xname :acct 

:acct ipassword 

32 Running Consecutive Programs/Matrix Operations 

An example is 

>950 CHAIN LINK "PART3" :A;P 

where 

"PART3" is the name of the chained program. 

:A is account A. 

i P is the password. 

A and P contain alphanumeric constants. 

Although CHAIN LINK preserves array context, array 
dimensioning is not preserved. Therefore any array used in 
a program that is chained to must be redimensioned in that 
program, via a DIM statement, if explicitly dimensioned 
in the first program. 

When CHAIN LIN K is used and a program is called from 
the files, CP-V BASIC beings execution with the time and 
date and the name of the program followed by three periods. 
Using the above example, the printout at the time state
ment 950 is executed would be 

09:36 MAR 07 PART3 ••• 

If a program restarts itself by a CHAIN LINK, the program 
name is not repeatedly identified. 

MATRIX OPERA liONS 

Matrix operations in BASIC are controlled through use of a 
special set of MAT statements. In addition to the usual set 
of allowed matrix manipulations, BASIC provides options 
for input of matrixes via console or file, copying or matrixes, 
and the solution of simultaneous equations. Some of the 
matrix operations apply to vectors as well as to matrixes. 
At times, vectors are treated as either row or column 
matrixes. The only matrix operations that can be used 
with string arrays are MAT GET, MAT IN PUT, MAT PUT, 
MAT READ, and MAT SIZE. 

MAT statements may be specified to use variable dimen
sions, as long as these are within the dimension limits 
specified in DIM statements. In some cases, dimensions wi II 



vary because of the operations that are performed on them 
(fQir example, multiplication of nonsquare matrixes). Thus, 
th(~re is current dimensioning (the msult of the latest matrix 
opera~ions, or as specified by the user in MAT SIZE state
ments), and absolute dimensioning (given in DIM statements). 
A" matrix I/o is done in row major sequence. 

Every array that is nalmed in a MAT statement must be di
mensioned in a DIM statement. This assures that absolute 
dimensions exist, sets initial current dimensions, and dif
ferentiates between vectors and matrixes. (Note that use 
of a letter to designate an array dOE!s not preclude the use 
of the same letter to designate a simple variable.) Current 
dimensioning may nof' exceed absolute dimensioning. Ma
trix operations and their correspondiing MAT statements are 
presented be I ow • 

MAT GET The MAT GET statem~mt reads array values 
from the currently op1en input fi Ie. It complements the 
MAT PUT statement, but can also read data prepared by 
ordinary PUT statements. MAT GET takes the form 

[line1 MAT GET[:stream[;key],]adescr[,adescr] .•• 

The defau I t form 

MAT GET adescr[fadescr~ ••• 

is equivalent to 

MA T GET : 1 ,adescrLadescr] ••. 

where adescr is an array descriptor ()f the following format: 

aname [(dimx[,d irnxJ)] 

In the array descriptor, the terms ana me and dimx present 
the single letter array designator and dimension (subscript) 
expression, respectively, of the army. As shown in the 
general form above, therefore, an oldescr term may indicate 
a single letter array designator, a designator followed by 
one subscript (a vector), or a designator followed by two 
subscripts (a matrix). The dimx expressions in an adescr 
term constitute variable dimensions; they provide a simple 
me'thod for varying current dimensions during execution 
(not during compi lation). 

One example of a MAT GET statemEmt is 

>1008 MAT GET A(3,3), B(4,8) 

MAT PUT The MAT PUT statement enters arrays into the 
currently open output fi Ie. It takes the form 

Dine] MAT PUT [:stream[;key],] IJdescr[,adescr] ••• 

The defau I t form 

MA T PUT adescr[,adescr] •.. 

is equivalent to 

MAT PUT :2,adescr[,adescrJ ... 

There is no comma following the final array nome in the 
list. In the sampl e statement 

>1002 MAT PUT A,B 

array A wi" be completely output before array B is output. 
Current dimensions determine how much data is output from 
a given array. Current dimensions may be set as part of the 
adescr, which is described above for MAT GET. Matrixes 
are entered into output files in row major sequence; that 
is, with the last subscript varying most rapidly. 

Note that one MAT PUT may create several records. The 
key for the first record may be selected. but later records 
wi" have keys incremented by 1 per record. See "I/O 
FI ushing", above, for treatment of partial records. 

MAT INPUT The MAT INPUT statement is the array 
counterpart of the variable-oriented INPUT statement de
scribed earlier in this chapter. Format and a sample state
ment are shown below. 

Dine MAT INPUT [:stream[;key],] adescr~,adescr] .•. 

If ":stream" is included, input is from an open BCD input 
file assigned to that stream. 

Example: 

>1007 MAT INPUT A(3,4), B 

When statement 1007 is executed, 12 va I ues must be sup
plied for the 3 x 4 matrix A. These values are then fol
lowed by input for array B. Note that the number of values 
input to array B must match the current dimensions for B. 

The rule for the use of commas and empty fields in the data 
list read by MAT INPUT is the same as described for the 
INPUT statement. 

MAT PRINT The MAT PRINT statement prints arrays in 
regular or packed format. The form of the MAT PRINT 
statement is 

[I in~1 MAT PRINT [:stream[;key] ,] aname[L} J 
L anameJ. {; ] 

where aname is the letter designation of an array that has 
been dimensioned in a DIM statement. Some sample MAT 
PRINT statements are shown below. 

>1000 MAT PRINT A, B; C 
>1010 MAT PRINT D; 

Matrix Operations 33 



There are two types of print formats, regular, or packed. 
An ana me parameter followed by a semicolon causes the 
named array to be printed in packed format. Otherwise, 
regular format is used. Statement 1000 will cause array A 
to be completely printed before any element of array B is 
printed. Array A will be printed in regular format, array B 
in packed format, and array C in regular format. Current 
dimensions are used to determine how much data is printed 
from an array. Statement 1001 will cause array D to be 
printed out in packed format. 

Vectors are printed in row fashion. Each row of a matrix 
is printed as one or more consecutive print-rows with a 
blank I ine between successive matrix-rows. Column 1 of 
a matrix always occurs in the leftmost print field. 

Notes: 1. If MAT PRINT :stream is used, each line of 
output creates one record. In general, more 
than one record wi II be created. A record 
containi ng one blank byte is created after the 
last MAT PRINT record is written. 

2. Not applicable to text arrays. 

MAT READ The MAT READ statement is simi lar to the 
READ statement described in Chapter 2, except that it 
acquires whole arrays of data, rather than just single data 
i tems. MAT READ has the form 

Dine] MAT READ adescr['ad escr] .•• 

where adescr is an array descriptor of the same format pre
viously explained under II GETII, namely 

aname [(dimx[,dimx])] 

If dimension expressions are incl uded in the array descriptor, 
they specify current array dimensions. If they are omitted, 
current dimensioning results from previous conditions. Some 
samples are shown below. 

>1005 MAT READ A(K/L+M,7) 
>1006 MAT READ B, C(3,4) 
>1007 MAT READ D 

MAT SIZE The MAT SIZE statement redefines current 
dimensions of the named array. MAT SIZE has the form 

Dine] MAT SIZE aname (dimx[,dimx]) =-:J 

L [,aname(dimxLdimx])]. .. 

Examples: 

>1003 MAT SIZE A(X+Y,Z), B(3) 
>1004 MAT SIZE D(4,5) 

where 

aname is the single letter designator of an array. 

dimx is any expression representing a legal 
subscript. 

34 Matrix Operations 

ASSIGNMENT FUNCTIONS 

The matrix assignment functions resembl e the lET statement 
in form and function. An array name (aname) always ap
pears immediately to the left of the equals sign and the 
named array is assigned val ues according to the specifica
tions to the right of the equals sign. 

ZERO 

This statement zeros those elements of the named array that 
fall within the range of current dimensions. Its format is 

Dine] MAT aname = ZER[(dimx[,dimx])] 

The optional dimx terms have the same meaning described 
previously under MAT GET; that is, they are dimension ex
pressions specifying new current dimensions (subscripts) of 
the array, and as such constitute variable dimensions. For 
example, assuming the array B(5,5), that is, a 5 x 5 matrix 
named B, the following statement, 

>1010 MAT B=ZER(3,2) 

will zero elements (1,1),(1,2),(2,1),(2,2),(3,1), and 
(3,2), leaving the remainder of the matrix unchanged. 
Other exampl es are 

>1020 MAT C=ZER(10) 
>1030 MAT D=ZER 

CONSTANT 

This statement is analogous to that discussed above, except 
that it sets matrix elements to 1 (instead of 0). Its format 
is given below. 

[I ine] MAT aname -= CON [(dimx[,dimx ])] 

Example: 

>2250 MAT L=CON(3,5) 

IDEN TITY MATRIX 

This statement forms an identity matrix. Since the array 
must be a square matrix, new current dimensioning may 
have to be provided. Two forms are shown below. 

[I ine] MAT ananme = IDN [(dimx)] 

[line] MAT aname = IDN[(dimx),any charact~ 

L to end of line] 

The first form, which gives the current dimension for the 
row value only, is sufficient to define the square matrix. 



second form is provided for those U!ierS who wish to clearly 
indicate that the array is a square matrix. However, it may 
st<md alone. Appropriate samples <Ire shown. 

>1011 MAT Z=IDN 
>1012 MAT B=IDN(4) 
>1013 MAT C=IDN(3,3) 
>1014 MAT D=IDN(X+Y) 

The result of this operation is a matrix in which all elements 
of the principal diagonal aresetto 1 <mdall other elements 
an~ set to O. 

Example: 

>T) T'1 11 (3.:1) 
>!! A '1' A = I D jJ 

>/:'AT PRINT A; 

1 o o 

o 1 o 

o o 1 
> 

COpy 

Thc~ copy statement copies arrays, and sets current dimen
sioning of the array copied into to that of the array copied 
fro,!!: The form of the copy statement is 

[J i ne] MAT aname = aname 

In the sample copy stcltement below, 

1015 MAT A = B 

matrix B is copied into matrix A. Assume that B is a 4 x 4 
matrix with current dimensioning (3" 3). Only elements 
(1, 1), (1,2), (1,3) ••• (3,3) from 8 are copied into A. 
Further, any remaining elements in alrray A are not changed, 
and the current dimensioning of A b'9comes (3,3). 

SCALAR MULTIPLICATION 

The scalar multiplication operation multiplies an array by 
a scalar quantity. The form of the statement is 

[line] MAT anome = (expr)* (mame 

where expr is an expression representing the scalar multi
plier, and the parentheses are required. In sample state
ment 1016, below, 

>1016 MAT A=(A)*A 
>1017 MAT B=(SIN(X+H»*C 

the parenthesized A is interpreted by BASIC as a simple 
variiable, not as an array name. 

Scalar multiplication' can be used to set all elements of an 
array to any constant value by using a MAT CON statement 
followed by a scalar multiplication. An example is 

>10 NAT A=CON 
>20 MAT A=(10)*A 

This example sets all edements of army A to the value 10. 

ADDITION AND SUBTRACTION OF ARRAYS 

Array addition and subtraction are performed through use 
of the statement shown below. 

nine] MAT aname = anamet}aname 

Th is statement adds or subtracts the correspondi ng elements 
of the two arrays named on the right of the equals sign and 
stores the results in the array named on the left. A sample 
is given for reference. 

>1018 MAT Z=B+C 

The ambiguity introduced by allowing addition or subtrac
tion of two vectors with storage in a matrix, or copying, 
transposition, and scalar multiplication of a vector into a 
matrix is resolved by considering the' vectors as row vectors. 
Current dimensions of both arrays named to the right of the 
equals sign must be equal for addition and subtraction. The 
current dimensions of the array named on the left side of the 
equals sign are set equivalently. 

TRANSPOSITION 

It is not necessary to transpose a vector array; the resu I t is 
an exact copy of the argument vector. Matrixes are trans
posed by use of the statement shown below. 

[line] MAT aname = TRN(aname) 

Sample statements are shown below 

>1019 MAT A=TRN(A) 
>1020 MAT B=TRN(C) 

Current dimensioning of the matrix named on the I eft side 
of the equals sign is set consistent with current dimensioning 
of the matrix named on the right. 

MULTIPLICATION 

In the multiplication operation, vectors are taken to be row 
or column matrixes as appropriate. If a vector is multiplied 
by a vector, the scalar (dot) product results. The form of 
the multiplication statement is 

[iine] MAT aname = aname*aname 

The following is a sample multiplication statement. 

>1021 MAT Z=B*C 

Notes: 1. Current dimensioning must be consistent with 
the usual rules of matrix multiplication. 

2. The same array name may not appear on both 
sides of the equals sign. 

Matrix Operations 35 



INVERSION 

The inverse of a square matrix is specified as shown below. 

[I'ine] MAT aname = INV(aname[,simple variable]) 

where the inclusion of the simple variable (in which to store 
the computed determinant of the argument matrix) is a user 
option. Some sample statements are 

>1022 MAT A=INV(H) 
>1023 MAT B=INV(I,D) 

In calculating the inverse of the square (by current dimen
sioning) argument matrix, the target matrix is initially set 
to an identity matrix. Then the target is converted by 
those elementary row operations that reduce the argument 
matrix to the identity matrix. Upon completion of the con
version, the target matrix is approximately the inverse of 
the argument matrix. The values of the argument matrix 
are destroyed; both matrixes have current dimensioning 
originally applicable to the argument matrix. 

Notes: 1. The argument matrix must be square (according 
to its current dimensions). 

2. Results are approximate, not exact. 

3. At the user's option, the computed determinant 
of the argument is stored in a simple variable. 

4. The contents of the argument matrix are 
destroyed, but current dimensions remain. 

5. The same array name may not appear on both 
sides of the equals sign. 

SIMULTANEOUS EQUATION SOLUTION 

Solution of simultaneous equations is accomplished via the 
statement shown below. 

[I ine] MAT aname = SIM(aname[,simple variable]) 

where the simple variable modification is a user option. 

Some sample statements are shown below. 

>1024 MAT M=SIM(E) 
>1025 MAT S=SIM(H,D2) 

The target array contains one or more sets of I inear equa
tion constant column vectors. The dimensions of this array 
must be compatible with the square argument matrix. For 
example, if the argument matrix has current dimension of 
(n, n), the target array must be either an n-dimension vector 
(one solution, or else an n x m matrix (m solutions). The 

36 Matrix Operations 

argument matrix contains the coefficient matrix. The 
sol ution of the simul taneous equations is arrived at by con
verting the target array by those elementary row operations 
that reduce the argument matrix to the identity matrix. 
Upon completion of the conversion. the values of the 
argument matrix are destroyed. but current dimensions for 
both the target and the argument arrays are unchanged. The 
target array contains the appropriate values that are com
puted by taking 

(argument)-l x (target) 

This result is equivalent to solving one or m sets of simulta
neous I inear equations having the same coeffi cient matrix, 
that is, the argument matrix. 

Notes: 1. The argument matrix must be square (according 
to its current dimensions). 

2. Results are approximate, not exact. 

3. At the user's option, the computed determinant 
of the argument is stored in a simple variable. 

4. The contents of the argument matrix are 
destroyed, but current dimensions remain. 

5. The same array name may not appear on both 
sides of the equals sign. 

ACCURACY OF INVERSION AND SIMULTANEOUS 
EQUATION SOLUTION 

The results of matrix inversion will vary in accuracy because 
of precision losses during the conversion process. If, during 
conversion, a pivotal element is smaller in magnitude than 
10-13, it is considered to be zero and the matrix is con
sidered singular. If all elements of a matrix are of small 
magnitude (e. g., 10-6 or less), it should be scaled upward 
so the greatest magnitude of any element is near unity. If 
a matrix consists of elements of large magnitude, it should 
be scaled down again to near unity for the maximum 
element. 

When a determinant cal culation is requested in using the 
inversion or simultaneous equation functions, the following 
special situations may occur: 

1. If the determinant value calculation results in a magni
tude greater than 7.234 x 1075 , the value of the simple 
variable will be the al phanumeri c val ue OVERFL. 
This does not affect the cal culation of the inverse or 
simultaneous equation solution. 

2. If the matrix is singular, the simple variable is given 
a value of zero; the values of the argument and target 
arrays are destroyed. 



4. BASIC COMMANDS 

The BASIC commands described in thrs chapter are instructions 
to the compi ler. Theyare never used in numbered statements. 

ACCOUNT and PASSWORD 

The command 

ACC[OUNT] [nClme] 

es·tab I ishes the name of an account that is to be accessed by 
a LOAD, WEAVE, or CATALOG command (see below). The 
name may have from one to eight characters and may con
tain blanks or other nonprinting chmacters if the name is 
enclosed in single or double quotl3S. If the name begins 
with the letter 0 and the command word is abbreviated to 
ACC, the use of quotes is mandatory. 

The account name is reset to the 10H-in account by execu
tion of a CLEAR, CLOSE, FILE, SAlVE, or RENUMBER com
mand or by an ACCOUNT command in which no name is 
specified. Execution of an OPEN, CHAIN, or CHAIN 
LINKt statement causes the accounf name to be set to that 
specified in the statement or, by default, to the log-in 
account. 

The command 

PAS[SWORD] [name] 

establishes a password to be used in executing FILE, SAVE, 
LOAD, WEAVE, and RENUMBER commands (see below). 
Restrictions on the name are the same as for ACCOUNT, 
except that if the name begins with the letter S and the 
command word is abblloeviated to PAS the use of quotes is 
mandatory. As with ACCOUNT, the password is subject 
to change by the execution of a CLEAR, CLOSE, FILE, 
SAVE, or RENUMBER command, or ,an OPEN, CHAIN, or 
CHAIN LINK statement. If no password is specified in a 
PASSWORD command, a null password is assumed. 

In ·the examples shown below, ACCOUNT and PASSWORD 
set the fi Ie attributes, and ACC and PAS reset them. 

ACCOUNT LBRY1 
ACC 

PASSWORD '3731' 
PAS 

Note: If a file is declared temporary (e.g., through use of 
the TFILE option in an OPEN statement) it is 
released at the end of the job or terminal session 
unless it is crE~ated with a password. 

t 
CP-V only. 

CATALOG
t 

T ypi ng the command 

CAT[ALOG] 

causes BASIC to print, via the M:SL DCB, the names and 
attributes of all fi les in the user's account or the account 
specified by an ACCOUNT command (see above). 

>ACCOUNT 6101 
>CATALOG 

ACCOUNT - 6101 

0 GRAN HR:OO 

K 3 09:00 
C 2 09:00 
K 43 09:00 
K 2 09:00 
R 26 09:00 

> 

MO/DY/YR FILE NAME 

06/19/72 BITS1 
06/19/72 BO 
06/19/72 BOMP 
06/19/72 BOMPALL 
06/20/72 BOMPBASE 

The listed attributes are file organization (keyed, consecu
tive, or random), number of granu les, time and date of cre
ation, and fi Ie name. 

LOAD and WEAVE 

To load a file containing numbered BASIC statements, the 
programmer types 

LOA[D] [xname] 

If xname is not specified, the current runfi Ie name is used. 
Current PASSWORD and ACCOUNT information are used. 
If no file exists, the following message is output: 

UNABLE TO OPEN 

If the fi Ie exists, records are read and handled ana logously 
to line insertion via the terminal. Error messages are gen
erated if syntax errors are encountered. Direct statements 
and commands, wh ich have no associated I ine numbers, may 
not be read using LOAD. 

If the xname begins with a "D", the LOAD command must 
not be abbreviated to LOA unless the xname is in quotes. 

If the LOAD command is typed while BASIC is in compila
tion or run mode (see the STATUS command, below), the 
current program is deleted prior to the load. If BASIC is in 
edit mode, LOAD "weaves" the file statements into the ex
isting program by step number. If a statement in the loaded 
fi Ie has the same number as one in the existing program, the 
fi Ie statement replaces the existing statement. 

BASIC Commands 37 



A direct CHAIN or CHAIN L1NKt statement is one means 
of replacing a current program with a new program and re
taining data context instead of weaving. 

The WEAVE
t 

command is equivalent to a LOAD executed 
in edit mode. WEAVE has been added to provide weaving 
action on a program load regardless of current operating 
mode. The syntax is 

WEA[VEl [xname] 

LIST 

To list a line or a series of lines, the user types 

which will cause listing of the appropriate lines from the 
program. I f the user types 

>LIST 

a" lines wi" be listed. If none exist, the NO PROGRAM 
message wi II be output. 

DELETE and EXTRACT 

To delete a line, the programmer types the line number fol
lowed by a New Line, and the line with that number wi II 
be deleted. If the line does not exist in the program, the 
line number wi II be output along with the following error 
message: 

NO PROGRAM 

To delete specific lines or series of lines, the user may type 

DEL[ETE]{II~ne I' } [,{II~ne ,. }], , , 
Ine

1 
- Ine

2 
Ine3 - Ine4 

after the prompt, as in 

>DEL 72 

or 

>DEL 85 - 97, 112 - 124 

If the I ine or series of I ines is not found, the NO PROGRAM 
message will be output preceded by the specified line or 
line series numbers. If an illegal line number is used, the 
LINE # ERROR message is printed, preceded by the first six 
characters of the illegal line number. The NO PROGRAM 
message does not inhibit further processing of the DEL line, 
whereas LINE # ERROR does inhibit further processing. 

t 
CP-V only. 

38 LIST/DELETE and EXTRACT/RENUMBER 

To delete an entire program, it is faster to use CLEAR rather 
than DE LETE, Further, the use of C LEAR recovers a II the 
space in the text editing area. 

The DELETE command may also be used to dele.te a named 
fi Ie in the user's account. The syntax is as follows: 

DE L[ETE] xname 

If a password is currently in effect, it is applied. For ex
ample, to delete a file named FILEl with password SECRET, 
the user wou Id execute two commands. 

>PASSWORD 'SECRET' 
>DELETE 'FILE1' 

In this case the user should also type 

>PASSWORD 

to remove the password SECRET prior to other fi Ie operations. 

Note: In BASIC, fi Ie names may be created with embedded 
blanks or commas. Such names are not readily ac
cessible to other subsystems such as EDIT. The file 
deletion capability within BASIC has been added 
primarily to allow the user to delete files which are 
inaccessib Ie in EDIT, FERRET (BTM), or PC L (CP-V). 

The programmer may delete a complete program except for 
certain areas designated by their line numbers or line num
ber groups. This is done by typing 

[ J [line ] [ {line ~ EXT RACT I' I' , I' I' •.. Ine
1 

- Ine
2 

Ine
3 

- Ine
4 

If no line numbers are specified, no operation takes place 
and a prompt is issued to the programmer. 

RENUMBER 
The programmer may specify that his program statements be 
renumbered, starting with a certain line number and renum
bering in specified increments. The command to be typed is 

RE N [UMBER] [I ine 1 [, Ii ne 2[,incrJJ J 

where 

line
1 

is the lowest new line number. 

line2 is the point in the program at which to start 
renumberi ng. 

incr is the increment by which the new line num-
bers are to be spaced. 



For example, the sample statement 

>REN 135, 170, 5 

will cause the computer to change statement number 170 
to number 135, the next statement number to be changed 
to 140, etc., until the end of the program is reached. De
fault values for the parometers in thE! RENUMBER statement 
are 100, 1, and 10, in that order. When a replacement is 
made for a step number, replacemenl' is also made for any 
occurrence of the same step number within any statement in 
the program. Illegal RENUMBER syntax causes output of the 
message 

[ '_I_L_LE_G_A_L __________ ~, 
Also, if the renumbering process genl~rates a I ine of more 
than 132 characters, tlhe fo! lowing message is output: 

c=-__________ L_IN,_E_T_O_O_L_O_N_G _______ ~ 
If RENUMBER increments a line number past the upper limit 
of 99999, the following message is output: 

[ ---' LINE # ERROR 

If the renumbering process cannot be completed because of 
errors, the original program will remClin unaltered. 

A RENUMBER operation causes the renumbered program to 
be saved as a temporary fi Ie with the current runfi Ie name. 
ACCOUNT is reset and if the runfile name is the default 
name, PASSWORD is reset. When the operation is com
pleted, this file is 10(lded to replace the existing version 
of the program. 

NAME and FILE-: 

BASIC establishes a default name for (l temporary file that 
may be used as required for program s~orage. This fi Ie is 
referred to as the ru nfi Ie. If the user types 

NAM[E] [x name] 

the name of the runfi Ie is changed to the xname given. If 
no xname is given, the default runfi Ie name is restored. 
NAME Hiles the given xname. The ><name may be an alpha
numeric constant enclm;ed in single or double quotes or an 
(Jlphanumeric constant, with no embedded blanks, not en
closed in quotes. Xname is restricted to 11 characters at 
most, not counting enclosing quotes. 

If the programmer types 

FIL[E] [PAC[K]]t 

tThe PACK option applies to CP-V BASIC only. 

the source program currently in the text editing area is cop
i ed with t-he current ru nfi I e name, wh i ch has been Hi led. 
This file will be temporary unless there is a current password, 
and the current runfile name is not the default name. t 

The PACK option serves to recover the space that was oc
cupied by discarded text. If the option is exercised, pro
gram text is read back into core memory in edited format, 
that is, wi thout the empty spaces due to deletions. 

FILE does not modify program context. FILE PACK sets 
BASIC to the editing mode and inhibits returning to the ex
ecution without recompi ling ob ject code. Array and string 
context is preserved, as is DATA pointing control and 
GOSUB-RETURN status. 

SAVE ON and SAVE OVER 

The user may save selected program statements on permanent 
fi les. The command is 

If the SAVE ON form is used, a check wi" be made that no 
file exists with the same xname before opening for output. 
If none exists, an output fj Ie is created. The current PASS
WORD information is used and ACCOUNT is reset. t 

SAVE OVER creates the fj Ie unconditionally, with current 
password information. ACCOUNT is reset. The fi Ie is 
permanent unless two conditions are met: the fi Ie name is 
TFILEd sometime during the terminal session (or batch job), 
and the fi Ie has no password. 

Samples of SAVE ON and SAVE OVER are given below. 

>SAVE ON 'PERM2' 1-55, 80-105 
>SAVN 'A2' 1,5,10,15,30-40 
>SA VE OVER PERM 
>SAVVER 'END' 50-59, 120 

The third example above causes all lines of the current pro
gram to be saved in a permanent fi Ie (named PERM). This 
is the most commonly used form of the command. 

CLEAR 

To erase everything in the text editing area, the user types 

CLE[AR] 

This command is useful in avoiding the cumulative effect of 
successive LOAD commands (see" LOAD and WEAVE II, above). 

t 
CP-Vonly. 

NAME and FILE/SAVE ON and SAVE OVER/CLEAR 39 



In addition to the capability existing in Batch/BTM BASIC 
of clearing all program context, CP-V BASIC permits clearing 
of arrays or strings only. This form of the command is 

[ , [ARR[A YS] 1 
CLE ARJ STR[INGS]J 

It releases storage for the indi cated option. 

SET 

To set the values of vector and matrix arrays, the program
mer types 

SET letter = digits[,letter = digits] ... 

where the value of the digit string (interpreted as a decimal 
integer) is assigned to the appropriate declared letter param
eter as indicated by the alphabetic character. These param
eters are used by the compiler for compilation of DIM 
statements that contain set letters. 

Example: 

A program includes the statement 

20 DIM C(B,B+5) 

B was set to 8. Abso lute dimensions wi II be (8, 13). 

SET can also be used in CP-V BASIC to establish maximum 
string length for allocation of string storage. The default 
value is 72 and 132 is the highest possible value. 

Th is form of the command is 

SET $ = positive integer 

Example: 

>SET $=12 

allocates maximum storage of 12 characters for any string. 
Strings with more than 12 characters are truncated and 
length count for such strings is reduced to 12. 

In CP-Vthe SET command also causes subsequent realloca
tion of array-string storage as required for new parametric 
dimensioning or new string lengths. During array-string 
storage rea Ilocation, context is saved as new maximum di
mensions permit. 

Note: SET does not assign values to simple variables. If 
SET is used for arrays that will be filled by FOR
NEXT loops, the pqrameterized DIM should be es
tablished by a SET and the FOR-NEXT loop by a 
direct LET. Example: 

>SET X=5, Y=10 
>LET X=5, Y=10 

40 SET/ENTER BASIC/WIDTH/RUN and FAST 

ENTER BASIC 

If the programmer types 

ENT[ER BASIC] [L] 

the extended precision print indicator will be set or reset, 
depending on whether the optional L is or is not typed. 

WIDTH 

To change the PRINT width from its default setting of 72, 
the user types 

WID[TH]digits 

where the value of the digit string, interpreted as a decimal 
integer, must be within the allowed maximum and minimum 
values of 132 and 32, respectively. 

WIDTH affects file I/O as well as terminal I/O, and excess 
characters are printed on the following line, WIDTH cannot 
exceed the PLATEN setting (see the CP-V User's Guide, 
90 16 92) for terminal I/O but file I/O is not affected by 
the PLATEN setting. 

RUN and FAST 

To change from the editing mode to the compi lation and ex
ecution mode the user types 

Th is causes the program to be copied onto the runfi Ie, if 
necessary. t The computer then compi les from the runfi Ie or 
from the text edit area. If RUN was specified, compi lation 
wi" take place in the safe mode, in which all variable sub
scripts wi II be checked against absolute dimensions; other
wise, compilation will proceed in the fast mode. If no errors 
are found, the program will be executed. If the compila
tion contains errors, the editing mode is restored and a 
prompt character is issued at the console. The user may 
specify a maximum number of seconds of CPU time expended 
by the program. If this time is exceeded, execution is 
aborted with the message 

EXEC TIME LIMIT 

If a FAST or RUN command is given in the editing mode 
prior to the creation of a program, BASIC will enter the 
execution mode and wi II allow direct execution of state
ments from the console as described in Appendix D under 
"Direct Statements". If input is required from the program
mer during execution, the BASIC program wi" issue a ques
tion mark at the console. When execution of a program or 
a direct statement is complete, a prompt character is issued. 
Additiona I statements then may be directly executed, or the 
programmer may revert to the editing mode by typing an ed
iting command. 

t 
BPM/BTM only. 



Under BTM or BPM, both RUN and FAST resel" account in
formation, if any exists. If the 5;tandard runfi Ie is used, 
possword information is reset, if any was set. UnderCP-V, 
RUN and FAST do not affect runfi Ie nomenclature. 

BTM BASIC starts each execution with the time and date. 
CP-V BASIC also gives the name of the program followed by 
three periods. When CHAIN LINI~is used (in CP-V BASIC) 
and a program is called from thel fi les, its name wi II be 
similarly printed; if a program resl"arts itself by a CHAIN 
LINK, its name is not repeated. The default name for the 
runfi Ie has the form RUNxxxx, where the x's represent let
ters. Example: 

>RUN 
11:09 JUN 09 RUNMAAA ••• 

BREAK and ESC 

A single activation of the BREAK key (CP-V BASIC) or a 
double activation of the ESC key (BTM BASIC) causes the 
current operation to be stopped. BASIC then requests a new 
command by issuing a > prompt character to the terminal. 
If the BREAK key is depressed again (or the ESC key is de
pressed twice again) control passes to the operating system 
executive program and a ! prompt i's given. 

STATUS 

To determine the stal"us of his prognJm at any time, the pro
grommer types 

STA[TUS] 

The system wi II respond with one of the three messages: 
EDITING, COMPILING, or RUNI"ING, as appropriate. 
To facilitate loop del'ection, the RUNNING message is pre
ceded by an appropriate line number if execution was inter
rupted while one of the instructions in the compiled program 
was being executed. 

BASIC 

The BASIC command
t 

displays the following parameters which 
may be set by other commands: WIDTH, PRC, $ (maximum 
string length), and any letters that have been SET to provide 
parameterized array dimensions. This display is automat-
i ca IIy generated at the start of a baJich run in BPM/BT M 
BASIC. The command has the form 

BAS[IC] 

t 
CP-Vonly. 

NULL 
t 

The NULL command sets the value of specified items to 
zero but does not release or reallocate storage, nor does it 
modify current or maximum dimensioning of arrays. It has 
the form 

[

ARR[AYSJ ] 
NUL[L] STR[INGS] 

SIM[VARS] 

where 

ARRAYS sets the value of all array elements to zero 
for current dimensioning. 

STRINGS sets the length of all string scalars and 
string array elements to zero. 

SIMVARS sets all simple variables to zero. 

NULL performs all three options. 

NULL does not modify source text or object code; however, 
zeroing simple variables affects FOR-NEXT statements in 
that this resets any loop control variables. 

EXECUTE 

The EXECUTE command t performs two distinctly different 
functions: it specifies a single, numbered statement for di
rect execution; and it specifies a starting point for execution, 
with a halt at a specified line number. The first use is for 
the programmer's convenience, saving him time by letting 
him specify a line number instead of requiring him to type 
the entire line. The second use is a valuable aid in debug
ging and verifying program segments without executing the 
entire program, as wou Id be the case wi th a direct GO TO 
statement. 

The command has the form 

where the optional line 2 specifies the line number before 
which execution will halt. In the program example shown 
below, EXE 40 would be equivalent to typing PRINT A 1, 
A2, A3, A4, A5; and EXE 40-70 would be equivalent to 
typing 70 STOP 8 and GO TO 40, except that in the case 
of EXE 40-70 the halt at 70 is temporary; that is, the line is 
restored to normal after the halt has occurred. In this ex
ample, if program returns from subroutine 110, line 60 is 
executed, followed by the message 

70 -EXEC- HALT 

EXECUTE with only I inel is subject to all restrictions apply
ing to direct statements (see Appendix D). EXECUTE with 
I ine2 option is not restricted. 

BREAK and ESC/STATUS/BASIC/NUll/EXECUTE 41 



Example: 

>40 PRINT Al,A2,A3,A4,A5 
>50 GOSUB 110 
>60 PRINT A2 
>70 GOSUB 140 

PROCEED 

If, following escape from execution, the command 

PRO[CEED] 

is typed after the prompt character, processing continues 
with the core memory (but not file) conditions that were in 
effect immediately preceding the most recent activation of 
the BREAK or ESC key. Alternatively, the user may give 
a direct command such as GOTO or EXECUTE (see above). 

SYSTEM, BYE, and OFF 

To exit from BASIC, the programmer depresses the BREAK 
or ESC key four times and waits for the executive level 
prompt (!). 

42 PROCEED/SYSTEM, BYE, and OFF 

Alternatively, the programmer may use the SYSTEM com
mand to return to the executive program. The command has 
the form 

SYS[TEM] 

At this point, he may invoke another processor that operates 
under BTM or CP-V control, or he may vacate the terminal 
by typing 

! BY[E] (or 0 FF under CP-V) 

If the user wants to log out of the system directly from 
BASICt, he may do so by typing either 

>BYE 

or 

>OFF 

without using the SYSTEM command. 

t 
CP-Vonly. 



5. BATCH PROCESSING 

The programmer prints his program on a coding sheet (see 
Figure 4). The coding sheet is divided into 80 columns 
(corresponding to a standard data··processing punch card) 
ond a number of rows or horizontal lines. Each line repre
sents one card and each interval em a line represents one 
character space in the correspond:ing column of the card. 
Note that all chan::lcters take up only one column each. 
Conventions have been adopted for manually printing cer
tain confusing characters, especicd Iy characters a and 0, 2 
and Z, and 1 and I (see Figure 4).. It is advisable to 
check with the computer facility's; keypunch operator for 
notation conventions. 

When completed, the coding sheelt is sent to the program
"TIer's Keypunch facility. There t"he program is punched 
onto cards, and the deck of cards returned to the program
mer. The deck, along with reqL,ired BPM control cards, 

can now be sent to the computer faci I ity to be run on the 
~omputer. Fi gure 5 shows a typi cal deck structure for a 
BASIC program that is run under BTM or BPM. Note that 
the dashed lines indicate optional control cards. Card 
parameters are explained below the drawing of the card 
deck. 

Figure 6 shows a typical deck structure for a BASIC pro
gram that is run under CP-V. Note that a subset of on
line editing commands is used in this deck structure instead 
of the special control cards (items 4, 5, 7, and 9 in 
Figure 5) that are used in a BPM or BTM deck structure. 
Other on-line commands, such as LOAD, may be used in 
CP-V BASIC in batch mode, but they are oriented primari Iy 
toward conversational operations and should be used with 
caution. 

KEY PUNCH TRANSMITTAL 
80 COLUMN 

I _2 ___ ~_~":; 6.~_9_IO .. ~E_.-'--~~4_~2!_18 192021222324252627282930 313233343536 37 3!~~~ ••• ~'-~~_6:! __ .~6 __ ~~.6~.7~~!~ 7576 77 78?~ 

1 .LE M. I4.II.D%.£,,;[ E D ,J.At1.P.L [ ,P R.,G.A.A,M 
k~~, --,--,,--,-~_,Iti.,M. ,SIT. IJt- H.N. . 
t2..~ .1t.~.~,D, .A .•.• ,C, 

, , 
, I j I 

• f ' , t ' t "--, , " ~~ , t" t .. ..L_-'__ _,! f ! I '--'---....t.... 

I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 2223242526 27 2829 30 31 32 33 34 35 3637 38 3940 41 ••• 60 61 62 6364 65 66 67 68697071 72 737475 76 7778 7980 

KEYPUNCH WRITING CONVENTIONS 

~(zer~)~(O)I7-r(one).L(I),..b...(-L)-Z--(s-la-sh-')I:±)four)'y'(ninE01~(five)~(S): 
----, SUBMITTED BY: tit I ST . ..)'))i~ 
~(Y) DATE f2..- \~·"i 

Figure 4. Coding Sheet with Sample Program 

Batch Processing 43 



Card 

2 

3 

4 

5 

1. 

7. { ! EOD} 
*RUN 

6. SIC program 
r ------------, 

5. : * [~J ~ {~i9itJJ [,LJ ') 
,... __ ..L ______________ ~ I 

4. I *Sc [=] digit(s} " : 
, I 

3. ! BASIC I I 
,...- ---------------- I 

2. I BPM control cards " I I 

I JOB 
"I L __ J 

. account, name " I 

I I 
1 I 
I J 
I 

Parameter Description 

! JOB account, name 

BPM control cards 

!BASIC 

*Sc[=]digit{s) 

Signals the beginning of a job. This card is required. 

May include BPM control cards such as !LIMIT and lASSIGN. t These 
cards are optional. For information concerning DCB assignments see 
Appendix F. 

Calls the BASIC processor. This control card is required. 

One or more parameter setting cards to assign the designated constant 
value to the declared letter {used for compilation of DIM statements that 
contain declared letters}. Column 1 must contain an *, followed by 
an S in column 2. Column 3 contains the single-letter designation of an 
array. Column 4, always interpreted as =, is followed by a constant 
value. 

Optional declaration card must have an * in column 1, followed by a 
blank. An S in column 3 indicates the safety mode for array references. 
If the safety mode is specified, the compiler checks the subscripts of sub
scripted variable references against the dimensions. Any other character 
(indicated by c) in column 3 indicates the fast mode. The default condi
tion is "fast". 

D is the default case for the printer line width (100). If a digit appears 
in column 5, successive columns of the cards are scanned until a nondigit 

t For information on the format of these control comrronds, see the Xerox BPM/BP, RT Reference Manual, 90 09 54 
and the Xerox BPM/OPS Reference Manual, 90 11 98. 

Figure 5. Deck Setup for BASIC Batch Processing (BTM or BPM) 

44 Batch Processing 



Card 

5 

6 

7 

8 

9 

Parameter Description 

[,L] 

character is encountered. The digits are then interpreted as the printer 
line width (subject to maximum and minimum width parameters, currently 
131 and 32, mspectively). It is recommended that the D or digit(s) be 
followed by a comma. If neither a D nor a digit appears in column 5, 
the rest of the card is ignored. 

An L in the column following the comma causes I isting of all records fol
lowing the opt"ion declaration card up to an end-of-file mark, or an IEOD 
or *RUN record. (*RUN will be listed, but IEOD will not.) This card 
is optional. 

BAS IC program The programmer1s BASIC program, in I ine-number order. 

{IEOD} 
'kRUN 

Data 

End of program. If no errors are detected by the compi ler, the program 
wi" be executed, beginning at the statement with the lowest I ine num
ber. If this CClrd is omitted, the program wi II not be executed, even if 
no errors are detected. This allows compilation for diagnosis only. 

Data to be used in response to INPUT statements. The data should be fol
lowed by an end-of-file mark, an I EOD, or a record with an * in column 1. 

BPM control cards Other BPM control cards as required. In particular, the temporary files 
created via the 0 option of OPEN statements must be copied to perma
nent files if the programmer wants to retain the information. 

Figure:5. Deck Setup for BASIC Batch Processing (BTM or BPM) (cont.) 

10. 

9. 

·r----·--------~ 

- ; IEOD . '1 
I 
I 
I 
I 
I 
I __ J 

r- -------------~ 

8. : US[T] ~;~:1 -lineJ ~f::~:3 -line)]. ~~ 
; I 

1. 

I 
I 
I 
I 7. ASIC program 

r. -----.-------~ L--._--6" ENT[ER BASIC] [1_] , ,-:....L _______ , _______ , " 
5. ~ SET letter =- digits [,letter = digits]. .., I 
,... ..... --------------, '\ I 

4. : WID [TH] digits ''\ ; I 

~.ll~~~ _____________ """ : I 
2. I CP ,-V control cards ': LJ 

!JOB account, name ~ : JI 
I r 
I I 
I .J 
I 

Frgure 6. Deck Setup for BASIC Batch Processing (CP-V) 

Batch Processing 45 



Card 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Parameter 

! JOB account, name 

UTS control cards 

! BASIC 

WID [TH] digits 

SET letter = digits ~ 

L [,Ietter = digits] ..• 

ENT[ER BASIC] [L] 

BASIC program 

[ { line }] 
, line

3 
- line

4 
... 

{RUN } 
FAS[T] 

Data 

Description 

Signals the beginning of a job stack. This card is required. 

May include CP-V control cards such as ! LIMIT and !ASSIGN. t 
These cards are optional. See Appendix F for information con
cerning DCB assignments. 

Calls the BASIC processor. This control card is required. 

Changes the width of the printer from its default value of 72 to 
the specified value (digits). All commands may be started in 
column 1 or may be preceded by blank columns. 

Sets the parameter values of the dimensions of vector and matrix 
arrays. The val ue of the digit string, interpreted as a decimal 
integer, is assigned to the appropriate declared letter parameter 
as indicated by the alphabetic character. These parameters are 
used by the compiler for compilation of DIM statements that con
tain SET letters. 

Sets the extended precision print indicator when L is included; 
resets the indicator when L is not included. The default is normal 
precision. 

This is the programmer's BASIC program. In CP-V, it need not be 
ordered sequentially. Note that any run-time error or END, 
STOP, or PAUSE statement causes an exit from BASIC after a 
diagnostic printout. 

Lists a I ine or a series of I ines from the program. If LIS[T] is used 
alone, all I ines of the program will be listed. 

If no errors are detected by the compiler, these commands cause 
the program to be executed, beginning at the statement with the 
lowest line number. If this card is omitted, the program will not 
be executed, even if no errors are detected. The RUN card causes 
the program to be compiled in the safe mode, in which all vari
able subscripts will be checked against absolute dimensions. The 
FAS[T] card causes the program to be compiled in the fast mode. 

Data cards to be used in response to INPUT statements. The data 
cards should be followed by an ! EOD card. 

t For information on the format of these control commands, see the Xerox CP-V /BP Reference Manual, 90 17 64. 

Figure 6. Deck Setup for BASIC Batch Processing (CP-V) (cont.) 

46 Batch Processing 



6. BASIC MESSAGES 

This chapter I ists BASIC error messages and other messages 
in alphabetical order. Messages that do not apply to all 
three monitors are designated "CP-Vonly"or "not in CP-V". 
In the messages, xxxxx represents step number and x repre
sents array name, function letter, or declared letter. Ex
cept as noted in comments, an error causes termination of 
program execution. 

There is a special type of error message in BTM BASIC, re
sulting from disk input/output errors. Disk input/output 
error messages are transferred from the Monitor and are 
printed by BASIC. A sample error message is 

I/o 
DCB 
FPT 

ERROR 
NAME 
CODE 

57 
M;EO 
X'll' 

BASIC remains in control for continued operation. See 
the Xerox BPM/BP, RT Reference Manual, 90 09 54 for a 
detailed description of this type of error message. 

[ xxx>(X ACONST EXPECTED 
. _---------' 

CP-Vonly. A variable contains numericdatawhen itshould 
contain an aconst. 

[ xxxx ARG NO. ERR FNx 

Conflict between the number of ar!~uments defined and the 
number of arguments used with the function. 

[ ARRAY CLASS CONFLICT 

CP-Vonly. The indicated letter is used for more than one 
type of array. Example: B used for a string vector but 
dimensioned as a numeric vector. 

[ xxxxx ASN-ACS ARG ERROR 

CP-Vonly. The argument is outside the a"owable limits±1. 

[ ___________________ BA_D __ B_Y_T_E ________ ~ 
CP-Vonly. In executing a CHANGE statement, a value 
was not in the range 0-255. 

[ xxxxx BAD CHAR 
----------' 

Statement xxxxx contains an illegal character (for example, 
! r ?,@, etc.). Note, however, that all characters having 

the EBCDIC value of blank or greater are allowed in Image 
statements, text strings, and alphanumeric constants. 

xxxxx BAD CONST 

Line xxxxx contains an improperly formed numeric or 
a I phanumeri c constant. Probabl e causes are 

Numeric 

1. Extra decimal points. 

2. More than two digits in exponent fields (for example, 
.001 E 1 00). 

3. Underflow or overflow in conversion to floating-point 
form. 

4. Missing operator after the constant . 

AI phanumeric 

1. Missing quotation mark. 

2. Single (or double) closing quotation mark does not 
match double (or single) opening quotation mark. 

3. More than six characters between quotes. 

4. Contains a character having an EBCDIC value less 
than that of the blank character (for example, the 
o character). 

XXxx BAD FORMAT 

This message covers a wide range of syntax errors. The 
user should reexamine statement definition if the error is 
not obvious. 

xxxxx BAD FORMULA 

An arithmetic expression error has been detected. This 
message covers a wide range of error situations such as 
missing operators, missing operands, misspelled function 
names, misspelled keywords, etc. 

BAD LINE # AFTER STMT xxxxx 

A line number contains a nonnumeric character or more 
than five digits. 

BASIC Messages 47 



xxxxx BAD STMT 

The type of statement is not recogn izable; most frequently, 
the command keyword has been misspelled. 

BAD STMT ORDER AT xxxxx 

Not in CP-V. A line number is out of sequence. 

xxxxx BAD STREAM NO. 

An I/o stream number is outside of the legal range (1-4). 

xxxxx BAD SUBSCR 

A known subscript value is too small. 

BAD $UBSTRING PARAM 

CP-Vonly. Run-time error. Asubstringindexisnonposi
tive or starts beyond the maximum string length. 

xxxxx BAD TEXT 

A text string either contains a New Line character (user 
probably forgot the end-quote mark), or has an unmatching 
quote (as in 123 PRINT "DOUBLE QUOTE'), or contains a 
character having an EBCDIC value lower than 15. 

BAD TEXT STRING 

Not inCP-V. Ateststring contains a character having an 
EBCDIC value less than 15. 

CANNOT OPEN 

Unable to OPEN a file. 

DATA MIX-UP, $STRING VS NUMERIC 

CP-Vonly. Either numeric data is being input to a string, 
or text exceeding aconst length is being input to a simple 
or subscripted variable (via READ, INPUT, GET, MAT 
READ, MAT INPUT, or MAT GET). 

xxxxx DEFD TWICE 

A function defined in DEF statement xxxxx was also defined 
by an earlier DEF statement. 

48 BASIC Messages 

xxxxx D 1M ERR 

A DIM statement formula contains one of the following: 

1. User function call. 

2. Simple variable that is not SET to some value. 

3. Subscripted variable reference. 

3. Subscripted variable reference. 

xxxxx D IMD TWIC E x 

Multiple-dimensioning has been attempted. Revise DIM 
statements. 

DIM TOO BIG 

Run-time error. A dimension is too large in a matrix 
operation. 

xxxxx DIV BY ZERO 

Run-time or compile error. A zero denominator was en
countered in expression evaluation. 

xxxxx ERROR IN KEYED I/o 

Reference to illegal key or attempt to access an unkeyed 
fi Ie in the keyed mode. 

-EXEC- HALT 

CP-V only. Not an error condition. Execution has reached 
the halt point (second line number) set by an EXECUTE 
n 1-n2 statement. 

EXEC TIME LIMIT 

The execution time limit specified in a RUN or FAST com
mand was exceeded. 

xxxxx EXP OVERFL 

Floating-point overflow during exponentiation. 

xxxxx EXTRA COMMA 

Error indirectly associated with bad comma. Examples: 

Syntax 

X + (V, Y) 

SIN (A, B) 

M{X, Y,Z) 

Explanation 

Array reference wi thout array des i gnator. 

Too many arguments in intrinsic function. 

Too many subscri pts in array reference. 



[ xxxxx EXTRA It-l_P_U_T ___ ==:J 
Contents of input record not exhausted when check symbol 
1 *1 encountered. 

[ xxxxx FILE I/o ERROR 
------------' 

Monitor indication of error in attempting to write or read 
on file. 

[ xxxxx FILE NOT OPEN IN PROPER MODE 
------~ 

I/o operation attempted on file which is closed, or open 
in a conflicting mode, on the I/o 5itream in use. 

[ , _____ x_x_xxx FOR-NEXT_E_R_R ___ ==:J 
ME~ssage covers FOR··NEXT errors illustrated below: 

Case 1. Wrong Variable Reference 

FOR A 
NEXT B error 

Case 2. Improperly Sequenced Statements 

FORI 
FOR J 
NEXT I 
NEXT J 

error 
error 

Case 3. No Corresponding FOR Statements 

NEXT A error 

These messages may be compounded as in 

FOR A 
FOR B 
FOR C 
NEXT B 
NEXT C 
NEXT A 

or alternatively 

FOR A 
FOR B 
FOR C 
NEXT B 
NEXT C 

END 

error, FOR C is cancelled 
error, FOR B is cancelled 

error 
error 

error, MISSING NEXTSTMT 

xxxxx HALT 

Normal message at termination of run. 

xxxxx HAS BAD LINE NO. 

A GOTO, GOSUB, IF, ON, PRINTUSING, or RESTORE 
contains a line number having more than five digits. 

xxxxx HSN-HCS OVERFL) 

CP-Vonly. Hyperboli c sine or hyperboli c cosine overflow. 

ILLEGAL 

Illegal editorial type-in. Variety of possible causes. This 
may be a misspelled edit command, aconst too long, illegal 
PROCEED, bad format on RENUMBER, etc. 

ILLEGAL FILE ID 

File name, password, or account identifier too long. 

ILLEGAL INPUT 

Illegal input in off-line mode. (See RETYPE message, 
below, for on-line mode.) 

ILLEGAL INPUT FROM FILE 

Illegal input from a file in on-line or off-line mode. 

xxxxx INCOMPAT DIMS 

Dimensions not compatible in matrix operation. Examples: 
matrix identity or inversion on nonsquare matrix, wrong 
dimensioning for matrix mul tipl ication or addition, etc. 

r-- xxxxx INPUT DATA LOST 
~'---------' 
CP-V only. An input record is too big or has a parity error 
and has been discarded. 

.C, ____ XX_X_X_X __ K_EY __ N __ O_T __ FO __ U_N_D __________ ~ 
A keyed read was attempted on a file not containing a rec
ord with the specified key. 

BASIC Messages 49 



~. xxxxx LINE # ERR ~ 
~-----~----I 
An il.legal line number (>99999) occurred immediately 
after the statement at xxxxx. If the first line is incorrect, 
xxxxx IS zero. 

xxxxx LINE TOO LONG 

A RENUMBER operation has created a source line too long 
for input/output, or more than 85 characters in a line. 

xxxxx LOG OF NON-POS ARG 

The argument in a logarithmic operation is not greater than 
zero. 

xxxxx MISSING ARRAY x 

Not in CP-V. An array was not allocated by the II originat
ing II BAS IC program. (Occurs only in direct-execution 
mode. ) 

MISSING NEXTSTMT 

At least one FOR statement occurred without a matching 
NEXT statement; that is, there were more FORs than 
NEXTs. 

MISSING STEPS 

No list of line numbers was found in a G OTO ••. ON or 
ON ••• G OTO statement. 

MTRX/VEC x 

Not in CP-V. (see ARRAY CLASS CONFLICTllfor CP-V). 
This message indicates conflicting use of array x. 

xxxxx NEG BASE TO NON-INTEGER POWER 

Fractional exponentiation was indicated but the number is 
negative. 

NO DIMSTMT ARRAY x 

An array is used in MAT statement or (CP-V) string state
ments, but not dimensioned. 

NO FILE SPACE 

User's allocation or public storage exhausted. User can de
lete any unwanted files and continue. 

50 BASIC Messages 

NON-EXISTENT LINE # 

In the execution mode, a direct statement references a line 
number that is not in the compiled program. 

xxxxx NON-NUMERIC VAL 

CP-Vonly. A VAL function argument (string expression) does 
not represent a number. 

xxxxx NON-POS DIM 

Run-time error. A zero or negative dimension was en
countered in a matrix operation. 

NO PROGRAM 

The source program does not exist for specified I ines or ranges 
in editing commands. Example: command was LIST la-50, 
but no I ines exist with numbers between 10 and 50. 

NO STMTS 

Source input contained no BASIC statements. (Not used in 
on-line compilations.) 

NOT A DIRECT STMT 

In Batch/BTM BASIC the following statements are not 
allowed for direct execution: 

DATA 
DEF 
DIM 
FOR 
GOTO ••• ON 

Image 
NEXT 
ON 
PRINTUSING 

CP-V BASIC does not allow 

DATA 
DEF 
FOR 

Image 
NEXT 

OLD FILE 

SAVE ON was attempted on an existing closed file. 

xxxxx OUT OF DATA 

Not enough data for INPUT, READ, or GET statements in 
the off-line mode. 



[ xxxxx OUT OF RANGE REF~. TO ARRA~~ 

A matrix operation compiled in the IIsafe ll mode has refer
enced . an index greater than the maximum dimension for 
array x. 

[ 
xxxxx OVERFLOW 

-------------- ,---------------------------~ 

Floating-point overflow. 

[ xxxxx PAREN ERR 

This message indicates a parenthesis imbalance. 

[ POWER OVERFLOW 

Overflow in exponentiation. 

[ XX)(XX PROG TOO BIG 

The program exceeds available memory. (UnderCP-V, try 
FILE PACK and possibly CLEAR arrays and strings to recover 
wasted space.) 

[ ___ R_EC_O_MP FOR DIR ST ABORTED ..=J 
CP-Vonly. An errorwas encounteredduringrecompilation 
for a dependent direc:t statement or EXECUTE n 1-n2. Re
compilation is aborted. 

[ xxxxx RECORD NOT IN -~ET -FORM~ 
An attempt to GET hCls encountered a record not in the 
proper format (see Appendix E). 

[ xxxx RESTORE A NON··DATA LINc:=] 

A RESTORE statement indi cates a I ine other than a DATA line. 

[ xxxxx RESTORE A NON-EXISTENT LI~ 
A RESTORE statement indicates a nonexistent line number. 

[ 
xxxxx RETURN BEFORE GOSUB 

_____ --------l 

A RETURN statement was reached but the return stack is 
empty. Indicates improper nestin9 or branching on 
GOSUB-RETURNs. 

RETYPE 

An input error was encountered in the on-I ine mode. The 
arrow points to the character at which the error was noted. 
Execution is not aborted. Retype input starting at begin
ning of the erroneous datum. Do not type a carriage return 
or line feed before retyping. -----

xxxxx RUN INTERRUPTED 

CP-V on Iy. This message is issued after a "break" (not an 
error condition). 

xxxxx SEC-CSC OVERFL 

CP-Vonly. Secant or cosecant operation overflow. 

xxxxx SHOULD BE DATA STMT 

Line xxxxx was referenced in a READ or RESTORE statement 
but was not a recognizab~DATA statement. 

xxxxx SHOULD BE IMAGE STMT 

Line xxxxx was referenced in a PRINTUSING statement but 
was not a recognizable Image statement. 

xxxxx SINGULAR MATRIX 

An inversion or simultaneous equation solution was at
tempted on a singular matrix. 

xxxxx SQR ROOT OF NEG ARG 

The argument of a square root function is negative. 

xxxxx $TRING EXPR ERR 

CP-Vonly. An incorrectly formatted string expression has 
been detected. 

BAS IC Messages 51 



~xx TOO MANY GOSUBS BEFORE A RETURN 

The return stack for GOSUB-RETURN logic is full and 
a G OSU B has been encountered. 

xxxxx UNABLE TO OPEN xxxxx 

An attempt to open the named file failed. The file is prob
ably not present or has another account number or name. 

52 BASIC Messages 

xxxxx UNDEF FNx 

No DEF statement appeared for user function FNx. 

xxxxx ZERO TO NEG POWER 

An exponentiation operation attempted to raise zero to a 
negative power. 



APPENDIX A. SUMMARY OF BASIC STATEMENTS 

The complete set of BASIC statements is shown below. CapitCiI letters indicate syntax that is required as shown. Lowercase 
letters designate general items. Command parameters enclosed by braces ({}) indicate a required choice. Parameters en
closed by brackets ([]) are optiona I. Ell ipsis marks ( ... ) denote multiple occurrences of the preceding bracketed parameter. 
Unless otherwise noted, "variableI' means either a simple or a subscripted variable. If the initial line number of a statement 
is enclosed by brackets, the statement may be executed direclHy in the on-line mode of operation. 

Statement 

line: [Us and/or characters to 132 maximum] 

[line] CHAIN xname . ipassword:acct 
:acct 

[

i password 1 
:acctipassword 

t[line] CHAIN LINK xname ipassword:acct 
:acct 

[

iPaSSWord 1 
:acct;password 

[line] CHANGE l{~;ri;:} TO letter] 
letter TO string 

line CLOSE I . l:stream ] 

C] {a} [characl'ers to end of Ime] 

[~:]constanJ [ [[ ± ]constan

J
] 

lineDATAaco.nst " aco.nst .•. 
tstnng t tstn ng . 

line DEF FN letter (simple v<lriable[,simple variable] ... ) = expression 

Dine) DIM{:::::;$t} (dimx[;dimx)) [. t:::::;$t} (dimx[.dimx)~ ... 

Dine] END 

[line] E NDFILE:stream, {~i ne } 

line FOR simple variable = expression TO expression [STEP expression] 

[line] GOSUB line 

[line] GOTO line 

t[Jine] GOTO line [,Iine] •.. ON expression 

Dine] IF aconst 
l

expr ] 

~ 
CP-Vonly. 

stringt {

expr } 
aconst THEN . 

operator strexpt {GOTO} Ime 

xstrexpt 

Appendi x A 53 



l] [ :l ] {variable} r {Var.iable}] ... 
line INPUT :stream[;keYJ, stringt L' stnngt 

Dine] INPUT = {$ } 
any other character 

[line] [LET] variable[,variableJ. .. = aconst 
xstrexpt { I expreSSion]l 

string = strexpt 

variable[,variable]. .• = aconst [ { lexpression] l] 
, xstrexpt 

string = strexpt 

Dine] MAT aname = (expression)*aname 

[I i ne ] MAT aname = ana me 

Dine] MAT aname = ana me {±} aname 

[line] MAT aname = aname * ana me 

[line] MAT aname = CON[(dimx~dimx])] 

Dine] MAT ana me = IDN [(d!mx) • J 
(dl mx), any characters to end of line 

[line] MAT aname = INV (aname[,simple variable]) 

Dine] MAT aname = SIM (aname[,simple variable]) 

Dine] MAT aname = TRN (aname) 

Dine] MAT aname = ZER[(dimx~dimxJ)] 

Dine] MAT GET [:stream[;key],] adescr[,adescr] .. . 

Dine] MAT INPUT [:stream[;key],] adescr~adescr] .. . 

Dine] MAT PRINT [:stream[;key],] aname[{;} aname] ... [;] 

Dine] MAT PUT [:stream[;key],] adescr[,adescr] ... 

Dine] MAT READ adescr~adescr] ... 

Dine] MAT SIZE aname(dimxGdimx]) ~aname(dimx~dimx])] ... 

line NEXT simple variable 

t[line] ON expression{~~T~} line~line] ... 

[line] OPEN fileid [,] 

t 
CP-Vonly. 

54 Appendi x A 

o 

TFILE] 



[line] PAGE 

Dine] PAUSE 

[line]{:RINT} [:stream[;key],] [i.XI Slri.ng ] 
, expression 

xstrexpt 

, 
text strin!~ [xstrexp ] 

l . J tt 
{
'} expression xstrexp 
; xstrexp 

{;} expressi on 

Dine] {:RINT} [:stream[;key]/] USING line [l:~;;:;';on)] ... 
, text stn n!~ 

[line] PUT [:stream[;key],] l:::~~::sion) [, l::~~::sion)] " .. 
xstrexpt xstrexpt 

[line] {;EM} [characters to end of line] 

Dine] READ{va~iable} 
stnngt 

[line] RESTORE[line] 

[line] RETURN 

[line] STOP 

t 
CP-Vonly. 

tt .. 
Must not begm with a 1+1. 

r {variable}] L stri n 9t •.• 

Appendi x A 55 



APPENDIX B. SUMMARY OF BASIC COMMANDS 

The BASIC commands are shown below. Capital letters indicate syntax that is required as shown. Lowercase letters 
designate generic items. Command parameters enclosed by braces (II) indicate a required choice. Parameters enclosed by 
brackets ([ ]) are optional. Ell ipsis marks ( ... ) denote mu Itiple occurrences of the preceding bracketed parameter. 

t 

Command 

ACC[OUNT] [name] 

BASOC]t 

t 
BYE 

CAT[ALOGl
t 

[
ARR[A YSJ ] t 

CLE[AR] STR[INGS] 

O ]{ Iine } [{line }] DEL ETE I. I· , I· I· ... Ine
1 

- ,ne
2 

,ne
3 

- ,ne
4 

DEL[ETE]xname 

ENT[ER BASIC] [L] 

EXE [CUTE]t line
1 

[-line
2

] 

O J~line ][ {line }] EXT RACT I. I· , I· I· ... ,ne
1 

- Ine
2 

,ne
3 

- ,ne
4 

FAS [TJ[time] 

FlL[E]~Ac[K]] t 

LIS[T] [line ] [{line }] 
line

1 
- Iine

2 
'line

3 
- line 4 ... 

LOA[D] [xname] 

NAM[E] [xname] 

NU L[L]t [~::~~Y~]s]l 
SIM[VARSiJ 

PAS [SWORD] [name J 

PRO[CEEDJ 

REN[UMBER][line
1Lline

2
[,incr J J] 

CP-V BASIC only. 

56 Appendix B 



t 

Command 

RUN[time] 

SAyrE O]{~ER}xname[::~:l -lineJ [l::~:3 -line)]' .. 
SET{$ = positive integert } 

letter = digits [,Ietter =: digits] ... 

STA[TUS] 

SYS[TEM] 

WEA[VE]t[xname] 

WID[TH]digits 

CP-V BASIC only. 

Appendix B 57 



APPENDIX C. BASIC INTRINSIC FUNCTIONS 

Function Result 

SIN(arg) Calculates sine of argument in radians. 

COS(arg) Calculates cosine of argument in radians. 

TAN(arg) Calculates tangent of argument in radians. 

ATN(arg) Calculates arctangent of unitless argument in radians. 

EXP( arg) C I I . If' h' (argument) a cu ates exponentla unctions, t at IS e . 

ABS(arg) Calculates absolute value of argument. 

LOG(arg) Calculates natural logarithm (base e) of the argument. 

LGT(arg) Calculates common logarithm (base 10) of the argument. 

SQR(arg) Calcu lates square root of argument. 

INT(arg) Acquires the integer part of the argument, that is, the greatest integer that is less than or equal to the 

argument. 

SGN(arg) Identifies algebraic sign of argument, and produces a -1 for negative arguments, a 0 for 0, and a +1 
for positive arguments. 

RND(arg) Produces, for each call, the next element of a sequence of uniformly distributed random numbers that are 
greater than 0 but less than 1. If arg is 0 for the first RND call of a program, the identi cal sequence of 
random numbers wi II be generated if the program is rerun and arg is not changed. Otherwise, an unre-
peatab I e sequence wi II be generated. 

DAY(arg) Suppl ies the calendar day. If the argument is 0, the BTM output form is mm/dd (as in 03/07 for March 7) 
and the BPMand CP-Voutputform is mon/dd (as in MAR 07). If the argument is nonzero, the output form 
is a floating-point number whose integer part represents the month, and whose fractional part represents 
the day of the month divided by 100. For example, 3. 07EO represents March 7. 

TIM(arg) Supplies the time of day. If the argument is 0, the output form is hh:mm, as in 15:09. If the argument is 
nonzero, the output form is a floating-point number whose integer part represents the hour and whose 
fractional part represents the minutes divided by 60. For exampl e, 15. 15EO represents 3:09 PM. 

YER(arg) Supplies the year. If the argument is 0, the output form is 19yy, as in 1969. If the argument is nonzero, 
the output form is a floating-point number whose value is equal to the year, as in 1969.0EO. 

MAX(arg ) 
n 

Returns the maximum value in the list of arguments. 

MIN(arg ) 
n 

Returns the minimum value in the list of arguments. 

TAB(arg) Advances the print device to the column designated by the argument, and shou Id only be used in a PRINT 
statement. TAB cannot be used to backspace the print device. 

PRC(arg) Specifies the number of significant digits in printed output, and is used only in a PRINT statement. An 
argument of 0 specifies 6-significant-digit output format, and a nonzero argument specifies 16-
significant-digit output. 

58 Appendix C 



The following functions are in CP-V BASIC only. 

Function Result 

esc (arg) Calculates cosecant of an argument in radians. Overflow results in an error message and termination of 
execution. 

SEC(arg) Calculates secant of an argument in radians. Overflow results in an error message and termination of 
execution. 

COT(arg) Calculates cotangent of an argument in rCldians. Overflow results in an error message and termination 
of execution. 

ASN(arg) Calculates arcsine of a unitless argument, in radians. If the absolute value of the argument is greater 
than 1. 0, an error message is printed and execution is terminated. Resolution of results is restricted to 
the two quadrants from - TT/2 to TT/2. 

ACS(arg) Calculates the arccosine of a unitless argument, in radians. If the absolute value of the argument is 
greater than 1.0, an error message is printed and execution is terminated. Resolution of results is re-
stricted to the· two quadrants from ° to TT" 

-

HSN(arg) Calculates hyperbolic sine of an argument. Overflow results in an error message and termination of 
execution. 

HCS(arg) Calculates hyperbolic cosine of an argument. Overflow results in an error message and termination of 
execution. 

HTN(arg) Calculates hyperbolic tangent of an argument. 

L TW(arg) Calculates logarithm, base two, of an argument. 

DEG(arg) Converts argument from radians to degrees .. 

RAD(arg) Converts argument from degrees to radians. 

LE N (strexp) Returns currenl' number of characters in string expression, as floating-poi nt number. 
-

V AL(strexp) Returns numeri c value of string expression as floating-point value. Error exit if string expression not numeri c. 
-

STR(expression Converts numef'ic value of expression to string format. Optional rstring argument permits speci fie format-
[, rstringJ) tinge If second argument is not used, standard print output format is used. 

KEY(arg) Returns the value of the key most recently c:lccessed on the I/O stream specified by the argument. 

Appendix C 59 



APPENDIX D. SUMMARY OF BASIC OPERATING PROCEDURES 

BASIC is always running in one of three modes; edit, 
compile, or execute. Compile is a transitory mode, leading 
directly to execution, if successfu I, or to edit, if fai lure 
occurs. In on-I ine operation, transition from mode to mode 
may occur frequently because of operator actions. 

The variable context of principal interest during BASIC op
erations includes source text, object code, array and string 
storage, DATA list pointing control, GOSUB-RETURN status 
control, printer line width control, output precision control, 
runfi Ie identification parameters, parametric dimensioning, 
and maximum string length. 

The I ists below present a summary of the effects of operator 
action (command and statement input) on operating mode 
and context. 

GROUP 1 

The following commands do not change operating mode and 
affect context only as the individual command explicitly 
indicates: 

BASIC No context change. 

CATALOG No context change. 

LIST No context change. 

STATUS No context change. 

WIDTH Set printer width. 

ENTER BASIC Set output precision control. 

NAME Runfi Ie identification. 

ACCOUNT Runfi Ie identifi cation. 

PASSWORD Runfi Ie identification. 

SAVE (ON or OVER) Generates text output fi Ie. 

FILE (not FILE PACK) Outputs runfi Ie. 

NULL (any option) Zeros selected context. 

DELETE xname Deletes named fi Ie. 

GROUP 2 
Input of any of the following commands leaves BASIC in 
edit mode, requiring recompilation or normal compilation 
of object code before subsequent execution. If a Group 2 
command is input while in execution mode, DATA list 

60 Appendix D 

pointing control and GOSUB-RETURN status are saVf 
Other context is modified as indicated. 

DELETE Removes line from active use. 

EXTRACT Removes program except spec
ified I ine(s). 

Line insertion Adds line to active use. 

FILE PACK Releases storage of deleted 
lines. 

LOAD (while in edit Acts as series of line 
mode) or WEAVE insertions. 

CLEAR ARRAYS or 
STRINGS 

SET 

Re I eases storage. 

Sets parametric dimensioning 
letter, or maximum string 
length. 

GROUP 3 

Input of any of the following commands leaves BASIC in 
edit mode and requires normal compilation of object code 
before subsequent execution. Context of DATA list point
ing and GOSUB-RETURN control is set to initial conditions. 
Other context is modified as indicated. 

LOAD (while in 
execute mode) 

CLEAR 

RENUMBER 

New text. 

Clears arrays, strings, text, 
and object code. 

Generates output file of text, 
does CLEAR, and loads num
bered text. 

GROUP 4 

Input of either FAST or RUN initiates normal compilation 
of object code from the current program text. Compi lation 
is in fast or safety mode as indicated. In addition to object 
code generation, string-array space is reallocated, but con
text is saved, as possible, where indicated by new absolute 
dimensioning. 

If errors occur during compilation, messages are generated 
and object code generation is aborted, as is array-string 
storage rea Ilocation. Return is in the edi t mode, as per 
Group 3. 

If no errors occur, execution is initiated at start of program 
with DATA list pointing and GOSUB-RETURN control 
initialized. 



DIRECT STATIEMENTS 

There are three cotegories of direct statements, in terms of 
operational impact:: DIM statements, statements with in
cluded line-number references, (::md statementswith no line
number references. 

DIM, as a direct statement, causes updating of storage re
quirements for armys and strings and returns control in edit 
mode. Rules for command Group 2 apply. 

Direct statements without line references are compi led and 
executed independently of other program text or object 
code. If errors occur, messages ore output and execution 
is aborted. Control is returned to console in same mode as 
before input of direct statement. 

Direct statements with line references require presence of 
object code. If mode at input is execute, the direct state
ment is compi led and executed. If mode is edit, recompi la
tion of program is initiated. Compilation is aborted by any 
error, in which case return is in 13dit mode. If recompila
tion is successfu I, direct statement is compi led and exe
cuted. Return to console is in execute mode. 

ON-LINE VERIFII[:ATION 

On-line verification is a general term for various functions 
that may be performed in checking out and debugging a 
program. The following example~; are typical: 

>GO TO 35 

>PRINT A(l, 1), 
A(1,2),A(5,5) 

>LET A1 = 12.5 
>GO TO 20 

Branch to a desired statement 
within a program and proceed 
with execution. 

Verify assignment of values in an 
array. 

Modify a value then continue at 
selected point. 

Under CP-V, any VCJlid BASIC stah3ment, except for DATA, 
DEF, Image, FOR, or NEXT, may be typed without a leading 
line number. This will indicate that the statement should 
be executed immediately. 

In BTM BASIC, thEl statements DATA, DEF, DIM, Image, 
FOR, NEXT, GOTO .•• ON, and ON •.. GOTO, may 
not be direct. 

Under BTM, when in the editing mode, attempted use of the 
direct statement capability will result in the error message 

RUN? ILLEGAL 

DESK CALCULATOR MODE 

InCP-VBASIC, the desk calculator mode can be entered. 
from the editing mode simply by typing direct statements. 

In BTM BASIC, the programmer enters the desk calculator 
mode by giving a CLEAR command followed by RUN or FAST. 

The desk-calculator mode uses the computer in the simplest 
and most direct manner, working without a stored program 
or stored data. The problem to be solved is usually com
bined with a PRINT statement, preceded if necessary by a 
LET or another form of an assign statement. Typical exam
ples of BASIC in the desk-calculator mode are 

>PRINT 1.085 3.6 

>PRINT SQR (12 * 12 + 15 * 15) 

>PRINT LOG(SIN (5.12)) 

>PRINT SQR (87) 

PROCEED 

PROCEED is a command to return to an interrupted activity 
(see Chapter 4). Three responses are possible: (1) immedi
ate return to interrupt point, (2) recompile and return to 
IInext statement ll

, or (3) indicate ILLEGAL and return to 
console in edit mode. The response depends on the cate
gories of commands that have been input since the interrupt. 
In general, PROCEED is legal only if execution of a pro
gram has been interrupted; it always term inates the interrupt 
state. If any Group 3 or 4 commands have been input since 
BREAK key activation, PROCEED is illegal. 

If Group 2 commands have been input since BREAK key ac
tivation, and PROCEED is legal, recompilation is initiated. 
Errors during recompi lation cause error message generation, 
abort object code generation and array-string storage re
allocation, and cause return to console in edit mode. If 
recompilation is successful, execution is initiated at the 
IInext statement ll of the interrupted and modified program. 

If only Group 1 commands have been input since BREAK key 
activation, PROCEED causes return to the interrupted 
activity. 

BREAK-PROCEED LOGIC 

In Batch/BTM BASIC, BREAK may interrupt execution at any 
point, but PROCEED resumes execution only if intervening 
console actions have not modified object code. In CP-V 
BASIC, only C LEAR, LOAD, or RENUMBER, or fai lure to 
correct a diagnosed error prohibit PROCEED from resuming 
execution following a BREAK. 

If a BREAK occurs during execution of a statement, that 
statement is fully executed and the line number of the next 
statement to be executed is saved before user is given con
sole control. PROCEED then returns to the saved I ine num
ber. If tha t line has been ed i ted out or is not an executab I e 
statement, execution resumes at the next executable line. 
If a BREAK occurs in response to an input statement (after 
a ? prompt character), execution is halted. 

Append ix D 61 



APPENDIX E. FORMAT OF BINARY DATA FILES FOR PUT AND GET OPERATIONS 

The PUT and MAT PUT operations in BASIC create data 
files in the internal format described in Table 3 with a 
physical record size of 120 bytes. 

Table 3. Internal Format of Data Files 

Byte Coding Meaning 

0 X'3C' Phys i ca I record. 

Table 3. Internal Format of Data Fil'es (cont.) 

Byte Coding Meaning 

n+2 X'BD' 

n~3,n+4 Physical In numerical order, 
record number from O. 

1 Checksum Sum of bytes in record, no t Normally a record contains 112noncontrol bytes (14floating
point values or aconsts). The last record in a fi Ie may con
tain fewer used bytes but still contains 120 total bytes. The 
control word - bytes n+ 1 to n+4 - is repeated in this case as 
bytes 116 to 1 19. 

counting checksum byte. 

2,3 Record size Number of bytes used 
(120 or less), including 
contro I bytes. 

4 .•. n Data Either doubleword 
floating-point or aconst 
doubleword or: both. 

n+1 X'3C' End of phys i ca I or 
logical record. 

KEY= X'001000' 

00000 3C090078 
00004 00000000 
00008 00000000 
OOOOC 00000000 
00010 00000000 
00014 00000000 

. 00018 00000000 

. 0001C 00000000 

KEY= X'002000' 

00000 3CA60070 
00004 00000000 
00008 00000000 
OOOOC 00000000 
00010 C9D1D2D3 
00014 E4E5E6E7 
00018 F3F4F5F6 
0001C 00000000 

Figure 7. 

62 Appendix E 

120 

41100000 

41300000 
41500000 
41700000 
41900000 
00000000 
41800000 
3CBDOOOO 

120 

41600000 
41400000 
41200000 
0001C1C2 
0001D4D5 
0001E8E9 
0001F7F8 
3CBDOO01 

Figure 7 shows a file containing three records of numeric 
and aconst data, with the record contents given in hexa
decimal format. The values were created with the program 
shown in Figure 8. In Figure 7, the value 1 occupies words 1 
and 2 of record 1000, the aconst ABCDEF occupies words 13 
and 14 of record 2000, and the aconst 7890 occupi es words 25 
and 26 of the same record but followed in word 27 byanend
of-record control word forced there by the flush operation. 

BYTES 

00000000 41200000 
00000000 41400000 
00000000 41600000 
00000000 41800000 
00000000 00000000 
00000000 41900000 
00000000 41700000 

BYTES 

00000000 41500000 
00000000 41300000 
00000000 41100000 
C3C4C5C6 0001C7C8 
D6D7D8D9 0001E2E3 
00000000 0001F1F2 
F9FOOOOO 3CBDOO01 

Contents of Sample Fi Ie 



--------

KEY= X'003000' 120 BYTES 

00000 3C030028 41100000 00000000 
00004 00000000 41300000 00000000 
00008 00000000 3CBDOO02 00000000 
OOOOC 00000000 0001C1C2 C3C4C5C6 
00010 C9D1D2D3 0001D4D5 D6D7D8D9 
00014 E4E5E6E7 0001E8E9 00000000 
00018 F3F4F5F6 0001F7F8 F9FOOOOO 
0001C 00000000 3CBDOOO2 

Figure 7. Contents of Sample Fi Ie (cont.) 

100 OPEN 'PUT',O 
110 PUT 1,2,3,4,5,6,7,8,9,0 
120 PUT 0,9,8,7,6,5,4,3,2,1 

41200000 
41400000 
41100000 
0001C7C8 
0001E2E3 
0001F1F2 
3CBDOO01 

l30 PUT 'ABCDEF',' GH IJKL' , 'HNOPQR ' , , STUVWX' , 'YZ ' 
140 PUT '123456', '7890' 
150 PUY'>'d-
160 PUT 1,2,3,4,** 
170 CLOSE 0 
180 END 

Figure 8. Program Used to Generate Figure 7 

Appendix E 63 



APPENDIX F. I/O CONTROL 

Source statements and INPUT (except INPUT :stream) data 
is read via M:SI. Data output produced by LIST and PRINT 
(except PRINT :stream) is written via M:SL. These DCBs 
are normally defaulted to the terminal in the on-line mode. 

BASIC will not honor assignments to or from magnetic tape. 

If M:SI or M:SL has been assigned by a CP-V SET command 
(on-line) or !ASSIGN (off-line) the source input or list 
output will be modified accordingly. It is generally inad
visable to alter these I/O assignments. 

Normal DCB assignments are shown in Table4. Anex,-, .,;e 
of using SET to assign a DCB is 

! SET M:SL/FILE6 

The above SET command given before calling BASIC causes 
LIST or PRINT output to be assigned to FILE6. 

Since BASIC expects an I/o stream to be expl ici tly opened 
to a file specified in an OPEN statement, it is not possible 
to SET any of the four DCBs used for stream I/o before 
calling BASIC. 

Table 4. Normal DCB Assignments 

Monitor DCB Definition Assignment 

CP-V & BPM M:SI Source Input Users Conso Ie or Card Reader 
M:EI Stream 1 File 
M:EO Stream 2 File 
M:CI Stream 3 File 
M:LO Stream 4 File 
M:DO Diagnosti c Output Users Console or Line Printer 
M:SO Source Output (Save, File, Load. Renumber) File 
M:SL List/Print Output Users Console or Line Printer 

BTM M:EO Stream 1 File 
M:EI Stream 2 File 
M:CI Stream 3 File 
M:SO Source Output (Save, File, Load, Renumber) File 

64 Appendi x F 



APPENDIX G. BASIC CONCORDANCE PROGRAM 

The-BASIC Concordance program takes any BASIC source 
program and produces a listing of th4~ following items along 
with the line numbers on which they are used: 

1. Line number refelrences 

2. User-defined functions 

3. Arrays 

4. Strings 

5. Simple variables 

For each use of one of these items, the concordance output 
will contain an entry of the line number of the use. Thus, 
multiple appearances of a line number may occur for a 
single item in the output. 

The program does not discriminate between string scalars 
and string arrays, but rather classifies both as strings. 
(Note that the same letter ca nnot be used as both a stri ng 
scalar and a string array, thus no confusion can result.) The 
program does discrimi nate between nonstring arrays and 
simple variables with the same name, since these are two 
different entities. 

Dummy arguments in user-defined function definitions are 
not displayed, in order to prevent confusion between these 
dummies and normal simple variables of the same name. 

The source language for the Concordance program is Xerox 
Extended FORTRAN IV. It existsas one program containing 
the main program and seven internal subprograms. The 
source deck must be compiled into a relocatable object 
module (ROM). The ROM must then be linked to form a 
load module. During the I inking process, a record for the 
DCB F: 1 must appear in the assign/merge record for the 
log·-on account. This can be accomplished by using the 
!SET command (if on-line) or the !ASSIGN command (if in 
batch) for F: 1 prior to the LINK command. 

To IJse the program, the user must sel' or assign F: 1 to indi
cate the location of the BASIC source program to be used 
as input. This may be a file on disk or labeled magnetic 
tape or any input device capable of transmitting a BASIC 
source program. After setting F: 1, the load module created 
by the linking process is invoked. Output will appear on 
the default destination for M:LO. If the user wishes to di
vert' the output, he mCIY do so by sett'j ng or assigning F: 108 
prior to invoking the load module. 

At the completion of processing, the following terminal mes
sage wi II be output: 

*STOP* 1 

The program expects as input a BASIC source program that 
can be compiled by the Xerox BASIC compiler supplied with 

either CP-V or B TM with error diagnosis. Certain errors that 
would be detected by those compilers are also detected by 
the Concordance program. If such is the case, the output 
line will be preceded by the message 

ILLEGAL SYNTAX ON LINE XXX 

where xxx is the sequential record number of the line in 
question in the input file. 

Certain other syntactic errors that would be diagnosed by 
the compiler are not detected by the Concordance program 
and may cause extraneous entries in the output. 

If an irrecoverable read error occurs in processing the input, 
the following message wi II be output: 

IRRECOVERABLE READ ERROR ON LINE XXX 

where xxx is as described above. 

Example: 

!FORT4 SOURCE ON BO 
OPTIONS> NS 
!SET F:l 
!LINK BO ON BACON 
! SET F: 1 PROG 
!BACON. 

The first and second I ines of the above example cause 
compi lation of the concordance program from the fi Ie 
SOURCE, previously created by a batch job (see the BPM/ 
BP,RT Reference Manual, 900954). Next, the F:1 DCB 
is set into the assign/merge record. The load module 
BACON is then formed by the !LINK command, using the 
file BO (created by the FORTRAN compilation) as input. 
The user may then assign F: 1 to any BASIC program fi Ie 
(e. g., PROG) by use of a lSET command (on-I ine) or 
!ASSIGN command (off-line). The concordance program 
is then executed by giving the command !BACON. This is 
followed by a concordance listing such as the one shown 
below. Note that the linking process need be done only 
once, but F: 1 must be reassigned each time that a new con
cordance is to be produced. 

LINg NUHBER REFERENCES 

8: Lf2 44 
66: 6 54 62 

USER DEFINE FUNCTIONS 
NONE 

ARRAYS 
NONE 

STRINGS 
NONE 

Appendix G 65 



STlJIlLE VARIABLES 

A: 12 14 
[: 2 8 

22 24 
X: 37 
A1 : 3 3 

*STOP* 1 

66 Appendix G 

14 
20 20 

5 5 

20 20 

7 

The BASIC Concordance program can be run as an executing 
Extended FORT RAN IV program in any Xerox operating system 
that contains the Xerox Extended FORTRAN IV processor. 

A source deck (-34 element) and binary relocatable deck 
(-24 element) of the BASIC concordance are avai lable 
from the Xerox Software Library (Catalog No. 706292). 



APPENDIX H. EBCDIC CHARACTER CODES 

r-' 

EBCDIC 
Value Character Meaning Remarks 

0 NUL null o through 31 are control codes. 
1 SOH start of header On 2741 terminals, SOH is PRE. 
2 STX start of text On 2741 terminals, STX is BY. 
3 ETX end of text On 2741 terminals, ETX is RES. 
4 EaT end of transmission On 2741 terminals, E aT is ATTN. 
5 HT horizontal tab 0,6,7,9-11 and 14-15 are idles for 

2741 terminals. 
6 ACK acknowledge (positive) 
7 BEL bell 
8 BS or EOM backspace or end of message EOM is used only on Xerox Keyboard/ 
9 ENQ enquiry Printers Models 7012,7020,8091, 

10 NAK negative acknowledge and 8092. 
11 VT vertica I tab 
12 FF form feed 
13 CR carriage return CR outputs CR and LF. 
14 SO shift out 
15 SI shift in 

16 DLE data I ink escape 
17 DCl device control 1 On Teletype terminals, DCl is X-ON. 
18 DC2 device control 2 On 2741 terminals, DC2 is PN. 
19 DC3 devi ce control 3 DC3 is RS on 2741s, X-OFF on Teletypes. 
20 DC4 device control 4 On 2741 terminals, DC4 is PF. 
21 LF or NL line feed or new line LF outputs CR and LF. 
22 SYN sync 
23 ETB end of t'ransmission block On 2741 terminals, ETB is EOB. 
24 CAN cancel 
25 EM end of medium 
26 SUB substitute Replaces characters with parity error. 
27 ESC escape 
28 FS fi I e separator 16, 17,22,24,25, and 27-30 are idles for 
29 GS group separator 2741 terminals. 
30 RS record separator 
31 US unit separator 

32 LF only I ine feed only 32 throug h 47 are used for output on I y. 
33 FS These codes are dupl i cates of the labe I 
34 GS entries that caused activation. These 
35 RS entries output a single code only and 
36 US are not affected by any special func-
37 EM tional processing 
38 / 
39 t 
40 = 
41 CR only carriage return on I y 
42 IE aT 
43 IBS 
44 ) 
45 HT tab code only 
46 ILF only line feed only 
47 SUB 

48 ESC F end of file 48 through 63 cause specia I functions 
49 CANCEL delete all input and output to be performed. 

1 50 ESC X del ete input line 

Appendix H 67 



EBCDIC 
Value Character Meaning Remarks 

51 ESC P toggle half-duplex paper tape mode 
52 ESC U togg Ie restri ct upper case 
53 ESC ( upper case shift 
54 ESC) lower case shift 
55 ESC T toggle tab simulation mode 
56 ESC S toggle space insertion mode 
57 ESC E toggle echo mode 
58 ESC C toggle tab relative mode 
59 ESC LF I ine continuation 59 toggles the backspace edit mode for 
60 X-ON start paper tape 2741 terminals. 
61 X-OFF stop paper tape 
62 ESC R retype 
63 ESC CR I ine continuation 

64 SP blank 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 ¢ or' cent or accent grave Accent grave used for left single quote. 
75 period On Model 7670, \ notavailable, and 
76 < less than i = 180. 
77 ( left parenthesis 
78 + plus 
79 lor: vertical or broken bar On Model 7670, : notavailable, and ! = 90. 

80 & ampersand 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 ! exclamation point On Model 7670, ! is I • 
91 $ dollars 
92 * asterisk 
93 ) right parenthesis 
94 ; semicolon 
95 ~or-' tilde or logical not On Model 7670, ~ is not available, 

and. = 106. 
96 - minus, dash, hyphen 
97 / slash 
98 
99 

100 
101 
102 
103 
104 
105 

68 Appendix H 



EBCDIC 
Value Character Meaning Remarks 

106 circumflex On Model 7670 A is,. On Model 7015 
107 , comma A is " (caret). 
108 % percent 
109 - underl ine Underline is sometimes called "break 
110 > greater than character"; may be printed along 
111 ? question mark bottom of character line. 

112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 colon 
123 # number 
124 @ at 
125 I apostrophe (single quote) 
126 = equals 
127 " quotation mark 

128 
129 a 
130 b 
131 c 
132 d 
133 e 
134 f 
135 g 
136 h 
137 i 
138 
139 
140 
141 
142 
143 

144 
145 j 
146 k 
147 I 
148 m 
149 n 
150 0 

151 p 
152 q 
153 r 
154 
155 
156 
157 
158 
159 
160 
161 _. 

Appendix H 69 



EBCDIC 
Value Character Meaning Remarks 

162 s 
163 t 
164 u 
165 v 

166 w 

167 x 

168 y 
169 z 
170 
171 
172 
173 
174 
175 I logical and 

176 
177 \ backslash 
178 { left brace On 2741 terminals,{ is output as (. 
179 i right brace On 2741 terminals,} is output as ). 
180 [ left bracket On Model 7670,[is ~. OnModeI7015,[is I. 
181 ] right bracket On Model 7670,] is I. On Model 7015,] is •. 
182 
183 
184 
185 
186 
187 
188 [ I eft bracket 
189 ] right bracket 
190 lost date lost data 
191 -, logical not 

192 SP blank Output only. 
193 A 
194 B 
195 C 
196 D 
197 E 
198 F 
199 G 
200 H 
201 I 
202 
203 
204 
205 
206 
207 

208 
209 J 
210 K 
211 L 
212 M 
213 N 
214 0 
215 P 
216 Q 

217 R 

70 Appendix H 



EBCDIC 
Value Character Meaning Remarks 

218 
219 
220 
221 
222 
223 

224 - minus Output only. 
225 
226 S 
227 T 
228 U 
229 V 
230 W 
231 X 
232 y 
233 Z 
234 
235 
236 
237 
238 
239 

240 a 
241 1 
242 2 
243 3 
244 4 
245 5 
246 6 
247 7 
248 8 
249 9 
250 
251 
252 
253 
254 
255 

Appendix H 71 



APPENDIX I. SAMPLE BASIC PROGRAMS 

This a?pendix contains sample programs of varying degrees 
of complexity, showing a few of the many possible appli
cations of Xerox BASIC. The reader may find it helpful to 
consider alternative methods or other applications of the 
techniques used in these programs. 

SNOWFLAKE SIMULATION 

The program shown in Figure 9 simulates the almost infin
ite variety of geometric forms assumed by snowflakes. Each 
"flake" is formed by adding random accretions adjacent to 
two radii approximately 60 degrees apart in a square matrix. 
A second sector is formed by "rotati ng" the first one clock
wise by 60 degrees and the pattern is then replicated in 
the remaining quadrants of the matrix. The contents of the 
matrix are then printed, with an asterisk representing the 
value 1. The BREAK key is used to stop the snowstorm. 

WORD GUESSING GAME (CP-V) 

The program shown in Figure 10 picks a word at random 
from a previously created file named WORDS. Such a file 
is easily built using the Edit subsystem; see the Edit BUILD 
command in the CP-V ITS Reference tv\anual 90 09 07. 
The terminal user attempts to guess what word has been 
chosen. Any letters guessed correctly are printed by the 
program, until the entire word is typed correctly by the user. 
It should be easy to think of ways to make the game more 
interesting. 

LOAN INTEREST CALCULATION (CP-V) 

This program, shown in Figure 11, calculates monthly pay
ments for loans made at a given rate of interest and repaid 
over a specified time period. Note that the printing of the 
initial explanatory information isomitted if the user simply 
gives a carriage return following the first prompt (see lines 
100-140). The user is requested to type values for princi
pal, monthly payment, interest rate, and total number of 
months. If one of these parameters is entered as zero, 
its value is calculated from the other three. 

CELLULAR AUTOMATA 

The program shown in Figure 12 demonstrates the behavior 
of a type of cellular automata. Such automata are rep
resented by using numeric values to simulate the states of 

72 Appendix I 

"cells" in a regular geometric patternsuchasa grid of unit 
squares. The automata simulated by this program we' 
devised by mathematician John Horton Conway and described 
by tv\artin Gardner in the October, 1970 issue of Scientific 
American magazine. 

In this simulation, a cell is either "al ive" or "dead". Living 
cells are displayed by printing an asterisk and dead cells 
are shown as blanks. Each cell has a neighborhood com
prising 8 contiguous cells (4 orthogonal and 4 diagonal). A 
dead cell becomes alive onlyifithas exactly 3livingneigh
bors, and a living cell remains alive only if it has either 
2 or 3 living neighbors. All changes in state are considered 
to occur simultaneously throughout the entire grid. Each 
successive configuration is called a "generation". 

The terminal user defines the initial configuration by typing 
the X, Y coordinates of all I iving cells (e. g., 1,1 2,1 3,1 
4,1 5,1 or 1,1 2,1 2,2 2,3 3,2). The program then appl i es 
the transition rules for each generation and displays the re
sult. The BREAK key is used to halt the program. 

This program stores the X, Y coordinates of all living cells 
as a "sparse matrix", to reduce array storage requirements, 
and the display is automatically positioned to minimize the 
printing of blank lines or columns. 

MAGIC SQUARES 

The program shown in Figure 13 generates and displays 
"magic squares" of odd order, by a method attributed to 
Bachet de Meziriac. Using this method, integers 1 through 
N**2 are arranged in N diagonal rows. This diamond
shaped pattern is then transformed into a square array by 
converting row and column coordinates to 'their residues 
modulo N. The result is a magic square of order N in which 
the summation of each of the columns, rows, and main di
agonals is equal to (N**3+N)/2. 

ARITHMETIC COMBINATIONS 

This program, shown in Figure 14, shows the various ways 
in which positive integers can be added to form a given 
sum. Note that combinations such as 1+2 and 2+ 1 are not 
considered identical, although the program can easily be 
modified to treat such combinations as being the same. 



100 0 I M A (63,53) & ,':SET PO I NT PROBAB I LI TY DENS lTY 
120 P==Ri\lO (1) 12+.1 & r1AT A=ZER & ,'(SET FL,AJ<E SIZE 
150 FOR R=2,'( I NT (RND (1) ,',10+ 1) TO 32 STEP 2 & "(BU I LD TWO R,A[) I I 
170 A (Fi,R/2+15) ,A (R,48-R/2) =1 & NEXT R & '''(BUILD ACCRETIONS 
200 FOR R=2 TO 30 STEP 2 & FOR C=R/2+2 TO 32 & IF A(R,C-2)=0 THEN 250 
230 I F R~~D (1) <P THEN 250 & A (R, C) , A (R, 54-C) =1 
2S0 NEXT C & NEXT R & ,'(ROTATE SECTOR 50 DEGREES 
230 FOR R=2 TO 30 STEP 2 & FOR C=18+R/2 TO 48-R/2 STEP 2 & IF A(R,C) =0 THEN 320 
310 A(R+C-R/2-15,49-R/2+.5*(C-(18+R/~))=1 
:~Q() NE/(T C & NEXT R & ,',REPLICATE QU,A[)RANT 
::::50 FOF~ R=2 TO 32 STEP 2 & FOR C=32 TO 52 & IF A(R,C) .. O THEN 390 
2S() A(54-R,C) ,A(54-R,54-C) ,A(R,54-C) =1 
= 30 ~JE XT C & NE XT R & ; & ,':PR I NT FL,AJ<E 
430 FOR R=2 TO 52 STEP 2 & F=O & FOR C=2 TO 52 & IF A(R,C) =0 THEN 490 & F=1 
480 ; TAB (C) 11,'(" TAB (0) 
480 NEXT C & IF F.=O THEN 520 & ; 
520 NEXT R & ; & ; & ; & GOTO 120 

Figure 9. Snowflake Simulation 

100 OPEN "WORDS" TO :1, INPUT & ENDFILE:l!,130 & INPUT :1;9999.999,K 
130 K=I<EY (1) 
140 INPUT : 1; INT (RND (1) ,'(K+ll ,R$ & R=LEN (R~») 
150 ; II I'M TH I NK I NG OF A" R II -LETTER WORD. II 8 ;" WHAT DO YOU TH I NK IT I S II ; 

180 INPUT G$ & IF G$=R$ THEN 340 & G-LEN(G$) & ON SGN(G-R)+2 GOTO 220, 270, 240 
220 ;" TOO SHORT,"; & GO TO 250 
240 ; "TOO LONG,"; 
250 ; "TRY AGAIN II

; & GOTO 180 
270 FOR I = 1 TO G & IF G$ (: I , 1) =R$ (: I , 1) THEN 300 & G$ (: I , 1) • I - ' 

300 NEXT I & ; "YOU GOT THESE RIGHT: II; & ;G$ & GOTO 250 
340 ; "THAT'S RIGHT! II; & ; "WOULD YOU LIKE TO TRY ANOTHER"; & INPUT A$ 
370 IF A$ (: 1, 1) .. "Y II THEN 140 & ; "THANKS FOR PLAYING THE GAME ••• " & ; 

Figure 10. Word Guc~ssing Game (CP-V) 

Appendix I 73 



100 ; & ; 'EXPLAIN'; & INPUT A$ & IF A$(:l,U='Y' THEN 160 
140 IF A$(:l,ll='y' THEN 160 & GOTO 310 
15() ; 'The value of any variable typed as zero l.Ji II be calculated,' 
170 ; 'using the other three inputs to obtain the result. Type all' 
lEO; 'non-numer'ic inputs as either YES or NO. If no variable is' 
ISO;' input as zero, a schedule wi II be printed. If a yearly' 
200 ; 'schedule is wanted, you may have the interest calculated for' 
210 ;' the tax year or for any other 12-month period. Respond to' 
220 ; 'the question "MONTH STARTED" by typing the number (l to 12)' 
230 ;' for the month of the first payment. To obtain a cumulative' 
240 ; '12-month schedule, respond by typing the value 1.' & ; 
250 .', S-=SCHEDULE 
270 .', P=PRINCIPAL 
280 ,'. M=~10NTHLY PAYMENT 
2S0 .'. I=INTEREST PER YEAR (e.g., 6 and 112 percent is 6.S) 
300 .', N=NUMBER OF MONTHS 
310 ; & ;' PR I NC I P AL= '; & INPUT P & ;' MONTHL Y PAYMENT = '; & INPUT M 
~GO ; 'ANNUAL INTEREST RATE='; & INPUT I & I=INT(I*lE4/12+.S)/lE6 
330 ;' NO. OF MONTHS='; & INPUT N & IF P=O GO TO 570 & IF M=O GO TO 620 
4:':;\} I F 1=0 GOTO 570 & IF N=O GO TO 460 & GOTO 830 
4ED N1 = (LOG(M) -LOG(M-P*I)) /LOG(l+I) & N=INT(N1+.99) & ; 
480 ;USING 500,N 
C:.t)() :~~O. OF MONTHS = tItItI 
510 12=M*N1-P & T1=I2+P & ; & ;USING SSO,I2,P,T1 
550 :TOT INT = tltItItItI.tItI TOT PRIN = tltItItItI.tItI TOTAL = tltItI##tI.## 
SSO GOTO 770 
~,70 P=M:': ( (1+1) ~':-:'N-1) / ((1+I) ",~"N~'(I1 & ; & ;USING 600,P 
COO :PRINCIPAL '" $#tltI#tI.tItI 
GI0 GOTO 770 
G20 ,'1= I NT ( (P~'( (1+ II ,'o':N": II ( (1+ II )'o':N-11 +. OOS) )'(100) !l00 & 
640 ;USING 650,M 
650 :PAYMENT == $tltltI.tItI 
GGO GOTD 770 
G70 1=23*(N*M-P)/ (N*P)/12 & FOR U=l TO S 
GSO 11= ((1+1) ~'(~':N~':I1 / ((I+U ':,":N-U - (M/P) 
700 12=((I+1)**(2*N)-(I+ll**N-I*N*(1+1)**(N-1))/((1+1)**N-1)**2 
710 13=1-11112 & 1=13 & NEXT U & ; & ;USING 760,1)'(1200 
750 :ANNUAL INTEREST = tI#,tI#% 
770 ; & ; 'SCHEDULE'; & INPUT S$ & IF S$(:l,l)='Y' THEN 830 
810 IF S$(:1,1)='y' THEN 830 & GO TO 1410 
830 A=1, 12=0,13=O,L=36,L1=0,L2=1,P1=0,P2=0,P3=0,P8='MONTH',T1=0 
840 ; 'MONTH STARTED='; & INPUT C & U=13-C & ; 'PRINTED MONTHLY'; 
880 INPUT S$ & IF S$(:1,1)='Y' THEN 920 & IF S$(:1,1)='y' THEN 920 
910 P8=' YEAR',C=l 
920 ; & ; & ;USH~G 600,P & ;USING 6S0,M & ;USING 760,1)'(1200 
970 ;USING SOO,N & ; 
5S0 11= I NT ( (P·':I +. (05) ~'(100) 1100 & P4= I 1+P & IF P>M GOTO 1030 & M=P4 
1030 B=P4-M & 12=11+12,13=11+13 & Pl=M-11,P2=P1+P2,P3=Pl+P3 
1080 Tl=Tl+M & IF L1=0 GOTO 1120 & IF L1<=L GOTD 1170 & L=48 & & 
1120 ; & ;USING 1140,P8 
1140 :tItItItItI INT PRIN TOT INT TOT PRIN TOTAL BALANCE 
1150 L1=1 & ; 
1170 IF A=N GOTO 1360 & IF B=O GOTO 1360 & IF S$(:l,l)='Y' THEN 1240 
1200 IF S$(:1,1)='y' THEN 1240 & IF A<U GOTO 1340 & U=U+12 
1230 GO TO 1310 
1240 IF L2=1 GOTO 1280 & IF A<=U GOTO 1310 & U=U+12,C=l,I2=ll,P2=P1 
1270 ; 
1280 ; 'YEAR'L2 & ; & L2=L2+1 
1310 ;USING 1320,C,I3,P3,I2,P2,T1,B 
1320 :tltltI #tI##.#tI tltI#tI.tItI ##tI##.tItI #####.## #####.## #####.## 
1330 C=C+1,L1=Ll+1,I3=0,P3=0 
1340 P~B,A=A+l & GOTO 990 
1360 ;USING 1320,C,I3,P3,I2,P2,T1,B & IF B>O GOTO 1410 & ; 
1390 ;USING 1400,M 
1400 :LAST PAYMENT = $#tI#.## 
V~~lO END 

Figure 11. Loan Interest Calculation (CP-V) 

74 Appendix I 



100 DIM X (l000) , Y (l000) , S (l000) & B1,B2,183=0 & GOSUB 1170 
130 F,FI-0 & ; 'Ho~J many generations per display'TAB(O) & INPUT F2 
150 ;' How many po i nts wi I I you def i ne' TAB (0) & INPUT N1 & N2=N1 
130 ; 'Enter X, Y coordinates for'N1' points' & FOR A=l TO N1 
210 INPUT X (A) ,Y (A) & S (A) -I & NEXT A & B3=N1, F=F+1, F1=F1+1 
250 GaSUB 800 
260 FOR J-l TO N1 & X=X(J), Y-Y(~ & GOSUB 610 
230 IF K>3 THEN 330 & IF Kc2 THEN 330 & B1-B1+1 & GO TO 340 
330 S (J) -0, 82=B2·d 
340 FOR M=l TO 3 ~; FOR N-1 TO 3 & IF M"(N-4 THEN 410 
370 X=X (J) +M-2, Y=:Y (J) +N-2 & GOSUB 610 
330 IF Kc>3 THEN 410 & GOSUB 730 
410 NEXT N & NEXT M & NEXT J & J=l & FOR I :=1 TO N2 
4GO IF S (I) -0 THEN 480 & S (J) =1, X (J):::X (I), Y (J) .. Y (I), J=J+1 
480 NEXT I & N1,N~~=J-1, F==F+1, F1=F1+1 & IF F1<F2 THEN 530 
510 GOSU8 800 
520 F1==0 
530 81, B2, 83=0 & IF Q==O THEN 560 & GO TO 260 
550 ; 'All cells are empty!' 
570 ; '00 you want to define a new configuration'TAB(O) & INPUT C9 
590 IF C9=' YES' THEN 130 & STOP 
510 K==O & FOR 1=1 TO N1 & X2=X (I), Y2=Y (I) & IF Y2<>Y THEN 660 
550 IF X2=X THEN 710 
550 IF X2<X-1 THEN 710 & IF X2>X+1 THEN 710 & IF Y2<Y-1 THEN 710 
GSO IF Y2>Y+1 THEN 710 & K-K+1 
710 NEXT I & RETURN 
730 FOR Z=l TO N2 & IF X<>X (Z) THEN 770 & IF Y<>Y (Z) THEN 770 
7GO GOTO 790 
770 NEXT Z & N2==N2+1, Y (N2) =Y, X (N2) :::X, S (N2) =1, B3 ... B3+1 
790 FIETURN 
800 R1,C1=1000, R2,C2=-R1 & ; & ; & ; 'Gener'ation'F & FOR 1 .. 1 TO N1 
850 R=Y(I), C-X(I) & IF R>R1 THEN 880 & R1GR 
880 IF RcR2 THEN 900 & R2-R 
300 IF C>C1 THEN 920 & C1=C 
920 IF C<C2 THEN 940 & C2=C 
940 NEXT I &C3=2 & IF (C2-Cll c35 THEN 990 & C3=1 
930 ; 'Horizontal compression in display!' 
S30 IF (C2-C1) <70 THEN 1020 & C4= (C1+C2) 12, C1=C4-35, C2=C4+35 
1010 ; 'Horizontal display overflow!' 
1020 FOR R-R1 TO R2 & FOR C=C1 TO C2 & FOR I =1 TO N1 
1050 IF Y (I) oR THEN 1080 & IF X (I) <>C THEN 1080 
1070 ;TAB((C-C1+1)"(C3) '~"'TAB(O) 
1080 NEXT I & NEXT C & ; & NEXT R & Q",B1+B3 
1130 ;USING 1140, Bl,82,B3,81+B3 
1140 :### Survived, ### Died, ### Born, ### Total 
1150 81,82,83.0 & RETURN 
1170 ; & RETURN 

Figure 12. Cellular Automata 

100 DIM A(lS.lS) ~; ; 'TYPE AN ODD NUMBER FROM 3 TO 15'; 
120 INPUT N & IF N<3 THEN 380 & IF N>15 THEN 120 
150 IF INT (N/2) -Nl2 THEN 120 & RO=INT (N+1+N/2) , CO=INT (N-N/2) 
170 FOR R=l TO N g; FOR C=l TO N & RI-RO+R+N-C, Rl .. Rl-INT (RUN) "(N 
200 Cl=CO+R+C. Cl~Cl-INT(Cl/N)*N & IF Rl>O THEN 230 & Rl=N 
230 IF C1>O THEN ~~SO & Cl=N 
250 A (R1, C1) =C+R,"N-N & NEXT C & NEXT R & ; & FOR 1.1 TO N 
300 FOR J=l TO N 6; ; TAB (4"'J) ,A(I,J)' 'TAB (0) & NEXT J & ; S ; 
350 NEXT I & ; & COTO 120 
380 END 

Figure 13. Magic Squares 

Appendix I 75 



100 OIr'1 i< (15) [) f1AT K=ZER 
12U ;' THIS PROGRAM LISTS THE WAYS IN WHICH POSITIVE INTEGERS C.AN BE' 
L?C> ; 'SUMMED TO OBTAIN .ANY INTEGER FROM 2 THROUGH 15' 
140 ;' PLEASE TYPE AN INTEGER FROM 2 TO 15'; & INPUT N & ; 
170 K(ll=N, L=2, M=O 
leo IF K(ll =1 THEN 220 [) K(I)=K(l)-l, K(2l=K(2)+1 & GOSUB 340 
210 GOTO 180 
220 FOR J=2 TO L [) IF K(J) <>1 THEN 260 & NEXT J & GOTO 310 
~G0 K(l,=K(J) -1, K(J)=l. K(J+1) =K (J+1l +1 & IF J<L THEN 290 & L=L+l 
;~so C.,oSUB 340 
:::.::(, GO TO 180 
~::1() ; [) ;' TOT AL NUMBER OF WAYS TO SUM' N' IS' 2)h'( (N-1) -1 & END 
:::>+0 ·::SU8R TO PR I NT SUMMAT I ON 
:::;:;0 FOR 1=1 TO L & ;K (I) , 'TftB (0) & IF I=L THEN 400 & ;' +'TftB (0) 
330 NEXT I 
400 ;' .'N [) RETURN 

Figure 14. Arithmetic Combinations 

76 Appendix I 



INDEX 

!'-Jote: For each en'fry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerical sequence. 

! prompt, 41 
# symbol, 12 

A 
ABS function, 58 
absolute dimensions" 33 
account, 26 
ACCOUNT command, 37 
aconst, 8,5,9,20,24,26,29 
ACS function, 59 
addition, 1 
advanced features, 19 
a!phanumeric constant, 8,5,9,22 
argument, 8,24 
arithmetic operators, 8 
array 

addition and subfTaction, 35 
dimensioning, 20,32-35 
elements, 41 
name, 35,36 

ASN function, 59 
assignment of values, 9 
assignment statement, 1 
asterisk, 2,12,13,15-17 
ATN function, 58 

B 
BASIC command, 41 
BASIC concordance program, 65 
batch mode, 43 
BCD input, 27 
BCD output, 28 
binary file format, 62 
binary input, 27 
binary output, 27 
blank line, 3 
blanks, 5,4, 11 
branches, 10 
BREAK key, 18,28,41,42,61 
BYE command, 42 

c 
CATALOG command, 37 
CHAIN LINK statement, 32 
CHAIN statement, 32 
CHANGE statement, 25 
CL.EAR command, 39/ 6 
CL.OSE statement, 28 
coding sheet, 43 
coefficient matrix, 36 

colon, 12,21,26 
comma, 11,2-4, 16 
commentary, 17 
condi tion operators, 10 
conditional branching, 10 
consecutive operators, 8 
conti nuation of PRI NT statements, 11 
conventions, 7 
COS function, 58 
COT function, 59 
CSC function, 59 
current dimensions, 33-36 

o 
data fi les, 62 
DATA statement, 15,9,25 
DAY function, 58 
DCB assignments, 64 
debugging, 61,41 
decimal point, 12,7,9, 13 
decrement, 16 
DEF statement, 24 
default name for the runfile, 41 
defi ned functions, 24 
DE G function, 59 
DE LETE command, 38 
desk calculator mode, 61, 1,2 
determinant calculation, 36 
DIM statement, 20,33 
dimension, 19,20,33 
dimensioning a string array, 21 
direct statement, 61 
division, 2 
dollar sign, 9,20-22 
double asterisk, 2,8, 15, 16,29-31 
dummy argument, 24 

E 

EBCDIC 
codes, 67 
conversion, 25 

edit mode, 60,61 
edi ti ng area, 5 
empty text string, 4 
END statement, 18 
ENDFILE statement, 28 
ENTER BASIC command, 7,40 
equals sign, 9 
error messages, 47 
errors, 5 
ESC key, 41,42 
exclamation points, 13 

Index 77 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerical sequence. 

EXECUTE command, 41 
execution of a program, 40 
EXP function, 58,4 
explicit string expressions, 22 
exponentiation, 2 
expression, 8, 12 
extended precision, 40 
EXTRACT command, 38 

F 
FAST command, 40 
field shift, 11, 12 
fi Ie/FILE 

access, 26 
command, 39 
definition, 26 
identification, 24,26 
input, 29 
names, 5,6 
output, 30 
positioning, 27 

fixed-point notation, 7 
floating-point notation, 7,8, 13 
FOR statement, 16,2 
format characters, 12 
function, 8 

G 
GET statement, 28 
GOSUB statement, 25 
GOTO ••• ON statement, 10 
GOTO statement, 10 

H 
HCS function, 59 
HSN function, 59 
HTN function, 59 

I/o assignments, 64 
I/O flushing, 31 
I/o stream, 26-30,64 
identification, program, 17 
identity matrix, 34,36 
IF ••• THEN statement, 10 
IF statement, 4 
Image statement, 12, 13 
implicit dimensions, 20 
implicit string expression, 22 
increment, 16 
indexed variable, 2,3 
ini tial value, 16 

78 Index 

IN PUT statement, 15,4, 16,23,29 
input values, 7 
INT func tion, 58,8 
intrinsic functions, 58,8 

K 
key, 26-30 
KEY function, 59 
key interval, 30 

L 
largest key value, 26 
LEN function, 22,59 
LET statement, 9, 1-3 
letter E, 13 
LGT function, 58 
limi t value, 16 
line numbers, 7,2 
LIST command, 38 
literal text string, 4 
LOAD command, 37 
loading a program, 6 
LOG function, 58 
log-on request, 1 
loop, 16,3 
loop nesting, 17 
lower case characters, 31 
L TW function, 59 

M 
MAT GET statement, 33 
MAT INPUT statement, 33 
MAT PRINT statement, 33 
MAT PUT statement, 33 
MAT READ statement, 34 
MAT SIZE statement, 34 
matrix 

assignment functions, 34,35 
defi ni tion, 19 
inversion, 36 
operations, 32,33 

MAX function, 58 
maximum string length, 40 
messages to the user, 5 
MIN function, 58 
minus sign, 1,3,4,7,12 
multiplication, 2 
multistatement capability, 19 

N 
NAME command, 39 
names, 1 



Note;.. For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerical sequence. 

nested loops, 17 
new line, 5 
NEXT statement, 16,2 
nonexistent key, 29 
nu!I/NULL 

command, 41 
records, 30 
string, 12 

numeric 

o 

array, 20,21 
matrix, 20 
vector, 20 

OFF command, 42 
01\.1 ••• GOTO statement, 10 
OPEN statement, 27 
operati ng mode, 60 
operator, 8 
order of execution, 110 
out-of-data condition, 28 
output 

p 

format, 11 
format characters, 11 
numbers, 7 
precision, 7 

packed format, 11,34 
page length, 13 
PAGE statement, 13 
para lie I assignments, 9 
parentheses, 2, 8 
password/PASSWORD 

command, 37 
defini tion, 26 

PAUSE statement, 18 
period, 7 
plus sign, 1,8, 12 
PRC function, 7,58 
PRINT 

statement, 11,3,7,12,30 
width, 40 

printing text, 12 
PRINTUSING statement, 12, 13,30 
PROCEED command, 42,61 
program modification, 5 
prompt, 4 
punctuation, 4, 11, 12,30 
PUT statement, 29 

o 
question mark, 4, 15 
quotation marks, 11 
quotes, 4,5,8 

R 
RAD function, 59 
READ statement, 15 
regular format, 11,34 
REM statement, 17 
RENUMBER command, 38 
rereading data, 25 
residual data, 30,27 
RESTORE statement, 25 
resuming execution following a BREAK, 61 
RETURN statement, 25 
RND function, 58 
rounding, 7, 17 
RUN command, 40,6 
runfi Ie, 41 

s 
safe mode, 40 
sample programs, 72 
SAVE ON command, 39,5 
SA VE OVER command, 39,5 
scalar multiplication, 35 
SEC function, 59 
semicolon, 3,4,11,26,30,34 
separator, 4 
sequence of operations, 8 
sequential fi les, 26 
serial assignments, 9 
SET command, 40 
SGN function, 58 
simple constant, 7 
simple variable, 8,9,33,41 
simultaneous equations, 36 
SIN function, 58 
single asterisk, 15, 16,29,30 
slash, 2 
spacing between fields, 11 
SQR function, 58 
STATUS command, 41 
STOP statement, 18 
STR function, 59 
stream number, 26-29 
string 

array, 20,21 
array elements, 41 
comparison, 23 
INPUT mode, 23 
input/output, 23 
litera I, 8 
matrix, 20,9 
scalar, 9,20,21,41 
variables, 22 
vector, 20,9 

strings of excess length, 9 
subroutine, 25 
subscript, 20,33 
subscripted variable, 19 

Index 79 



Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in 
numerical sequence. 

substri ng, 21 
subtraction, 1 
symbolic names, 
SYSTEM command, 42 

T 
TAB function, 4, 11,58 
TAB (0), 11 
TAN function, 58 
term ina I, 1,31 
text 

arrays, 34 
edi ti ng area, 39,6 
stri ng in a PRINT statement, 12 

TFI LE, 27,37 
TIM function, 58 
time limit, 40 
trai Ii ng zeros, 13 

80 Index 

u 
unused fields, 16 
up-arrow, 2,8 
update mode, 27,28 

v 
VAL function, 59,22 
variable, 1 
vector, 19,35,36 

w 
WEAVE command, 38 
WIDTH command, 40, 13 

y 

YER function, 58 



Honeywell Information Systems 
In the U.S.A.: 200 Smith Street. MS 486. Waltham. Massachusetts 02154 
In Canada: 2025 Sheppard Avenue East. Willowdale. Ontario M2J 1 W5 

In Mexico: Avenida Nuevo Leon 250. Mexico 11. D.F. 

22227, 5C1178, Printed in U.S.A. XK14, Rev. 0 


	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	xBack

