
'Xerox ANS COBOL (for BPM/CP-V)
Xerox 550/560 and Sigma 5-9 Computers

Operations

Reference Manual

9015 01G

Xerox ANS COBOL (for BPM/CP-V)

'i'l Xerox Corporation, 1973. 1975

Xerox 550/560 and Sigma 5-9 Computers

Operations

Reference Manual

90 15 01G

May 1976

XEROX

File No.: 1 X23
XJ80. Rev. 0

Printed in U.S.A.

REVISION

This publication documents the E07 version of the Xerox ANS COBOL compiler for BPM and CP-V. This is the
G edition of the manual; it is identical to the F edition (90 15 01F, dated September 1973) including all revision
packages (90 15 01 F-1, 3;74; -2, 5;74; and -3, 6;75), and serves to consolidate them. Vertical lines in the outer
margin indicate changes made in the most recent revision.

RELATED PUBLICATIONS

Publication No.

Xerox 550 Computer/Reference Manual 903077

Xerox 560 Computer/Reference Manual 903076

Xerox Sigma 5 Computer/Reference Manual 900959

Xerox Sigma 6 Computer/Reference Manual 90 17 13

Xerox Sigma 7 Computer/Reference Manual 900950

Xerox Sigma 8 Computer/Reference Manual 901749

Xerox Sigma 9 Computer/Reference Manual 90 17 33

Xerox Batch Processing Monitor (BPM)/BP,RT Reference Manual 900954

Xerox Batch Processing Monitor (BPM)/OPS Reference Manual 90 11 98

Xerox Control Program-Five (CP-V)/TS Reference Manual 900907

Xerox Control Program-Five (CP-V)/OPS Reference Manual 90 16 75

Xerox Control Program-Five (CP-V)/TS User's Guide 90 16 92

Xerox Control Program-Five (CP-V)/SM Reference Manual 90 16 74

Xerox ANS COBOL (for BPM/CP-V)/LN Reference Manual 90 15 00

Xerox ANS COBOL On-Line Debugger Reference Manual 903060

Xerox Sort and Merge (for BPM/CP-V)/Reference Manual 90 11 99

Xerox Data Management System (OMS) (for BPM/CP-V)/Reference Manual 90 17 38

Xerox Extended Data Management System (EDMS)/Reference Manual 90 30 12

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, SP - system programming, TP - transaction
processing, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customersshouldconsult their Xerox soles representative
for detai Is.

ii

CONTENTS

PREFACE v

1. PROGRAMMING HINTS

Description of Numeric Data Items ________ 1
Examples of CI Decima I Add. 1

Table Handling 2
OCCURS DEPENDING ON Clause .. 2
Sort 2
1/0 Considerations 2
Report Writer 3
COBOL/FORTRAN Interfaces_ 3

2. COMPilER 6

Compilation Initiation 6
BO (Binary Object Deck) 7
CS(name) (COMMON-STORAGE SECTlON)_ 7
DEBUG (Debugging Statements) 7
D lAG (Trivial Diagnostics)_ 7
DMAP (Data Division Map) 7
DQ (Double Quotation Mark) 9
GO (Compile and Ru,) ___ 9
LIB (Library Accounts) ___ 9
lO (Object Listing) ____ 9
lS (Source Listi ng) 9
MAIN (Main Program) 12
MAPS (Both Data Division Map and

Procedure Division Map) 12
PMAP (Procedure Division Map) 12
SEG (Priority Segments) __ 12
SEQCHK (SeqlJence Check) 12
SO (Source Output) ~ ____ 12
SRTx (Co-Resident Sort) __ 13
SUB (Subprogram) 13
SYN (Syntax Checking) 13
TEST (On-Line Debugger) __ 13
XREF (Cross-Reference Listing) 13

3. INTER-PROGRAM COMMUNICATION 14

Introduction
Ru I es for Usage ____ _

4. OBJECT PROGRAM

14
14

16

Segmented Object Programs __ _ __ 16
Object Program Structure _________________ 16

5. PROGRAM COMPILATION AND EXECUTION 18

Compi lation of large Source Programs 18
COBOL Work Files _____ .. _______ 18

COBOL Library on Tape 18
Print File Handling ______ 18

Deck Structures ________ ~. ___ . ___ .. _____________ 20
Basi c Setups ____ .__ __ 20
Segmentation Feature - ______________ 25

Inter-Program Communica~ion (Subcompile
Feature) _______ . ______________ 31

ENTER Statement Feature _____ . ________ 37
Co-Resident Sort Feature ___________ ._ ... __ . ___ 40
Debug Module Object Time Switch ______ .. __ 48

6. XEROX ANS COBOL COMPilER
DIAGNOSTICS 49

7. RUN-TIME SUBROUTINES, SERVICES AND
DIAG NOS TICS 65

Library Subroutines ____________ 65

Subprogram Calls 68
Specia I Interfaces to Hardware and

Monitor Services __________ 68

COBOL Error Codes 72

INDEX 83

APPENDIX

REFERENC E TABLES 75

Standard Symbols and Codes . ____ 75
Standard Character Sets _ 75
Control Codes__________ 75
Special Code Properties __ . ___________ 75

Standard 8-Bit Computer Codes (EBCDIC) ___ 76
Stondard 7-Bit Communication Codes

(ANSCII) 1_____________________ 76

Standard Symbol-Code Correspondences 77
Hexadecimal Arithmetic __________ 81

Addition Table ____ ._.______________ 81

Multiplication Table 81

FIGURES

1. Sample Data Division Map Listing _______ 8

2. Sample (Partial) Object Listing ___ _ 10

3. Sample Source Program and Procedure
Division Map Listing __________ 11

4. Sample Cross-Reference Listing_ 13

iii

5. Standard Control Section of a Root 16. Inter-Program Communication - Compilation
Segment Modu Ie 17 and Execution 35

6. Load Modu leMa p 17 17. ENTER Statement Feature - Compi lotion
and Execution 37

7. Basic Setup - Compilation Only 20
18. ENTER Statement Feature - EKecution with

8. Basic Setup - Compilation and Execution 21 Object Decks 39

9. Basic Setup - Execution with Object Deck ___ 24 19. Co .. Resident Sort Feature - Compi lotion and
Execution (Sequential Sort Teehhique) __ 40

10. Segmentation Feature - Compi lotion and
Execution 25 20. Co-Resident Feature - Compi lation and

Execution (Random Sort Technique) 42
11. Segmentation Feature - Load from BO Fi Ie,

Execute, and Punch BO Fi Ie 27

12. Segmentation Feature - ExecuHon from
Object Decks 29 TABLES

13. Inter-Program Communication - Compi lotion 1. Xero)(Buffered Line Printers Models 7440/7445
of Ma i n or Ca" i ng Program 32 and 7446 Verticol-Fomlat Control Codes __ 19

14. Inter-Program Communication - Compi lotion 2. Xerox ANS COBOL Compiler Diagnostics 49
of Subprogram or Called Program 33

3. COBOL Object Program Subroutines 65
15. Inter-Program Communication - Execution

with Object Decks 34 4. COBOL Error Codes 72

iv

PREFACE

This manual describes the operotions and characteristics of the Xerox ANS COBOL system (under BPM and CP-V)
including the compiler, librar}' subroutines, and pertinent compiler and run-time diagnostics.

It is assumed that the reader hCls a good working knowledge of the COBOL language as described in the Xerox ANS
COBOL (for BPM/CP-V) Refere'nce Manual and of the operation of the Xerox Control Program-Five and/or the Xerox
Batch Processing Monitor.

v

1. PROGRAMMING HINTS

This chapter provides a number of useful hints for improving the efficiency of object programs.

Description 0" Numeric Data Items

Avoid Mixed-Mode Arithmetic; Statements. An arithmetic statement involving data items of more than one mode
(binary, decimal, or floating) requires one or more relatively expensive conversions of the operands or the result.
These conversions, which require run-time subroutines, are not needed when mixed-mode arithmetic statements
are avoided.

Use Binary Rather Than Decim(~1 Subscripts. The COBOL compiler requires that all subscripts be binary. The costly
conversions of subscripts can be avoided if they are defined as binary rather than decimal.

Minimize Exponentiation. Exponentiation involves floating-point calculation mode even when there are no floating·
point operands.

_Use Binary Calculations if Possible. Binary calculations are faster than decimal or floating-point calculations UIIJ
much faster than mixed mode. However, since binary items cannot contain a decimal point, their use is limited.
If counters (i. e., input and output record counters) and sLIbscripts are defined as binary data items, and other
numeric data items as decimal, the number of costly conversions will generally be minimized without loss of the
effi ci enci es of binary ar: rhmeti c.

Avoid Using Decimal Items Exceeding 15 Digits. Of the several ways to describe decimal items in COBOL, some
permit the compi ler to generate fewer instructions than others. For example, a data item containing 16, 17, or
18 decimal digits may require CI double precision subroutine amounting to over 20 extra instructions not needed with
items of 15 digits or less.

SpeCify Odd-Size Decimal Display Fields. Sigma pack and unpack instructions do not operate on even-sized dec
imal display fieldf. The compiler moves an even-sized display field to a work area in order to append a high-order
zero, creating an odd-size field at a cost of three to six machine instructions. These extra instructions can be saved
each time the field is referenced if it is odd-size to begin with.

Specify Packed Decimal if Possi;ble. Packed decimal items occupy less space than decimal display items of the same
size.' Besides, they don't have-tOl)e packed and unpacked when used. Packed decimal, therefore, results in

,fewer instructions being genera1'ed for a given arithmetic statement.

Specify Signed Rother Than Uns;igned Decimal Display Fields. The compi ler must generate three instructions to get
rid of the sign when a decimal field is described as unsigned. This applies each time the field is stored into.

To summarize, a decimal data item should be less than 16 digits long and have an odd number of digits. It shoulrl
be described with a sign, and a~; packed decimal rather than decimal display.

Examples of a Decimal Add

Example 1:

77

77

A

B

ADD A TO B"

PIC 99.

PIC 99.

Seventeen instructions wi II be generated.

Programming Hints

Example 2:

77

77

A

B

ADD A TO B.

PIC 5999 USAGE]S COMP-3.

PIC S999 USAGE IS COMP-3.

Three instructions wi" be generated.

Table Handling

Use indexes rather thon subscripts for referencing data items described with or subordinate to one or more OCCURS
clauses. With a subscript, the displacement into the table must be calculated (subscript x entry size - entry size)
each time the table item is referenced. With indexing, this calculation is made only once when the index is set.
In addition, when a table is described with an INDEXED BY clause, the SEARCH statement can be used on that
table, and the search routine generated by the compi ler wi" be more efficient than one written by the programmer.

Subscripts, if used, should be in binary since decimal subscripts are converted to binary anyway.

OCCURS DEPENDING ON Clause

Keep the use of this clause to a minimum. The OCCURS DEPENDING ON clause can be used effectively with
variable length records to reduce the physical size of fi les and save I/O time. However, the clause wi" increase
execution time because any reference to data item with an OCCURS DEPENDING ON clause requires that its size
be calculated each time it is referenced. On balance, therefore, it is recommended that the use of OCCURS
DEPENDING ON be kept to a minimum.

Sort

If a program has an input or output procedure, or both, either the co-resident or the linked sort can be re
quested. The co-resident sort, which occupies core memory at the same time as the COBOL program, can signif
icantly reduce the number of input/output operations and, hence,· run-time. It should, therefore, be used when
core memory is avoi lab/e.

When linked sort is used, the RELEASE statements in the COBOL input procedure bui Id a ft Ie as an interface for the
linked sort. When the input procedure is finished, sort replaces the CaBO L program in memory (i. e., the COBOL
object program is swapped out), and sorts the file created by the input procedure into a new fi Ie, whereupon the
COBOL program is brought back into core memory, replacing the sort. The RETURN statements of the output
procedure read the sorted fi Ie.

Co-resident sort avoids superfluous reading and writing of the two files used by sort. When the SORT verb is en
countered, control is transferred to sort. Then, when sort wants to read a record, it gives control to the COBOL
input procedure, which provides a record through the use of the RELEASE statement. When sort wants to write the
sorted file, it gives control to the COBOL output procedure, which accepts the sorted record with RETURN state
ments. Thus, unnecessary input/output is avoided.

I/O Considerations

Block Sequential Files. Blocking sequential files can shorten I/O and CPU times by reducing the number of physical
records and increasing their size. It lessens start/stop times for tapes and compute time for setting up the I/O oper
ations. A block si ze of 5000 to 7000 bytes is recommended.

2 Table Handling/OCCURS DEPENDING ON Clause/Sort/I/O Considerations

Use Unlabeled or ANS-labeled Tapes Rather Than labeled Tapes. The monitor attaches control information to
records written "0 labeled tape, but not to device tape or ANS-Iabeled tape. In addition, I/o on rlevice tape of
ANS-Iabeled tape is double-buffered. This allows I/o operations and CPU operations to overlap.

Avoid the INTO Option of the_READ Statementand the FROM Option of the WRITE Statement. Working from record
areas rather than moving the re!cords to and from working storage reduces program run time. In some cases where a
master file is updated, moving the input master record to the output master record can be avoided. This is accom
pi ished with the SAME RECORD AREA statement that allows a record to be read, updated, and written with no
record movement by the programmer. It also reduces the size of the program.

Block Relative Fi les. The monitor always reads or writes a minimum of one granu Ie (512 words, 2048 bytes) from or
to a relative file. The BLOCK COI'\JTAINS clauseofCOBOLshould be used to obtain a physical record size which is
a multiple of granule size. This will insure optimum utilization of disk space and maximum speed. The COBOL I/o
system will locate the proper granule;block and retrieve the user's record based on the relative record number
suppl ied.

Note: To remove a record from a relative fi Ie place a X 'FFOO ' in byte 1 of the record. This will signal the
COBOL I/O system that this record is a null or deleted one. All records not written when the file is
created are set to I1U II by the system.

Report Writer

A report restart facility can be provided by programming around the OPEN statement for the report file which
is being restarted. No abort wi II occur. The programmer can accept a page start parameter from a control card,
count the pages skipped and when the start page is reached the logic can then go to the OPEN and start printing.
No other program logic rleeds to be al tered.

The OPEN can also be circumvtented for the case where there are multiple FDs for a given RD and the suppression of
its output to a file is desired.

COBOL/FORTRAN Interfaces

COBOL to FORTRAN

It is possible for COBOL to "cull" FORTRAN subprograms by means of the ENTER verb. However, certain setup
routines must be called and temp variables initialized before the FORTRAN library routines can be utilized. This
initial ization process is triggere!d by the COBOL program having the statement:

ENTER FORT LINK

This is done prior to the first call to a FORTRAN subprogram.

In addition to the ENTER list of arguments, the COBOL program may contain a COMMON-STORAGE SECTION.
This generates a DSECT which can be referenced in the FORTRAN subprograms by means of the statement:

COMMON/TALLY/TALLY, ••••

Note that the first word of TALLY cannot be referenced in the COBOL program and is not initialized.

The COBOL CS option permits use of a name other than TALLY for the common-storage DSECT.

FORTRAN to COBOL

Calling COBOL programs from FORTRAN programs has some restrictions. First, no arguments may be specified, data
communication must be via namc~d common, as indicated above. Second, COBOL does not have a verb equivalent
to RETURN in FORTRAN. Third, the CALL statement in FORTRAN will use register 15 for its linkage, therefore it
must be saved before the COBOL program starts executing.

Report Writer/COBOL/FORTRAN Interfaces 3

In order to achieve the FORTRAN to COBOL linkage it is necessary to use a METASYMBOL routine to save
register 15 upon entry into the COBOL routine and to exit from the COBOL routine. The entry point in the COBOL
routine that is used in the FORTRAN CALL statement must be DEFed by uling It in an ENTER COBOL statement.

The METASYMBOL routine should' be cod.d like this:

SYSTEM SIG7
DEF SAVEREG
DEF RETNREG

S15 RES 1
SAVEREG STW,15 S15 SAVE REG!STER 15

R ~': 11 RETURN 1U COBOL
RETNREG B ~'(S 15 RETURN TO FORTRAN

END

To use the METASYMBOL routine GO TO statements or. required in the COBOL routine to go to the two entry
points.

Demonstration Job

The following job hos been written to illustrate COBOL/FORTRAN interfaces.

!JOB XEROX,COBOL,7 . COBOL/FORTRAN
!TITLE COBOL to FORTRAN
!COBOL LS fLO ,GO

IDENTIFICATION DEVISION.
PROGRAM~ID. COB:S.
DATE-WRITTEN. DEC 12, 1974.
DA TE -COMPILED.
REMARKS. COBOL TO FOR TRAN AND ENTRY FOR FOR TRAN .

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE~COMPUTER. XEROX-560.
OBJECT-COMPUTER. XEROX-S60.
INPUT-OUTPUT SECTION.
FI LE -CONTROL.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 II COMP VALUE 1.
77 12 COMP VALUE 2.
77 13 COMP VALUE 3.
COMMON-STORAGE SECTION.
77 Jl COMP VALUE 11.
17 J2 COMP VALUE 12.
77 J3 COMP VALUE 13.

PROCEDURE DIVISION.

S-1.
ENTER FORTLINK.
ENTER FTEST] 11,12,13.
ENTER FTEST2.
STOP RUN.
ENTER COBOL CTEST.

CTEST.
GO TO SAVE REG .
DISPLAY 'CTEST ENTERED' UPON PRINTER.
GO TO RETNREG.

4 COBOL/FORTRAN Interfaces

:FORTRAN LSJLO,GO,S
SUBROUTINE FTESTI (11, 12, 13)

C TItIS IS CALLED BY COBOL

COHHON/TALLY/TALLY,Jl,J2,J3
OUTPUT Il,12,I3,Jl,J2,J3
RETlTRN

SUBROUTINE FTEST2

C TIllS CALLS COBOL

OUTPUT 'FTEST2 RUNNING'
CALL CTEST
OUTPUT 'RETURN FROM CTEST'
STOP

END

COBOl/FORTRAN Interfaces 5

2. COMPILER

This chapter describes various compilation options, the compiler outputs, and pertinent compile-time diagnostic
messages.

Compilation Initiation

A COBOL processor control command must initiate each Xerox ANS CO&CL compilaHdn idb. the 'ormat of the
command is

,COBOL '1"2"3'·· ·"n

where

s. may specify any of the following output options:
I

BO

CS(name)

DEBUG

DIAG

DMAP

DQ

GO

LIB(accounts)

LO

LS

MAIN

MAPS

PMAP

SEG

SEaCHK

SO

SRTx

SUB

SYN

TEST

XREF

Permanent copy of the object program via the BO (Binary Output) device.

COMMON-STORAGE SECTION name (see "Object Program Structure" in Chapter 4).

Source program debugging statements (TRACE, EXHIBIT).

Trivial diagnostic messages.

Data Division Map.

Double quotation mark.

Load-and-go copy of the object program via the GO device.

Library accounts.

An object program listing.

A source program listing.

Main program (see "Inter-Program Communication" in Chapter 3).

Both Data Division Map and Procedure Division Map.

Procedure Division Map.

Priority segments (see "Segmented Object Programs" in Chapter 3 and "Segmentation
Feature" in ChaptE!r 5),

Sequence check.

Source output.

Co-resident sort.

Subprogram (suppresses generation of "END start ").

Compi lotion for syntax checking only (no code generation).

On-I i ne debugger.

A cross-reference listing.

The processor control command may be written in free form. Any number of spaces may appear between ICOBOL
and the specification string. Spaces are permitted before or after each option, but the option itself may not contain
embedded spaces.

6 Compiler

The specification string may be continued in one or mom commands following the !COBOL control command.
Continuation is specified by p/.:Jcing a semicolon at any point where a blank is legal. Position 1 of ~he continuation
commands must be blank.

Specification sequence may vmy. If no specifications are entered for the COBOL command, the options

LS, 80

are assumed. If any option is specified, all desired options must be specified.

BO (Binary Object Deck)

This option specifies that relocCltable object modules (ROMs) of the compiled program are to be produced in binary
form.

CS(name) (COMMON-STORAGE SECTION)

This option specifies the name to be used in the object program for the dummy program section that represents the
COMMON-STORAGE SECTION. If this option is not specified, the name TALLY is used. If a name is used it is
restricted to a maximum of 7 characters.

DEBUG (Debugging Statements)

This option specifies that debugging statements TRACE and EXHIBIT are to be included in the compilation. Absence
of this option enabfes debugging statements to be suppressed at compilation time. Thus it is not necessary to delete
these statements from the source program when it is recompiled to obtain an operational object program. For a com
plete description of debugging statements refer to Chapter 12 of the Xerox ANS COBOL (for BPM/CP-V)/LN Refer
ence Manual, 90 15 00.

DIAG (Trivial Diagnostics)

This option specifies that trivial (warning) diagnostics also are to be listed along with the other diagnostics. These
trivial diagnostics do not affect generation of the object program, but merely serve as warnings to the programmer.
Examples of trivia~ diagnostics are

INCORRECT PUNCTUATION

EXTERNAL REFERENCE GENERATED

RIGHTMOST AND/OR FRACTIONAL DIGITS TRUNCATED

LEFTMOST DIGITS/CHARACTERS TRUNCATED

INTEGER AND FRACTIONAL DIGITS TRUNCATED

DMAP (Data Division Map)

This option specifies that the Data Division Map is to be produced. This Map is an alphabetical list of the
data-names along with their size's and relative locations. Figure 1 shows a sample Data Division Map listing. The
following information appears 01'11 the listing:

Line number

Data-name

Relative location

Size

Corresponds to the source line number where the data-name is defined.

The dClta-name as it appears in the DATA DIVISION.

The displacement from the origin of the base section in the object program.

Example: If the origin of the base~ section in the object program was hexadecimal loca-
tion '03COO' and the relative location of the data-name was '0058 3', "his
means '"he data-name bE~gins in byte 3 of hexadecimal location '03C58'.

The size of the data-name in bytes.

Compi lation Initiation 7

00015
00016
00017
(11"1018
()OO lC~
00020
0002~

01')022
00023
00024
nI')l') 15
00026
r')()!)27
()()O~g

'l0()2Q
!)()()3()
O()f)31
1')!)(13~

00033
00034
(l00J5
00036
O()037
00038
00039
00040
00041
00042
00043
00044
00045
000'46
00047

00012() DATA DIVISION.
000130 FILE SECTION.
000140 FD IN-FILE LARFL RECORDS ARB STANnART) TlATA REC01W IS IN-REC.
000150 01 IN-REC.
000160 02 t-lEEK PIr.TURE 9.
00017n 02 DEPP PICTU~E 9.
00rH8!) 02 TYPE-RUN PICTURE A(lO).
000190 02 PRoe; PICTURE XU.).
000200 02 DATE PICTURE X(S).
I')n0210 02 FILLE~ PIrTURr X(7).
onn220 02 }1INtTTES PICTD'llf. 'lOqlTQ'.

00023() 02 CHARr:r.: prf.TPT'E t')9 QQ'VC9.
()nf)2'31 O~ FILLr:~" PIr.TTJRF. '\(41).
(l()1')240 FD REP-FILE LABEL REr.O~.1)~ ft".E nHTTTEn T?Epn""T t~ vc;,.('r_l~r:pnr~T.

01')0250 F'"l P~PIT-~ILE LAnEL RF.C()RJ') O!lITTr.:D nATA Rrr.n'Tli) n-l':'F,C.
nnn26n 1')1 D-~Er. PICTUqE X(I~n).
oon'261 FD Tj\,PE-~ILE

00()262 LABEL ltF,COTtD IS LAlBf.L1
000263 DATA RECOlID IS TAPE~C.
on()264 1)1 TAPE'P-EC PICTURE x(ln).
000265 01 LABELl PICTURE X(20).
000270 WORKING-STORAGE SECTION.
0()()280 77 T-fONTH PICTURF. X(9).
000290 77 COUNT PICTURE 9 VALUE 1.
000300 77 CONT PICTURE X(II).
000310 77 SAVE-DEP PICTURE 9 VALUE O.
000311 77 DEP PICTURE 9.
000320 01 DEP-NA~S.

000330 02 FILLER PICTURE A(1l) VALUF. 'ENGINEERING , ..
000340 02 FILLER PICTURE A(1l) '.·ALUE '~ALES'.
0'0'0350 02 FILLER PICTURE A(ll) VALUE 'ACCOUNTING'.
000360 01 D-NAHES REDEFINES DEP-NAMES.
OO~370 02 NAME PICTU~E A(11) OCCURS 3 TIMES.

COBOL DATA DIVISION MAP LISTING 21 :42 MAR 12, 1<)75 PAGE

LINE-NO DATA-NAME REL-LOC SIZE RECORD-NMfE BASE-NA."fE

00026 CHARGE 00008 5 IN-REC IN-FILE
00039 CONT 00004 11 W01U{ING-STORAGE
00038 COUNT 00003 1 WORKING-STORAGE
00046 D-NAMES OOOOA 33 tIDRKING-STORAGF.
00030 D-REC onooo 120 PRINT-FILE
00023 DATE ()OO04 5 IN-REC IN-FILE
00041 DEP 00008 1 WORKING-STORAGE
00042 DEP-NAMES OOOOA 33 WORKING-STORAGE
00020 DEPP 00000 1 IN-REC IN-FILE
00017 IN-FILE FD - FILE
00018 IN-REC 0000'> 8n IN-1I'ILE
00035 LABELl oorroo 20 TAPE-FILE
00025 MINUTES 01')007 4 IN-REC IN-FILE
00037 MONTH 00000 9 WORKINf';-STORAGE
00047 NAME OOI')OA 11 D-NA.'-mf; WOl1KING-STORAGE
00029 PRINT-FILE FD - FILE
00022 PROG nn()(.) 3 4 IN-~EC IN-FILE
00028 REP-FILE FD - FILE
OOf)40 SAVE-DEP 00007 1 WORKING-STORAGE
00()48 TALLY 00'000 3 Cor-1MON-STo~e;E

00033 TAPE-FILE FD - FILE
00034 TAPEREC 00000 10 TAPE-FILE
00021 TYPE-RUN 00000 2 10 I~-PF.C IN-FILE
00019 WEEK OOO()O 1 IN-REC IN-FILE

Figure 1. Sample Data Division Map Listing

8 Compi lotion Initiation

Record name

Base name

The name of the record (level 01) to which the data-name belongs.

The base section (corresponding to DSECTs in the object program) to which the data-name
belongs. A base section is created for WORK ING-STORAG E and each fi Ie-name defined
in the source program.

OQ (Double Quotation Mark)

This option informs the compi ler that the source program to be compiled uses the double quotation mark (")
exclusively, insteod of the sin~"e quotation mark ('). If this option is notspecified, the single quotation mmk is
Clssumed. The Hollerith code for the double quotation mark is a multipunched 8-,7 (hexadecimal 7F). 'fhl!! Hollerith
code for the single quotation mark is a multipunched 8-5 (hexadecimal 7D).

GO (Compile and Run)

This option specifies that the source program is to be compiled and then executed. The load-and-go copy of the
object program is transmitted to the monitor GO file. The GO option also must be specified on the monitor
!LOAD control command.

LIB (Library Accounts)

This option specifies optional account numbers which may contain library source files that are needed to satisfy
COpy statements in the source program. This permits library fi les of other accounts to be accessed. Up to three
optional accounts may be specified.

Example: !COBOL LS, LIB(ACC85011, TESTA, 90301)

This LIB option instructs the compiler to search accounts ACC85011, TESTA, or 90301 for those library files that do
not exist under the user's own account number.

Library fi les on labeled tape maY' also be accessed. (See "COBOL Library on Tape" in Chapter 3.)

LO (Object Listing)

• This option specifies that a listing of the object program is to be output on the LO device. Figure 2 illustrates
a sample object listing, which is keyed to the source program by line number and resembles an assembly lan
guage listing.

LS (Source Listing)

The source listing is output to the LO (Listing Output) device whenever the COBOL command specifies (explicitly
or implicitly) the LS option.

Figure 3 depicts a sample Xerox ANS COBOL. source program and Procedure Division Map listing with diagnostics
immediately following t'he source lines containing errors. The COBOL processor control command is presented as
the initial line of the listing. Eoch subsequent line contains a line number appearing in two parts separated by a
period: the first number represents the position of the line in the source progrClm as obtained from the SI (source
input) device; the second number (subnumber) denotes lines inserted into the source program as a result of library
retrieval statements (COpy or COpy REPLACING) in the sOLlrce program.

Whenever the compiler detects an error in the source program, a diagnostic message and its message number are
printed on the source listing imme:diately following the line containing the error. If the COBOL control command
neither specifies nor implies the LS option, only the number of the line to which the diagnostic relates, the message
number, and the message itself are printed. The number of diognostic messages issLled and the highest diagnostic
severity level are printed at the e,nd of the source listing. A complete lisf'ing of compiler diagnostics is shown in
Chapter 5 of this manual.

Campi lotion Initiation 9

COBOL OBJECT CODE LISTING 21 :42 MAR 12, 1975

"''''*.''' ROOT SEGMF.NT ***"'*
DEF TALLY

00000 DSECT 0 SIZE IS 3
00000 ORG TALLY

DEF INPUT-DEVICE
00000 DSECT 0 SIZE IS 80

DEF I: INPUT-DEVICE
00000 DSEeT 0 SIZE IS 28
00000 ORe I: INPUT-DEVICE

DEF F:INPUT-DEVICE
00000 00000008 DATA,4 F:INPUT-DEVICE+X'OOOOOOOO'
00001 02000000 A DATA. 4 X '0201')0000 ,
00002 00000000 A DATA,4 X'OOOooOt)O'
00003 00000000 A DATA, 4 X'OOOOOOOO'
00004 00000000 A DATA. 4 X'OOOOOOOO'
00005 00000000 A DATA. 4 X'OOOOOOOO'
00006 OOAOOOOO TlATA,4 INPUT-DEVICE+X'OOAOOOOO'
00000 DSECT 2 SIZE IS 208
00000 ORG F:INPUT-DEVICE *ZERO WORDS NOT PRINTED.
00000 34000003 A DATA, 4 X' 3400000.3 '
00001 10020009 A DATA,4 X' 10020009'
00002 10000000 DATA,4 INPUT-DEVICE+X'lOOOOOOO'
00003 O()AOOOOO X DATA, 4 C:ERA+X'OOAOOOOO'
00004 00000000 X DATA,4 C:ABA+X'OOOOOOOO'
00005 80000011 A DATA, 4 X' 8000no 11 '
00006 00000016 DATA,4 F:INPUT-DEVICE+X'00000016,
OOOOA 0000002C DATA,4 F:INPUT-DEVICE+X'0000002C'
00016 01000008 A DATA,4 X'01000008'
0001F 02000002 A DATA, 4 X'02000002'
00022 03000002 A DATA, 4 X'03000002'
00025 04000002 A DATA. 4 X '04000002 ,

00069 77360000 X UNPK.3 C:TLBL,3
0006A 72A60001 X LB,IO C:TLBL+X'I'.3
0006B 49AOOO19 OR.10 BASE+X'19'
0006C 75A60001 X· STB.10 C:TLBL+X'l',3

00040 00008 ORG BME+X'8'
00008 01000000 X DATA. 4 BA(C:TLBL)+X'OlOOOOOO'
0006D 32300008 LW.3 BASE+X'8'
0006E 222005A8 LI.2 BA(BASE)+X'5A8'
0006F 61200000 A MBS,2 ()

00070 EABOO025 BAL. 11 *BASE+X' 25 ,
00025 ORG BASE+X'25,
00025 00000071 DATA,4 BASE+X'00000071'

00042 00071 22200001 A LI.2
00072 16340000 X PACK, 3 C:TLBL.2
00073 7FOOO03E DST,O BASE+X'3F.'
00074 76300016 PACK. 3 BASE+X'16'
00075 7DOOO03E DC.O BASE+X'3E'
00076 6930007F BNE $+9

00043 00009 ORG BASE+X'9'
00009 2BOOOOOO DATA,4 BA(OUTPUTHREE)+X'2BOOOOOO'
00077 32300Qf)9 LW.3 BA~E+X'9'
00078 222005A9 LI,2 BA(RASE)+X'5A9'
00079 61200000 A KbS,2 0
0007A 22A00025 A LI.10 37
0007B 75A00003 A STB,10 3
0007C 32100003 A LW,l 3
0007D 61000061 MRS,O BA(BASE)+X'61,
0007E 6800007F B $+1

00043 0007F EABOO026 BAL. 11 *BASE+X'26 ,
00026 ORG BASE+X' 26 ,
00026 00000080 DATA. 4 BASE+X'OOOOO080'

00047 00080 22EOOOOI A LI.14 1
00081 22600000 LI,6 I: INPUT-DEVICE
00082 6ABOOOOO X BAL. 11 C:OPN

00048 00083 6ABOOOOO X BAL,l1 C:BBF
00084 35BOO025 STW,ll BASE+X'25,
00085 6ABOO067 BAL,l1 BASE+X'67 ,
00086 22E08002 A LI,14 32770
00081 22600000 LI,6 I:OUTPUTONE

Figure 2. Sample (Partial) Object listing

10 Compilation Initiation

FOO COBOL SOURCE, DIAGNOSTIC: AND PROC:EDU~E-MAP LISTING 21:43 MAR 12, 1<)75

00000
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
oa012
00013
00014
00015
00016
00017
00018

**** 022
**** 049

00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031

COBOL LS,LO,XREF,DIAG,PMAP
000010 IDENTIFICATION DIVISION.
000020 PROGRAM-ID. SEQUENTIAL-I-O-TEST.

AUTHOR. XEROX CORPORATION.
000040 DATE-WRITTEN. DECEMBER 7 1'176.
000050 ENVIRONMENT DIVISION.
000060 CONFIGURATION SECTION.

SOURCE-COMPUTER. XEROX-560.
OBJECT-CO~~UTER. XEROX-ShOo

000090 INPUT-OUTPUT SECTION.
000100 FILE-CONTROL.
000110 SELECT INPUT-DEVICE ASSIGN TO CARD-READER.
000120 SELECT OUTPUTONE ASSIGN TO MAGNETIC-TAPE.
000130 SELECT OlTTPUTTWO ASSIGN TO DISC.
000140 SELECT OUTPUTHREE ASSIGN TO PRINTER.
000145 SELECT OPTIONAL OP-FILE: ASSIGN TO ~GNETIC-TAPE RESERVF. 2
000146 ALTERNATE AREAS.
00014"' SELECT ERROR-FILE ASSIGN TO
000150 DATA DIVISION.

**** NAME INVALID/OMITTED
**** SYNTACTICAL ERROR

000160 FILE SECTION.
000170 FD INPUT-DEVICE LABEL RECORD OMITTED DATA RECORD INP.
000180 01 INP PICTURE X(RO).
000190 FD OUTPUTONE LABEL RECORD STANDARD DATA RECORD OUTI.
000210 01 OUTI PICTURE X(80).
000220 FD OUTPtJTTWO LABEL RECORD STANDARD DATA RECORDOUT2.
000240 01 OUT2 PICTURE X(80).
000250 FD OUTPUTHREE LABEL RECORD OMITTED DATA RECORD OUT3.
000260 01 OUT3 PICTURE X(80).
000261 FD OP-FILE LABEL RECORD IS STANnARD DATA RECORD IS OP-REC.
000262 01 OP-REC PICTURE X(80).
000263 FD ERROR-FILE LABEL RECORD IS DATUM DATA RECORD IS ERROR-REC.
000264 01 ERROR-REC PICTURE X(80).

00032
00032.00001
00032.00002
00032.00003
00033

000265 01 DATUM COPY LIB1.
01 DATUM.

02 DATA-O PICTURE X.
02 DATA-l PICTURE 9(5).

000267 WORKING-STORAGF. SECTION.
00034

**** 107
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050

**** 002
**** 002

00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061

**** 269
00062
00063
00064
00065
00066
00067

00026B 77 DATA-2 PICTURE 9(5) VALUE 123456.
***. VALUE TRUNCATED ON LEFT

000270 PROCEDURE DIVISION.
000271 DECLARATIVES.
000272 SEC-l SECTION. USE AFTER STANDARD ER~OR PROCEDURE ON ERROR-FILE.

0005E 000273 PI. DISPLAY ERROR-REC.
000274 S2 SECTION. USE BEFORE BEGINNING FILE LABEL PROCEDURE ON OUTPUT.

00067 000275 Pl. MOVE DATA-2 TO DATA-I. t10VE' , TO DATA-O.
000276 S3 SECTION. USE AFTER BEGINNING FILE LABEL PROCEDURE ON INPUT.

00071 000277 Pl. IF DATA-l - DATA-2 MOVE' TEST TO READ AND CHECK USER LABEL
00077 000278- 'SUCCESS' TO OUT3 ELSE EXHIBIT NAMED DATA-l ryATA-2.

000279 END DECLARATIUES.
000280 SEC-4 SECTION.
00028l START.

00080 000290 OPEN INPUT INPUT-DEVICE.
00083 00030n OPEN OUTPUT OUTPUTONE, OUTPUTT1.JO.

000310 OUTPUTHRF.E, ERROR-FILE.
0009B 000320 MOVE I BEGIN SEQUENTIAL 10 TEST I, TO 01 iT 3 .

**** INCORREr.T PUNCTUATION
**** INCORRECT PUNCTUATION

000A2 000330 WRITE OUT 3.
000331 CHECK-USE-VERB-FORMAT-2.

aOOA7
OOOAE
000B5
000C3
OOODB
OOOE7

000332 MOVE I TEST TO READ AND CHECK USER LABEL FAILURE' TO OUT3.
000333 MOVE' THts IS RECORD l' TO ERROR-REC.
00033/. WRITE ERROR-REC CLOSE ERROR-FILE.
00033~j ADD 5 TO DATA-1 OPEN INPUT ERROR-FILE. WRITE OUT3.
000336 Pl. READ ERROR-FILE INTO OUT3 AT END GO TO GET-FIRST-INPUT.
000337 WRITE OUT3. GO TO PI.
000340 GET-FIRST-INPUT.

OOOED ()00350 READ INPUT-DEVICE AT END Gn TO CLOSE-INITIAL-INPUT.
000360 WRITE OUT1 FROM INPUT.

**** IDENTIFIER MISSING AFTER 'FROM'
000F2 000370 GO TO GET-FIRST-INPUT.

000380 CLOSE-INITIAL-INPUT.
ooon 000390 r.LOSE INPUT-DEVICE. OUTPUTONE.
000F9 000400 OPEN INPUT OUTPUTONE.

000410 GET-SECOND-INPUT.
OOOFF 000420 READ OUTPUTONE AT END GO TO CLOSF,-SECOND-INPUT.

Figure 3. Sample Source Program and Procedure Division Map Listing

Com pi lotion Initiation 11

00068 00104 0004JO WRITE 0UT2 FROM OUTI.
00069 OOlOC 000440 GO TO GET-SECOND-INPUT.
00070 000450 CLOSE-SECONO-INPUT.
00071 00100 000480 CLOSE OUTPUTONE. AND OUTPUTTWO.

**** 049 **** SYNTACTICAL ERROR
00072 00110 000490 OPEN INPUT OUTPUTONE. OUTPUTTWO.
00073 000500 COMPARE-RECORDS.
00074 OOllC 000510 READ OUTPUTONE AT END GO TO TERMINAT.

**** 234 **** UNDEFINED PROCEDURE NAME - EXTERNAL REFERENCE GENERATED
00015 00121 000520 READ OUTPUTTWO AT END GO TO ERR.
00076 00126 000530 IF OUTI • 0UT2 GO TO COMPARE-RECORDS.
00077 0012B 000540 MOVE' RECORD MISMATCH ' TO OUT3.
00078 00132 000550 WRITE OUT3.
00079 00137 000560 WRITE OUTJ FROM OUTI.
00080 0013F 000570 WRITE Ot~3 FROM OUT2.
00081 000580 GOTO COMPARE-RECORDS.

**** 049 **** SYNTACTICAL ERROR
00082 000590 ERR.
00083 00147 000600 MOVE ' PREMATURE EOF ON DEVICF.-2 ' TO OUTJ.
00084 0014E 000610 WRITE OUT3.
00085 000620 TERMINATE.

**** 049 **** SYNTACTICAL ERROR
**** 003 **** AREA A VIOLATION

00086 00153 000460 MOVE ' END SEQUENTIAL 10 TEST ' TO OUT3.
00087 0015A 000470 WRITE OUTl.
00088 0015F 000630 CLOSE OUTPUTONE. OUTPUTTWO. OUTPUTHREE.

**** 159 *.** EXTERNAL REFERENCE GENERATED

*** NUMBER OF DIAGNOSTIC MESSAGES 12 *** HIGHEST SEVERITY LEVEL 7 ***

Figure 3. Sample Source Program and Procedure Division Map listing (cont.)

MAIN (Main Program)

Two or more source programs can be compiled separately and their.object modules combined to form a single execut
able program. The MAIN option specifies that the source program to be compi led is the main program; its inclusion
on the COBOL processor control command is for commentary purposes only.

MAPS (Both Data Division Map and Procedure Division Map)

This option specifies that both the Data Division Map and the Procedure Division Map are to be produced.

PMAP (Procedure Division Map)

This option specifies that the Procedure Division Map is to be produced. This Map appears as part of the Source Pro
gram listing. The relative starting location of each sentence in the PROCEDURE DIVISION is listed following the
associated source line number. Figure 3 illustrates a sample source program and Procedure Division Map listing.

SEG (Priority Segments)

This option specifies that the source program to be compiled is a segmented program, i.e., it contains Priority
Segments. This option must be specified if a segmented object program is desired; otherwise, 0 nonsegmented ob
ject program is produced.

SEQCHK (Sequence Check)

This option specifies that the sequence number field (columns 1 through 6) of the source program lines is tested for
ascending sequence. If an out-of-sequence condition occurs, the compiler Issues the diagnostic ''SOURCE PRO
GRAM OUT OF SEQUENCE".

so (Source Output)

This option allows the user to write his source program out to a keyed file. The keys used are compatible with the
Edit processor. When using this option, an ASSIGN control command for the system DCB M:SO must be provided.

12 Compilation Initiation

SRTx (Co-Resident Sort)

This option specifies that the SORT verb will be compiled with the co-resident sort code and (1 tree structure
generated by the campi ler. The proper element fi les must be loaded at load time to ensure execution of this code.
The COBOL object program and the Sort processor will be loaded together to form one load module, thus eliminating
the need for the COBOL program to be swapped in and out. (Refer to "Co-Resident Sort Feature" in Chapter 5,)
The x can be either an S or al1 R, indicating that the programmer desires the sequential (tape, mixed tape/disk) or
the Random (disk only) sortin~, technique to be used.

SUB (Subprogram)

This option specifies that the source program to be compiled is a subprogram. No "END start" address will be gen
erated by the compiler.

SYN (Syntax Checking)

This option provides only for syntactical checking of the COBOL source program; code generation is bypassed,
thereby saving machine time. It is recommended that this option be used for preliminary compi lations, as most of
the errors in the source program are detected during this pass. For the final compilation (i.e., with the SYN option
deleted), remaining errors are~ detected during code generation.

TEST (On-Line Debugger)

This option specifies that the ,compiled program is to be tested using the on-line debugger. It causes the computer
to create all necessary fUes and linkages for the on-line debugger.

XREF (Cross-Reference Listin~l)

This option specifies that a crc)ss-reference listing of the COBOL source program is to be produced on the La device.
All nonreserved words defined in the source program are listed in alphanumeric order. Shown to the left of each
word is the source line nUmbE!r of the statement where the word is initially defined. To the right, overflowing if
need be to lines following, ar(~ the line numbers of statements in which references are made to the words. Figure 4
shows a samp Ie cross-reference Ii sti ng.

COBOL CROSS-REFERENCE LISTING 21:43 MAR 12. lq75 PAGE

EXTERNAL C:ERR 00088
00052 CHECK-USE-VE'RB-FORMAT-2
00063 CLOSE-INITI~L- INPUT 00060
00070 CLOSE-SECOND,-INPUT 00067
00073 COMP ARE-RECO'RDS 00076
00032.00002 DATA-O 00040
00032.00003 DATA-l 00040 00042 00043 {)Of)56
00034 DATA-2 00040 00042 00043
00032 DATUM
00082 ERR 00075
00030 ERROR-FILE 00037 00041:} 00055 00056 00057
00031 ERROR-REC ()()O30 0003R 00054 00055
00059 GET-FIRST-INPUT 00057 00062
00066 GET-SECOND-INPUT 00069
00021 INP 00020
00020 INPUT-DEVICE 00047 01)060 00064
00028 OP-FILE
00029 OP-REC 00028
00026 OUTPUTHREE 0004Q 00088
00022 OUTPUTONE 00048 00064 00065 00067 00071

00072 00074 00088
00024 OUTPUTTWO 00048 00072 00075 OOOBR
00023' OUTl 00022 00068 00076 00079
00025 OUT 2 00024 00068 00076 ooosn
00027 OUT3 00026 00043 00050 00051 00053

00056 00057 0005A 00077 00078
00079 00080 00083 00084 OOC86
00087

I...-_______ ~----,-----------.----"--,---,,--•• -. _____ , _____ '"

Figure 4. Sample Cross-Reference Listing

Compi lotion Initiation 13

3. INTER-PROGRAM COMMUNICATION

Introduction

Any given COBOL source program may be subdivided into two or more ports, each of which can be compiled
independently. One of these subdivisions must be designated as the main or calling program at both compilation and
execution times. The remaining subdivisions are designated as subprograms or called programs. Each subdivision of
the total program, whether the calling program or a called program, has the format of a complete COBOL source
program. Each subdivision must contain IDENTIFICA nON, ENVIRONMENT, DATA, and PROCEbURE DIVISIONs.

Rules for Usage

Successful usage of the feature requires observance of two alternative sets of rules. The first set is somewhat restric
tive, but requires a minimal knowledge of the contents of the calling program and its subprograms and thus is less
susceptible to programmer error.

1. The ENVIRONMENT DIVISIONs must all be complete with regard to the total program, and should be
identical.

2. The FILE SECTIONs and REPORT SECTIONs must all be complete with regard to the total program, and
should be identical.

3. If the programmer wishes to have data referenced by both the main and subprograms he can do it in one of
two ways:

a. Provide a LINKAGE SECTION and a PROCEDURE DIVISION USING statement in the called program
and a CALL statement in the colling program. The LINKAGE SECTION will reference WORKING
STORAGE items in the main program.

b. Provide an identical COMMON-STORAGE SECTION in both the main and subprograms. Items in
COMMON-STORAG E can then be referred to by both programs and can also be used as parameters
in the ENTER statement when colling a Metasymbol or FORTRAN subprogram.

See the Xerox ANS COBOL/LN Reference Manual, 90 15 00, Chapter 10, for more detailed information
on this subject.

4. The PROCEDURE DIVISION of the calling program must contain all DECLARATIVES sectionsdesired in the
total progrdm.

The second set of rules requires a careful and detailed analysis of the individual source programs but permit omission
of repetitious entries, thus reducing the size of the pre-grams and improving compilation time.

1. ENVIRONMENT DIVISION

a. Calling Program

The complete ENVIRONMENT DIVISION for the total program must be written.

b. Subprograms

Each subprogram must contain SELECT sentences only for those files referenced in its PROCEDURE
DIVISION (and described in its DATA DIVISION).

14 Inter-Program Communication

2. DATA DIVISION

a. FILE SECTION

(1) Co II i ng Program

The fi Ie and record descriptions for aU fi les in the total program must be included.

(2) Subprograms

The file and record descri'pHons for 0111 files referenced in the PROCEDURE DIVISION (and men
tioned in I:ln ENVIRONMENT DIVISION SELECT sentence) must be Included.

b. REPORT SECTION

(1) Calling Program

The report descriptions of all reports used in the total program must appear.

(2) Subprograms

Each subprogram must contain only the descriptions of reports actually referenced therein. (The
file description of the file containing the associated REPORT IS clause must also be present.)

Memory space is allocated and Data Control Blocks generated for the files described in the FILE SECTION or ~'Ie
main program. All subprogrOims making reference to reports or report data, when incorporated into the total pro
gram at run-time, refer to the areas reserved by the main program. Simi larly, memory space is assigned in accord
ance with the COMMON-STORAGE SECTION description in the main program, and this area is shared by the main
program and ail associ<.lted subprograms when combined at run-time. The main program and each subprogram may
have its own WORKING-STORAGE SECTION; data described therein is not shared, but is private to the program
in which it is defined. However, WORKING-STORAGE items in a main program may be referred to in a subprogram
by the use of a LINKAGE SECTION in the subprogram and the PROCEDURE DIVISION USING statement as men
tioned previously in paragraph 3a above.

Program control can flow naturally between independent compilations employing the normal COBOL verbs GO TO
and PERFORMo Only one additional statement is introduced into the Xerox ANS COBOL language to provide this
natural flow. Any procedure point to whi ch control may be passed by a separate Iy compi led program must be de
clared as an external definition. The ENTER COBOL statement names those entry points (section- and paragraph
names) within the program th(lt are to be visible to sequence control statements in other compi lations.

Rules for Usage 15

4. OBJECT PROGRAM

The object program produced by the COBOL compiler is in Xerox standard object language format. It is output
via the M:BO and/or M:GO system Data Control Blocks (DCBs) as directed by the options expressed in the COBOL
control command. The compiler assumes either that the appropriate DCB has been pre-conditioned by ASSIGN com
mands to· reflect the media on which the object program is to appear and the file-name(s) under which the object
module is to be cataloged, or that those options have been deliberately permitted to default to the standard system
condi tions.

Segmented Object Programs

A single COBOL source program can be so large that its object-time storage requirements exceed available computer
memory. When such a situation occurs, the program may be partitioned into logical blocks called "overlays" or, in
COBOL terminology, "Priority Segments". The logical structure of a program segmented in this manner resembles a
simple tree. COBOL object programs employ the branch reference loading mode: each overlay is loaded into core
storage when control reaches a reference to it during execution of the root or another overlay segment of the program.
The SEG option must be specified as a COBOL control command option in order to produce a segmented program.

During compilation of a segmented program, only the root segment module is output via the M:BO and/or M:GO
DeBs under the file-name contained in the DCB. It is possible to create permanent relocatable object modules
(ROMs) by assigning the M:BO DCB to a file. The root and each overlay will then be output as permanent ROMs,
as described below. Since the computer uses the M:LI DCB to write out the overlay segments for the GO file, the
M:LI assignment should not be protected with a password. If it is, the user cannot access the overlays.

Overlay segment modules are output in individual files on disk; they are identified by the root segment module
name with a two-digit suffix. For example, if the root segment name is OBJPROG, overlay segments are named
OBJPROG01, OBJPROG02, OBJPROG03, and so on. In addition, the tree structure is specified in a TREE control
command image, which is output on disk in a file that is also identified by the root segment module name with two
zeros added, e. g., OBJPROGOO. No tree structure is created for the BO output.

The TREE control command may be punched out by the PCL control command

COPY DC/OBJPROGOG TO CP

Simi larly, each over''"'y segment module may be punched by the control command

COpy DC/OSJPROGnn TO CP(BIN)

wherp ilr. is the two-digit identifierfor the segment, as explained above. (See "Segmentation Feature" in Chapter 3.)

Object Program Structure

The object program is produced in one or more modules: one module comprises the entire program except for priority
segments; one addi tional module is created for each priori ty-number used between the specified SEGME NT -LIMIT
(or 50) and 99. A priority segment (overlay) module consists of a single (standard) control section and contains only
the procedure code and literals of the relevant PROCEDURE DIVISION sections. The root segment module comprises
multiple con.trol sections. Figure 5 illustrates arrangement of the standard control section of the root segment module.

The root segment module may also contain a number of dummy program sections, which are created in the following
instances:

1. COMMON-STORAGE SECTION. The COMMON-STORAGE SECTION of the DATA DIVISION of the source
program is represented in the object program by a dummy program section whose name is supplied by the
CS(name) control command option. If the CS(name) option is not specified, the name TALLY is used. The
Special Register TALLY is generated as the initial entry in the COMMON-STORAGE dummy section produced
by each COBOL compilation.

2. DCBs. A DCB (Data Control Block) appears in the object program for each fi Ie declared in the source program
by a File Description (FD) file-name entry in the FILE SECTION of the DATA DIVISION, and is output as a
dummy program section named F:fi Ie-name.

16 Object Program

3. File Record Areas. A record area the size of the largest record defined is reserved for each file rleclared by an
FD entry, and is represented in the object program by a dummy program section named file-name.

4. Fi Ie Index Areas. Each fi IE! declared in the source program has associated with it one additional dummy pro
gram section named I:file-name, wherein five words are assigned for file control purposes. One addi,tional
word is allocated for each index-name mentioned in INDEXED BY options of the OCCURS clause in record
descriptions pertaining to the file.

5. Report Table Area. Each rE!port declared by a Record Description (RD) report-name entry in the REPORT SEC
TION of the DATA DIVISION of the source program is described in the object program by a table that is pro
duced as a dummy program secti on named R :report-name.

6. Report Storage Area. The print lines, accumulators, control fields, and other data storage associated with each
report are represented in the object program by a dumm>' program section named report-name.

7. WORKING-STORAGE SECTION. The WORKING-STORAGE SECTION in the DATA DIVISION has a defini
tion (DEF) associated with it that indicates its beginnin~, location. This definition is labeled DEFSWK.

These dummy program sections are illustrated by the load module map in Figure 6. Circled numbers are keyed to the
itemized discussion above. NotE~ that the map does not correlate with the sample object listing shown in Figure 2.

Low Core
Miscellaneous Data
Storage

I- -- - - - - - - - -
WORk' NG -STORAG E
SECTIO N Dota

I- _. - - - - - - - - -
Condition-Name Values
and Editing Masks

I- .:.. - - - - - - - - -
Procedure Exit Table

f-- - - - - - - - -
Temporary Storage

I- - - - - - - - --
Procedure Bronch Table

1-- - - - - - - - --

Procedure Code

1--,----- - ---

Li tera Is

High Core

Figure 5. Standard Control Section of a Root
Segment Modul e

DSEC C302 0 TALLY ----0
DSEC C304 0 INXFILE, 0
DSEC C318 0 I:INXFILE ~
DSEC 9016 0 F:INXFILE C!)
DSEC C320 0 I :REPXFILE
DSEC 9048 0 F:REPXFILE
DSEC C328 0 PRINTXFILE
DSEC C346 0 I : PR INTXFI LE
DSEC 909C 0 F:PRINTXFILE
DSEC C34E 0 USAGE-REPORT --Q:2
DSEC C53E 0 R :USAGE-REPORT ~
UDEF COB6 0 DEF$WK C!J
UDEF C064 0 BTG
CSEC C064 0

LIB 8C3C 0 M:UC
LIB 8CF6 0 M:XX

LDCB 90FO 0 M:DO
LIB C814 0 C:ERA
LlB C814 0 C:ABA
LIB eR01 0 C:RRK
LIB CCC8 0 C:TRP
LIB CB40 0 C:RRT
LIB CB42 0 C:RRS
LIB CB44 0 C:RRR
LIB CB6E 0 C:RRQ
LlB CB63 0 C:RRE
LIB CBFD 0 C:RRC
LIB CAl7 0 C:CDB
LIB CBF5 0 C:RRA
LIB CB8A 0 C:RRJ
LIB CBF9 0 C:RRB
LIB CB79 0 C:RRF
LIB CBSl 0 C:RRD
LIB C666 0 C:OPN
LIB C73D 0 C:RLR

Figure 6. Load Module Map

Object Program 17

5. PROGRAM COMPILATION AND EXECUTION

Compilation of Large Source Programs

It is recommended that the fol lowing two monitor control commands be used for compilation of large source programs.

1. LIMIT control command

Compilation of large source programs requires a large amount of temporary disk storage. For this reason the
TSTORE option should be specified to allow the use of additional available disk storage.

Example: ! LIMIT (TSTORE,2000)

Also, temporary disk storage can be conserved by specifying that the compiler copy of the source program (from
which the source listing is built) be saved on magnetic tape rather than on disk. The following control com
mand permits this dlternative assignment:

!ASSIGN F:W7, (LABEL, name), (SN,value), (OUTIN)

where

name specifies the name of the file.

value specifies the serial number of the tape reel to be used.

2. POOL control command

Compilation speed can be improved significantly by specifying additional buffers for use by the monitor.

Example: I POOL (FPOOL,8), (IPOOL, 8)

Examples of both the LIMIT and POOL control commands are presented in the deck setup in Figure 8 ..

COBOL Work Files

The COBOL compiler uses 11 work files having the DCB names F:WO through F:W10. To avoid confusion, the COBOL
source program should not use those DCB names. In any event, it is good practice to place the IASSIGN cards for
user fi les after the !COBOL card and source deck, as illustrated throughout this manual.

COBOL Library on Tape

Normally, library files are stored on disk. It is possible, however, to have library files on labeled tape. In this
case, an ASSIGN control command for M:LI must be specified. For example,

!ASSIGN M:LI, (LABEL, name, account), (SN,value)

where

name specifies the name of a labeled fi Ie.

account specifies the account under which the tape was created.

val ue specifies the serial number of the tape reel to be used.

Print File Handling

If the BEFORE and/or AFTER ADVANCING clause is used in a COBOL source program, the data control block must
indicate that the first position of the record is to be treated as a vertical-format-control character. If the .file was
assigned to the printer in the COBOL source program, the DCB wi II be pre-set with the VFC option. This eliminates
the need for an ASSIGN control command.

18 Program Compilation and Execution

If the ADVANCING option is not specified in a WRITE instruction addressed to a print file, the user is assumed
f'o have indicated the vertical-format-control character at the source program level and stored this chapter in the
first byte of the record to be printed. The adion indicated by the control character is performed, and then the rec
ord is printed. The codes control I ing the vertical format on the Xerox Buffered Line Printers, Models 7440/7445
and 7446, are shown in Table 11.

Table 1. Xerox Buffere,d Line Printers, Models 7440/7445 and 7446,Vertical-Format Control Codes

Code
(Hexadecimal)

40

60

CO

C1

C2

C3

EFt

FO

F1

F2

F7

t
Model 7446 only.

Meaning

Print, single space.

Print, inhibit automatic upspace after printing.

Print, single space (same as 40).

Single space, print, single space.

Space 2 lines, print, single space.

Space 3 lines, print, single space.

Space 15 lines, print, single space.

Skip to channel 0 (bottom of page), print, inhibit automatic upspace.

Skip to channell (top of page), print, inhibit automatic upspace.

Skip to channel 2, print, inhibit automatic upspace.

Skip to channel 3, print, inhibit automatic upspace.

Skip to channel 7, print, inhibit automatic upspace.

Print, inhibit automatic upspace after printing (same as 60).

Space 1 line, print, inhibit automatic upspace after printing.

Space 2 lines, print, inhibit automatic upspace after printing.

Space 15 lines, print, inhibit automatic upspace after printing.

Skip to channel 0 (bottom of page), print, single space.

Skip to channell (top of page), print, single space.

Skip to channel 2, print, single space.

Skip to channel 7, print, single space.

Program Compi lation and Execution 19

Deck Structures

Basic Setups

Figures 7, 8, and 9 show some of the ways in which COBOL program decks may be prepared for COBOL compilation
and execution.

Card Parameter Description

IJOB Signals the beginning of a job stack.

Account number.

JONES Identi fi es the user.

2 ICOBOl Specifies that control is to be transferred to the COBOL processor.

3 COBOL source deck.

4 IFIN Signals the end of the job stack.

Figure 7. Basic Setup - Compilation Only

20 Deck Structures

Card

2

13

12 !ASSIGN F:NEW-MASTER,;

11 41, 1337)

Parameter ---
!JOB

ACC85011

COBOLTESTS

7

! LIMIT

(TIME,60)

Description

Signals the beginning of a job stack.

Account number.

Identi fi es the user.

Indi cates job priority.

Control command that specifies the maximum values for various system
resources used by the job.

Specifies limit of 60 minutes execution time.

Figure 8. Basic Setup _. Compild:on and Execution

Deck Structures 21

Card

3

4

5

6

7

8

Parameter

(lO,3000)

(PO, 500)

I (PSTORE, 400)

(TSTORE, 1200)

IPOOl

(FPOOl,8)

(IPOOl,8)

ICOBOl

LS

lO

XREF

GO

IASSIGN

F: TRANS-FILE

I (DEVICE,MT)

(SN,,643)

Description

Specifies limit of 3000 pages listing output.

Specifies limit of 500 cards punch output.

Signals that this LIMIT command is continued on the following card.

Specifies limit of 400 granules permanent disk storage. (This card is
part of the preceding LIMIT command.)

Specifies I imit of 1200 granules temporary disk storage.

Control command that specifies additional buffers for use by the
monitor.

Specifies that 8 buffers are to be assigned to file management use.

Specifies that 8 buffers are to be assigned to the file index pool.

Control command that specifies control is to be transferred to the
COBOL processor.

Specifies that the source program is to be listed.

Specifies that the object program is to be listed.

Specifies that the cross-reference listing is to be produced.

Specifies that the program is to be executed after compilation.

CaBO l source deck.

Control command that specifies the fi Ie and physical peripheral
device to be used.

DCB name of TRANS-FILE file.

Signals that this ASSIGN command is continued on the following
card.

Specifies that the fi Ie is to be assigned to a magnetic tape unit.
(This card is part of the preceding ASSIGN command.)

Specifies that the input file is contained on reel number 643.

Figure 8. Basic Setup - Campi lation and Execution (cont.)

22 Deck Structures

Card

9

10

11

12

13

14

15

Parameter

!ASSIGN

F :OLD-MASTER

! (LABEL, PROPMASTER)

! (SN, 741, 1337)

IASSIGN

F:NEW-MASTER

I (LABEL, PROPMASTER)

(SN,ANY)

I (SAVE)

ILOAD

(GO)

(MAP)

(UNSAT, (COBUB))

Description

Control command that specifies the file and physical peripheral
dev ice to be used.

DCB name of OLD-MASTER file.

Signals that this ASSIGN command is continued on the following
card.

Specifies that the file is named PROPMASTER. (This card is part of
the preceding ASSIGN command.)

Signals that this ASSIGN command is continued on the following
card.

Specifies that the input fi Ie is contained on two reels, numbers 741
and 1337. (This card is part of the preceding ASSIGN command.)

Control command that specifies the fi Ie and physi cal peripheral
device to be used.

DCB name of NEW-MASTER fi Ie.

Signals that this ASSIGN command is continued on the following
card.

Specifies that the output file is to be named PROPMASTER. (This
card is part of the preceding ASSIGN command.)

Specifies that the output file is to be written on any avai lable reel.

Signals that this ASSIGN command is continued on the following
card.

Specifies that the file is to be saved. (This card is part of the pre
ceding ASSIGN command.)

Control command that directs the resident loader to form a relocat
able load module.

Specifes that data from the user temporary GO file is to be included
in the root of the load module.

Specifies that all external references and definitions for the load
module are to be listed.

Specifies that the COBOL I ibrary (identified by account number
COBUB) is to be searched for external definitions required for the
load module.

Figure 8. Basic Setup - Compilation and Execution (cont.)

Deck Structures 23

Card Parameter

16 IRUN

17 !DATA

18

19 IFIN

Card Parameter

IJOB

TESTA

z

2 I LOAD

Descr i pti on

Control command that specifies the program is to be executed.

Control command that specifies a data deck is to follow.

Data deck.

Signals the end of the job stack.

Figure 8. Basic Setup - Compilation and Execution (cont.)

Descri pti on

Signals the beginning of a job stack.

Account number.

Identifies the user.

Control command that directs the resident loader to form a relocat
able load 1')10dule.

(UNSAT, (COBUB)) Specifies that the COBOL library (identified by account number
COBUR) is to be searched for external definitions requnred for the
load module.

3 Object deck.

4 IRUN Control command that specifies the program is to be executed.

Figure 9. Basic Setup - Execution with Object Deck

24 Deck Structures

Card Parameter Descri pti on

5 IDATA Control command that speci fies a data deck is to follow.

6 Data deck.

7 IFIN Signals the end of the job stack.

Figure 9. Basic Setup- Execution with Object Deck (cont.)

Segmentation Feature

To combine segmented programs, into a single executable program, the desired overlay structure must be communi
cated to the loader. This may be done in the usual way by a TREE control command or semiautomatically by a
PTREE command, which referen.ces the files containing the TREE commands generated by individual compilations.
Refer to "Segmented Object Programs" in Chapter 2.

Figures la, 11, and 12 show how a COBOL program with priority segments is set up for compilation and execution.

8

2

I JOB 1, SEGMENTTEST

L-., ____________ • ________ , •• ",, ___ .,_. _______ . __ , _______ -

Figure 10. Segmentation Feature .. - Compilation and Execution

Deck Structures 25

Cord

2

3

4

5

6

7

Parameter

I JOB

SEGMENTTEST

IASSIGN

M:GO

(FILE, JOY)

IASSIGN

M:BO

(FILE, COY)

!COBOL

LS

BO

GO

SEG

!LOAD

(BREF, n)

I (EF, (JOY), (JOY01),
(JOY02»

Descri ption

Signals the beginning of a job stock.

Account number.

Identi fi es the user.

Control command that specifies the file and physical peripheral
device to be used.

The fi Ie is the system GO file.

Specifies that the file is to be a disk file named JOY.

Control command that specifies the fi Ie and physical peripheral
device to be used.

The file is the system BO file.

Specifies the file is to be a disk file named COY.

Control command that specifies control is to be transferred to the
COBOL processor.

Specifies that the source program is to be listed.

Specifies that permanent relocatable object modules are to be
produced.

Specifies that the program is to be executed after compi lation.

Specifies that the program contains priority segments.

COBOL source deck.

Control command that directs the resident loader to form a relocat
able load module.

Specifies that the overlay structure is to be set up for the branch ref
erencing loading mode. The parameter "nll (if present) is a decimal
value specifying the maximum number of inter branch references within
the program. If II n II is absent or zero, a toto I of 11 words per segment
are reserved in the reference loading table (two words per reference).

Signals that this LOAD command is continued on the following card.

Specifies that the modules of the root segment (JOY) and the two
overlay segments (JOYOl and JOY02) are to be included in the load
module. (This card is part of the preceding LOAD command.)

Signals that the LOAD command is continued on the following card.

Figure 10. Segmentation Feature - Compilation and Execution (cont' ..)

2/J Deck Structures

Card

8

9

10

11

12

13

Parameter

I (UNSAT, (COBLIB))

!TREE

JOY-(JOY01, JOY02)

!RUN

IDATA

IFIN

Descri pti on

Specifies that the COBOL library (identified by account number
COBLIB) is to be searched for external definitions required for the
load module. (This card is part of the preceding LOAD command.)

Control command thatspecifiestheoverlaystructure of the load module.

Specifies that module JOY is the root segment and modules JOYOl
and JOY02 are overlay segments.

Control command that speci fi es the program is to be executed.

Control command that specifies a data deck is to follow.

Data deck.

Signals the end of the job stack.

Figure 10. Segmentation Feature - Compilation and Execution (cant.)

9

2

I JOB 1, SEGMENTTEST

Figure 11. Segmentation Feature - Load from 1'0 File, Execute, and Punch BO File

Deck Structures 27

Card Parameter

IJOB

SEGMENTTEST

2 I LOAD

(BREF, n)

3 I (EF, (COY), (COY01), (COY02»

4 I (UNSAT, (COBLIB»

5 ITREE

COY-(COY01, COY02)

6 IRUN

7 I DATA

8

9 IEOD

10 IPCL

11 COpy DC/COY TO CP(BIN)

Descri pti on

Signals the beginning of a job stack.

Account number.

Identifies the user.

Control command that directs the resident loader to form a
relocatable load module.

Specifies that the overlay structure is to be set up for the
branch referencing loading mode. The parameter lin" (if
present) is a decimal value specifying the maximum num
ber of interbranch references within the program. If "n"
is absent or zero, a total of 11 words per segment are re
served in the reference loading table (two words per reference).

Signals that this LOAD command is continued on the follow
ing card.

Specifies that the modules of the root segment (COY) and
the two overlay segments (COYOl and COY02) are to be
included in the load module. (This card is part of the pre
ceding LOAD command.)

Signals that the LOAD command is continued on the follow
ing card.

Specifies that the COBOL library (identified by account
number COBLIB) is to be searched for external definitions
required for the load module. (This card is part of the pre
ceding LOAD command.)

Control command that specifies the overlay structure of the
load module.

Specifies that module COY is the root segment and modules
COYOl and COY02 are overlay segments.

Control command that specifies the program is to be
executed.

Control command that specifies a data deck is to follow.

Data deck.

Defi nes the end of the data deck.

Initiates the Peripheral Conversion language (PCl) processor.

Punches a binary deck for root COY.

Figure 11. Segm~ntation Feature - Load from BO File, Execute, and Punch BO File (cont.)

28 Deck Structurel

Card

12

13

14

15

Parameter

COpy DC/COY01 TO CP(BIN)

COpy DC/COY02 TO CP(BIN)

END

!FIN

~escri ptio~_

Punches a binary deck for first overlay segment.

Punches a binary deck for second overlay segment.

Terminates PCl operations.

Signals the end of the job stack.

Figure 11. Segmentation Feature - load from BO File, Execute, and Punch BO File (cont.)

12

11 COpy CR(BIN} TO DC/COY02

2

! JOB 1, SEGMENTTEST

'--____________ ~ _____________ ~_.·A.' ___ , ___ , _________ --'

Figure 12. Segmentation Feature .- Execution from Object Decks

Deck Structures 29

Card Parameter

IJOB

SEGMfNTTEST

2 IPCl

3 COpy CR(BIN) TO DC/COY

4

5 IEOD

6 lEaD

7 COpy CR(BIN) TO DC/COVOl

8

9 IEOD

10 lEaD

11 COpy CR(BIN) TO DC/COY02

12

13 lEaD

14 IEOD

15 END

16 I lOAD

(BREF, n)

Descri pti on

Signals the beginning of a job stack.

Account number.

Identifies the user.

. Initiates the Peripheral Conversion language (PCl) processor.

Copies object deck from card reader to disk fi Ie named
COY.

Object deck for root segment.

} Signals pel of the end of the root segment card deck.

Copies object deck from card reader to disk fj Ie named
COYOL

Object deck for first overlay segment.

} Signols pel of the end of the overlay segment card deck.

Copies object deck from card reader to disk fj Ie named
COY02.

Object deck for second overlay segment.

} Signals pel of the end of the overlay segment card deck.

Terminates PC l operations.

Control command that directs the resident loader to form a
relocatable load module.

Specifies that the overlay structure is to be set up for the
branch referencing loading module. The parameter "n"

Figure 12. Segmentation Feature - Execution from Object Decks (cont.)

30 Deck Structures

Card

17

18

19

20

21

22

23

Parameter

(BREF,n) -(cont.)

! (EF ,COY), (COY01), COY02))

I(UNSAT, (COBUB))

!TREE

COY-(COY01, COY02)

IRUN

IDATA

IFIN

Description

(if present) is a decimal value specifying the maximum
number of interbranch references within the program. If
"n" is absent or zero, a total of 11 words per segment
are reserved in the reference loading table (two words per
reference).

Signals that this LOAD command is continued Oh the fol
lowing card.

Specifie~, that the modules of the root segment (COY) and
the two overlay segments (COYOl and COY02) are to be
included in the load module. (This card is part of the pre
ceding LOAD command.)

Signals that the LOAD command is continued on the follow
ing card.

Specifies that the COBOL library (identified by account
number COBUB) is to be searched for external definitions
required for the load module. (This card is part of the pre
ceding LOAD command.)

Control command that specifies the overlay structure of the
load module.

Specifies that module COY is the root segment and modules
COY01 and COY02 are the overlay segments.

Control command that specifies the program is to be
executed.

Control command that specifies a data deck is to follow.

Data deck.

Signals the end of the job stack.

Figure 12. Segmentation Feature - Execution from Object Decks (cont.)

Inter-Program Communication (Subcompil. F.atur.)

A single logical problem solutiori expressed in COBOL may be subdivided into two or more source programs that can
be compil~d separately and whose resultant object modules can be subsequently combined into a single executable
program. Rules fc)r such program subdivision are explained in Chapter 3. Briefly stated, one of the subdivisions
must be designated as the main or calling program at both compilation and load times, and the remaining subdivisions
must be denoted as subprograms c)r called programs (SUB option) at compi lation time.

Figures 13, 14, 15, and 16 show how two COBOL programs are compiled separately and how the resultant object
modules are then combined into Oi single executable program.

Deck Structures 31

2

Card Parameter

IJOB

90301

SUBCOMP

2 ICOBOl

lS

BO

MAIN

3

4 IFIN

!JOB 90301, SUBCQMP

Description

Signals the beginning of a job stack.

Account number.

Identifies the user.

Contro I command that speci fi es contro lis to be transferred to the
COBOL processor.

Specifies that the source program is to be listed.

Specifies that the binary object deck is to be produced.

Specifies that this program is to be compiled as the main or calling
program.

COBOL source deck of the main program.

Signals the end of the job stack.

Figure 13. Inter-Program Communication - Compilation of Main or CaUing Program

32 Deck Structures

Card

2

3

4

ParClmeter

IJOB

90301

SUBCOMP

ICOBOl

lS

BO

SUB

IFIN

2

!JOB 90301, SUBCOMP

Descri pti on

Signals the beginning of a job stack.

Acco'Jnt number.

Identifi es the user.

Control command that specifies control is to be transferred to the
COBOL processor.

Specifies that the source program is to be listed.

Specifies that the binary object deck is to be produced.

Specifies that this program is to be com pi led as the subprogram
or ca II ed program.

COBOL source deck of the subprogram.

Signals the end of the job stack.

Figure 14. Inter-Program Communication -- Comp;lation of Subprogram or Called Program

Deck Structures 33

Card

I

2

3

4

5

7

7

Parameter

tJOB

9030,}

SUlCOMP

rASSIGN

F:1iAPE-FI1E

I (LA6:EL, SEGDATA)

(.SN,ANY)

lLOAD

(UNSAT, (COBLlS))

IRUN

_Description

S1gnals the beginning of CI job stock.

Account number.

[d'enfrflles the user.

Contror command thet specifles rhe fil;e and physt,cal peripf.era'
de vi c.e to be used~.

Dca name of TAPE-FILE fHe.

Signals that this, ASSlGN command is continued onth. fol'lowing card.

~pet!rne§ fhdf the Nff!! I! to (je ,","med S~GOATA. (fhis cdrd is part of
the precedfng ASSIGN comrr'ldnd.)

Specifies that the fHe' is to be written on any available reel.

Control command fhat directs the resident loader to form a relocatable
load modul e.

Spedfies that the COBOL library (identifi.ed by the account name
COBLIB) i,s to be searched for external definitions required for the load
module.

Obi,ect deck of the main program.

Obj,ect deck of the subprogram.

Control command that specifies the program is to be executed.

Figure 15. Inter-Program Communication - Execution with Objecf Oecks

34 Deck Structures

Card

8

9

10

Card

Parameter ~~scri_p~!?~_

IDATA Control command that specifies a data deck is to follow.

Data deck.

!FIN Signals the end of the job stack.

Figure 15. Inter-Program Communicdtion - Execution with Object Decks (cont.)

9

8

5

2

!JOB 90301, SUBCOMP

Parameter

IJOB

90301

SUBCOMP

Description

Signals the beginning of a job stack.

Account number.

Identifies the user.
~ ___ --J

Figure 16. Inter-Program Communication - Compi lotion and Execution

Deck Structures ,35

Card Parameter

2 lASSIGN

M:GO

(FllE,FMAIN)

3 lCOBOl

lS

GO

MAIN

4

5 IASSIGN

M:GO

(FILE, FSUB)

6 ICOBOL

LS

GO

SUB

7

8 IASSIGN

F:TAPE-FILE

9 I (LABEL, SEGDATA)

(SN,ANY)

10 lLOAD

(EF, (FMAIN), (FSUB»

11 I (UNSAT, (COBLIB»

Description

Control command that specifies the file and physical peripheral device
to be used.

The file is the system GO file.

Specifies that the GO file (containing the module of the main or calling
program) is to be a disk file named FMAIN.

Control command that specifies control is to be transferred to ~hE! COBOL
processor.

Specifies that the source program is to be listed.

Specifies that the program is to be executed after compilation.

Specifies that this program is to be compiled asthe main or calling program.

COBOL source deck of the main program.

Control command that specifies the fi Ie and physical peripheral devi ce
to be used.

The fj Ie is the system GO file.

Specifies that the GO fi Ie (containing the modu Ie of the subprogram
or called program) is to be a disk file named FSUB.

Specifies that control is to be transferred to the COBOL processor.

Sp(!cifies that the source program is to be listed.

Specifies that the program is to be executed after compilation.

Specifies that this program is to be compi led as the s.ubprogram
or called program.

COBOL source deck of the subprogram.

Control command that specifies the file and physical peripheral device
to be used.

DCB name of TAPE-FILE fHe.

Signals that this ASSIGN command is continued on the following card.

Specifies that the file is to be named SEGDATA. (This card is part of
the preceding ASSIGN command.)

Specifies that the output file is to be written on any available reel.

Control command that directs the resident loader to form a relocatable
load module.

Specifies that modules of the main program (FMAIN) and the subpro
gram (FSUB) are to be included in the load module.

Signals that this LOAD command is ,continued on the following card.

Specifies that the COBOL library (identified by account number
COB LIB) is to be searched for external definitions required for the
load module. (This card is part of the preceding LOAD command.)

Figure 16. Inter-Program Communication - Compilation and Execution (cont.)

36 Deck Structures

Card Parameter Description

12 !RUN Control command that specifies the program is to be executed.

13 !DATA Control command that specifies a data deck is to follow.

14 Data deck.

15 !FIN Signals the end of t-he job stack.

Figure 16. Inter-Program Communication - Compi lation and Execution (cont.)

ENTER Statement Feature

The ENTER statement allows thE! COBOL program to enter any non-COBOL subroutine that the loader can load at
object time: for example, a closed machine-language subroutine or a FORTRAN subroutine. The subroutine name
must be defi ned as an entry poi nt.

Figures 17 and 18 show how the subroutine object deck is combined with the COBOL program for compilation and
execution.

9 COBOL Source Deck

2

!JOB 19, JONES

Figure 17. ENTER Statement Fcoture -- Compilation and Execution

Deck Structures 37

- Card Parameter

!JOS

19

JONES

2 !pel:.

3 COpy CR(SIN) TO IDC/ABC

4

5 !EOD

6 !EOD

7 END

8 !COSOl

lS

GO

9

10 ILOAD

(GO)

(EF, (ABC))

11 I(UNSAT~ (CaSUS))

12 !RUN

13 IDATA

14

15 IFIN

}

Descri pti on

Signals the beginning of a job stack.

Account number.

Identi fj es the user.

Initiates Peripherdf Control language (pel) processor.

Copies object deck from card reader to disk file name ASC.

Subroutine object deek.

Signals PCl of the end of the subroutine object deck.

Terminates pel operafi'ons.

Control command that' speeifies control is to be transferred
fo the COBOL processor.

Specifies that the source program is to be listed.

Specifies that the program is to be executed ofter compi lotion.

COBOL source deck.

Control command that directs the resident loader to form a re
locatable load module.

Specifies that data from the user temporary GO file is to be
included in the foot ot the load module.

Specifies that the module of fi Ie ABC is to be included in the
load module.

SigntJls tlidt thts LOAD command is continued on the follow
ing cord.

Specifies that the COSOL I ibrary (identified by account number
CaSUS) is to be searched for external definitions required for
the load module. (This card is port of the preceding LOAD
command.)

Control command that specifies the program is to be executed.

Control command that specifies a data deck is to follow.

Data deck.

Signals the end of the job stock.

Figure 17. ENTER Statement Feature - Compi lation and Execution (cont.)

38 Deck Structures

Card

2

3

4

5

6

7

8

Parameter

!JOB

19

JONES

!LOI",D

(U NSAT, (COBUB})

!RUN

IDATA

!FIN

Description

Signals the beginning of a job stack.

Account number.

Identifi es the user.

Control command that directs the resident loader to form a relocatable
load module.

Specifies that the COBOL library (identified by account number
COBUB) is to be searched for external definitions required for the load
module.

Object deck of the COBOL program.

Object deck of the subroutine.

Control command that specifies the program is to be executed.

Control command that specifies a data deck is to follow.

Data deck.

Signals the end of the job stack.

Figure 18. ENTER Statement Feature - Execution with Object Decks

Deck Structures 39

Co-Resident Sort Feature

To use the co-resident sort feature, the names of the Sort processor modules must be communicated to the loader along
with the sort TREE structure. The sort TREE structure is generated by the COBOL compi ler and is stored in a fi Ie on disk
under the user program name with two zeros added (for example, ANYOO). The user can access this compi ler-bui It
TREE structure with a PTREE control command, or he can bypass the compi ler-built TREE fi Ie and actually supply the
same TREE structure with a TREE control command. (The TREE control command is especially useful in changing the
TREE structure.) The compilerdoes not build a TREE for a segmented program that uses the co-resident sort feature.

Figures 19 and 20 show how to compi Ie, load, and execute a COBOL program using co-resident sort. Notice the PTREE
control command in this figure (see card 10). Instead of using this command to access the compilet-bullt tREE
structure, the user could have substituted the following TREE control commands to supply the same TREE structure -

! TREE ANY-S:SRT-S:DCB 1-SSP-(55 PO,5S Pl,SS P2,55 P3)

if SRTS is specified on the COBOL control command, or if SRTR is specified:

! TREE A NY-S :SRT-S :DCB l-SRP-(SRPO,SRPl ,SRP2,SRP3)

Card

9

8 ! (SSPO,SORTLIB), (SSP1 ,SORT LIB), ;

2

Parameter

!JOB

9777

SORTTEST

Description

Signals the beginning of a job stack.

Account number.

Identifies the user.

Figure 19. Co-Resident Sort Feature - Compilation and Execution (Sequential Sort Technique)

40 Deck Structures

Card

2

3

4

5

6

7

8

9

10

11

12

13

14

Parameter

!ASSIGN

M:GO

(FILE, ANY)

tCOSOl

lS

GO

SRTS

JILOAD

(MAP)

(UN SAT , (COBLIB))

(BREF)

J (EF, (ANY), (S::5RT,COBLlB) I
J (S:DCB 1 ,SORTLIB), (SSP ,SORTLlB)

J (SSPO,SORTLlB), (SSP1 ,SORTLIB)

J (SSP2,SORTLIB), (SSP3,SORTLIB»

I PTREE (ANYOO)

IRUN

JDATA

!FIN

Description

Control command that specifies the file and
physical peripheral device to be used.

The file is the system GO file.

Specifies that the file is to be a disk file named
ANY.

Control command that specifies control is to be
transferred to the COBOL processor.

Specifies that the source program is to be listed.

Specifies that the program is to be executed
after compil ation.

Specifies that co-resident sort code is to be
generated •.

COBOL source deck.

Control command that directs the resident loader
to form a relocatable load module.

Gives complete listing of external references and
definitions for the load module.

Specifies that the COBOL I ibrary (identified by
account name COBLIB) is to be searched for ex
ternal definitions required for the load module.

Specifies that the branch reference mode of load
ing is to be used.

Signals that this lOAD command is continued on
the following card.

These cards are all continuation of the lOAD com
mand. They specify thatthe modules of the root seg
mentANY, the module S:SRT, andthe Sort modules
S :DCB 1 , SSP, SS PO, SS Pl, SS P2, and SSP3 are to be
included in the load module. S:SRT can be found in
account COBLIB, and the Sort module can be found in
account SORT LIB •

Control command that is used to obtain the TREE
control command from the userls file (named
ANYOO, which is the name of the program with
00 appended to it).

Control command that specifies the program is to
be executed.

Control command that specifies a data deck is to
follow.

Data deck.

Signals the end of the job stack.

Figure 19. Co-Resident Sort Feature - Compilation and Execution (Sequential Sort Technique) (cont.)

Deck Structures 41

!FIN

!RUN

!ASSIGN F:INTRAN, (DEVICE,9T;

! (RANDOM), (RSTORE, 100), (FILE, F)

!ASSIGN F:SCRF6, (DEVICE, DP), (SN, 16),;

20 !RANDOM), (RSTORE, 100), (FILE,E)

!ASSIGN F:SCRF5, (DEVICE, DP), (SN, 15),;

18 ! (RANDOM), (RSTORE, 100), (FILE, D)

17 !ASSIGN F:SCRF4, (DEVICE, DP), (SN, 14),;

! (RANDOM), (RSTORE, 100), (FILE, C)

!ASSIGN F:SCRF3, (DEVICE, DP), (SN, 13),;

! (RANDOM), (RSTORE, 100), (FILE, B)

!ASSIG N F :SCRF2, (DEVICE, 0 P), (S N, 12), ;

! (RA NDOM), (RSTORE, 100), (F ILE, A)

!ASSIGN F:SCRF 1, (DEVICE, DP), (SN, 11),;

9 ! (SRPl ,SORTLIB), (SRP2,SORTLIB), (SRP3,SORTLIB»

2

!JOB 9888, SORT JOB

Figure 20. Co-Resident Sort Feature - Compi lation and Execution (Random So'rt l'echnique)

42 Deck Structures

Card

2

3

4

5

6

7

8

9

10

11

12

13

Parameter

!JOB

!ASSIGN

M:GO

(FILE ,MINE)

ICOBOL

LS

GO

SRTR

!LOAD

(MAP)

(UNSAT,COBLIB)

(BREF)

(EF, (MINE), (5:SRT,COBLIB)

(5 :DCB 1 ,SORT LIB), (SRP ,50RTLIB)

(SRPO,SORTUB)

(SRPl ,SORTUB), (SRP2,SORTLIB),
(SRP3,SORTUB)

!PTREE (MINEOO)

! ASSIGN ,F:SCRF 1 ,(DEVIC E ,DP),
(SN,l1)

! (RAN DOM),(RSTORE, 100) ,(FILE,A)

IASSIGN F:SCRF2,(DEVICE,DP),
(SN ,12)

14 ! (RAN DOM) ,(RSTORE, 100),(FILE,B)

15 !ASSIGN F:SCRF3,(DEVICE,DP),
(SN,13)

16 !(RAN DOM,(RSTORE, 100),
(FILE,C)

Signals the beginning of the job stack.

Controls command that 5pecifies files
characteri stics.

The device is the system GO file.

This file is a disk file called MINE.

Call and transfer Control to the COBOL
compiler.

List the source program.

Build a load module of the object program on
the GO file.

Specifies that co-resident sort code is to be
generated.

The C OBO L source program deck.

Directs the resident loader to form a relocatable
load module.

List the external references and definitions for
the load module.

Satisfy external references from COBOL run
time library.

Specifies that the branch reference mode of load
ing is to be used.

Signals that the load command continues on the
next card.

These cards are all a continuation of the LOAD
command. They specify that the modules of the
root segment MINE, the module S:SRT, and Sort
modules S:DCB1, SRP, SRPO, SRP1, SRP2, and
SRP3 are to be included in the load modules. The
module S:SRT can be found in account COBUB,
and the Sort modules can be found in account
SORTLIB.

This command will obtain the TREE command from
the user's fi Ie ntlmed MIN [00.

These cards assign the fi rst six of the 17 Sort work
file DCBs to six private disk pack files. These files
are assigned to RAN DOM storage, using 100 grall
ules on each pack.

Figure 20. Co-Resident Sort Feature - Compi lation and Execution (Random Sort Technique) (cont.)

Deck Structures 43

Card

17

18

19

20

21

22

23

24

25

Parameter

lASSIGN F:SCRF4,(DEVICE,DP),
(SN,14),

!(RANDOM), (RSTORE, 100), (FILE, D)

!ASSIGN F:SCRF5,(DEVICE,DP),
(SN,15),

! (RANDOM), (RSTORE, 100), (FILE, E)

!ASSIGN F:SCRF6,(DEVICE,DP),(SN,16),

! (RAN DOM) ,(RSTORE, 100),(FILE,F)

!ASSIGN F: INTRAN ,(DEVICE,9T)

!RUN

!FIN

Description

The input data file for this program is called
INTRAN and can be found on an unlabeled
9-track device tape.

This command requests that the compiled object
program be executed.

Signals the end of the job stack.

Figure 20. Co-Resident Sort Feature - Compi lation and Execution (Random Sort Technique) (cont.)

44 Deck Structures

The three examples shown be low illustrate the use of the co-resident sort with a segmented COBOL program.

Example 1:

Tree structure

SEGOl I
SEG02 I
SEG03 I
SEG04 I

I SEGOO I S:SRT I S:DCBl I SSP

SSPO)

SSPl I
SSP2 l
SSP3 I

where:

SEGOO is the COBOL root program (section 1) thair contains the references to the various overlay segments
as well as the section (section 2) that contains the SORT verb and the Input and Output procedure
sections.

SEGOl to SEG04 are the overlay segments (section numbers above 49).

Job Control Cards

! SEG03, SEG04, SSPO, SSP1, SSP2, SSP3)

I TREE SEGOO - S:SRT - S:DCB 1 - SSP - (SEG01, SEG02,;

ILOAD ••• , (BREF)

Deck Structures 45

Example 2:

Tree Structure

SEGOl I
SEG02 I
SEG03 I
SEG04 I

I SEGOO

SSPO I
SSPl I

SEG05 I S:SRT I S:DCBl I SSP

SSP2 I

SSP3 I

where

SEGOO is the COBOL root program (section 1) that contains all the references to the various overlay
segments.

SEGOl to SEG04 are the overlay segments (section numbers above 49).

SEG05 is the overlay segment (section 80) that contai ns the SORT verb and the Input and Output proce-
dure sections.

Job Control Cards

! S :DCB 1 - SSP - (SSPO, SSP1, SSP2, SSP3)

!TREE SEGOO - {SEG01, SEG02, SEG03, SEG04, SEG05 - S:SRT-;

! LOAD •.• , (BREF)

46 Deck Structures

Example 3:

Tree Structure

SEG01 I
SEG02 J SRPO

I SEGOO I S:SRT SRP1

S:DCB1 I SRP SEG03 I
SRP2

SEG04 I
SEG05 I

SRP3

SEG06 I
where

SEGOO is the COBOL root program (section 1) that contains references to the various overlay segments as
well as the section (section 2) that contains the SORT verb and the Input and Output procedure section.

SEG01 - 02 are overlolY segments (section numbers above 49).

SEG03 - 04 are overlclY segments in the Input Procedure (SRP2 of SORT) (section numbers above 49).

SEG05 - 06 are over.IcIY segments in the Output Procedure (SRP3 of SORT) (secti on numbers above 49).

Job Control Cards

!- (SE G03, SEG04), SRP3-(S EG05, SE G06)))

!TREE SEGOO - S:SRT .. (SEG01, SEG02, S:DCB 1-SRP-(SRPO,SRP1, SRP2,;

! LOAD ... ,(BREF)

Deck Structures 47

Debug Module Object Time Switch

The object ti me switch dynamically activates the debugging code inserted by the compi ler. If the switch is on, all
the effects of the debugging language written in the source program are permitted. If the switch is off, all the
effects described in the COBOL Reference Manual are inhibited. Recompi lotion of the source program is not required
to provide or eliminate this facility.

The object time switch is normally in the ON position. In order to deactivate the debug code (turn switch to
OFF position), the following option in the IRUN control command should be used:

[RUN (START, NO$OBG)

48 Deck Structl,lres

6. XEROX ANS COBOL COMPILER DIAGNOSTICS

Table 2 lists all diagnostic messages produced by the COBOL compiler. Certain diagnostics are associated with a
Strength Code having the following significance:

P - Precautionary These diagnostics, which are produced only when the DIAG control command option is
specified, indicate that a trivial error (or possibility of an error) unaffecting program
execution has been detected.

F - Fatal A serious error has been detected. Compi lation is not completed and no ob lec:t program
is produced.

The object program severity level (in hexadecimal) associated with each diagnostic is also shown. Execution of a
program bearing a severity level of 7 or greater is not recommended.

Table 2. Xerox ANS COBOL Compiler Diagnostics

Message Severity I
Number Message Strength Level

001 SOURCE PROGRAM OUT OF SEQUENCE I 4
I

The sequence number field (columns 1 through 6) of the source program I

lines is tested for ascending sequence only when the SEQCHK control
command :>ption is specified.

002 INCORRECT PUNCTUA TIOt-J P 0

003 AREA A VIOLATION .1

004 NAME/NUMERIC LITERAL EXCEEDS 30 CHARACTERS - TRUN CATE D 4

005 INVALID CHARACTER(S) 4

006 QuOTE MARK OMITTED 4

Either the terminating quote of a non-numeric literal has been omitted or
a nonblank character has occurred prior to a quote on a continuation line.

007 NON-NUMERIC LITERAL EXCEEDS 255 CHARACTERS - TRUNCATED 4

008 RESERVED WORD USED INCORRECTLY - TREATED AS A NAME 2

A reserved word has been encountered in a COBOL division within which
it is inappl icable. It receives preliminary treatment as a name.

009 DIVISION HEADER INCORRECT OR OMITTED 2

010 PERIOD OMITTED 2

all REQUIRED SECnON OMITTED 4

012 SECTION OUT OF ORDER 2

013 SECTION DUPLICATED 2

014 REQUIRED PAR/~GRAPH OMITTED 2

015 PARAGRAPH OUT OF ORDER 2

49 Xerox ANS COBOL Compi IE!r Diagnostics

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message Severity
Number Message Strength Level

016 PARAGRAPH DU PLICATED 2

017 REQUIRED CLAUSE OMITTED - COMPILATION ABORTED F

018 CLAUSE DUPLICATED 2

019 PROCEDURE DIVISION STRUCTURED INCORRECTLY 1

A section header has not preceded the initial PROCEDURE DIVISION
statements but has occurred later. This condition conflicts with rules that
govern structuring of the PROCEDURE DIVISION, but is harmless in itself.

020 REQUIRED WORD MISSING 2

021 MISSING COBOL DIVISION(S) - COMPILATION ABORTED F

022 NAME INVALID/OMITTED 7

023 INVALID LITERAL 7

024 INVALID SUBSCRIPT 7

025 CLOSING PARENTHESIS OMITTED 4

026 INVALID NUMBER 7

027 ILLEGAL CURRENCY SIGN 4

028 ILLEGAL PRIORITY -NUMBER 4

029 INCORRECT SWITCH-NAME 4

030 INVALID 'ALL' LITERAL 7

031 CONDITION-NAME OMITTED 7

032 INCOMPLETE 'SAME' CLAUSE 7

033 INVALID/OMITTED QUALIFIER 7

034 UNSELECTED FILE 4

An F D or SD entry has no corresponding SELECT sentence in the FILE-
CONTROL paragraph. This is a violation of COBOL rules but is harmless
in this implementation if an !ASSIGN command is provided for the file at
execution time.

035 INVALID LEVEL-NUMBER 7

036 INVALID/OMITTED DATA-NAME 7

037 SECTION HEADER INCORRECT 4

038 SOURCE WORDS BYPASSED 7

039 INVALID IN DEXIN G 7

50 Xerox ANS COBOL Compi ler C ,agnostics

Tt:able 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message Severity
Number Message Strength Level

040 FD REPORT CLAUSE REQUIRED - COMPILATION ABORTED F

An RD entry has not been associated with any file via a REPORT clause
on an FD entry. Thus, it is impossible to produce the report.

I
041 INVALID PICTURE 7

042 'TYPE' AND/OR 'NEXT GROUP' OMITTED OR WRITTEN IMPROPERLY 7

043 CLAUSE WRITTEN ILLEGALLY 7

044 EXCESSIVE REPETITION COUNT IN PICTURE 7

045 INVALID REPETITION COUNT 7

046 ILLEGAL CHARACTER(S) IN PICTURE - 'B' SUBSTITUTED 7

047 ILLEGAL COMBINATION OF PICTURE SYMBOLS - DISCARDED 7

048 EXCESSIVE SIZE SPECIFIED FOR EDITED FIELD - TRUN CATED 7

049 SYNTACTICAL ERROR 7

050 CONDITIONAL STATEMENT INVALID IN CONTEXT 7

A conditional statement has been written at a point where only imperative
statements are permissible, e. g., following AT EN D.

051 INCORRECT SUBSCRIPTING/IN DEXING 7

052 INCORRECT CLASS TEST 7

053 INCORRECT SIGN TEST 7

054 INCORRECT ARITHMETIC OR LOGICAL EXPRESSION 7

055 CONDITION TOO LIBERAL FOR THIS FORMAT OF 'SEARCH' STATEMENT 7

056 INCORRECT ARITHMETIC-EXPRESSION 7

057 SECTION-NAME OMITTED P 0

058 PARAGRAPH-NAME OMITTED p 0

059 NU LL PROCEDURE 1

060 PREMATURE EN D OF PROCEDURE DIVISIOI"-J 2

A period has not been encountered as the last source language element
preceding the end of the source program.

061 STATEMENT TOO COMPLEX FOR ANALYSIS 7

Too many levels of nested conditions and/or levels of parenthetical group-
ings and/or logka I connectors have been specified for the statement. A
set of simpler stCitements should be provided to accompl ish the desired effect.

062 EXCESSIVE N EGA lION 6

. ... ,"'

Xerox ANS COBOL Compiler Diagnostics 51

Message
Number

063

064

065

066

067

068

069

070

071

072

073

074

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message

NEGATIVE INTEGER - MUST BE UNSIGNED OR POSITIVE

INTEGER VALUE TOO GREAT

MNEMONIC-NAME SYNONYM

A mnemonic-name and a data-name have been given identical names.
This condition is a violation of COBOL rules, but is harmless unless
the name has been employed in an ambiguous reference.

SPECIFICATION CONFLICT

Either conflicting USAGEs or an illegal combination of USAGE and
BLANK WHEN ZERO or JUSTIFIED RIGHT has been specified. The first
specification encountered is used; others are discarded.

MULTIPLE VALUE CLAUSES

More than one VALUE clause has been specified in a data entry; the first
is used, others are discarded.

ILLEGAL USE OF 'REDEFINES '

The level-number of the data entry bearing the REDEFINES clause has not
corresponded to any level-number within the potential redefinition scope.
The REDEFINES clause i~ ignored.

INCORRECT QUALIFICATION

An incorrect qualification in conjunction with a REDEFINES or RENAMES
clause has been encountered. The REDEFINES clause is obeyed, since the
data-name is not essential to its resolution. The scope of the RENAMES is
set arbitrarily to 1 byte and its origin is assumed fo be the base of the cur
re nt record.

ILLEGAL DATA HIERARCHY

Level-66 entries have not been specified as th'e last entries in a data
hierarchy. All entries between the last level-66 entry and the beginning
of the next record are discarded.

INVALID 'RENAMES ' SCOPE

The extent of a RENAMES scope has been indeterminable; 1 byte is
ass.umed.

MISPLACED 'RENAMES ' CLAUSE

The RENAMES clause has not been associated with level-number 66. The
RENAMES declaration is ignored.

CONDITION-NAME ENTRY LACKS 'VALUE ' CLAUSE

No VALUE clause has been specified on a level-88 entry. The entry
is deleted.

CONDITION-NAME ENTRY BEARS INVALID CLAUSE(S)

Clauses other than the VALUE clause have been encountered on a level-88
entry. These clauses are ignored.

52 Xerox ANS COBOL Compi ler Uiagnostics

Strength
Severity
Level

7

7

2

4

4

7

7

7

7

7

7

7

Message
Number

075

076

077

078

079

080

081

082

083

084

085

086

087

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message

MISPLACED 'REDEFINES' CLAUSE

The REDEFINES clause has appeared before the occurrence of any legiti
mate potential 'redefinition point in the current data hierarchy. The clause
is ignored.

ILLEGAL USE OF 'OCCURS ... DEPENDING ON'

On variable-length records the variable portion of the record must follow
the fixed portion. If this rule is violated (that is, if a fixed item or group
follows the last variable group of the record), any reference to the fixed
item or group will be unpredictable.

NESTING OF 'OCCURS' EXCEEDS 3 LEVELS

An attempt to define a table of more than three dimensions has been
detected. The OCCURS clause is ignored.

MISPLACED 'OCCURS' CLAUSE

USAGE CONFLICT BETWEEN GROUP AND SUBORDINATE ITEMS

A confl i ct has occurred between the stated USAG E of a group and a sub-
ordinate data entry. The description of the subordinate item isaccepted.

MISPLACED 'PICTURE' CLAUSE

A PICTURE has been specified in conjunction with one of the USAGE
types having predetermined characteristics, e. g., COMPUTATIONAL,
COMPUTA TIONAL-l, COMPUTA TIONAL-2, and INDEX. The PICTURE
clause is discarded.

ILLEGAL 'BLANK WHEN ZERO' CLAUSE

A BLANK WHEN ZERO clause has been found to be in conjunction with
a PICTURE that precludes it, i. e. , that is not unsigned numeric DISPLAY
or numeric edited. The BLANK WHEN ZERO clause is ignored.

ILLEGAL' JUSTIFIED RIG HT' CLAUSE

A JUSTIFIED RIGHT clause has been specified on a group item or an
elementary item that is not al phanumeri c. The JUSTIFIED RIG HT clause
is ignored.

'VALUE' CLAUSE WITHIN SCOPE OF 'REDEFINES'

The VALU E is accepted and used in the obj-3ct program.

NESTED 'VALUE' CLAUSES

The VALUE is accepted and used in the object program.

'VALUE' CLAUSE INCONSISTENT WITH CLASS OF ENTRY

The VALUE is not accepted.

'OCCURS •.. DEPENDING ON' ILLEGAL WITHIN SCOPE OF
'REDEFINES'

'PICTURE' CLAUSE ILLEGAL ON GROUP ENTRY

The PICTURE is ignored.

Strength

P

Severity
Level

7

7

7

7

6

0

6

6

6

6

7

7

6

"-____ "-__________________ , ___ ... ___________ -'-___ -1. ___ --'

Xerox ANS COBOL Compi ler Diagnostics 53

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message Severity
Number Message Strength Level

088 NON-UNIQUE DATA REFERENCE 7

089 NON-UNIQUE PROCEDURE-NAME 7

090 INVALID 'DEPENDING ON' FIELD 7

The 'GO TO ... DEPENDING ON' data item has not been specified
as a numeri c fi eld. The statement is discarded.

091 NON-CONTIGUOUS DATA ITEM FOLLOWING DATA STRUCTURE 4

Level 77 is changed to level 01.

092 I LEVEL 66 ILLEGAL FOLLOWING LEVEL 77, OR 01 7

093 INVALID DATA USAGE 7

094 MAXIMUM SIZE EXCEEDED FOR NUMERIC OPERAND 7

095 UNDEFINED DATA REFERENCE 7

096 INVALID DATA REFERENCE 7

A condition-name or mnemonic-name has been referenced where a data
item is expected.

097 VALUE ILLEGAL WITHOUT COLUMN NO. 7

The value is discarded.

098 NUMERIC VALUE ILLEGAL IN REPORT SECTION 7

The value is discarded.

099 PRIORITY SEGMENTATION IS NOT HONORED IN THIS COMPILATION 2

Priority segmentation has been indicated in the source program without
specification of the SEG control command option.

100 ILLEGAL LEVEL-NUMBER SEQUENCE 2

The level-number is accepted.

101 UNDEFINED KEY 7

No data entry has been specified to satisfy a KEY clause reference.
The key name is disregarded.

102 SIZE OF DATA ENTRY INDETERMINATE 7

Sufficient information has not been provided to determine the size of
a data entry.

103 SIZES OF REDEFINING AND REDEfINED AREAS UNEQUAL 7

The size of the largest of these areas is used.

104 RENAMES DATA-NAME MISSING 7

No valid RENAMES clause has been specified on a level-66data entry.

105 VALUE LITERAL CONFLICTS WITH CLASS OF DATA ENTRY 7

The value is ignored.

54 Xerox ANS COBOL Comoi ler Diaanostics

Table 2. Xerox ANS COBOL Compiler Diagnostics {cont.}

Message Severity
Number Message Strength Level

106 VALUE TRUNCATED ON RIGHT 4

Insufficient storage space has been allocated to the value.

107 VALUE TRUNCATED ON LEFT 4

Insufficient storage space has been allocated to the value.

108 DUPLICATE DATA-NAMES WHICH CANNOT BE UNIQUELY REFERENCED 2

109 EXCESSIVE NESTING OF LIBRARY RETRIEVAL STATEMENTS- F
COMPILATIO'" ABORTED

110 PICTURE INCOMPATIBLE WITH USAGE 6

A PICTURE {possibly containing editing characters} incompatible with
USAGE COMPUTATIONAL.-3 has been specified. The USAGE is I
discarded.

111 INCORRECT 'GO TO' STRUCTURE 7

112 'USE' STATEMENT OMITTED FROM DECLARA TIVES SECTION 7

113 POSSIBLE MISUSE OF RESERVED WORD 4

114 NO COP~ESPONDING DATA ITEMS IN A 'CORRESPONDING' 7
STATEMENT

115 IDENTIFIER IN 'CORRESPONDING' STATEMENT IS AN ELEMENTARY 7
ITEM

116 COMPILER LIMIT A TION EXCEEDED - STATEMENT INCOMPLETELY 7
COMPILED

This message occurs when a PERFORM statement (format 4) is too
lengthy in its entirety to be compiled.

117 INVALID LIBRARY RETRIEVAL STATEMENT -COMPILATION ABORTED F

The library file does not exist.

118 NUMBER OF RENAMED FILES EXCEEDS COMPILER CAPACITY B

119 ASSEMBLY PtlASE TABLE OVERFLOW - COMPILATION ABORTED F

There are probably too many secti~n and pOl'agraph definitions.

120 FIL.LER MEANn,IGLESS ON LEVEL 77 - ACCEPTED 4

121 CONFLICT BETWEEN 'BLOCK CONTAINS' CLAUSE AND RECORD 7
SIZE

122 CANNOT PROCESS DATA STRUCTURE IN CORE AVAILABLE - F
COMPILATION ABORTED

This is a general message indicating that a compiler data storage area
has overflowed.

123 REPORT FIELD OVER LAP - DATA ITEM TRUNCATED 4

The report line probably contains conflictin~~ COLUMN NUMBER
assignments.

124 REPORT STATEMENTS BYPASSED 7

_ _""' "

Xerox ANS COBOL Compiler ?iagnostics 55

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message Severity
Number Message Strength level

125 CONFLICT BETWEEN 'RECORD CONTAINS' CLAUSE AND RECORD
SIZE 4

The computed record si ze is used.

126 VACUOUS'ROUNDED' OPTION - IGNORED P 0

Arithmetic operation has not developed digits of lesser signifi cance than
the rightmost digit position of the result dota item. Thus, rounding is not
effected.

127 'SELECT'SENTENCES DUPLICATED 4

128 ILLEGAL NUMERIC-EDITED USAGE P 0

A usage conflict has occurred. A warning is issued.

129 ILLEGAL FLOATING-POINT USAGE FOR INTEGER P 0

An integer value has been used. A warning is issued.

130 ILLEGAL BINARY/FLOATING POINT USAGE P 0

A usage confl i ct has occurred. A warning is issued.

131 ILLEGAL INDEX DATA USAGE P 0

This is treated as a binary (COMPUTATIONAL) dota item. A warning
is issued.

132 ILLEGAL NON-INTEGER USAGE 4

An integer portion of the data item is used.

133 ILLEGAL COMPUTATIONAL-3 USAGE P 0

A usage confl i ct has occurred. A warning is issued.

134 ILLEGAL ALPHANUMERIC USAGE P 0

A usage confl ict has occurred. A warning is issued.

135 ILLEGAL ALPHANUMERIC-EDITED USAGE P 0

A usage conflict has occurred. A warning is issued.

136 MAXIMUM OF 3 IDENTIFIERS ONLY MAY BE VARIED - ENTIRE
"PERFORM" STATEMENT DELETED 7

137 ILLEGAL ELEMENTARY ITEM USAGE 7

138 ILLEGAL INDEX-NAME USAGE 7

This is treated as a binary (COMPUTATIONAL) data item.

139 PARAGRAPH BOTH ALTERED AND PERFORMED 6

The ALTER and PERFORM statements have been generated. This is a
warning of high error probability.

56 Xerox ANS COBOL Compiler Diagnostics

Message
Number

140

Table 2. Xerox ANS COBOL Compi ler Diagnosti cs (cont.)

Message

ALTERED PARAGRAPH NOT' GO TO'

sole contents of a para-A GO TO statement has not been speci fied as the
graph that is the subject of an ALTER statement. T
the paragraph is preset to transfer control to C :ERR
paragraph subsequent to the executi on of the AI. TE
transferred as specified by the AL TER statement fol
statements contained in the paragraph (assuming th

he termination point of
If control reaches the

R statement, control is
lowing execution of the

has caused tra nsfer of control).
at no single statement

141 INVALID PROCEDURE REFERENCE

In most cases, the statemenet is deleted. In some
C:ERR is substituted fo; the incorrect procedure-na

instances a reference to
me.

142 INVALID SECTION-NAME REFERENCE

tatement, A section-name has been referenced in an ALTER s
paragraphs may be mentioned. The statement is de leted.

where only

143 EXTERNAL NAME ALTERED TO PROCEED TO OV ERLAY

presumed -to be an An undefi ned procedure-name, whi ch i s therE~fore
external dpfinition, has been altered to proceed to
lay segment. Unless the ALTER statement itself is
segment, C:ERR is substituted for the target proced

a point in qn over-
in the same overlay
ure-name.

144 INVALID PARAGRAPH-NAME REFERENCE

A paragraph-name has occurred where onl y a secti
e. g., as the INPUT or OUTPUT PROCEDURE of a
ing of the probability of error. The requested acti

145 INTEGER VALUE ILLEGAL IN CONTEXT

146 'SET' USED WITH NON-INDEXED FIELD

147 'GO TO' INITIALIZED AT C:ERR

on-name is permissible,
SORT. This is a warn-
on is taken.

ransfer control to C:ERR Comment only. GO TO statements are preset to t
if an ALTER statement has not provided a legitimat
its execution.

148 INVALID FILE-I'-IAME

A fi I e-name has not appeared as the operand of a
The statement is deleted.

149 INVALID RECOR()-I'~AME

A record-name hos not appeared as the operand of
one. The statement is del eted.

e transfer point prior to

statement requiring one.

a statement requiring

150 LABEL/ERROR CHECK IN DECLARATIVES SECTIO N

of a DECLARA TIVES
rocedure. The statement

An input-output statement that requires execution
procedure has occurred wi thi n a DECLARA TIVES p
is generated, but may yield erroneous results (e.g ., a loop) at execution
time.

Severity
Strength Level

4

7

7

7

7

7

7

P 0

B

7

7

Xerox ANS COBOL Compiler Diagnostics 57

Message
Number

151

152

153

154

155

156

157

158

159

160

161

162

163

Table 2. Xe.~ox ANS COBOL Compiler Diagnostics (cont.)

Message

INVALID REVERSED/NO REWIND OPTION

Specified input/output statement options are incompatible with the
access mode of the file. The options are deleted.

AT ~ND/INVALID KEY OPTION INCOMPA lIBLE WITH ACCESS MODE

Specified input/output statement options are incompatible with the access
mode of the f.ile. A warning is issued. The statement is generated as
written.

'SEEK' USED WITH UN-KEYED FILE

Specification of the SEEK statement is incompatible with the organiza
tion and access mode of the fi Ie. The statement is deleted.

INVALID KEY

The ACTUAL KEY has been undefined, defined twice, or judged incom
patible with the access mode of the file.

MAXIMUM DISPLAY SIZE EXCEEDED

The aggregate size of operands in a DISPLAY, EXHIBIT, ACCEPT, or
STOP II iterol' statement has exceeded 254 characters. The display line
is truncated.

ILLEGAL SUBSCRIPTED 'DEPENDING ON' FIELD

Su bsc ri pts are ignored.

NON-TABLE ITEM SEARCH

The statement is deleted.

'SEARCH ALL' UNORDERED TABLE ILLEGAL

A warning is issued. A serial search of the entire table is generated.

EXTERNAL REFERENCE GENERATED

This message is commentary only and indicates generation of a reference
to an assumed external defi ni ti on.

UNDEFINED PARAMETER-NAME

The presence of qualification indicates that this external reference is not
intentional. A reference to C:ERR is substituted.

CONDITION-NAME USED AS PARAMETER

A reference to the conditional variable is substituted for the condition-name.

DIMENSIONED PARAMETER

Parameters are not permitted to be subscripted/indexed. Subscripts are
ignored and a reference to the first occurrence is generated.

INDEX-NAME USED AS PARAMETER

A warning is issued. Reference to the index-name in generated.

58 Xerox ANS COBOL Com pi ler Di..Jgnostics

Strength

P

Severity
Level

7

7

7

7

6

7

B

B

o

7

7

7

7

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)
r-------~--------------.--------------~------------________________ ~---------,~~--

Messoge
Number Message Strength

Severity
Level

~------~---~- -----4-------~

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

SUBSCRIPTS/INDICES APPLIED TO UNDIMENSIONED DATA ITEM

The subscri pts/indi ces are ignored.

INVALID SUBSCRIPTS/INDICES

The subscripts/indices are ignored and reference is made to the first
occurrence.

EXCESSIVE SUBSCRIPTS/INDICES

The excess subscripts/indices are discarded.

MAXIMUM SUBSCRIPT SIZE EXCEEDED

The offending subscript is replaced by a value of 1 so that the first occur
rence is referenced.

FRACTION USED AS SUBSCRIPT

A data item, which bears fractional places only, has been used as a sub
script. The offending subscript is replaced by a value of 1 so that the
first occurrence i!; referenced.

SIGNIFIC"NCE LOST WHEN ALIGNED

A data item whose PICTURE contains trailing Ps has been employed as a
subscript. The scoled value is used.

IN CORRECT SUBSCRIPT II NDEX

FLOATING POII'JT SUBSCRIPT - INTEGER VALUE ONLY USED

SUBSCRIPTED TABLE ITEM

Subscripting has been specified where indexing should be employed.
subscripted reference is generated.

SUBSCRIPT INCRE:MENT/DECREMENT USED

The increment/decrement has been applied to the subscript and a sub-
scripted reference is generated.

I NEFFECTI VE DIG ITS TRU NCA TED

A decimal item used a suhscript of sufficient s'ize that insignificant
digits may be truncated by the subscript calcu~ation.

NON-INTEGER SUBSCRIPT - INTEGER VALUE USED

DIMENSIONED SUBSCRIPT

The

The value in the first occurrence of the array whose name has been given
as a subscript is employed in the subscript calculation.

INSUFFICIENT S~IBSCRIPTS/INDICES

A value of 1 is assumed for each missing subscript/index.

DIMENSIONED DATA NOT SUBSCRIPTED/INDEXED

A value of 1 is assumed for each missing subscript/index.

7

7

7

7

7

7

7

6

4

6

4

4

7

7

7

Xerox ANS COBOL Compiler Diagnostics 59

Message
Number

179

180

181

182

183

184

185

186

187

188

189

190

191

192

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message

MAXIMUM SORT KEY LENGTH EXCEEDED - 255 CHARACTER USED

INVALID CS NAME -IGNORED

The CS (COMMON-STORAGE) control command parameter has been
written incorrectly.

INVALID CONTROL COMMAND OPTION - IGNORED

An unrecogni zable control command option has been encountered and is
ignored.

I LLE GAL RELATION TEST. ONLY CONDITION-NAME TEST
GENERATED

A relation test involving a condition-name test has been written improperly.
The condition-name test is generated but the balance of the conditional
statement is deleted.

ILLEGAL OPERAND IN COMPARISON - COMPARISON DELETED

An illegal comparand (object) has been detected. The comparison is
deleted.

ILLEGAL SUBJECT IN RELATION TEST. STATEMENT DELETED

An illegal subject has been detected. The entire conditional statement
is deleted.

ILLEGAL RELATION TEST

An illegal implication has been detected. The entire conditional state
ment is deleted.

RELEASE/RETURN NOT AN INPUT/OUTPUT PROCEDURE

The RELEASE/RETURN statement is deleted.

SORT STATEMENT WITHIN INPUT/OUTPUT PROCEDURE - DELETED

SORT KEY NOT IN SORT-FILE RECORD DESCRIPTION

The incorrect SORT key specification is ignored.

NO SORT KEYS

The SORT statement is deleted.

EXCESSIVE SORT KEYS

Excessive SORT keys (the maximum is 16) are ignored.

INVALID REPORT RECORD

The GENERATE statement has not referenced a report-name or a report
record-name. The statement is deleted.

INVALID DATA REFERENCE - EXPRESSION DELETED

An expression operand has not been defined. The expression is deleted.

60 Xerox ANS COBOL Compi Jer Dh...gnostics

Strength
Severity
Level

7

B

6

7

7

7

7

7

B

8

B

B

B

B

Tobie 2. Xerox ANS COBOL Compiler Diagnostics (cant.)

Message Severity
Number Message Strength Level

193 J NVALID EXPRESSION OPERAND .- EXPRESSION DELETED B

An illegal arithmetic opercmd has occurred within an expression. The
expression is dE!leted.

194 INVALID EXPRESSION - DELETED B

An expression has been malformed and is de,leted.

195 UNBALANCED EXPRESSION - DELETED B

An imbalance of operators and operands has been detected in an ex-
pression. The expression is deleted.

196 SUM ADDENDS NOT DEFINED IN A DETAIL OR OTHER SUM ITEM B

The undefined SUM clause operands are deleted.

197 INCOMPA TIBLE LINE NUMBERS GIVEN IN 'PAGE LIMITS' CLAUSE B

Compilation is continued in accordance with the dictates of the source
program, but erroneous results are likely if the object program is
executed.

198 NO FD/ SD ENTRY ASSOCIATED WITH A 'SELECT' CLAUSE - F
COMPILATION ABORTED

199 DUPLICA TE FD/SO E NTR IES B

200 CONFLICT BETWEEN "ACCESS MODE" AND "ACTUAL KEY"-
RANDOM ACC ESS ASSUMED 6

201 CONFLICT BETWEEN "ACCESS MODE" A~~D "ACTUAL KEY" -
SEQUENTIAL A.CCESS ASSUMED 6

202 MAXIMUM ACTUAL KEY SIZE EXCEEDED -- 255 CHARACTERS USED 6

203 "END DECLARATIVES" STATEMENT MISSIt\lG B

204 MAXIMUM NUMBER OF SELECT STATEMENTS EXCEEDED-
COMPlLA nON ABORTED F

205 MORE THAN ,3 FD'S ASSOCIATED WITH 1 RD - IGNORED 7

206 VALUE CLAUSE NOT ALLOWED - COMPIlA nON ABORTED F

207 LEVEL 66 DATA ENTRY BEARS INVALID Cl.AUSE(S) 7

208 EXCESSIVE CHARACTERS IN PICTURE STRII'\IG - TRUNCATED 7

209 A "RENAMING" STATEMENT CANNOT BE HONORED B

210 RIGHTMOST AND/OR FRACTIONAL DIGITS TRUNCATED P 0

211 LEFTMOST DIGITS/CHARACTERS TRUNCATED P 0

212 INTEGER AND FRACTIONAL DIGITS TRUNCATED p 0

213 LEVEL 77 ILLEGAL IN FILE SECTION - DATA ENTRY DISCARDED 7

214 DUPLICATE OR INVALID RD NAME - COMPILATION ABORTED F

-,-..

Xerox ANS COBOL Compiler Diagnostics 61

Table 2. Xerox ANS COBOL Compiler Diagnostics (cont.)

Message
I Severtty

Number Message S,trength level

215 VALUE CLAUSE WITHIN SCOPE OF OCCURS
:

7

The VALUE clause ;s not permitted within the scope of an OCCURS
clause.

216 OCCURS ILLEGAL ON LEVEL 01 OR 77 7

217 DECLARA TlVE IS NOT APPROPRIATE ON FILE WITH LMEl RECORD'S.
OMITTED 7

218 ILLEGAL CONTINUATION CHARACTER -IGNORED 4

An illegal character in cotumn 7 was encountered.

219 DECLARED DATA STORAGE EXCEEDS AVAILABLE CORE STORAGE 7

220 DUPLICATE DEClARATNES HAVE BEEN SPECIFIED 7

221 INTEGER PERFORM COUNT LIMIT OF (2"'*19)- T EXCEEDED - VALUE
TRUNCATED 7

222 COMPILER LIMIT OF 9 REPORT CONTROL FIELDS EXCEEDED -
COMPILATION ABORTED F

223 USAGE NOT SPECIFIED - NUMERIC DISPLAY ASSUMED 4

224 KEYED FILE BLOCKING PRE-EMPTED BY MONITOR - CLAUSE
IGNORED 3

The BLOCK CONTAINS clause may not be specified for a keyed fae.

225 SIZE IN NUMERIC PICTURE GREATER THAN 31 - RESULTS ARE
UNPREDICTABLE 2

Numeric items may not exceed PICTURE 9(31). If this is a fiffer item,
change to PICTURE X(n).

226 CAUTION NO RECORD DESCRIBED - VALID IF REPORT CLAUSE PRESENT P 0

227 WARNING - PROCEDURE NAME PASSED IN ENTER STATEMENT IN AN p 0
OVERLAY SEGMENT

228 OPTION OF DEBUGGING MISSING/INVALID 7

229 COpy REPLACING STATEMENT INCORRECTLY STRUCTURED 7

230 DEVICE NOT SPECIFIED - CONSOLE ASSUMED 2

The ACCEPT statement did not specify a device.

231 IDE NTIFIER NOT SPECIFIED FOR" ACCEPT" STATEMENT 7

232 USAGE NOT SPECIFIED - DISPLAY ASSUMED 1

DISPLA Y was not specified in a USAGE clause in a report group entry.

233 MAXIMUM DCB SIZE EXCEEDED - 3 INSN/OUTSNS GENERATED B

The value of "integer" in a SELECT statement is too large; the value
of 3 is used.

62 Xerox ANS COBOL Compiler Diagnostics

Table 2. Xerox ANS COBOL Compi ler Diagnostics (cant.)

Me:;sage Severi ty
Number Message Strength Level

234 UNDEFINED PROCEDURE NAME - EXTERNAL REFERENCE GENERATED 7

235 SOURCE INPUT EXCEEDS 72 CHARACTERS - TRUNCATED 7

236 REMAINDER NOT ALLOWED ON DIVIDE WITH MULTIPLE RECEIVING
FIELDS 7

237 SUBSCRIPTED 'DEPENDING ON' DATA-NAME - COMPILATION
ABORTED F

The data-name in an OCCURS DEPENDING ON clause may not be
subscri pted.

238 'OCCURS DEPENDING ON' ~NTRIES EXCEEDED LIMIT 15 -
COMPILA T10N ABORTED F

A maximum of 15 variable groups is allowed for each record description.

239 OPTION OF DELIMITED MISSING/INVALID 7

240 IDENTIFIER MISSING/INVALID AFTER 'IN'/'OF' 7

241 REQUIREr) WORD 'RUN' OR LITERAL MISSING AFTER 'STOP' 7

242 REQUIRED WORD 'INTO' OR 'BY' MISSING 7

243 FILE-NAME OR REQUIRED WORD(S) 'REVERSED'/'NO REWIND'
MISSING 7

244 REQUIRED WORD(S) MISSING AFTER 'TALLYING' OR 'REPLACING' 7

245 REQUIRED WORD 'TALLYING' OR 'REPLACING' MISSING 7

246 REQUIRED WORD 'TO' MISSING 7

247 REQUIRED WORD 'DEPENDING' MISSING 7

248 REQUIRED WORD 'TIMES'/'UNTIL'/'VARYING' MISSING 7

249 REQUIRED WORD 'INTO'/'END'/'INVALID' MISSING 7

250 REQUIRED WORD 'FROM' MISSING 7

251 REQUIRED WORD 'UNTIL' MISSING 7

252 REQUIRED WORD 'ELSE' MISSING 7

253 REQUIRED WORD 'WHEN' MISSING 7

254 REQUIRED WORD(S) 'LOCK' OR 'NO REWIND' MISSING 7

255 REQUIRED WORD(S) 'TO'/'UP BY'/'DOWN BY' MISSING 7

256 REQUIRED WORD' INPUT'/' OUTPUT'/' I-a' MISSING 7

257 FILE-NAME MISSING 7

258 LITERAL MISSING AFTER 'ALL'/' LEADING'/'FIRST' 7

-'
Xerox ANS COBOL Compiler Diagnostics 63

Tabl0 2. Xerox ANS COBOL Compiler Diagnostics (cont.)
-

Message Severity
Number Message Strength Level

...-------!--'-----_ ... " .--,-- ----- -,--_ .. ---------.. _._--

259 LITERAL MISSING AFTER 'BY' 7

260 IDENTIFIER/INTEGER/MNEMO NrC-NAME MISSING AFTER 'BEFORE/
AFTER ADVANCING' 7

261 RECORD-NAME MISSING AFTE 'R 'WRITE' 7

262 IDENTIFIER/LITERAL /II'·JDE:5<-N AME MISSING AFTER 'FROM'/
'TO'/,BY' 7

263 IDeNTIFIER MISSlI'·JG AFTER 'T 0' 7

264 IDENTIFIER MISSH--JG AFTER 'T O'/'GIVING' 7

265 IDEl'lTlFIER MISSING AFTER 'C OMPUTE' 7

266 IDrNTJ:IFR MI5SJ~--JG AFTER '} NSPECT' 7

267 lDENTlrJER /,,\IS::;Jf'-J(] AFTER 'D EPENDING ON' 7

268 IDENTIFIER MISSING AFTER ') NTO' 7

269 IDENTIFIER MISSING AFTER 'F ROM' 7

270 IDENTIFIER MISSING AFTER'S EARCH' 7

271 IDENTIFIER MISSING AFTER 'A CCEPT' 7

272 PROCEDURE-NAME MISSING 7

273 MISSING/INCORRtCT STATEM ENT AFTER 'AT END'/'INVALID
KEY'/'SIZE ERROR' 7

274 REQUIRED WORD(S) 'NEXT SEN TENCE' MISSING 7

275 SUBROUTINE-NAME MISSING AFTER 'ENTER' 7

276 IDENTIFIER/LITERAL INVALID OR MISSING 7

277 IDENTIFIER/INDEX-NAME MIS SING AFTER 'VARYING'/'SET'/'AFTER' 7

278 IDENTIFIER/LITERAL MISSING AFTER 'INTO'/'FROM'/'BY' 7

279 NUMBER OF USE STATEMENTS EXCEEDS 64-COMPILA TION ABORTED F

280 SIZE FOR THIS SECTION HAS E XCEEDED 65K 7

281 UNDEFINED/I1--JVAUD RF.PORT NAME 2

282 NOT ENOUGH DYNAMIC MEM ORY--COMPILA TION ABORTED F 8

283 SOURCE IMACE. EXCEEDED 80 CHARACTERS - TRUNCATED P 0

284 SOURCE IMAC< EXCEEDED 140 CHARACTl:RS--COMPllAT1CN ABORtEO F 8

285 INVALJD/MI:';SING REPORT RE CORD--COMPILATION ABORTED F B

286 UNDEFINED COr---HROL FIELD, IGNORED 7

287 INVALID DATA USAGE IN eLA 5S TEST 4

64 Xerox ANS COBOL Compi ler Dia~ ostics

7. RUN-lrIME SUBROUTINES, SERVICES AND DIAGNOSTICS

Library Subroutines

Table 3 shows subroutines contoined in the system library that may be referenc.::ld by COBOL object programs.

Table 3. COBOL Object Program Subroutines

Element ENtry
File Poi nts Function

C:ALT AL TER of on overlay segment handler

C:ALT

C:BIS Binary search subroutine

C:BIS

C:CBP Alphanumeric comparison overlap handler

C:CBP
~- --_ .. - -------- --

C:CHKPT Checkpoint routines

C:CKP Record checkpoi nts

C.:INT ! INT key-in entry po,int

C:MIN CLOCK-UNITS (minutes) value

C:TIM Timer interrupt routine

C:CONV Data conversion subroutines

C:CBD Binary to packed decimal

C:CDB Packed decimal to binary

C:CDE Packed decimal to floating-point short format

C:CDF Packed decimal to floating-point long format

C:CED Floating-point short format to packed decimal

C:CFD Floating-point long format to packed decimal ~

C:DBD Binary to unpacked decimal

C:DED Floating-point short format to unpacked decimal

C:DFD Floating-point long formdf to unpacked decimal
--- -~-.-.-------.---- r-----.-----.---- --... - ._- .---.----

C:DECL I/O label declaratives handler

C:ABF After beginning file kIbei

C:ABR After beginning reel label

C:AEF After ending file label

C:AER After ending reel label

C:BBF Before beginning file label

C:BBR Before beginning reel label

C:BEF Before ending file label

C:BER Before ending reel label

C:CLD Close

_.-u. --

Run-Time Subroutines Services and Diagnostics 65

Table 3. COBOL Object Program Subroutines (cont.)

Element Entry
File Points Function

C:DECL C:ERD Error declaratives
(cont.)

C:OPD Open

C:RLD Read

C:WLD Write

C:DPD Doubl e precision division

C:DPD

C:DPM Double precision multiplication

C:DPM

C:ERR Illegi timate control transfers handler

C:ERR

C:EXP Interface for exponentiation routines

C:EXP

C:INS Run-time routine for INSPECT

C:INS

C:LIO Input/output handlers

C:ABA Abnormal return

C:CIB Close input buffer

C:CLS Close a DCB

C:ERA Error return

C:OPN Open a DCB

C:RLR Read

C:WLR Write

C:WOB Write output block

C:NTS Run-time routine for UNSTRING

C:NTS

I

C:NCRS Bypassing co-resident sort

C:SRT

C:RND Arithmetic rounding subroutine ,
C:RND

-- ------~ --
C:STN Run-time routine for STRING

C:STN

C:SlT Size error testing

C:SlT

66 Library Subroutines

Table 3. COBOL Object Program Subroutines (cont.)

r-------------~-----------_.--.,------__
Element
File

C:TRC

Entry
Points

C:TRC

C:TRX

Function

Trace control subroutine

1----------+----- --+-------",---------------_____________________ . _____ _

C:TRP

C:RRG

C:TRP

C:TRN

C:RRA

C:RRB

C:RRC

C:RRD

C:RRE

C:RRF

C:RRG

C:RRH

C:RRI

C:RRJ

C:RRK

C:RRQ

C:RRR

C:RRS

C:RRT

C:RRU

C:RRV

C:RRW

C:RRX

C:RRY

C:RRZ

I

Trap hctndler

T rap processor

Abort suppression flag

Report Wri ter subroutines

Return point from Declarative routine and GROUP INDICATE presetting

Return point from summing (control footing level)

Return point from print line formation

Return point from SUM counter resetting

Return point from control field preservation

Return point from summing (detai I level)

GE NERATE entry point-

TERMINATE entry point

INITIATE entry point

Return point from GROUP INDICATE clearing

Entry point for erroneous use of report with no prior INITIATE statement

Return point from control break testing - no break

Return point upon control break at level 1

Return point upon control break at level 2

Return point upon control break at level 3

Return point upon control break at level 4

Return point upon control break at level 5

Return poi nt upon control break at level 6

Return point upon control break at level 7

Return point upon control break at level 8

Return point upon control break at level 9

I--------------~-----------+----------------.-------------------------------------______ ~
C:VPL

C:VPL
L-__________I. _____ I Variable records handler

Library Subroutines 67

Subprogram Calls

The ENTER subroutine-name statement as implemented in the Xerox ANS COBOL language causes generation of a
calling sequence to the external definition subroutine-name. All such calling sequences are issued in the form of
Xerox Standard Call ing Sequences:

1. The number of arguments is passed in register 14.

2. The I inking register is 15.

Each parameter is represented in the pointer word vector by a single word whose format is

Code I ~u~ero I Address

o 8 9 12 13 31

where·

Bit 0 indicates whether the Address field is indirect. (COBOL issues direct references only; thus, this bit
is always zero.)

Code field }
Address field

are filled as follows:

Data COBOL
Type Description

Binary INDEX or
COMPUT A TIONAl

Floating short COMPUTATIONAL-1

Floating long COMPUT A TIONAl-2

P·ocked decimaJ COMPUTA TIONAl-3

EBCDIC DISPLAY

DCB (Data Control Block) file-name

Program location procedure-name

Bit Value of
Code Field

00000010

00000100

00001000

100xxxxOt

10100000

10100011

00000001

t xxxx (bits 4 through 7) indicates decima;1 ~ength is in the same format as the Decimal

Special Interfaces to Hardware and Monitor Services

Contents of
Address Field

WA (parameter)

WA (parameter)

WA (parameter)

BA (parameter)

BA (parameter)

WA (parameter)

WA (parameter)

Instructions.

The cababi IHies desct"ibed in this section are implemented in the form of assembly language routines that can
be added to the fun-time library at the user's option. Each routine is independent and any combination of
services can be elected for a given installation. 1n general, these routines contain Xerox defined entry points which
the user programmer cites by symbolic name in an ENTER verb in his COBOL syntax. The ENTER for each routine
must generally contain a string of data names which (at run-time) contain parameter values defining the nature of
the service to be provided. The order of the parameters is strictly defined and it is the user's responsibility to pro
vide the correct values. In effect, these routines are "super-macros" for providing services not available in the
Xerox ANS COBOL language. . I

68 library Subroutines

The specifications below define the service to be provided and the anticipated ENTER syntax required. Some of
the individual services may be implemented, as subsections of one run-time routine, thereby requiring a somewhat
smaller total number of machine language programs in the run-time library.

The servi ces provided are

1. De lete a record from a keyed fi Ie.

The user's file must have been the subject of 4Jn "OPEN INPUT-OUTPUT" statement. In this case p

the value to be used as the monitor key will be picked up from the useris datel area and used in an
M:DELREC call.

User Syntax:

_~t-!.!ER DE LETER fi Ie-name, data-name-l, data-name-2[, procedure-'name]

where

DELETER is j~he entry point in the run-time routine.

fi Ie-name is the appropriate FD name.

data-name-l contains the monitor record key (DISPLAY).

data-name-2 contains the length of data-name-l (COMPUTATIONAL).

procedure -name
is optional.

is to be executed if the specified key is not found in the file. This parameter

2. Get the monitor key and actual record size of the last processed record in a file.

The required values (lre abstracted from the KBUF and ARS areas of the DeB.

User Syntax:

~~TE.fi LASTKE'(file-name, data-name-l, data-name-2[, data-name-3)

where

LAST KEY js the entry point in the run-time routine.

fi Ie-name is the appropriate FD name,

data-name-l is the area into which the monitor key of the last record read or written wi" be
inserted (DISPLAY).

dota-name-2 is the area into which the length of the monitor key wi II be inserted (COMPUTA TlO NA L).
This value wi II be zero if no key was found.

data-narne-3 is the area into which the Clctual size, in b}ftes, of the last record read or written
will be inseded (COMPUTATIONAL). This parameter is optioned.

3. Set a file to keyed s€!quential access and positi.on to a specified key value. The user who wishes to process
a keyed file sequentially is required to specify "ACCESS IS SEQUENTIAL". The user is expected to open
the file as sequential and then call upon this routine to redefine it as IIkeyed sequential", The file will
then be positioned to the specified key value and a return will be made to the user pfC)gram where reading
wi" proceed sequentially. If a record exists whosf.! key' matches the specified val ue, it wi" be the first
record accessed by the next sequential read. If the <;p':!cified key is not in the fi Ie, the next sequential
read will access the First record with a hi~her ke), value.

library Subroutines 69

User Syntax:

ENTER START file-name, data-name-l,data-name-2

where

START is the entry point in the run-time routine.

fi Ie-name is the cppropriate FD name (SEQUENTIAL).

data-name-l contains the monitor record key (DISPLAY).

data-name-2 conta; ns the length of data-name-l (COM PUT A TIONA L).

Note that the redefinition of the consecutive fi Ie to keyed sequential occurs by executing an M:CLOSE
and then an M:OPEN.

4. Skip n records in a file.

Uses the monitor PRECORD routine to skip forward over the specified number of records. If the fi Ie is mon
itor formatted, n logical records wi" be bypassed; if user formatted, n physical records wi II be skipped.
This routine does not allow ~kipping from the middle of a physical record in a user-formatted file,
nor does it account for blocks already in memory due to double buffering. The user is responsible for re
ducing his skip count in such a situation"

User Syntax:

ENTER SKIP file-name, dato-name-l[, procedure-name]

where

SKIP is the entry point in the run-time routine.

file-name is the appropriate: FD name.

data-name-l contains the number of records to skip (COMPUTATIONAL). A negative number
indicates reversed skipping. The number of records yet to be skipped will be stored in data-name-l
upon completion.

procedure-name is to be executed if either of the following abnormal conditions occurs: end-of-fj Ie,
end-of-tape (user-formatted fi Ie). The number of records yet to be skipped Is placed In the actual
record size field (ARS) of the associated DCB. This parameter is optional.

5. Close and release disk fj Ie to the monitor.

This routine closes, and releases disk fi les to the monitor when the COBOL programmer is through using them.

I User Syntax:

ENTER RELFILES file-nome-I, fjle-name-2, ... , file-name-n

where

RELFILES is the entry point in the run-time routine.

file-name-l is an appropriate FD namEl.

fi le-name-n is the last of multiple n,Ies to be closed and released.

70 Li brary Subrouti nes

6. Get current date, time, and sense switch settings.

This routine picks up the current date, time, and sense switch settings, and makes them avai lable to the
user program. The routine optionally picks up the current number of lines per page from a printer DCB.
This volue is set by the (LINES, value) parameter in the !ASSIGN card.

User Syntax:

.£NTER GETCOM data-name-1 [, print-fi Ie-name]

where

GETCOM is the entry point in the run-time routine.

data-name-l is a 26-byte area (DISPLAY) into which wi II be inserted the following information:

bytes 1-6 the pseudo-switch settings; 0 is off, 1 is on.

bytes 7-8 blank.

bytes 9-24 time and da.te, in the monitor form HH:MM MON DD, 'YY (hours, minutes,
month, day, year).

bytes 25-26 number of lines per page in the printer DCB.

print-file-name is the appropriate FD name corresponding to the printer DCB.

7. Transform data to new collating sequence.

Allows the user to translate up to 255 bytes of data to any specified collating sequence. The user is
responsible for constr!ucting a 256-byte table conl'aining the target collating sequence. The run-time rou
tine uses the Translate Byte String instruction to accomplish the transformation. The target translation
table is defined by the us~r in much the same wa'l that key translation is specified in the Sigma Sort.

User Syntax:

EN rER TRANSFORM data-name-1, data-name-2, data-name-3

where

TRANSFORM is the entry point in the run-time routine.

data-name- 1 contains up to 255 bytes of data to be transformed (DISPLAY).

data-name-2 contains the actual length of the byte string to be transformed (COMPUTATIONAL).

data-name-3 is a 256-byte translation table containing the target collating sequence. Data-name-l
and data-name-3 must start on word boundari es.

8. Set a data area to zero.

Allows the user to background large data areas to EBCDIC zero ('FO!).

User Syntax:

mTER SETZERO data-name-l, data-name-2

where

SETZERO is the entry pOInt in the run-time routine.

data-name-l is the area to set to zero (DISPLAY).

data-name-2 is the byte length of the area to be set to zero (COMPUT A TIO NAL). Maximum
value is 32,767.

Library Subroutines 71

9. Set a data area to blanks.

Allows the user to background large data areas to EBCDIC blank ('40').

User Syntax:

ENTER SETBlAN K data-name-l, data-name-2

where

SETBlANK is the entry point in the run-time routine.

data-name-1 is the area to be set to blanks (DISPLAY).

data-name-2 is the byte length of the area to be set to blanks (COMPUTATIONAL). Maximum
value is 32,767.

10. Signal operator to change printer form or punch card stock.

Allows the user to request a change in the form used on the specified output device (card punch or line
printer). Any message, up to 255 bytes long, may be inserted into the output symbiont stream. The mes
sage, generally directions to the computer operator, is automatically intercepted at actual print (or punch)
time, directed to the operator's console, and the output symbiont is suspended. Upon performance of the
action specified in the user programmer's message, the symbiont can be restarted and printing or punching
continued. Note that a second message is required later to cause restoration of a "standard" form for the
next job.

User Syntax:

ENTER FORMESS file-name, data-name-l, data-name-2

where

FORMESS is the entry point in the run-time routine.

file-name is the appropriate output FD name.

data-riame-l is the message to be inserted in the print or punch output symbiont (DISPLAY).

data-name-2 is the length of the message (COMPUTATIONAL). Maximum value is 255.

COBOL Error Codes

In addition to the error and abnormal returns documented in the appropriate BPM/CP-V monitor reference manuals,
code numbers 80 through 9F (hexadecima I) are reserved for the CaBO L compi ler and object programs. Table 4 de
fi nes these codes.

Table 4. COBOL Error Codes

Code Procedure
(Hexadecimal) Name Meaning

01 OPEN Opening a DCB with insufficient information.

03 OPEN Nonexistent name.

04 PRECORD Beginning of fi Ie.
READ

07 READ Lost data (buffer size smaller tha" record read).

72 C080L Error Codes

Code
(Hexadeci mal)

OA

13

14

15

16

17

18

IC

ID

2E

80

82

86

87

88

89

8C

8D

8F

90

91

Table 4. COBOL Error Codes (cont.)

Procedure
Name

CLOSE

WRITE
DE LREC

OPEN

WRITE
DE LREC

WRITE

WRITE

WRITE

READ
WRITE
PRECORD

READ
PRECORD

OPEN

READ/WRITE

OPEN

READ

READ

READ

WRITE

GCP 1

Object Pro-
grClm Sort 2

OPEN

Report Writer :)
GENERATE
TERMINA TE

Report Writer 3

INITIATE

.

Meaning

Closing an unopened file.

Requested key not found on an UP DATE file.

Insufficient information to identify a fi Ie.

Illegal sequence of operations on an INOUT file.

NEWKEY option specified on alre ady existing key.

NEWKEY option not specified on key for OUT or OUTIN
fi les.

KEY not in proper sequence.

End of tape.

Beginning of tape.

Opening an open file.

Request to READ/WRITE an unopen ed file.

Unable to obtain dynami c area for blocking/deblocki ng.

Logical Record read is larger than maximum size (MAXSJZE)
specification in COBOL program.

The sum of the record prefi x count is not equal to the block
prefi x count.

The block prefi x count does not a gree with the actual record
si ze read by the system (ARS).

User is attempting to write a logic
for his blocking buffer (a logical r
than eight bytes smaller than maxi

Common page not avai lable.

Sort error.

Opening a locked file.

Report not initiated.

I Rep~lreOdY initi.oted.

al record that is too large
ecord cannot be greater
mum blocksize).

COBOL Error Codes 73

Table 4. COBOL Error Codes (cont.)

Code
(Hexadecimal)

92

99

9A

9E

9f

Notes:

I SR 1 contains zero.

Procedure
Name

Report Wri ter 3

C:VPL

Object Program
ENTER

Object
Program·

Compiler

2 R6 contains one of the following values:

Meaning

Incompatible line spacing.

Value of data-name in OCCURS DEPENDING ON clause
exceeds the maximum specified.

Invalid calling sequence for run-time library subroutine.

Erroneous transfer of control.

Internal I/o errors.

a 1 (Sort error - in and out record count out of balance)

02 (Sort aborted - I/o error)

03 (Sort aborted - specification error)

04 (Sort aborted - reg isters give reason)

05 (Sort aborted - memory overflow)

06 (Sort aborted - illegal own-code action request)

07 (Reserved for future use)

08 (Sort aborted - illegal decimal key)

09 (Sort error - sequence error in output fi Ie)

J SRl contains location of call to C:RRG; SR3 (bytes 1 through 3) contains address of Report Table
(R :report-name) •

• No register settings are significant.

The only COBOL run-time diagnostic is of the form

PROGRAM A80RTED--ERROR CODE nn nn

xxxxx IS fD-NAME

REL. INST. LOCATION IS yyyyyyyy

where

nn nn is the appropriate 4-digit error code and sub code number.

xxx xx is the name of the fj Ie.

yyyyyyyy is the relative location of the instruction causing the error.

In each case that an error is incurred, the action taken is to abort the current job. The STEP condition code is set
to 6. (Refer to the CP-V Batch Processing Reference Manual, 90 1764, for the STEP command.)

The error code is contained in byte a of SR3. Except where footnoted above, the DCB address is contained in bytes
1 through 3 of SR3 and the location following the associated CAL 1 instruction is communicated in SR 1.

74 COBOL Error Codes

APPENDIX. REFERENCE TABLES

This appendix contains the follow;ng reference material:

Title

Standard Symbols and Codes

Standard 8-Bi t Computer Codes (E BCDIC)

Standard 7-Bit Communication Codes (ANSCII)

Standard Symbo I-Code Correspondences

Hexadecimal Arithmetic

Addition Table
Multiplication Table
Table of Powers of SixteenlO
Table of Powers of Ten 16

Hexadecima I-Decima I Integer Conversion Table

Hexadecimal-Decimal Fraction Conversion Table

Table of Powers of Two

Mathematical Constants

STANDARD SYMBOLS AND CODES
The symbol and code standards desicribed in this publication
ate applicable to all Xerox computer products, both hard
ware and software. They may be expanded or altered from
time to time to meet changing requirements.

The symbols listed here include two types: graphic symbols
and control characters. Graphic ~)ymbols are displayable
and printable; control characters are not. Hybrids are SP,
the symbol for a blank space; and DEL, the delete code,
which is not considered a control command.

Three types of code are shown: (1") the a-bit Xerox Standard
Computer Code, i.e., the Extended Binary-Coded-Decimal
Interchange Code (EBCDIC); (2) thE! 7-bit American National
Standard Code for Information Interchange (ANSCII); and
(3) the Xerox standard card code.

STANDARD CHARACTER SETS

1. EBCDIC

57-character set: uppercase letters, numerals, space,
and & / < > () + I $ *

% # Ca'

63-character set: same as above plus i
--,

89-character set: same as 63-character set plus
lowercase I etters

2. ANSCII

?

64-character set: uppercase letters, numerals, space,
and I $ % & I () * + ,

/ \ < > ? ~(L l]
A #

95-character set: same as above plus lowercase letters
and { }

CONTROL CODES
In addition to the standard character sets I isted above, the
symbol repertoire includes 37 control codes and the hybrid
code DEL (hybrid code SP is considered part of all charac
ter sets). These are listed in the table titled Standard
Symbo I-Code Correspondences.

SPECIAL CODE PROPERTIES
The following two properties of all standard codes wi II be
retained for future standard code extensions:

1. All control codes, and only the control codes, have
their two high-order bits equal to 1100 11 . DEL is not
considered a control code.

2. No two graphic EBCDIC codes have their seven low
order bits equal.

Appendix 75

STANDARO 8-BIT COMPUTER CODES (EBCDIC)

Most 5'~111 ''-U'" Digits
~

Ht'~odecj 2 4 5 7

1- B~~ory
- t-- - ---

0000 0001 10 0011 0100 0101 0110 Dill

o I 0000 NUL DlE ds SP & - ~
~1-lo~I-----

SOH DCI 55 ~ ~ / ~ - -t -------- ._---

'2 : 0010 STX DO fs ~ ~ ~ ~ +- ----- -------- ~-

3 ~. 0011 ETX DC3 si ~ ~ ~ ~
oj ; 0100 EOT DC4 ~ ~ ~ ~ t --- --- -. -- .----_.- -.. ------ ------_.

~' " ." ",
5 ' 0101 HT

-~-
;.

~;illn~~
.!E -1 --.-.-.. -.---- . _---- -_. ---_. _._ . '", "

Z 6 : 0110 ACK SYN ~ ~ ~~ ~ -----t-- .. --- -.--.-.--- _.-

S 7 0111 BEL ETB ~ ~ ~~ ~
I ~

,-, --- - ~--. - f------- I-- -----
EOM ~ ~ ~~ ~ ~ 8 1000
B~

Ic IN
I Vl 1-. ~----- .-1----

~ ~ ~ ~ ~ 9 1001 ENO EM
.:;

12 ~ ,
A 1010 NAK SUB :

1--. --.---

B 1011 VT ESC , I
I-

C 1100 FF FS < * % @

D 1101 CR GS ()
,

-
E 1110 SO RS t ; > =

F I 1111 51 US
2 2

? I

. .

8

1000 1001 1010 1011

j \'

b k s 1 '
c I t l'
d m \I

[,
e n v

] ,
f 0 w

9 P x

h q y
. -. -

i r z

D

1100 1101 1110 I II I

0

A J I

B K S 2

C L T J

D M U ..
E N V 5

F 0 W 6

X

H 0 Y a

I R Z 9

~ ~ ~ ~
~ ~ ~ ~ ~
.;' " ,,,, ":':Ii'~~'~

,. ",. "" ,/,~

~ ~ ~ ~
~ ~ ~ ~
~ ~ ~ DEL

The characters - \ t J [] are ANSCII
characters that do not appear in any of the
EBCOIC-hased character sets, though they
are shown in the E8CDIC table.

The characters, I appear in the 63- and
89-charocter EBCDIC sets but not in either
of the ANSCIJ-based sets. However, Xerox
software translates the characters c
into ANSCII characten os follows:

EBCDIC ANSCII

1 ' (6-0)

1 I (7-12) I

..... - (7-14)

The EBCDIC control codes in columns 0
and I and their binary representation are
exactly the some 05 thO$e in the ANSCII
table, except for two interchanges: LF /NL
with NAK, and HT with ENO.

Characters enclosed in heavy lines are
included only in the standard 63- and
89-charocter EBCDIC sets.

These characters are included only in the
standard 89-character EBCDIC set.

STANDARD 7 -BIT COMMUNICATION CODES (ANSCII) 1

Most Significant Digits

Decimal
rows) (col's.) _ 0 2 3 4 5 6 7

Binary 1 xOOO xOOI xOIO x011 xlOO xl01 xiiO xiii

o 0000 NUL OLE SP o @ p
f---~·----~-~-~~~--~--4_-4_--4_--~

I 0001 SOH OCI I I A 0 a q
--t------f----+--+---+--+---
2 0010 STX DC2 2 b

0011 ETX DC3 3 c

4 0100 EaT OC4 S 4 D d

5 0101 ENO NAK % 5 U e u 'i ~-+--- ----- ---.+---+------4---

i5 6 0110 ACK 5YN & 6 F V

I-----~-- ---

;:-1------- -.--1----- ----- ---- ---1-------

3 7 I 0111 BE l ETB 7 G W g

:~ 8 t--;~~---- B5 C.AN 8 H X - ~-- --
if'> ___ +- ____ . _____ . _____ -+-_-+-__ + _____ ---.'. -. __

5 9 I 1001 HT EM) 9 I Y Y
~I------~--------- ----- _ .. _--1--._--- ---- ---.-1----- --'-- ----

10 1010 IF SUB J Z
1--- 1--------- -!'::!~- -----

11 1011 VT ESC ; K [5 --- --;--

-- 1------------.- - -- - ---.- f--- - .-.... --f---- ---

12 1100 FF FS , ~ L \ I --- e--------I----i- ---1---- .. -----1------ - 5
13 1101 CR GS - M] m

- -- -----···---r-·- ----1----- - -.- ---;-----:+---+---,,-1
14 1110 so RS N 14~ 5

~;~~;I SI U~ 1--7- --;-I--;l-_--44--.0---lI--D-E~l~
1\

76 Appendix

1 Most significant bit, added for a-bit format, is either 0 or even parity.

Columns 0-1 are control codes.

Columns 2-5 correspond to the 64-character ANSCII set.
Columns 2-7 correspond to the 95-character ANSCII set.

On many current teletypes, the symbol

is

is

(5-14)

(5-1:»

is ESC or ALTMOOE control (7-14)

and none of the symbols appearing in columns 6-7 are provided. Except for the three
symbol differences noted above, therefore, such teletypes provide all the characte" in
the 64-character ANSCII set. (The Xerox 7015 Remote Keyboard Printer provides the
64-character ANSCII set also, but prints" as fl.)

On the Xerox 7670 Remote Botch Terminol, the symbol

is

is

is

is

(2-1)

(5-11)

(5-13)

(5-14)

and none of the symbols oppeoring in columns 6-7 are provided. Except for the four symbol
differences noted ab.ove, therefore, this terminal provides all the characters in the 64-
character ANSCII set.

EBCDIC t
--.- r-.:'---

Hex. Dec. Symbol

00 0 NUL
01 1 SOH
02 2 STX
03 3 ETX
04 4 EOT
05 5 HT
06 6 ACK
07 7 BEL
08 8 BSor EOM
09 9 ENQ
OA 10 NAK
DB 11 VT
DC 12 FF
00 13 CR
DE 14 SO
OF 15 51

f-.-.. --- - .. ---------
10 16 OLE
11 17 OCI
12 18 OC2
13 19 OC3
14 20 OC4
15 21 LF or NL
16 22 SYN
17 23 ETB
18 24 CAN
19 25 EM
lA 26 SUB
lB 27 ESC
IC 28 FS
10 29 GS
IE 30 RS
IF 31 US

f--. --
20 32 ds
21 33 S5

22 34 fs
23 35 si
24 36
25 37
26 38
27 39
28 40
29 41
2A 42
28 43
2C 44
20 45
2E 46
2F 47

30 48
31 49
32 50
33 51
34 52
35 53
36 54
37 55
38 56
39 57
3A 58
38 59
3C 60
3D 61
3E 62
3F 63 -

STANDARD SYMBOL-CODE CORRESPONDENCES

Card

12-,0
12-9
12-9
12-9
12-9
12-9
12-9
12-9
12-9
12-9
12-9
12-9
12-9
12-9
12-9
12-9

12-1
11-9
11-9
11-9
11-9
11-9
11-9
11-9
11-9
11-9
11-9
11-9
11-9
11-9
11-9
11-9 _._--
11-0
0-9-
0-9-
0-9-

Code

-9-8-1
-1
-2
-3
-4
-5
-6
-7
-8
-8-1
-8-2
-8-3
-8-4
-8-5
-8-6
-8-7

1-9-8-1
-1
-2
-3
-4
-5
-6
-7
-8
-8-1
-8-2
-8-3
-8-4
-8-5
-8-6
-8-7

-9-8-1
1
2
3

0-9-4
0-9-
0-9-
0-9-
0-9,-
0-9,-
0-9··
0-9,·
0-9··
0-9··
0-9:·
0-9,·

12-'1
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8

5
6
'1
8
8-1
8-2
8-3
8-4
8-5
8-6
8-7

1-0-9-8-1,

0-0
0-1
0-2
0-3
0-4
0-9
0-6
0-7
0-8
0-5
1-5
0-11
0-12
0-13
0-14
0-15

1-0
1-1
1-2
1-3
1-4
0-10
1-6
1-7
1-8
1-9
1-10
1-11
1-12
\-13
1-14
1-15

Mecming
1 Remark'~------------

----------.-+---~--------------.

null
start of header
start of text
end of text
end of transmission
horizontal tab
acknowledge (positive)
bell
backspace or end of message
enquiry
negative acknowledge
vertkal tab
form feed
carriage return
shih out
shift in

datCi link escape
devoce control 1
deviice control 2
devoce control 3
devi'ce control 4
line feed or new line
sync:

, end of transmission block
cancel
end of medium
substitute
eSCQipe
'fj Ie separator
group separator
recQ.rd separator

00 throUljjlh 23 and 2F are control codes.

EOM is used only on Xerox Keyboard/
Prj nters Mode Is 7012, 7020, 809 i,
and 8092.

Replaces characters with parity error.

~;;~:~~;;;~I:'-~----·-1-·;~;::U~~;3 B~~~~e;J~~ (EBS)

field separation instruction - not input/output con-
immediate significance start trol codes.

24 through 2E are unassigned.

I 30 Ihmugh 3F a,. unanlgnod.

I

9-8·
9-8-
9-8-
9-8-
9-8-
9-8-
9-8-

I

·1 1 ·2

:,:-.....4.-..L __ --.._._,_, _ _ __ _
tHexodecimal and decimal notat ion.

ttOecimal notation (column-row)

Appendix 77

STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

E8COIC t
Symbol Card Code ANSentt

Meaning Remarks
Hel(. O-ec.

40 64 SP blank 2-0 blank
41 65 12-0-9-1 41 through 49 will not be assigned.
42 66 12-0-9-2
43 67 12-0-9-3
44 68 12-0-9-4
45 69 12-0-9-5 I

46 70 12-0-9-6
47 71 12-0-9-7
48 72 12-0-9-8
49 73 12-8-1
4A 74 i or ' 12-8-2 6-0 cent or accent grove Accent grove used for left single
48 75 12-8-3 2-14 period quote. On model 7670, , nol
4C 76 < 12-8-4 3-12 less t~an available, and t = ANSCII 5-11.
40 77 (12-8-5 2-8 left parenthesis
4E 78 + 12-8-6 2-11 plus
4F 79 I or

I 12-8-7 7-12 vertical bar or broken bar On Model 7670, : not available, I

and I = ANSell 2-1.

50 80 & 12 2-6 ampersand
51 81 12-11-9-1 51 through 59 will not be assigned.
52 82

I

12-11-9-2
53 83 12-11-9-3
54 84 12-11-9-4
55 85 12-11-9-5
56 86 12-11-9-6
57 87 12-11-9-7
58 88 12-11-9-8
59 89 . 11-8-1
5A 90 I 11-8-2 2-1 exclamation point On Model 7670, I is I.
58 91 S 11-8-3 2-4 dollars
5C 92 * 11-8-4 2-10 asterisk
50 93) 11-8-5 2-9 right parenthesis
5E 94 ; 11-8-6 3-11 semicolon
5F 95 - or -, 11-8-7 .7-14 tilde or logical not On Model 7670, - is not available,

and"" = ANSell 5-14.

60 96 - 11 2-13 minus, dash, hyphen
61 97 / 0-1 2-15 slosh
62 98 11-0-9-2 62 through 69 will not be assigned.
63 99 11-0-9-3
64 100 11-0-9-4
65 101 11-0-9-5
66 102 11-0-9-6
67 103 11-0-9-7
68 104 11-0-9-8
69 105 0-8-1
6A 106

..... 12-11 5-14 circumflex On Model 7670 is .., . On Model
68 107 , 0-8-3 2-12 comma 7015 is 1\ (caret).
6C 108 % 0-8-4 2-5 percent
60 109 - 0-8-5 5-15 underline Underline is sometimes called "break
6E 110 > 0-8-6 . 3-14 greater than character"; may be printed along
6F 111 ? 0-8-7 3-15 questIon mark bottom of character line.

70 112 12-11-0 70 through 79 wi" not be assigned.
71 113 12-11-0-9-1
72 114 12-11-0-9-2
73 115 12-11-0-9-3
74 116 12-11-0-9-4
75 117 12-11-0-9-5
76 118 12 - 11-0-9-6
77 119 12-11-0-9-7
78 120 12-11-0-9-8
79 121 8-1
7A 122 8-2 3-10 colon
78 123 /I 8-3 2-3 number
7C 124 @ 8-4 4-0 at
7D 125 I 8-5 2-7 apostrophe (right single quote)
7E 126 ::: 8-6 3-13 equals
7F 127 " 8-7 2-2 quotation mark

tHel(adeclmal and decimal notation.

ttOecimol notation (column-row).

78 Appendix

STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

f---~~~ Symbol Cord Code ANSCn tt
Meaning Remarks Hex. Dec.

80 128 12-0-8-1 80 is u'l.assigned.
81 129 a 12-0-1 6-1 81-89, 91-99, A2-A9 comprise the
82 130 b 12-0-2 6-2 lowercase alphabet. Available
83 131 c 12-0-3 6-3 only in standard 89- and 95-
84 132 d 12-0-4 6-4 character sets.
85 133 e 12-0-5 6-5
86 134 f 12-0-6 6-6
87 135 g 12-0-7 6-7
88 136 h 12-0-8 6-8
89 137 i 12-0-9 6-9
8A 138 12-0-8-2 SA through 90 are unass igned.
8B 139 12-0-8-3
8C 140 12-0-8-4
8D 141 12-0-8-5
8E 142 12-0-8-6
8F 143 12-0-8-7

90 144 I 12-11-8-1
91 145 j 12-11-1 6-10
92 146 k 12-11-2 6-11
93 147 I 12-11-3 6-12
94 148 'T1 12-11-4 6-13
95 149 n 12-11-5 6-14
96 150 0 12-11-6 6-15
97 151 p 12-11-7 7-0
98 152 q 12-11-8 7-1
99 153 r 12-11-9 7-2
9A 154 12-11-8-2 9A through Al are unassigned.
9B 155 12-11-8-3
9C 156 12-11-8-4
9D 157 12-11-8-5
9E 158 12-11-8-6
9F 159 12-11-8-7

--1---

AO 160 11-0-8-1
Al 161 11-0-1
A2 162 5 11-0-2 7-3
A3 163 t 11-0-3 7-4
A4 164 u 11-0-4 7-5
A5 165 v 11-0-5 7-6
A6 166 w 11-0-6 7-7
A7 167 x 11-0-7 7-8
A8 168 Y 11-0-8 7-9
A9 169 z 11-0-9 7-10
AA 170 11-0-8-2 AA through SO are unassigned.
AB 171 11-0-8-3
AC 172 11-0-8-4
AD 173 11-0-8-5
AE 174 11-0-;-8-6
AF 175 11-0-8-7

-----_._- --.---- ----------,-----_._-1--------,._-"._-,----,----
BO 176 12-11-0-8-1
Bl 177 \ 12-11-0-1 5-12 backslash
B2 178 { 12-11-0-2 7-11 left brace
B3 179 ~ 12-11-0-3 7-13 right brace
B4 180

~
12-11-0-4 5-\1 left bracket On Model 7670, ~ is i.

B5 181 12-11-0-5 5-13 right bracket On Model 7670, is I.
B6 182 12-11-0-6 86 through BF are unassigned.
B7 183 12-11-0-7
B8 184 12-11-0-8
8"9 185 12-11-0-9
BA 186 12-11-0-8-2
BB 187 12-11-0-8-3

l Be 188 12-11-0-8-4
BD 189 12-11-0-8-5
BE 190 12-11-0-8-6
BF 191 12-11-0-8-7 --- -
tHexadecimal and decimal notal~ion.
ttOecimal notation (column-row).

--,..- _._

Appendix 79

STANDARD SYMBOL-CODE CORRESPONDENCES (cont.)

EBCDICt SY!"'bol
Hex. Dec.

Card Code ANSCU tt Meaning Remarks

CO 192 12-0 CO is unassigned.
(1 193 A 12-1 4-1 Cl-C9, 01-09, E2-E9 comprise the
C2 194 B 12-2 4-2 uppercase alphabet.
C3 195 C 12-3 4-3
C4 196 0 12-4 4-4
C5 197 E 12-5 4-5
C6 198 F 12-6 4-6
C7 199 G 12-7 4-7
C8 200 H 12-8 4-8
C9 201 I 12-9 4-9
CA 202 12-0-9-8-2

I
CA through CF will not be assigned.

(B 203 12-0-9-8-3
CC 204

12-0-9-8-4 -1----CD 205 12-0-9-8-5
CE 206 12-0-9-8-6
CF 207 12-0-9-8-7

-----.-.----- -.--- ---
DO 208 11-0 DO is unassigned.
01 209 J 11-1

I
4-10

02 210 K 11-2 4-11
03 211 L 11-3 4-12
04 212 M 11-4

I
4-13

05 213 N 11-5 4-14
06 214 0 11-6 4-15
07 215 P 11-7 5-0
08 216 Q 11-8 5-1
09 217 R 11-9 5-2
OA 218 12-11-9-8-2 DA through OF wi II not be ass igned.
DB 219 12-11-9-8-3
DC 220 12-11-9-8-4
DO 221 1 2-11-9-8-5
DE 222 12-11-9-8-6
OF 223 12-11-9-8-7

EO 224 0-8-2 EO, E 1 are unassigned.
El 225 11-0-9-1
E2 226 S 0-2 5-3
E3 227 T 0-3 5-4
E4 228 U 0-4 5-5
E5 229 V 0-5 5-6
E6 230 W 0-6 5-7
E7 231 X 0-7 5-8
E8 232 Y 0-8 5-9
E9 233 Z 0-9 5-10
EA 234 11-0-9-8-2 EA through EF will not be assigned.
EB 235 11-0-9-8-3
EC 236 11-0-9-8-4

I ED 237 11-0-9-8-5
EE 238 11-0-9-8-6
EF 239 11-0-9-8-7

--
FO 240 0 0 3-0
F 1 241 1 1 3-1
F2 242 2 2 3-2
F3 243 3 3 3-3
F4 244 4 4 3-4
F5 245 5 5 3-5
F6 246 6 6 3-6
F7 247 7 7 3-7
F8 248 8 8 3-8
F9 249 9 9 3-9
FA 250 I 12-11-0-9-8-2 FA through FE wi II not be assigned.
FB 251 I 12-11-0-9-8-3
Fe 252 12-11-0-9-8-4
FO 253 12-11-0-9-8-5
FE 254 12--11-0-9-8-6
FF 255 DEL 12-11-0-9-8-7 delete Special - neither graphic nor con-

trol symbol.

tHexadecimal and decimal notation.

tt Decimal notation {column-row}.

80 Appendix

HEXADECIMAL ARITHMETIC

ADDITION TABLE
- ,-

a 1 2 3 4 5 6 7 8 9 A B C D E F

1 02 03 04 05 06 07 08 Cf} OA 00 DC OD OE OF 10

2 03 04 05 06 07 08 09 OA OB DC 00 OE OF 10 11

3 04 05 06 07 08 09 OA OB OC 00 OE OF 10 11 12
~- ---

4 05 06 07 08 09 OA OB DC 00 OE OF 10 11 12 13

5 06 07 08 I 09 OA OB OC 00 OE OF 10 11 12 13 14

6 07 08 09 OA OB DC 00 OE OF 10 11 12 13 14 15
-

7 08 Cf} OA OB OC 00 OE OF 10 11 12 13 14 15 16

8 09 OA OB OC 00 OE OF 10 11 12 13 14 15 16 17

9 OA OB DC 00 OE OF 10 11 12 13 14 15 16 17 18

A OB OC 00 DE OF 10 11 12 13 14 15 16 17 18 19

B OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 lA

C 00 OE OF 10 11 12 13 14 15 16 17 18 19 lA 18

0 OE OF 10 11 12 13 14 15 16 17 18 19 lA 1B lC

E OF 10 11 12 13 14 15 16 17 18 19 lA 1B lC 1D

F 10 11 12 13 14 15 16 17 18 19 lA 1B 1C 1D lE

MULTIPLICATION TABLE

1 2 3 4 5 6 7 8 9 A B C D E F

2 04 06 08 OA OC OE 10 12 14 16 18 lA lC 1E

3 06 09 OC OF 12 15 18 18 1E 21 24 27 2A 20
- ----_.

4 08 OC 10 14 18 lC 20 24 28 2C 30 34 38 3C

5 OA OF 14 19 lE 23 28 20 32 37 3C 41 46 4B

6 OC 12 18 lE 24 2A 30 36 3C 42 48 4E 54 5A
---.----- "

7 OE 15 lC 23 2A 31 38 3F 46 4D 54 58 62 69

8 10 18 20 28 30 38 40 48 50 58 60 68 70 78

9 12 1B 24 20 36 3F 48 51 SA 63 6C 75 7E 87
.------~ .-

A 14 lE 28 32 3C 46 50 5A 64 6E 78 82 8C 96

8 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5

C 18 24 30 3C 48 54 <>0 6C 78 84 90 9C AS 84

.----------,-..,-- ------
0 lA 27 34 41 4E 58 68 75 82 8F 9C A9 86 C3

E lC 2A 38 46 54 62 70 7E ac 9A AS 86 C4 02

F lE 2D 3C 48 5A 69 78 87 96 A5 84, C3 D2 El

-~
~

Appendix 81

INDEX

Note: For each entry in this indElx, the number of the most significant page is listed first. Any pages thereafter are listed in
numeri ca I sequence.

A
ADVANCING clause, 18
ANS-Iabeled tapes, 3

B
basic setups, 20
binary calculations,
BO option, 7

c
character sets, 75
c,o-resident sort feature, 40
COBOL

error codes, 72
I ibrary on tape, 18
object program subroutines, 65
work fi les, 18

COMMON-STORAGE, 7, 14
communication codes (ANSCII), 76
compi lation

initiation, 6
of large source programs, 18

compi ler diagnosti cs, 49
computer codes (EBCDIC), 76
control codes, 75
CS option, 7

o
data division map listing, 7
DCB (data control block), 16
debug module object time switch, 48
DEBUG option, 7
decimal display fields,
deck structures, 20
DIAG option, 7
DMAP option, 7
DQ option, 9
dummy program sections, 16

E
ENTER

DELETER, 69
FORMESS, 72
GETCOM, 71
LASTKEY, 69

RELFILES, 70
SETBLANK, 72
SETZERO, 71
SKIP, 70
START, 70
statement feature, 37
subrouti ne-name statement, 68
TRANSFORM, 71

error codes, COBOL, 72
exponentiation, 1

F
fi Ie index areas, 17
fi Ie record areas, 17
FROM option of WRITE statement, 3

G

GO option, 9

H
hexadecimal arithmetic, 81

I/O considerations, 2
inter-program communication, 14,31
INTO option of READ statement, 3

L
'Iabe led tapes, 3
LIB option, 9
library subroutines, 65
LIMIT control command, 18
LO option, 9
load module map, 17
LS option, 9

M
MAIN option, 12
MAPS option, 12
mixed-mode arithmetic statements,

Index 83

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

N
numeric data items,

o
object

listing, 9
program, 16

OCCURS DEPENDING ON clause, 2
output options, 6

p

pocked dec i ma I,
PMAP option, 12
POOL control command, 18
print fi Ie handl ing, 18

R
report areas, 17
root segment module, 17
run-time subroutines, services and diagnostics, 65

s
SAME RECORD AREA statement, 3
SEG option, 12
segmentation feature, 25
segmented object programs, 16
SEQCHK option, 12
sequential files, 2
SO option, 12

84 Index

sort, 2
SRTx option, 13
source program and procedure division map listing, 11
special code properties, 75
special interfaces to hardware and monitor services, 68
SUB option, 13
subcompi Ie feature, 31
subprogram ca lis, 68
subscripts, 1
symbol-code correspondences, 77
symbols and codes, 75
SYN option, 13

T
table handling, 2
TEST option, 13
TREE control command, 16

u
unlabeled topes, 3

v
vertical-format-control codes, 19

w
WORKING-STORAGE SECTION, 15, 17

x
XREF option, 13

XEROX

Reader Comment Form

~----_-- ---l--_w
, fd 8 •• '."".'-8_,OU' comm":,~ •• U ~f.,~:"~~~~~""~~.:n -~

~PU:::~ NO_____ RG\I. Lett~~ TI~___________ ________ _ _____ .. ________]:=~n~~~. _____ J
I How dId you use this publication} is the matarial presented effecti\lely? i

! [J Learning 0 Installing 0 Sales 0 "
, _ !Fully CO\lertld 0 Well Illustrated 0 Wei! organizod [] ClltlH I 0 Reference 0 Maintain;n. II 0 Operating-
\---------_._---_ .. - --- . . ---------------------------_ •. _-. -.---.. -.-.--....... ------- .. ~
i What is your overall rating of this publication? What is your occupationi' I
i 0 Very Good 0 Fair 0 Very Poor I
~ [J Good 0 Poor ___ ._ ~

Your other comments may be entered hore. Please be specifk and gi\le page. column, and line number refer~nces where
applicable. To report error:I, please use the Xerox Software Improvement or Difficulty Report (1188) Instead of this form.

t--.- ... - -- -----.------------.--- ··-----·-------·-··-----··----· .. ---l
I
I
~----------.------------

~------------------------- -----··---------·-------~~-=~-~~~~--=~1 L- .. --
-----=--=====--=====-~=---=-==l

~-----.

i

-------.--.----.---- .. -···-------.... --· .. -.. ----·-·---------l
----·------·-----.·-------.-.-----------.. -1

I

-----.-"--.------~-------~-==~==--=~j
,-----._------_._-_.-
~---.---
I

i
.. _-----_._._ .. -.------... _--------------_._--_ .. _--_.------.-.-~

. __ ... _----_._-_._--_ ... _-_._ ... _._._-_. __ ... _------_._---I
I
I

.. __ .-_._-------_._-_ •. _ •. _-----_.--._---._._.- ,,---_.-------------._"'_ .. _---_ .. _--_. __ ._._-_._-----_ _--_. -.. - .. ---~~

I
-------------·--.. ---·-----i

--_ .. ----_._----------------,----- .-... ---.--.. --.-------... _-----_._ .. _--_.·_.--1
j

---.--------------------.---.. -~----.. -.-----.---------_··_--_·_··_--_·_---_·_-_·_-_·_··--1
I
I ------.---.. ---.--.-.-----:===-=-~=---==~=~-=--===---------=J

Thank You For YOUI Interest (fold & fasten as shown on back. no postage needed ,f mailed tn USA)

PLEASE FOLD AND TAPE--
NOTE: U. S. Postal Service will not deliver stapled forms

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 59153 LOS ANGELES,CA 90045

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
5250 W. CENTURY BPULEVARD
LOS ANG E LES, CA 90045

ATTN: PROGRAMMING PUBLICATIONS

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

row -
•

55

!
I
i
I '
I
w
z
:i
'-' z
o
-'
1t'
....
::>
u

i
I
!
I
I
I ~~
I _~_

, l:I

I ti j";r!
I (j

I (~
1 1!,.

J
I ,
!
I
!
I
I
I
I

I
!
I
I
I
I
I
i
I
\ iU
I Z
I :i
1<.:' ,z

--CO
I ~
10
15
I"
I
I
f
I
I
I
I
I
i
I
I
I
I
I
I
I
I
I
I
I
I

ttonnwelllnfnrmetlon Sy
In 1M U.S.A.: 200 SmIlfi Street. US 488. W8Itwn. MaINIctueUa 02154
In e.n.u: 2025~ Awnue E WiIowd 0nt8ri0 M2J 1'~'~

In Mexico: A Nuevo L..on 250. "'"IU" 11. D.F.

22228, 3C 1178, Printed in l' S. " . XJ80, Rev. 0

	000
	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	replyA
	replyB
	xBack

