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Preface

Intended Audience
This manual is for software engineers responsible for porting application code
written in VAX MACRO. Therefore, it demands that the reader understand the
OpenVMS VAX operating system and possess strong programming skills.

Document Structure
This manual is divided into two parts.

Part I: Concepts and Methodology comprises the following four chapters:

• Chapter 1, Preparing to Port VAX MACRO Code. This chapter provides a
methodology for porting VAX MACRO code to an OpenVMS Alpha system.

• Chapter 2, How to Use the MACRO-32 Compiler. This chapter describes how
and when to use the features of the compiler, including specialized directives
and macros.

• Chapter 3, Recommended and Required Source Changes. This chapter
describes how to change those coding constructs that cannot be compiled by
the MACRO-32 compiler.

• Chapter 4, Improving the Performance of Ported Code. This chapter describes
several compiler features that you can use to improve the performance of your
ported code.

• Chapter 5, MACRO–32 Programming Support for 64-Bit Addressing. This
chapter describes the 64-bit addressing support provided by the MACRO–32
compiler and associated components.

Part II: Reference comprises the following appendixes:

• Appendix A, Compiler Qualifiers

• Appendix B, Compiler Directives

• Appendix C, Compiler Built-Ins

• Appendix D, Macros for Porting to OpenVMS Alpha

• Appendix E, MACRO-32 Macros for 64-Bit Addressing
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Related Documents
This manual refers readers to the following manuals for additional information
on certain topics:

• Migrating an Environment from OpenVMS VAX to OpenVMS Alpha1 provides
an overview of the VAX to Alpha migration process and information to help
you plan a migration. It discusses the decisions you must make in planning
a migration and the ways to get the information you need to make those
decisions. In addition, it describes the migration methods and tools available
so that you can estimate the amount of work required for each method and
select the method best suited to a given application.

• Migrating an Application from OpenVMS VAX to OpenVMS Alpha describes
how to build an OpenVMS Alpha version of your OpenVMS VAX application
by recompiling and relinking it. It discusses dependencies your application
may have on features of the VAX architecture (such as assumptions about
page size, synchronization, and condition handling) that you may need to
modify to create a native OpenVMS Alpha version. In addition, the manual
describes how you can create applications in which native OpenVMS Alpha
components interact with translated OpenVMS VAX components.

• OpenVMS Calling Standard describes the mechanisms used to allow
procedure calls on OpenVMS VAX systems and OpenVMS Alpha systems.

• VAX MACRO and Instruction Set Reference Manual provides information
about VAX instructions and the standard VAX MACRO assembly language
directives.

• OpenVMS System Messages: Companion Guide for Help Message Users
describes how to use the Help Message utility to obtain information about the
VAX MACRO assembler messages and MACRO-32 compiler messages.

For additional information about OpenVMS products and services, access the
following World Wide Web address:

http://www.openvms.compaq.com/

Reader’s Comments
Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How to Order Additional Documentation
Use the following World Wide Web address to order additional documentation:

http://www.openvms.compaq.com/

If you need help deciding which documentation best meets your needs, call
800-282-6672.

1 This manual has been archived but is available on the OpenVMS Documentation
CD–ROM.
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Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

( ) In command format descriptions, parentheses indicate that you
must enclose the choices in parentheses if you specify more
than one.

[ ] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no tiems. Do
not type the brackets on the command line. However, you
must include the brqackets in the syntax for OpenVMS
directory specifications and for a substring specification in
an assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bar on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose one of the items listed. Do not type
the braces on the command line.

bold text This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.
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Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.
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Part I
Concepts and Methodology





1
Preparing to Port VAX MACRO Code

This chapter describes a process that software engineers can use when planning
to port VAX MACRO code to an OpenVMS Alpha system. The chapter contains
the following:

• Features of the MACRO-32 compiler (Section 1.1)

• Differences between the compiler and the assembler (Section 1.2)

• Step-by-step porting process (Section 1.3)

• Identifying nonportable coding practices (Section 1.4)

• Establishing useful coding conventions (Section 1.5)

• Maintaining common sources for VAX and Alpha systems (Section 1.6)

Note

The MACRO-32 Compiler for OpenVMS Alpha is provided for porting
VAX MACRO code to OpenVMS Alpha. For any new development,
Compaq recommends the use of mid- and high-level languages.

1.1 Compiler Features
The MACRO-32 Compiler for OpenVMS Alpha compiles VAX MACRO source code
into machine code that runs on Alpha systems. While some code can be compiled
without any changes, most code modules will require the addition of entry point
directives. Many code modules will require other changes as well.

The compiler may detect only a few problems with a module at its initial
compilation and then, after you have corrected them, the compiler may discover
additional problems. In such cases, the resolution of one problem can allow the
compiler to further examine the code and discover other problems the initial one
concealed.

The compiler includes many features that make this process easier, such as:

• Qualifiers that allow you to control the kinds of messages the compiler
generates or to enforce VAX behavior in the generated code. For example, the
/FLAG qualifier enables you to specify the types of informational messages
the compiler reports. Many of these messages identify porting problems,
including VAX architectural dependencies. The options to the /FLAG qualifier
include reporting unaligned stack and memory references and reporting
unsupported directives. (For more information about the /FLAG qualifier, see
Appendix A.)
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• Directives that indicate routine entry points and describe them to the
compiler or enforce VAX behavior for sections of code. For example,
.CALL_ENTRY declares the entry point of a called routine to the compiler.
Section 2.2, Section 2.4, and Chapter 3 discuss situations when the compiler
requires special directives. Appendix B describes each directive in detail.

• Built-ins that allow you to access the Alpha instructions that perform 64-bit
operations and Alpha PALcode instructions. (PALcode is shorthand for
privileged architecture library code.) For example, EVAX_ADDQ, with the
appropriate operands, performs the quadword add instruction. (For more
information on built-ins, see Appendix C.)

The compiler also provides 64-bit addressing support, which is documented in
Chapter 5 and in Appendix E. Support for 64-bit addressing was introduced in
OpenVMS Alpha Version 7.0. This support is provided for those rare instances
when it is preferable to use VAX MACRO to access 64-bit address space instead
of using a high-level language that is supported on OpenVMS Alpha.

1.2 Differences Between the Compiler and the Assembler
It is important to remember that the MACRO-32 compiler is a compiler, not an
assembler. It does not create output code that exactly matches the input code. In
its optimization process, the compiler may move, replicate, or remove code and
interleave instructions. Furthermore, the faulting behavior of the ported code
may not match that of VAX code. These differences are described in the following
sections.

1.2.1 Moving Code
Mispredicted branches are expensive on an Alpha system. The compiler attempts
to determine the most likely code path through the module and then generates
code that consolidates that code path. Code paths deemed unlikely are moved out
of line to the end of the module. Consider the following example:

$ASSIGN_S DEVNAM=DEVICE,CHAN=CHANNEL
BLBS R0,10$
JSB PROCESS ERROR
HALT

10$:

In this example, the compiler will treat the HALT as an unlikely code path
and detect that the two code streams do not rejoin at 10$. Because of these
conditions, it will determine that the branch is likely to be taken. It will then
move the intervening instructions out of line to the end of the module, change the
BLBS instruction to a BLBC that branches to the moved code, and continue with
in-line code generation at the label 10$, as follows:

$ASSIGN_S DEVNAM=DEVICE,CHAN=CHANNEL
BLBC L1$

10$: .
.
.

(routine exit)
L1$: JSB PROCESS ERROR

HALT

You can change the compiler’s determination of the likelihood of
conditional branches with the compiler directives .BRANCH_LIKELY and
.BRANCH_UNLIKELY (see Section 4.2).
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1.2.2 Replicating Code
The compiler may replicate small sections of code multiple times to eliminate
excessive branching. For example, when compiling branches to the following VAX
code, the compiler will replicate the MOVL at each branch to ERROR1 and then
branch directly to COMMON_ERROR.

ERROR1: MOVL #ERROR1,R0
BRW COMMON_ERROR

1.2.3 Removing Code
The compiler’s optimizations may determine that some instructions do not
contribute to the code flow. In such instances, the instructions may be removed.
An example of this is a CMP or TST instruction with no subsequent conditional
branch, such as the following:

CMPB (R2),511(R2)
JSB EXE$SENDMSG

Removal of this CMPB instruction could cause a problem if its purpose was to
touch two memory locations to ensure that the memory pages were faulted in
before calling the routine. This would likely have to be changed in porting to
OpenVMS Alpha anyway because of the different page sizes of VAX and Alpha
systems. In addition to changing the page size, you should replace the instruction
with MOVx instructions, such as the following:

MOVB (R2),R1
MOVB 8191(R2),R0
JSB EXE$SENDMSG

Note that the two MOVB instructions operated on two different registers. The
compiler does not currently remove instructions that load values into a register
which is never subsequently read before being overwritten. However, this
optimization may be done in the future.

Note

In general, code which requires that a memory read reference actually
touch memory should be examined carefully, as current or future
optimizations may move or remove the references.

1.2.4 Interleaving Instructions
Instruction scheduling, which is performed by default (see Section 4.3), will
interleave the Alpha instructions generated from one VAX instruction with the
Alpha instructions generated by surrounding VAX instructions.

1.2.5 Reserved Operand Faults
On VAX systems, some VAX MACRO instructions may generate a reserved
operand fault if certain operands are out of a required range. For example, on a
bit manipulation instruction such as INSV, if the size operand is greater than 32,
a VAX system will generate a run-time reserved operand fault.

On Alpha systems, if the operand that is out of range is a compile-time constant,
the compiler will flag this condition with an error message. However, if this
operand is variable at run time, the compiler makes no attempt to generate run-
time range checks on it. If the operand is out of range, the resulting operation
may cause incorrect results yet not create a fault.
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1.3 Step-by-Step Porting Process
The following steps have proven to be an efficient means for porting VAX MACRO
code to OpenVMS Alpha:

1. Inspect each module you intend to port, from beginning to end, for coding
practices that prohibit its successful porting. Such scrutiny is necessary,
because it is impossible for the compiler to account for the myriad imaginative
uses of VAX MACRO code that take advantage of a comprehensive knowledge
of the VAX architecture. Such uses, if not detected and modified, can
undermine an effort to port VAX MACRO code to OpenVMS Alpha.

2. At each entry point in the module, add the appropriate entry-point directive
(.CALL_ENTRY, .JSB_ENTRY, .JSB32_ENTRY, or .EXCEPTION_ENTRY).
You do not need to change the VAX MACRO entry point .ENTRY to .CALL_
ENTRY unless you want to use .CALL_ENTRY clauses. Nor do you need to
add the register arguments at this time. (Guidelines for the correct placement
of these directives appear in Section 2.2; a full syntactical description of each
appears in Appendix B.)

3. Invoke the compiler to compile the module. A suggested command procedure
for doing this appears in Section 2.11.

By default, the compiler flags unaligned stack and memory references, routine
branches, potentially problematic instructions, and self-modifying code. If
you specify /FLAG=HINTS on the command line, the compiler will provide
suggestions for the input and output register arguments of the entry point
directives you inserted at Step 2.

4. Take note of the problems the compiler reports.

For assistance in interpreting compiler messages, you can invoke the Help
Message utility for an explanation and user action for each message you
received. For more information about the Help Message utility, refer to DCL
help or the OpenVMS System Messages: Companion Guide for Help Message
Users. Also, Section 1.4 and Chapter 3 provide specific details about VAX
MACRO coding practices that cannot be directly translated to Alpha code.

Remember that resolution of the problems detected on this pass may allow
the compiler to discover additional problems on a subsequent pass.

5. Edit the VAX MACRO source. Fix the problems indicated by the compiler and
look for others the compiler may have missed.

However, do not change code just to avoid compiler informational diagnostic
messages. Most of the information-level messages are there to point out
code which will result in less optimal performance on an Alpha processor but
which will compile correctly. If you have examined the offending instructions
in the source code and are convinced that all is well, leave the code alone.
Remember that you can use the command line qualifiers /FLAG and /WARN
to control diagnostic message generation. Also, the .ENABLE and .DISABLE
directives can turn off information level messages for segments of code within
a module.

6. Add input, output, preserve, and scratch arguments—as appropriate—to
the entry point directives you provided in Step 2 and supply a list of pertinent
registers for each specified argument. Section 2.5 can help you determine
which registers to list.

1–4 Preparing to Port VAX MACRO Code



Preparing to Port VAX MACRO Code
1.3 Step-by-Step Porting Process

7. Repeat Steps 3 through 6 until the compiler generates informational
messages only for VAX MACRO source code that you know—and have
verified—produces correct OpenVMS Alpha object code.

8. If your module is common to both VAX and Alpha systems (a coding
convention discussed in Section 1.6), your porting effort is not complete
until the module is acceptable to the VAX MACRO assembler as well as the
compiler.

Once you have some experience in porting VAX MACRO modules, it will be easier
to recognize certain problems while inspecting the source and to fix them before
your initial invocation of the compiler.

1.4 Identifying Nonportable VAX MACRO Coding Practices
When examining a VAX MACRO module that you intend to compile to OpenVMS
Alpha object code, look for any of the following coding constructs. The occurrence
of these in a module can make porting take longer than it would otherwise.
Although the compiler can identify many of these practices, recognizing them
yourself will speed up the porting effort. For more information about nonportable
MACRO coding practices, including some that occur less frequently and are less
easy to detect, see Chapter 3.

1. Removing the return address from the stack to return to the caller’s caller,
such as the following (see Section 3.3.4):

TSTL (SP)+ ; remove return address
RSB ; return to caller’s caller

2. Temporarily removing the return address from the stack to allocate space on
the stack using mechanisms such as the following (see Section 3.3.4):

POPL R0 ; remove the return address
SUBL #structure_size,SP ; allocate stack space for caller
PUSHL R0 ; replace the return address

or

POPL R1 ; hold return address
PUSHL structure ; build structure for caller
;
; code continues
;
JMP (R1) ; return to caller

3. Pushing a label onto the stack, as in the following examples, often as
an attempt to construct a return address for an RSB instruction (see
Section 3.3.3):

MOVAL routine_label,-(SP)
RSB

or

PUSHAL routine_label
RSB
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4. Modifying the frame pointer (FP) (see Section 3.1.1). VAX MACRO code
typically modifies the frame pointer for one of two reasons:

• To manually assemble a call frame on the stack.

• To use the frame pointer to reference local storage allocated in a .JSB_
ENTRY routine.

MOVL SP,FP
SUBL #data_area,SP

5. Constructing an REI target, as in the following examples (see Section 3.3.7):

MOVL #fake_psl,-(SP)
MOVAL target_label,-(SP) ; all three
REI

or

MOVPSL -(SP)
MOVAL target_label,-(SP) ; force AST delivery only
REI

or

MOVL #fake_psl,-(SP)
BSBW DOREI
;
; code continues
;

DOREI: REI

6. Branching to a destination that consists of a label plus an offset as in the
following example. The appearance of this practice in VAX MACRO code may
indicate a branch past some data in the code stream, such as the register save
mask at the top of a .CALL_ENTRY routine (see Section 3.2.1). Alternatively,
it may be a sign that the code is familiar with and dependent upon the size of
VAX instructions (see Section 3.2.3).

BRx label+offset

7. Moving an opcode to a location, usually the stack or a data area, as shown
in the following example. This practice indicates either generated or
self-modifying code and will require redesign as indicated in Section 3.2.2.

MOVB #OP$_opcode,(Rx)

or

MOVZBL #OP$_opcode,(Rx)

8. Jumping across modules. Because of architectural requirements, the compiler
must handle jumps across modules as JSBs. Therefore, external branch
targets as in the following example must be declared with the .JSB_ENTRY
directive (see Section 2.2.3).

JMP G^external_routine
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1.5 Establishing Useful Coding Conventions
Section 1.3 describes a recommended process for porting VAX MACRO code to
OpenVMS Alpha. Although this process may provide a mechanism for porting
code efficiently, it cannot by itself guarantee that the porting effort will be
consistent among the engineers who are performing the porting, or will be
intelligible to the engineers who will later need to debug and test ported code.
To ensure that the porting effort proceeds uniformly and that its effects on
source code are well documented, an engineering group should establish coding
conventions that are relevant to the goals of the effort.

Naturally, any methodology an engineering group may adopt should be shaped
by that group’s development environment, including those procedures the group
follows for tool management, source code control, common code, and testing. The
coding conventions an engineering group should evaluate include:

• Establishing VAX MACRO source modules that are common to VAX and
Alpha systems, and conditionalizing architecture specific code (see Section 1.6)

• Providing clear and consistent register declarations in the compiler’s
entry-point directives (see Section 2.2)

1.6 Maintaining Common Sources for VAX and Alpha Systems
When designing a VAX MACRO code porting effort, consider the benefits of
maintaining common sources for VAX and Alpha systems. It is advantageous
to an engineering group to have only one copy of its sources to maintain and
enhance, and common sources help ensure common user interfaces. However,
if you find that you are conditionalizing so much source code that it is no
longer intelligible, take steps to restructure the code into architecture-specific
and architecture-independent pieces. If the number of these pieces becomes
unmanageable, create separate architecture-specific modules.

1.6.1 Including Compiler Directive Definitions
A successful compilation does not preclude VAX MACRO code in a source file
from also processing successfully under the VAX MACRO assembler. If you
added any compiler directives to your code, they will be resolved by the library
SYS$LIBRARY:STARLET.MLB when the code is assembled. The assembler
automatically searches this library for any undefined macros. After finding these
definitions, the assembler will ignore occurrences of the compiler directives.

However, if you are using OpenVMS VAX Version 6.0 or earlier, you must first
extract the directive definitions from ALPHA$LIBRARY:STARLET.MLB on Alpha
and insert them into your SYS$LIBRARY:STARLET.MLB on OpenVMS VAX. For
example:

LIB/EXTRACT=.JSB_ENTRY/OUT=JSB_ENTRY.MAR ALPHA$LIBRARY:STARLET.MLB
.
.
.
LIB/INSERT SYS$LIBRARY:STARLET.MLB JSB_ENTRY.MAR

Note that many of the definitions of the compiler directives refer to other macros.
Make sure to extract not only the definitions of all the compiler directives
used in your code but also all the associated macros and insert them into
SYS$LIBRARY:STARLET.MLB on your OpenVMS VAX system.
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1.6.2 Removing VAX Dependencies
If you must make changes to source files because they contain certain coding
practices that cannot be directly compiled into Alpha code, you may still be able
to generate images for both VAX and Alpha systems from common VAX MACRO
sources.

Removing such VAX dependencies so that the same code can run on both VAX and
Alpha systems can yield great benefits during the porting process. You can debug
single modules or groups of modules of the ported code by building and testing
the modules in the VAX environment. This can greatly speed your debugging
process.

In some cases, you must define and implement procedures for conditionalizing the
source files (as described in Section 1.6.3) or for providing separate sources for
VAX and Alpha systems.

If the code runs in an inner mode, it is unlikely that an effort to generate VAX
and Alpha images from common VAX MACRO sources will be fully successful.
Because inner-mode code interoperates with the executive, it is vulnerable to
the differences between VAX and Alpha system interfaces and executive data
structures. However, user-mode code is generally immune from architectural
dependencies and may more easily serve as the basis for common code.

1.6.3 Using Architecture-Specific Symbols
Conditionalizing VAX MACRO code requires the use of two ARCH_DEFS.MAR
files with architecture-specific symbols, one to be assembled with the VAX
MACRO source code on a VAX processor, the other to be compiled with the VAX
MACRO source code on an Alpha processor.

If you choose to make code in a common source module conditional on architecture
type, include ARCH_DEFS.MAR in your assembly and compilation and use
.IF DF,VAX or .IF DF,ALPHA.

An ARCH_DEFS.MAR file is provided with OpenVMS Alpha. You need to create
a corresponding file for OpenVMS VAX. The following is an example of such a file:

; This is the VAX version of ARCH_DEFS.MAR, which contains
; architectural definitions for compiling sources for
; VAX systems.
;
VAX = 1
VAXPAGE = 1
ADDRESSBITS = 32

The Alpha version exists in SYS$LIBRARY and contains definitions for the
following symbols:

• ALPHA—to indicate the source code is Alpha architecture specific

• BIGPAGE—to indicate the source code assumes variable memory page size

Warning

Any other symbols in ARCH_DEFS.MAR on OpenVMS Alpha are specific
to OpenVMS Alpha source code and are not guaranteed to be included
from release to release.
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1.7 Using the MACRO-32 Compiler
Compaq recommends that you use the current version of the MACRO-32 compiler.
Make sure that the version of SYS$LIBRARY:STARLET.MLB that ships with the
compiler version you are using is installed on your system and that the logical
name points to the correct directory.

For compiling code to run on AlphaServer systems with the Alpha processor
21264 (or later), you must use the following version of the MACRO-32 compiler:

• Version 3.1 or later for OpenVMS Alpha Version 7.1-2

• Version 4.1 or later for OpenVMS Alpha Version 7.2

• Shipping version of the compiler for later versions of OpenVMS Alpha

Directions for invoking the compiler are provided in Appendix A.
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How to Use the MACRO-32 Compiler

The MACRO-32 Compiler for OpenVMS Alpha has been designed to help you
port VAX MACRO source code from OpenVMS VAX to OpenVMS Alpha. When
operating on VAX MACRO code that complies with the restrictions and guidelines
described in this manual, the compiler produces a valid OpenVMS Alpha object
module that preserves the semantics of the original VAX MACRO source and
adheres to the OpenVMS calling standard.

This chapter describes the following topics:

• Using Alpha registers (Section 2.1)

• Routine calls and declarations (Section 2.2)

• Declaring CALL entry points (Section 2.3)

• Declaring JSB routine entry points (Section 2.4)

• Declaring a routine’s register use (Section 2.5)

• Branching between local routines (Section 2.6)

• Declaring exception entry points (Section 2.7)

• Using packed decimal instructions (Section 2.8)

• Using floating-point instructions (Section 2.9)

• Preserving VAX granularity and atomicity behavior (Section 2.10)

• Compiling and linking (Section 2.11)

• Debugging (Section 2.12)

As discussed in Chapter 1, the compiler cannot transparently convert all VAX
MACRO code. There are many coding practices that cannot be directly compiled
into OpenVMS Alpha code. They must be removed or modified to guarantee a
successful compilation. The compiler can detect and report many of these coding
practices.

2.1 Using Alpha Registers
Alpha computers employ 32 integer registers, R0 through R31. Because code
generated by the compiler uses Alpha registers R0 through R12 as if they were
VAX registers, VAX MACRO code usage of these registers (for instance, as input
to JSB routines) does not have to change to achieve a correct compilation. VAX
MACRO instructions (such as MOVL and ADDL) use the lower 32 bits of the
Alpha register involved in the operation. The compiler maintains a sign-extended
64-bit form of this value in the register.
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Registers R13 and above are also available to VAX MACRO code that will be
compiled to OpenVMS Alpha object format. If you decide to use these registers,
review the following constraints:

• Generally, existing VAX MACRO code uses only registers R0 through R11,
R12 through R14 being specially defined as the argument pointer (AP), frame
pointer (FP), and stack pointer (SP), respectively. The compiler will compile
legal uses of AP, FP, and SP as references to the Alpha registers that have
functions similar to the VAX registers. If a VAX MACRO source is referencing
AP as a scratch register, the compiler converts this reference to a reference
to R12. If this is not desirable, you should change the code to use a different
scratch register.

• If the compiler detects a reference to R12, R13, and R14 in a VAX MACRO
source, it will not convert it to a reference to the Alpha equivalent of AP, FP,
or SP. Rather, it will consider the reference to be to the corresponding Alpha
integer register.

• Code that uses R13 and above cannot be assembled by the VAX MACRO
assembler. Therefore, it should be conditionalized for OpenVMS Alpha or
appear in a module that is specific to OpenVMS Alpha.

• The compiler allows you to access the full 64 bits of Alpha registers by using
the EVAX_LDQ and EVAX_STQ built-ins, as described in Appendix C.

• You should take special care when referencing registers with specific
architected usage, as defined in the OpenVMS Calling Standard.

• Registers 16 and above are scratch registers, as defined in the OpenVMS
Calling Standard. You cannot expect their values to survive across routine
calls.

• The compiler may use registers R13 and above as temporary registers if they
are not used in the source code for a routine. R13 through R15 are saved and
restored if they are used.

2.2 Routine Calls and Declarations
The OpenVMS Calling Standard specifies very different calling conventions for
VAX and Alpha systems.

On a VAX system, there are two different call formats, CALL and JSB, with
five different instructions: CALLS, CALLG, JSB, BSBW, and BSBB. CALL
instructions create a frame on the stack which contains return information, saved
registers, and other routine information. Parameters to CALL instructions are
passed in consecutive longword memory locations, either on the stack (CALLS)
or elsewhere (CALLG). JSB instructions have the return address stored on the
stack. For both call formats, the hardware processing of the calling instruction
provides all of these functions.

On an Alpha system, there is only one call format and only one subroutine call
instruction, JSR. For routines that expect parameters, the first six parameters
are passed in R16 through R21, with the parameter count in R25 and subsequent
parameters in quadwords on the stack. The hardware execution of the JSR
instruction simply passes control to the subroutine and places the return address
in a designated register. It neither allocates stack space, nor creates a call frame,
nor provides any parameter manipulations. All of these functions must be done
by the calling routine or the called routine.
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The compiler must generate code that conforms to the OpenVMS Calling
Standard yet emulates the function of the different VAX MACRO instructions.
This requires special code both at the calling instruction to manipulate the input
parameters and at the entry point of the routine itself to create a stack frame and
other context.

The compiler generates code only for source instructions that are part of a
declared routine. For the compiler to generate the proper linkage information
and proper routine code, you must insert a compiler directive at the entry points
in the VAX MACRO source.

2.2.1 Linkage Section
On Alpha systems, all external (out-of-module) references are made through a
linkage section. The linkage section is a program section (psect) containing:

• Addresses of external variables

• Constants too large to fit directly in the code stream

• Linkage pairs

• Procedure descriptors

A linkage pair is a data structure used when making a call to an external module.
The linkage pair contains the address of the callee’s procedure descriptor, and
the entry point address. The linkage pair resides in the caller’s linkage section;
therefore, there may be several linkage pairs for a particular routine, one in each
caller’s linkage section. Linkage pairs are not used for module-local calls, since
the compiler can refer to the callee’s frame descriptor directly.

A procedure descriptor is a data structure that provides basic information about a
routine, such as register and stack usage. Each routine has one unique procedure
descriptor, and it is located in its linkage section. The procedure descriptor is
normally not accessed at run time. Its primary use is for interpreting the frame
in case of exceptions, by the debugger, for example.

For more information about these and other Alpha data structures, see the
OpenVMS Calling Standard.

2.2.2 Prologue and Epilogue Code
To mimic the behavior of VAX subroutines, the compiler must generate code at
the entry and exit of each routine. This code emulates the functions that are done
by the VAX hardware, and is called the prologue and epilogue code.

In the prologue code, the compiler must allocate stack space to save any necessary
context. This includes saving any registers that will be preserved by the routine
and saving the return address. If this is a CALL routine, it also includes
establishing a new stack frame and changing the frame pointer (FP), and
may include further manipulation and storage of the input parameters (see
Section 2.3).

In the epilogue code, the compiler must restore any necessary registers, stack
frame information, and the return address, and trim the stack back to its original
position.
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2.2.3 When to Declare Entry Points
Any code label that is a possible target of a CALLS, CALLG, JSB, BSBW, or
BSBB instruction must be declared as an entry point. In addition, any code label
must be declared as an entry point using a .JSB_ENTRY or .JSB32_ENTRY
directive if:

• The label can be the target of a global (cross-module) JMP, BRB, or BRW
instruction.

• The label can be the target of an indeterminate branch (such as BRB @(R10)),
where the address of the label has been stored in R10, even if the reference
and the label are within the same module.

• The address of the label is stored in a register or memory location, even if it
is never accessed by the current module.

The OpenVMS calling standard for Alpha computers does not provide a way to
access indeterminate code addresses directly. All such accesses are accomplished
using a procedure descriptor to describe the routine and the code address. When
a code label address is stored, the compiler does not know if that address will be
referenced only by the current module, or whether it may be accessed by another
MACRO module or another module written in another language. Whenever a
source instruction stores a code address, the MACRO-32 compiler instead stores
the procedure descriptor address for that code address so that other code can
access it correctly. For a procedure descriptor to exist, the label must be declared
as an entry point.

Likewise, when a stored address is used as a branch destination, the compiler
does not know where that address came from, so it always assumes that the
stored address is the address of a procedure descriptor and uses that descriptor
to pass control to the routine.

2.2.4 Directives for Designating Routine Entry Points
Macros in STARLET.MLB generate directives for designating the entry points
to routines. (Appendix B describes the format of each of these macros.) When
assembled for VAX systems, the macros are null, except for .CALL_ENTRY; when
compiled for Alpha systems, the macros expand to verify the arguments and
generate the compiler directives. Therefore, you can use the following macros in
common source modules:

• The .CALL_ENTRY directive logically replaces the .ENTRY directive in
MACRO-32 code. However, you do not need to replace the .ENTRY directive
unless you want to use one of the .CALL_ENTRY clauses. If you replace the
.ENTRY directives, note that you cannot do a massive replace with an editor
because the arguments do not match.

Note

Since the .ENTRY directive is converted to an Alpha .CALL_ENTRY
directive, any registers modified in the routine declared by .ENTRY will
be automatically preserved. This is different from VAX MACRO behavior.
See Section 2.3.2.
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• The .JSB_ENTRY directive indicates a routine that is executed as a result of
a JSB, BSBB, or BSBW instruction. The .JSB32_ENTRY directive is used for
specialized environments that do not require the preservation of the upper 32
bits of Alpha register values.

The .JSB_ENTRY directive should also be used to declare entry points which
are the targets of JMP or branch instructions from other modules, since such
cross-module branches are implemented as JSBs by the compiler.

Branches to stored code addresses, such as JMP (R0), are also treated as JSB
instructions. Hence, potential targets must be declared with .JSB_ENTRY.
The compiler warns you of this when you attempt to store a code label or
when such a branch is used.

• The .EXCEPTION_ENTRY directive designates exception service routines.

2.2.5 Code Generation for Routine Calls
The Alpha code generated for VAX JSB, BSBW, and BSBB instructions is very
simple because no parameter manipulation must be done. However, the code
for CALLS and CALLG instructions is more complex because the compiler must
translate the parameter handling of the VAX calling standard to the Alpha calling
standard. When processing a CALLS instruction with a fixed argument count,
the compiler automatically detects any pushes onto the stack that are actually
passing parameters to a routine, and generates code that moves the parameters
directly to the registers used by the Alpha calling standard.

Consider the following VAX call:

PUSHL R2
PUSHL #1
CALLS #2,XYZ

This VAX call is compiled as follows:

LDQ R26, 32(R13) ; Get routine address
LDQ R27, 40(R13) ; Get routine linkage pointer
SEXTL R2, R17 ; R2 is second parameter
BIS R31, 1, R16 ; #1 is first parameter
BIS R31, 2, R25 ; 2 parameters
JSR R26, R26 ; call the routine

For a CALLS instruction with a variable argument count or a CALLG instruction,
the compiler must call an emulation routine which unpacks the argument list
into the Alpha format. This has two side effects. On VAX systems, if part of
the argument list pointed to by a CALLG instruction is inaccessible, but the
called routine does not access that portion of the argument list, the routine
will complete successfully without incurring an access violation. On Alpha
systems, since the entire argument list is processed before calling the routine,
the CALLG will always incur an access violation if any portion of the argument
list is inaccessible. Also, if either the argument count of a CALLG instruction or
a CALLS instruction with a variable argument count exceeds 255, the emulated
call returns with an error status without ever invoking the target routine.
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2.3 Declaring CALL Entry Points
Because of the differences between the VAX and the Alpha calling standards (see
Section 2.2), the compiler must translate all VAX parameter references to AP in
the following ways:

• It converts parameter references off AP in the called routine into direct
register and stack references to the new Alpha parameter locations.

• It detects references to AP that may result in aliased references to the
parameter list, or that use variable offsets which cannot be resolved at
compile time. The compiler mimics VAX argument lists by packing the
quadword register and stack arguments into a longword argument list on the
stack. Two arguments to the .CALL_ENTRY directive have been created for
this purpose (see Section 2.3.1).

In the latter case, the practice is known as homing the argument list. The
resulting homed argument list is in the fixed position of the stack frame, so all
references are FP-based.

2.3.1 Homed Argument Lists
Examples of AP references for which the compiler automatically homes the
arguments include:

• Storing AP or an address based on AP in another register.

• Passing AP or an address based on AP as a parameter.

• Adding a variable offset to AP to reference a parameter.

• Using variable indexing off AP to reference a parameter.

• Using a non-longword aligned offset into the arglist, such as 6(AP).

The compiler sets up the homed argument list in the fixed temporary region of
the procedure frame on the stack.

Although not mandatory, you can specify homing with two arguments to the
.CALL_ENTRY directive, home_arg=TRUE and max_args=n.

The argument max_args=n represents the maximum number of longwords
the compiler should allocate in the fixed temporary region. The main reason
for using max_args=n is if your program receives more arguments than the
number explicitly used in the source code. A common reason for specifying
home_arg=true in a routine, which does not in itself require it, is the invocation
of a JSB routine that references AP. For such references, the compiler assumes
that the argument list was homed in the last .CALL_ENTRY routine, and uses
FP-based references. Because this may not always be a valid assumption, the
compiler reports an informational message when AP is used inside .JSB_ENTRY
routines.

If you want to suppress the informational messages that the compiler reports, use
both arguments.

If you omit one or both arguments and the compiler detects a use that requires
homing, messages are issued by the compiler, informing you of what the compiler
did. You can then make the appropriate changes to your code, such as adding one
or both arguments or changing the value of the max_args argument.
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If you only specify home_args=TRUE, the following message is issued:

AMAC-W-MAXARGEXC, MAX_ARGS exceeded in routine routine_name,
using n

This message is issued because you explicitly asked for homing but did not
specify the number of arguments with max_args. If the compiler does not find
any explicit argument reference, then it allocates six longwords. If the compiler
finds explicit argument references, it allocates the same number of longwords as
the highest argument reference found. (This message is also issued if you specify
a value for max_args which is less than the number of arguments found by the
compiler to be homed.)

If you specify only max_args, and if the compiler detects a reference requiring
homing, the compiler issues the following message:

AMAC-I-ARGLISHOME, argument list must be homed in caller

If you specify neither argument and the compiler detects a reference requiring
homing, the compiler issues the following message:

AMAC-I-ARGLISHOME, argument list must be homed in caller
AMAC-I-MAXARGUSE, max_args value used for homed arglist is n

where n represents the highest argument referenced, as detected by the
compiler.

2.3.2 Saving Modified Registers
A well-behaved VAX MACRO CALL routine passes all parameters via the
argument list and saves all necessary registers via the register mask in the
.ENTRY declaration. However, some routines do not adhere to these standards
and may pass parameters via registers or save and restore the contents of the
necessary registers within the routine with instructions such as PUSHL and
POPL.

Using PUSHL and POPL to save and restore registers on an Alpha system is
insufficient because these instructions save only the low 32 bits of the register.
To avoid register corruption, the compiler automatically saves and restores the
full 64-bit values of any register modified within the routine (except R0 and
R1), in addition to the registers specified in the register save mask. This means
that any registers that were intended to pass an output value out of the called
routine will no longer do so. You must either pass the output via the standard
argument list or declare the register to be output with the output parameter in
the .CALL_ENTRY declaration (see Section 2.5).

2.3.3 Modifying the Argument Pointer
If a routine modifies AP, the compiler changes all uses of AP in that routine to
R12 and reports all such modifications. Although traversing the argument list
in this way is not supported, you can obtain similar results by explicitly moving
the address of 0(AP) to R12 and specifying home_args=true in the entry point.
R12 will point to a VAX format argument list.
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2.3.4 Establishing Dynamic Condition Handlers in Called Routines
To establish a dynamic condition handler in a called routine, it is necessary to
store a condition handler address in the frame. The compiler generates a static
condition handler for .CALL_ENTRY routines that modify 0(FP). The static
handler invokes the dynamic handler or returns if no condition handler address
has been stored in the frame.

For performance reasons, the compiler does not automatically insert a TRAPB
instruction at the end of every routine that establishes a condition handler.
Because of the indeterminate nature of traps on an Alpha system, this could
allow traps from instructions near the very end of the routine to be processed
after the frame pointer has been changed in the routine epilogue code, with the
result that the declared handler would not process the trap. If it is essential that
any traps generated in the routine be processed by the declared handler, insert
an EVAX_TRAPB built-in immediately before the RET instruction that ends the
routine.

2.4 Declaring JSB Routine Entry Points
In assembled VAX MACRO code and compiled Alpha object code alike, JSB
routine parameters are typically passed in registers.

A JSB routine that writes to registers sometimes saves and restores the contents
of those registers, unless the new contents are intended to be returned to a caller
as output. However, because it is fairly common for a VAX MACRO module to
save and restore register contents by issuing instructions such as PUSHL and
POPL, saving only the low 32 bits of the register contents, the compiler must add
64-bit register saves/restores at routine’s entry and exit points.

The compiler can compute the set of used registers, but without complete
knowledge of the routine’s callers (which may be in other modules), it cannot
determine which registers are intended to contain output values. For this
reason, the user must add, at each JSB routine entry point, a .JSB_ENTRY or a
.JSB32_ENTRY directive that declares the routine’s register usage.

2.4.1 Differences Between .JSB_ENTRY and .JSB32_ENTRY
The compiler provides two different ways of declaring a JSB entry point. The
.JSB_ENTRY directive is the standard declaration, and the .JSB32_ENTRY
directive is provided for cases when you know that the upper 32 bits of the 64-bit
register values are never required to be preserved by the routine’s callers.

In routines declared with the .JSB_ENTRY directive, the compiler, by default,
saves at routine entry and restores at routine exit the full 64-bit contents of
any register (except R0 and R1) that is modified by the routine. If a register is
not explicitly modified by the routine, the compiler will not preserve it across the
routine call. You can override the compiler’s default behavior by means of register
arguments that can be specified with the .JSB_ENTRY directive, as described in
Section 2.5.

When .JSB32_ENTRY is used, the compiler does not automatically save or restore
any registers, thus leaving the current 32-bit operation untouched. The compiler
will only save and restore the full 64-bit value of registers you explicitly specified
in the PRESERVE argument.
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If the routine you are porting is in an environment where you know that no caller
ever needs to have the upper 32 bits of a register preserved, Compaq recommends
that you use the .JSB32_ENTRY directive. It can be much faster for porting code
because you do not have to examine the register usage of each routine. You can
specify the .JSB32_ENTRY directive with no arguments, and the existing 32-bit
register push/pop code will be sufficient to save any necessary register values.

Note

The Alpha compilers for other languages may use 64-bit values.
Therefore, any routine which is called from another language — or
which is called from another MACRO-32 routine that is in turn called
from another language — cannot use .JSB32_ENTRY.

2.4.2 Two General Cases for Using .JSB32_ENTRY
There are two general cases where you can use .JSB32_ENTRY:

• If a user-mode application or self-contained subsystem is written entirely in
MACRO-32 you can use .JSB32_ENTRY throughout the application.

• If you have one major MACRO-32 routine that is called from another
language or from any source which requires 64-bit register preservation, and
that routine calls several other MACRO-32 routines, you can set a barrier of
64-bit preservation. You can do this by using .JSB_ENTRY or .CALL_ENTRY
on the major routine and preserving all registers that are not explicit outputs.
The internal subroutines can then use the .JSB32_ENTRY directive.

Note that it is not sufficient to just use .JSB_ENTRY or .CALL_ENTRY for
the barrier without explicitly preserving all registers, since by default the
compiler will only save and restore the registers that are explicitly modified
in the major routine. The internal subroutines that use .JSB32_ENTRY may
then modify registers that are not being preserved. You must also make sure
that none of the internal subroutines can be called in any way that bypasses
the barrier.

Warning

The .JSB32_ENTRY directive can be a great time-saver if you are sure
that you can use it. If you use .JSB32_ENTRY in a situation where the
upper 32 bits of a register are being used, it may cause very obscure and
difficult-to-track bugs by corrupting a 64-bit value that may be several
calling levels above the offending routine.

.JSB32_ENTRY should never be used in an AST routine, condition
handler, or any other code that can be executed asynchronously.

2.4.3 PUSHR and POPR Instructions Within JSB Routines
There will be cases when you add a .JSB_ENTRY directive to a routine which
already saves/restores some registers via PUSHR/POPR. Depending on routine
usage, some registers may end up being saved/restored twice, once by the
compiler and again by the PUSHR/POPR. Do not attempt to optimize this unless
the code is extremely performance sensitive. The compiler attempts to detect this
and eliminate the redundant save/restores.
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2.4.4 Establishing Dynamic Condition Handlers in JSB Routines
The compiler will flag, as illegal, any code in a .JSB_ENTRY routine that
attempts to modify 0(FP).

2.5 Declaring a Routine’s Register Use
The compiler provides four register declaration arguments: input, output,
scratch, and preserve, that you can specify in a .CALL_ENTRY, .JSB_ENTRY,
or .JSB32_ENTRY entry-point directive. These register arguments are used to
describe the usage of registers in the routine and to instruct the compiler how to
compile the routine. You can use the register arguments to:

• Override the compiler’s default preservation behavior (see Section 2.3.2 and
Section 2.4.1).

• Indicate the nonavailability of registers for temporary compiler usage.

• Document routine register usage.

Note

If you specify /OPTIMIZE=VAXREGS to use VAX registers as temporary
registers, you must declare all implicit register uses with the input and
output clauses to prevent their use as temporary registers. When this
optimization is enabled, the compiler can use as temporary registers any
registers that are not explicitly declared.

2.5.1 Input Argument for Entry Point Register Declaration
The input argument indicates those registers from which the routine receives
input values. In some cases, the routine itself does not use the contents of the
register as an input value, but rather calls a routine that does. In the latter
case, known as the pass-through input technique, the other routine should also
declare the register as input in its routine entry mask.

The input argument has no effect on the compiler’s default register preservation
behavior. Registers specified only in the input argument will still be treated by
the compiler exactly as described in Section 2.3.2 and Section 2.4.1. If a register
is used as an input and you want to change the default preservation behavior,
you should specify the register in the output, preserve, or scratch arguments
in addition to the input argument.

The input argument informs the compiler that the registers specified have
meaningful values at routine entry and are unavailable for use as temporary
registers even before the first compiler-detected use of the registers. Since the
compiler does not normally use any of the VAX registers (R2 through R12) as
temporary registers, specifying registers in the input argument affects compiler
temporary register usage in two cases:

• If you are using the VAXREGS optimization switch. This optimization
allows the compiler to use as temporary registers any of the VAX registers
which are not explicitly being used by the VAX MACRO code. Note that for
.JSB32_ENTRY directives, the compiler always assumes that all the VAX
registers are used as input when using the VAXREGS optimization, so it is
not necessary to specify VAX registers in the input argument to prevent their
use as compiler temporary registers.
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• If you are explicitly using any of the Alpha registers (R13 and above).

In either of these cases, if you do not specify a register that is being used as
input in the input argument, the compiler may use the register as a temporary
register, corrupting the input value.

If you are not using the VAXREGS optimization switch or any of the Alpha
registers, the input mask is used only to document your routine.

2.5.2 Output Argument for Entry Point Register Declaration
The output argument indicates those registers to which the routine assigns
values that are returned to the routine’s caller. In many cases, the routine itself
modifies the register; in others, the routine calls another routine that deposits the
output value. In the latter case, known as the pass-through output technique,
the other routine must also declare the register as output in its routine entry
register set.

The use of this argument prevents the automatic preservation of registers that
are modified during the routine. Any register included in this argument will not
be preserved by a .CALL_ENTRY or .JSB_ENTRY routine, even if it is modified
by the routine.

The output argument informs the compiler that the registers specified have
meaningful values at routine exit and are unavailable for use as temporary
registers even after the last compiler-detected use of the registers. Since the
compiler does not normally use any of the VAX registers (R2 through R12) as
temporary registers, specifying registers in the output argument only affects
compiler temporary register usage in two cases:

• If you are using the VAXREGS optimization switch. This optimization
allows the compiler to use as temporary registers any of the VAX registers
which are not explicitly being used by the VAX MACRO code. Note that for
.JSB32_ENTRY directives, the compiler always assumes that all the VAX
registers are used as output when using the VAXREGS optimization, so it is
not necessary to specify VAX registers in the output argument to prevent
their use as compiler temporary registers.

• If you are explicitly using any of the Alpha registers (R13 and above).

In either of these cases, if you do not specify a register that is being used
as output in the output argument, the compiler may use the register as a
temporary register, corrupting the output value.

For .JSB32_ENTRY routines, since no registers are preserved by default and all
registers are assumed to be outputs by the VAXREGS optimization, the output
argument is used only to document your code.

2.5.3 Scratch Argument for Entry Point Register Declaration
The scratch argument indicates those registers that are used within the routine
but should not be saved and restored at routine entry and exit. The caller of the
routine does not expect to receive output values in these registers nor does it
expect the registers to be preserved.

The use of this argument prevents the automatic preservation of registers that
are modified during the routine. Any register included in this argument will not
be preserved, even if it is modified by the routine.
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The scratch argument also pertains to the compiler’s temporary register usage.
The compiler may use registers R13 and above as temporary registers if they are
unused in the routine source code. Since R13 through R15 must be preserved,
if modified, according to the OpenVMS Alpha calling standard, the compiler
preserves those registers if it uses them.

However, if they appear in the scratch register set declaration, the compiler
will not preserve them if it uses them as temporary registers. As a result, these
registers may be scratched at routine exit, even if they were not used in the
routine source but are in the scratch set. If the VAXREGS optimization is used,
this applies to registers R2 through R12, as well.

For .JSB32_ENTRY routines, since R2 through R12 are not preserved by default,
their inclusion in the scratch declaration is for documentation purposes only.

2.5.4 Preserve Argument for Entry Point Register Declaration
The preserve argument indicates those registers that should be preserved over
the routine call. This should include only those registers that are modified and
whose full 64-bit contents should be saved and restored.

The preserve argument causes registers to be preserved whether or not they
would have been preserved automatically by the compiler’s processing of a
.CALL_ENTRY or .JSB_ENTRY directive. This is also the only way in a .JSB32_
ENTRY routine to save and restore the full 64 bits of a register. Note that
because R0 and R1 are scratch registers, by calling standard definition, the
compiler never saves and restores them in any routine unless you specify them in
the preserve argument at the routine’s entry point.

This argument overrides the output and scratch arguments. If you specify
a register both in the preserve argument and in the output or scratch
arguments, the compiler will preserve the register but will report the following
warning:

%AMAC-W-REGDECCON, register declaration conflict in routine A

The preserve argument has no effect on the compiler’s temporary register
usage.

2.5.5 Help for Specifying Register Sets
When you invoke the compiler, specifying /FLAG=HINTS on the command line,
the compiler generates messages that can assist you in constructing the register
sets for routine entry points. Among the hints the compiler provides are the
following:

• Registers that might be used as input to the routine, which may not have
been your intention. If a register is read before being written, it will be
included in this set.

• Registers that might be used for output values. If a register is written but not
subsequently read, the compiler will include it in the list of possible output
values. Again, this may not have been your intention.

• Registers the compiler saves and restores that are not listed in the entry
point’s preserve argument.
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It is recommended that the .CALL_ENTRY, .JSB_ENTRY, and .JSB32_ENTRY
register arguments reflect the routine interface, as described in the routine’s
text header. Wherever possible, you should declare input, output, scratch,
and preserve register arguments for all routines. You only need to provide the
argument when there are registers to be declared (for instance, input=<> is not
necessary).

2.6 Branching Between Local Routines
The compiler allows a branch from the body of one routine into the body of
another routine in the same module and psect. However, because this may result
in additional overhead in both routines, the compiler reports an information-level
message.

Note

The compiler does not recognize a call to $EXIT as terminating a routine.
Add an extra RET or RSB, whichever is applicable, after $EXIT to
terminate the routine.

If a CALL routine branches into a code path that executes an RSB, an error
message is reported. Such a CALL routine, if not corrected, will fail at run time.

If a JSB routine branches into a code path that executes a RET instruction, and
the JSB routine preserves any registers, an informational message is issued. This
construct will work at run time, but the registers saved by the JSB routine will
not be restored.

If routines that share a code path have different register declarations, the register
restores will be done conditionally. That is, the registers written on the stack at
routine entry will be the same for both routines, but whether or not the register
is restored will depend upon which entry point was invoked.

For example:

rout1: .jsb_entry output=r3
movl r1, r3 ! R3 is output, not preserved
movl r2, r4 ! R4 should be preserved
blss lab1
rsb

rout2: .jsb_entry ! R3 is not output, and
movl #4, r3 ! should be auto-preserved
movl r0, r4 ! R4 should be preserved

lab1: clrl r0
rsb

For both routines, R3 will be included in the registers saved on the stack at entry.
However, at exit, a mask (also in the stack frame) will be tested before restoring
R3. The mask will not be tested before R4 is restored, because R4 should be
restored for both entry points.

Note that declaring registers that are destroyed in two routines that share code
as scratch in one but not the other is actually more expensive than letting them
be saved and restored. In this case, declare them as scratch in both, or if one
routine requires that they be preserved, as preserve in both.
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2.7 Declaring Exception Entry Points
The .EXCEPTION_ENTRY directive, as described in Appendix B, indicates
the entry point of an exception service routine. Use the .EXCEPTION_ENTRY
directive to declare the entry points for routines serving interrupts such as the
following:

• Interval clock

• Interprocessor interrupt

• System/processor correctable error

• Power failure

• System/processor machine abort

• Software interrupt

At routine entry, R3 must contain the address of the procedure descriptor. The
routine must exit with an REI instruction.

At exception entry points, the interrupt dispatcher pushes onto the stack registers
R2 through R7, the PC, and the PSL. To access the contents of these registers,
specify the stack_base argument in the .EXCEPTION_ENTRY directive. The
compiler generates code that places the value of the SP at routine entry in the
register you specify in stack_base, allowing the exception service routine to use
this register to locate the contents of registers on the stack.

The compiler automatically saves and restores all other registers used in the
routine, plus, if the service routine issues a CALL or a JSB instruction, all
scratch registers, including R0 and R1.

Note

Error handling routines, established when their addresses are stored in
the frame at 0(FP), are not .EXCEPTION_ENTRY routines. Such error
handlers should be declared as .CALL_ENTRY routines and end with
RET instructions.

2.8 Using Packed Decimal Instructions
The packed decimal directive .PACKED and all packed decimal instructions,
except EDITPC, are supported for the MACRO-32 compiler by emulation routines
that exist outside the compiled module.

2.8.1 Differences Between the VAX and Alpha Implementations
The differences between the implementations on VAX and Alpha systems are
noted in the following list:

• Packed decimal instructions and atomicity

Since all packed decimal instructions are emulated via subroutine calls, they
are not atomic or restartable, and cannot be made atomic by the .PRESERVE
ATOMICITY directive or /PRESERVE=ATOMICITY switch. Also, there is no
guarantee that Alpha registers from R16 through R28 are preserved across
the instruction.

• Use of argument registers (R16 through R21)
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Arguments are passed to the emulation routines by means of the argument
registers (R16 through R21); attempts to use these registers as arguments in
a packed decimal instruction will not work correctly.

The compiler converts references to the VAX argument pointer (AP) into
references to the Alpha argument registers (see Section 2.3). For example,
the compiler converts a parameter reference off the VAX AP, such as 4(AP), to
Alpha R16.

To prevent these problems with AP-based references when packed decimal
or floating-point instructions are used, it is simplest to specify /HOME_
ARGS=TRUE on the entry point of the routine that contains these references.
This forces all AP-based references to be read from the procedure frame,
rather than the argument registers, so that no changes need to be made to
the instructions.

If /HOME_ARGS=TRUE is not used, the source code that contains parameter
references based on the AP register as operands to packed-decimal
instructions (or floating-point instructions) should be changed. Copy any
AP-based operand to a temporary register first, and use that temporary
register in the packed-decimal or floating-point instruction. For example,
change the following code:

MOVP R0, @8(AP), @4(AP)

to:

MOVL 8(AP), R1
MOVL 4(AP), R2
MOVP R0,(R1),(R2)

• Overflow traps

Bits 7 and 5 of the VAX Program Status Word (PSW) are the DV (decimal
overflow trap enable) and IV (integer overflow trap enable) bits respectively.
These bits are not emulated as part of the emulation of the VAX PSW, but the
packed decimal support allows you to enable or disable integer and decimal
overflow, although you must do so statically at compile time.

To enable decimal overflow faults, define the symbol PD_DEC_OVF to be
nonzero. If PD_DEC_OVF is not defined or is set to zero, the packed decimal
emulation routines will not generate decimal overflow faults. To enable
integer overflow faults, define the symbol PD_INT_OVF to be nonzero. If
PD_INT_OVF is not defined or is set to zero, the packed decimal emulation
routines will not generate integer overflow faults.

The MACRO qualifier /ENABLE=OVERFLOW and directive .ENABLE
OVERFLOW have no effect on overflow trap enabling for the packed decimal
emulation routines. You must use PD_DEC_OVF and PD_INT_OVF.

• Trap routines for reserved operand, decimal divide by zero, integer overflow,
and decimal overflow

The emulation routines have their own trap routines for reserved operand,
decimal divide by zero, integer overflow, and decimal overflow. Reserved
operand and decimal divide by zero traps are always taken when the events
occur. The overflow traps are taken only when they have been explicitly
enabled. The traps call LIB$SIGNAL with a severity of fatal.

• Messages from the packed decimal emulation routines
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All messages from the packed decimal emulation routines of the
compiler use the following standard OpenVMS signal values: SS$_
ROPRAND,SS$_DECOVF, SS$_INTOVF, and SS$_FLTDIV.

• Restriction on format of arguments

Because these instructions are implemented by means of macros, there is one
restriction on the format of the arguments. In a macro invocation, an initial
circumflex ( ^ ) is interpreted to mean that the parameter is a string, and
the character immediately following the circumflex is the string delimiter.
Because of this, you cannot use arguments that begin with an operand type
specification, such as ^x20(SP). Note that immediate mode arguments, such
as #^XFF, can use an operand type specification because the circumflex is not
the initial character.

2.9 Using Floating-Point Instructions
All floating-point instructions and directives, with the exception of POLYx,
EMODx and all H-Floating instructions, are supported.

These instructions are emulated via subroutine calls. This support is provided to
allow hands-off compatibility for most existing VAX MACRO modules and is not
designed for fast floating-point performance.

Besides the overhead of the emulation routine call, all floating-point operands
must be passed through memory because the Alpha architecture does not have
instructions to move values directly from the integer registers to the floating-
point registers. In addition, on the first floating-point instruction, the FEN
(Floating-point enable) bit is set for the process which will cause the entire
floating-point register set to be saved and restored on every context switch for the
life of the image.

2.9.1 Differences Between the VAX and Alpha Implementations
The differences between the implementations on VAX and Alpha systems are
noted in the following list:

• Floating-point instructions and atomicity

Since all floating-point instructions are emulated via subroutine calls, they
are not atomic or restartable, and cannot be made atomic by the .PRESERVE
ATOMICITY directive or /PRESERVE=ATOMICITY switch. Also, there is no
guarantee that Alpha registers from R16 through R28 are preserved across
the instruction.

• Use of argument registers (R16 through R21)

Arguments are passed to the emulation routines by means of the argument
registers (R16 through R21); attempts to use these registers as arguments in
a floating-point instruction will not work correctly.

The compiler converts references to the VAX argument pointer (AP) into
references to the Alpha argument registers (see Section 2.3). For example,
the compiler converts a parameter reference off the VAX AP, such as 4(AP), to
Alpha R16.

To prevent these problems with AP-based references when packed decimal
or floating-point instructions are used, it is simplest to specify /HOME_
ARGS=TRUE on the entry point of the routine that contains these references.
This forces all AP-based references to be read from the procedure frame,
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rather than the argument registers, so that no changes need to be made to
the instructions.

If /HOME_ARGS=TRUE is not used, the source code that contains parameter
references based on the AP register as operands to packed-decimal
instructions (or floating-point instructions) should be changed. Copy any
AP-based operand to a temporary register first, and use that temporary
register in the packed-decimal or floating-point instruction. For example,
change the following code:

MOVP R0, @8(AP), @4(AP)

to:

MOVL 8(AP), R1
MOVL 4(AP), R2
MOVP R0,(R1),(R2)

• D_floating format

D_floating format is not fully supported in the Alpha architecture. All
arithmetic operations or conversions must be done by converting D_floating
format to G_floating format, doing the operation in G_floating format, and
converting back to D_floating format. This results in the loss of the extra
3 bits of precision in the D_floating format mantissa, besides taking the
time in conversion. This means that there is nothing to be gained by using
D_floating format. It is available for compatibility only, with the caveat that
some precision will be lost.

• Overflow traps

It is not possible to enable traps on integer overflow or floating-point
underflow. Alpha systems will always trap on floating-point overflow. The
/ENABLE qualifier and the .ENABLE directive have no effect on overflow
trapping. Overflow traps that lead to predictable results on VAX systems will
give the same results on Alpha systems.

• Dirty zeros

Code may need modification to eliminate dirty zeros. A true zero in all VAX
floating-point formats has all bits set to zero. If the exponent bits are all
zero but some of the remaining bits are set, this is a dirty zero, and the
VAX system will treat this as a zero. An Alpha system will take a reserved
operand trap.

• Restriction on format of arguments

Because these instructions are implemented by means of macros, there is one
restriction on the format of the arguments. In a macro invocation, an initial
circumflex ( ^ ) is interpreted to mean that the parameter is a string, and
the character immediately following the circumflex is the string delimiter.
Because of this, you cannot use arguments that begin with an operand type
specification, such as ^x20(SP). Note that immediate mode arguments, such
as #^XFF, can use an operand type specification because the circumflex is not
the initial character.

• Floating-point return values

A MACRO program that calls out to a routine and expects a floating-point
return value in R0 may require a ‘‘ jacket’’ between the call and the called
routines. The purpose of the jacket is to move the returned value from
floating-point register 0 to R0.
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2.9.2 Impact on Routines in Other Languages
This support does not make the floating-point register set visible to the compiler.
It simply allows floating point-operations to be done on the integer registers.
This means that routines in other languages that want to interface with a VAX
MACRO routine, either calling it or being called by it, must not expect any
floating-point values as inputs or outputs. Compilers for other languages will
pass these values in the floating-point registers. Floating-point arguments can be
passed into or out of a VAX MACRO routine only by pointer.

Calls to run-time library (RTL) routines of other languages fall into this category.
For example, a call to MTH$RANDOM returns a floating value in floating-point
register F0. The compiler cannot directly read F0. You need to either create a
jacket routine (in another language), which makes the call to MTH$RANDOM
and then moves the result to R0, or write a separate routine that only does the
move.

2.10 Preserving the Atomicity and Granularity of VAX MACRO
The VAX architecture includes instructions that perform a read-modify-write
memory operation so that it appears to be a single, noninterruptible operation
in a uniprocessing system. Atomicity is the term used to describe the ability
to modify memory in one operation. Because the complexity of such instructions
severely limits performance, read-modify-write operations on an Alpha system
can be performed only by nonatomic, interruptible instruction sequences.

Furthermore, VAX instructions can address single aligned or unaligned byte,
word, and longword locations in memory without affecting the surrounding
memory locations. (A data item is considered aligned if its address is an even
multiple of the item’s size in bytes.) Granularity is the term used to describe
the ability to independently write to portions of aligned longwords. Because
byte, word, and unaligned longword access also severely limits performance, an
Alpha system can only access aligned longword or quadword locations. Therefore,
a sequence of instructions to write a single byte, word, or unaligned longword
causes some of the surrounding bytes to be read and rewritten.

Both architectural differences can cause data to become corrupted under certain
conditions. In an Alpha system, atomicity and granularity preservation are not
provided by locking out other threads from modifying memory, but by providing
a way to determine if a piece of memory may have been modified during the
read-modify-write operation. In this case, the read-modify-write operation is
retried.

To ensure data integrity, the compiler provides certain qualifiers and directives to
be used for the conditions described in the following sections.

2.10.1 Preserving Atomicity
On VAX and Alpha multiprocessing systems alike, an application in which
multiple, concurrent threads can modify shared data in a writable global section
must have some way of synchronizing their access to that data. On a VAX single
processor system, a memory modification instruction is sufficient to provide
synchronized access to shared data. However, it is not sufficient on Alpha
systems.
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The compiler provides the /PRESERVE=ATOMICITY option to guarantee
the integrity of read-modify-write operations for VAX instructions that have
a memory modify operand. Alternatively, you can insert the .PRESERVE
ATOMICITY and .NOPRESERVE ATOMICITY directives in sections of VAX
MACRO source code as required to enable and disable atomicity.

For instance, the instruction INCL (R1) requires a read, modify, and write
sequence on the data pointed to by R1. In a VAX system, the microcode performs
these three operations. Therefore, an interrupt cannot occur until the sequence is
fully completed. In an Alpha system, the following three instructions are required
to perform the one VAX instruction:

LDL R28,(R1)
ADDL R28, 1,R28
STL R28,(R1)

The problem with this Alpha code sequence is that an interrupt can occur
between any of the three instructions. If the interrupt causes an AST routine to
execute or causes another process to be scheduled between the LDL and the STL,
and the AST or other process updates the data pointed to by R1, the STL will
store the result (R1) based on stale data.

When an atomic operation is required, and /PRESERVE=ATOMICITY (or
.PRESERVE ATOMICITY) is specified, the compiler generates the following
Alpha instruction sequence for INCL (R1):

Retry: LDL_L R28,(R1)
ADDL R28,#1,R28
STL_C R28,(R1)

BEQ R28, fail
.
.
.

fail: BR Retry

If (R1) is modified by any other code thread on the current or any other processor
during this sequence, the Store Longword Conditional instruction (STL_C) will
not update (R1), but will indicate an error by writing 0 into R28. In this case,
the code branches back and retries the operation until it completes without
interference.

The BEQ Fail and BR Retry are done instead of a BEQ Retry because the branch
prediction logic of the Alpha architecture assumes that backward conditional
branches will be taken. Since this operation will rarely need to be retried, it is
more efficient to make a forward conditional branch which is assumed not to be
taken.

Because of the way atomicity is preserved on Alpha systems, this guarantee
of atomicity applies to both uniprocessor and multiprocessor systems. This
guarantee applies only to the actual modify instruction and does not extend
interlocking to subsequent or previous memory accesses (see Section 2.10.6).

You should take special care in porting an application to an Alpha system if it
involves multiple processes that modify shared data in a writable global section,
even if the application executes only on a single processor. Additionally, you
should examine any application in which a mainline process routine modifies
data in process space that can also be modified by an asynchronous system trap
(AST) routine or condition handler. See Migrating to an OpenVMS AXP System:
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Recompiling and Relinking Applications1 for a more complete discussion of the
programming issues involved in read-modify-write operations in an Alpha system.

Warning

When preserving atomicity, the compiler generates aligned memory
instructions that cannot be handled by the PALcode unaligned fault
handler. They will cause a fatal reserved operand fault on unaligned
addresses. Therefore, all memory references for which .PRESERVE
ATOMICITY is specified must be to aligned addresses (see Section 2.10.5).

2.10.2 Preserving Granularity
To preserve the granularity of a VAX MACRO memory write instruction on a byte,
word, or unaligned longword on Alpha means to guarantee that the instruction
executes successfully on the specified data and preserves the integrity of the
surrounding data.

The VAX architecture includes instructions that perform independent access to
byte, word, and unaligned longword locations in memory so two processes can
write simultaneously to different bytes of the same aligned longword without
interfering with each other.

The Alpha architecture defines instructions that can address only aligned
longword and quadword operands. On Alpha, code that writes a data field
to memory that is less than a longword in length or is not aligned can do so
only by using an interruptible instruction sequence that involves a quadword
load, an insertion of the modified data into the quadword, and a quadword
store. In this case, two processes that intend to write to different bytes in the
same quadword will actually load, perform operations on, and store the whole
quadword. Depending on the timing of the load and store operations, one of the
byte writes could be lost.

The compiler provides the /PRESERVE=GRANULARITY option to
guarantee the integrity of byte, word, and unaligned longword writes. The
/PRESERVE=GRANULARITY option causes the compiler to generate Alpha
instructions that provide granularity preservation for any VAX instructions that
write to bytes, words, or unaligned longwords. Alternatively, you can insert the
.PRESERVE GRANULARITY and .NOPRESERVE GRANULARITY directives in
sections of VAX MACRO source code as required to enable and disable granularity
preservation.

For example, the instruction MOVB R1, (R2) generates the following Alpha code
sequence:

LDQ_U R28,(R2)
MSKBL R28,R2,R28
INSBL R1,R2,R25
BIS R25,R28,R25
STQ_U R25,(R2)

If any other code thread modifies part of the data pointed to by (R2) between the
LDQ_U and the STQ_U instructions, that data will be overwritten and lost.

1 This manual has been archived but is available on the OpenVMS Documentation
CD–ROM.
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If you have specified that granularity be preserved for the same instruction,
by either the command qualifier or the directive, the Alpha command sequence
becomes the following:

BIC R2,#^B0111,R24
RETRY: LDQ_L R28,(R24)

MSKBL R28,R2,R28
INSBL R1,R2,R25
BIS R25,R28,R25
STQ_C R25,(R24)
BEQ R25, FAIL
.
.
.

FAIL: BR RETRY

In this case, if the data pointed to by (R2) is modified by another code thread, the
operation will be retried.

For a MOVW R1,(R2) instruction, the code generated to preserve granularity
depends on whether the register R2 is currently assumed to be aligned by the
compiler’s register alignment tracking. If R2 is assumed to be aligned, the
compiler generates essentially the same code as in the preceding MOVB example,
except that it uses INSWL and MSKWL instructions instead of INSBL and
MSKBL, and it uses #^B0110 in the BIC of the R2 address. If R2 is assumed to
be unaligned, the compiler generates two separate LDQ_L/STQ_C pairs to ensure
that the word is correctly written even if it crosses a quadword boundary.

Warning

The code generated for an aligned word write, with granularity
preservation enabled, will cause a fatal reserved operand fault at run
time if the address is not aligned. If the address being written to could
ever be unaligned, inform the compiler that it should generate code that
can write to an unaligned word by using the compiler directive .SET_
REGISTERS UNALIGNED=Rn immediately before the write instruction.

To preserve the granularity of a MOVL R1,(R2) instruction, the compiler always
writes whole longwords with a STL instruction, even if the address to which
it is writing is assumed to be unaligned. If the address is unaligned, the STL
instruction will cause an unaligned memory reference fault. The PALcode
unaligned fault handler will then do the loads, masks, and stores necessary to
write the unaligned longword. However, since PALcode is noninterruptible, this
ensures that the surrounding memory locations are not corrupted.

When porting an application to an Alpha system, you should determine whether
the application performs byte, word, or unaligned longword writes to memory
that is shared either with processes executing on the local processor, or with
processes executing on another processor in the system, or with an AST routine
or condition handler. See Migrating to an OpenVMS AXP System: Recompiling
and Relinking Applications for a more complete discussion of the programming
issues involved in granularity operations in an Alpha system.

Note

INSV instructions do not generate code that correctly preserves
granularity when granularity is turned on.
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2.10.3 Precedence of Atomicity Over Granularity
If you enable the preservation of both granularity and atomicity, and the compiler
encounters VAX code that requires that both be preserved, atomicity takes
precedence over granularity.

For example, the instruction INCW 1(R0), when compiled with
.PRESERVE=GRANULARITY, retries the write of the new word value, if it
is interrupted. However, when compiled with .PRESERVE=ATOMICITY, it will
also refetch the initial value and increment it, if interrupted. If both options are
specified, it will do the latter.

In addition, while the compiler can successfully generate code for unaligned words
and longwords that preserves granularity, it cannot generate code for unaligned
words or longwords that preserves atomicity. If both options are specified, all
memory references must be to aligned addresses.

2.10.4 Examples When Atomicity Cannot Be Guaranteed
Because compiler atomicity guarantees only affect memory modification operands
in VAX instructions, you should take special care in examining VAX MACRO
sources for coding problems /PRESERVE=ATOMICITY cannot resolve. For
instance, consider the following VAX instruction:

ADDL2 (R1),4(R1)

For this instruction, the compiler generates an Alpha code sequence such as
the following, when /PRESERVE=ATOMICITY (or .PRESERVE ATOMICITY) is
specified:

LDL R28,(R1)
Retry: LDL_L R24,4(R1)

ADDL R28,R24,R24
STL_C R24,4(R1)
BEQ fail
.
.
.

fail: BR Retry

Note that, in this Alpha code sequence, when the STL_C fails, only the modify
operand is reread before the add. The data (R1) is not reread. This behavior
differs slightly from VAX behavior. In a VAX system, the entire instruction would
execute without interruption; in an Alpha system, only the modify operand is
updated atomically.

As a result, code that requires the read of the data (R1) to be atomic must use
another method, such as a lock, to obtain that level of synchronization.

Consider another VAX instruction:

MOVL (R1),4(R1)

For this instruction, the compiler generates an Alpha code sequence such as the
following whether or not atomicity preservation was turned on:

LDL R28,(R1)
STL R28,4(R1)
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The VAX instruction in this example is atomic on a single VAX CPU, but the
Alpha instruction sequence is not atomic on a single Alpha CPU. Because the
4(R1) operand is a write operand and not a modify operand, the operation is not
made atomic by the use of the LDL_L and STL_C.

Finally, consider a more complex VAX INCL instruction:

INCL @(R1)

For this instruction, the compiler generates an Alpha code sequence such as
the following, when /PRESERVE=ATOMICITY (or .PRESERVE ATOMICITY) is
specified:

LDL R28,(R1)
Retry: LDL_L R24,(R28)

ADDL R24,#1,R24
STL_C R24,(R28)
BEQ fail
.
.
.

fail: BR Retry

Here, only the update of the modify data is atomic. The fetch required to obtain
the address of the modify data is not part of the atomic sequence.

2.10.5 Alignment Considerations for Atomicity
When preserving atomicity, the compiler must assume the modify data is aligned.
An update of a field spanning a quadword boundary cannot occur atomically
since this would require two read-modify-write sequences. Since software cannot
handle an unaligned LDx_L or STx_C instruction as it can a normal load or store
instruction, a LDx_L or STx_C instruction to an unaligned address will generate
a fatal reserved operand fault.

When /PRESERVE=ATOMICITY (or .PRESERVE ATOMICITY) is specified, an
INCL (R1) instruction generates LDL_L and STL_C instructions so R1 must be
longword aligned.

For an INCW (R1) instruction, the compiler generates an Alpha code sequence
such as the following:

BIC R1,#^B0110,R28 ; Compute Aligned Address
Retry: LDQ_L R24,(R28) ; Load the QW with the data

EXTWL R24,R1,R23 ; Extract out the Word
ADDL R23,#1,R23 ; Increment the Word
INSWL R23,R1,R23 ; Correctly position the Word
MSKWL R24,R1,R24 ; Zero the spot for the Word
BIS R23,R24,R23 ; Combine Original and New word
STQ_C R23,(R28) ; Conditionally store result
BEQ fail ; Branch ahead on failure
.
.

.
fail: BR Retry

Note that the first BIC instruction uses #^B0110, not #^B0111. This is to ensure
that the word does not cross a quadword boundary, which would result in an
incomplete memory update. If the address in R1 is not pointing to an aligned
word, bit 0 will be set and the bit will not be cleared by the BIC instruction. The
Load Quadword Locked instruction (LDQ_L) will then generate a fatal reserved
operand fault.
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An INCB instruction uses #^B0111 to generate the aligned address since all bytes
are aligned.

2.10.6 Interlocked Instructions and Atomicity
The compiler’s methods of preserving atomicity have an interesting side effect in
compiled VAX MACRO code. On VAX systems, only the interlocked instructions
will work correctly to synchronize access to shared data in multiprocessor
systems. On Alpha multiprocessing systems, the code resulting from a
compilation of modify instructions (with atomicity preserved) and interlocked
instructions would both work correctly, because the LDx_L and STx_C which the
compiler generates for both sets of instructions operate correctly across multiple
processors.

Because this compiler side effect is specific to Alpha systems and does not port
back to VAX systems, you should avoid relying on it when porting VAX MACRO
code to Alpha if you intend to run the code on both systems.

However, interlocked instructions must still be used if the memory modification
is being used as an interlock for other instructions for which atomicity is not
preserved. This is because the Alpha architecture does not guarantee strict write
ordering. For example, consider the following VAX MACRO code sequence:

.PRESERVE ATOMICITY
INCL (R1)
.NOPRESERVE ATOMICITY
MOVL (R2),R3

This code sequence will generate the following Alpha code sequence:

Retry: LDL_L R28,(R1)
ADDL R28,#1,R28
STL_C R28,(R1)

BEQ R28, fail
LDL R3, (R2)
.
.
.

fail: BR Retry

Because of the data prefetching of the Alpha architecture, the data from (R2) may
be read before the store to (R1) is processed. If the INCL (R1) instruction is being
used as a lock to prevent the data at (R2) from being accessed before the lock
is set, the read of (R2) may occur before the increment of (R1) and thus is not
protected.

The VAX interlocked instructions generate Alpha MB (memory barrier)
instructions before and after the interlocked sequence. This prevents memory
loads from being moved across the interlocked instruction.

For example, consider the following code sequence:

ADAWI #1,(R1)
MOVL (R2),R3

This code sequence will generate the following Alpha code sequence:
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MB
Retry: LDL_L R28,(R1)

ADDL R28,#1,R28
STL_C R28,(R1)

BEQ R28, Fail
MB
LDL R3, (R2)
.
.
.

Fail: BR Retry

The MB instructions cause all memory operations before the MB instruction to
complete before any memory operations after the MB instruction are allowed to
begin.

2.11 Compiling and Linking
The compiler requires the following files, one for compiling, the other for linking:

File Description

SYS$LIBRARY:STARLET.MLB Macro library that defines the compiler directives.

SYS$LIBRARY:STARLET.OLB Object library containing emulation routines and
other routines used by the compiler.

When you compile your code, the compiler automatically checks STARLET.MLB
for definitions of compiler directives. Similarly, when you link your code, the
linker links against STARLET.OLB to resolve undefined symbols.

The following is an example of a command procedure used to compile the
MACRO-32 module [SYS]SYSSNDJBC.MAR:

$ SET DEFAULT WORK1:[PEAK.A.PORT]

$ MACRO/MIGRATION/LIS=LIS$SYSSNDJBC-ALPHA.LIS -
ALPHA$LIBRARY:STARLET/LIB+ -
ALPHA$LIBRARY:LIB/LIB+ -
ALPHA$LIBRARY:ARCH_DEFS.MAR+ -
SRC$SYSSNDJBC.MAR

$ MACRO/NOOBJECT/LIS=LIS$:SYSSNDJBC-VAX -
VAX$LIBRARY:STARLET/LIB+ -
VAX$LIBRARY:LIB/LIB+ -
VAX$LIBRARY:ARCH_DEFS.MAR+ -
SRC$SYSSNDJBC.MAR

$ EXIT

Not all modules need both libraries and many modules need component-specific
libraries, but this example shows the basic approach to using the compiler.

Note

Compaq recommends that you use the latest version of the compiler.
Make sure to use the version of SYS$LIBRARY:STARLET.MLB that ships
with the compiler and make sure that the logical name points to the
correct directory. Note that SYS$LIBRARY:STARLET.MLB is equivalent
to ALPHA$LIBRARY:STARLET.MLB.
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2.11.1 Line Numbering in Listing File
The macro expansion line numbering scheme in the listing file is Xnn/mmm,
where Xnn shows the nesting depth and mmm is the line number relative to the
outermost macro, as shown in the following example.

.MAIN. Source Listing 9-SEP-1996 11:36:03 AMAC V3.0-20-311D
20-JUL-1992 11:05:38 X6AJ_RESD$:[SYSLIB]ARCH_DEFS.MAR;1

00000000 1 ;
00000000 2 ; This is the ALPHA (previously called "EVAX") version of ARCH_DEFS.MAR,
00000000 3 ; which contains architectural definitions for compiling VMS sources
00000000 4 ; for VAX and ALPHA systems.
00000000 5 ;

00000001 00000000 6 EVAX = 1
00000001 00000000 7 ALPHA = 1
00000001 00000000 8 BIGPAGE = 1
00000020 00000000 9 ADDRESSBITS = 32

00000000 10 .macro test1
00000000 11 clrl r1
00000000 12 clrl r2
00000000 13 tstl 48(sp) ; generate uplevel stack error
00000000 14 clrl r3
00000000 15 .endm
00000000 16 .macro test2
00000000 17 clrl r4
00000000 18 clrl r5
00000000 19 test1
00000000 20 clrl r6
00000000 21 .endm
00000000 22
00000000 23 foo: .jsb_entry

.

.

.
00000000 44 clrl r0
00000011 45 test2

1.......
%AMAC-E-UPLEVSTK, (1) up-level stack reference in routine FOO

X01/001 00000002 clrl r4
X01/002 00000004 clrl r5
X01/003 00000006 test1
X02/004 00000006 clrl r1
X02/005 00000008 clrl r2
X02/006 0000000A tstl 48(sp) ; generate uplevel stack error
X02/007 0000000D clrl r3
X02/008 0000000F
X01/009 0000000F clrl r6
X01/010 00000011

00000011 46 rsb
00000012 47 .end

2.11.2 Linking an Object Module
To link the object files produced by the compiler, use the following commands as a
basis:

$ @ALPHA$TOOLS:LINK ! Set up DCL and Logical to EXE
$ LINK/ALPHA image_name,object1,object2,...

For certain VAX instructions (such as the divide instructions and others described
in this manual), the compiler produces object code that issues a call to the
OpenVMS General-Purpose Run-Time Library (OTS$ RTL). By default, the linker
links against the library that that contains these routines.
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2.12 Debugging
The compiler provides full debugger support. The debug session for compiled VAX
MACRO code is similar to that for assembled VAX MACRO code. However, there
are some important differences that are described in this section. For a complete
description of debugging, see the OpenVMS Debugger Manual.

2.12.1 Code Relocation
One major difference is that the code is compiled rather than assembled. On
a VAX system, each VAX MACRO instruction is a single machine instruction.
On an Alpha system, each VAX MACRO instruction may be compiled into many
Alpha machine instructions. A major side effect of this difference is the relocation
and rescheduling of code if you do not specify /NOOPTIMIZE in your compile
command.

By default, several optimizations are performed that cause the movement of
generated code across source boundaries (see Section 1.2, Section 4.3, and
Appendix A). For most code modules, debugging is simplified if you compile
with /NOOPTIMIZE, which prevents this relocation from happening. After you
have debugged your code, you can recompile without /NOOPTIMIZE to improve
performance.

2.12.2 Symbolic Variables for Routine Arguments
Another major difference between debugging compiled code and debugging
assembled code is a new concept to VAX MACRO, the definition of symbolic
variables for examining routine arguments. On VAX systems, when you are
debugging a routine and want to examine the arguments, you typically do
something like the following:

DBG> EXAMINE @AP ; to see the argument count
DBG> EXAMINE @AP+4 ; to examine the first arg

or

DBG> EXAMINE @AP ; to see arg count
DBG> EXAMINE .+4:.+20 ; to see first 5 args

On Alpha systems, the arguments do not reside in a vector in memory as they do
on VAX systems. Furthermore, there is no AP register on Alpha systems. If you
type EXAMINE @AP when debugging VAX MACRO compiled code, the debugger
reports that AP is an undefined symbol.

In the compiled code, the arguments can reside in some combination of:

• Registers

• On the stack above the routine’s stack frame

• In the stack frame, if the argument list was homed (see Section 2.3) or if
there are calls out of the routine that would require the register arguments to
be saved

The compiler does not require that you figure out where the arguments are by
reading the generated code. Instead, it provides $ARGn symbols that point to the
correct argument locations. The $ARG0 symbol is the same as @AP+0 is on VAX
systems, that is, the argument count. The $ARG1 symbol is the first argument,
$ARG2 is the second argument, and so forth. These symbols are defined in
CALL_ENTRY and JSB_ENTRY directives, but not in EXCEPTION_ENTRY
directives.
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2.12.3 Locating Arguments Without $ARGn Symbols
There may be additional arguments in your code for which the compiler did
not generate a $ARGn symbol. The number of $ARGn symbols defined for a
.CALL_ENTRY routine is the maximum number detected by the compiler (either
by automatic detection or as specified by MAX_ARGS) or 16, whichever is less.
For a .JSB_ENTRY routine, since the arguments are homed in the caller’s stack
frame and the compiler cannot detect the actual number, it always creates eight
$ARGn symbols.

In most cases, you can easily find any additional arguments, but in some cases
you cannot.

2.12.3.1 Additional Arguments That Are Easy to Locate
You can easily find additional arguments if:

• The argument list is not homed, and $ARGn symbols are defined to $ARG7
or higher. If the argument list is not homed, the $ARGn symbols $ARG7 and
above always point into the list of parameters passed as quadwords on the
stack. Subsequent arguments will be in quadwords following the last defined
$ARGn symbol.

• The argument list is homed, and you want to examine an argument that is
less than or equal to the maximum number detected by the compiler (either
by automatic detection or as specified by MAX_ARGS). If the argument
list is homed, $ARGn symbols always point into the homed argument list.
Subsequent arguments will be in longwords following the last defined $ARGn
symbol.

For example, you can examine arguments beyond the eighth argument in a JSB
routine (where the argument list must be homed in the caller), as follows:

DBG> EX $ARG8 ; highest defined $ARGn
.
.
.
DBG> EX .+4 ; next arg is in next longword
.
.
.
DBG> EX .+4 ; and so on

This example assumes that the caller detected at least 10 arguments when
homing the argument list.

To find arguments beyond the last $ARGn symbol in a routine that did not home
the arguments, proceed exactly as in the previous example except substitute EX
.+8 for EX .+4.

2.12.3.2 Additional Arguments That Are Not Easy to Locate
You cannot easily find additional arguments if:

• The argument list is not homed, and $ARGn symbols are defined only as
high as $ARG6. In this case, the existing $ARGn symbols will either point
to registers or to quadword locations in the stack frame. In both cases,
subsequent arguments cannot be examined by looking at quadword locations
beyond the defined $ARGn symbols.
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• The argument list is homed, and you want to examine arguments beyond the
number detected by the compiler. The $ARGn symbols point to the longwords
that are stored in the homed argument list. The compiler only moves as many
arguments as it can detect into this list. Examining longwords beyond the
last argument that was homed will result in examining various other stack
context.

The only way to find the additional arguments in these cases is to examine the
compiled machine code to determine where the arguments reside. Both of these
problems are eliminated if MAX_ARGS is specified correctly for the maximum
argument that you want to examine.

2.12.4 Debugging Code with Packed Decimal Data
The following list provides important information about debugging compiled VAX
MACRO code with packed decimal data on an Alpha system:

1. When using the EXAMINE command to examine a location that was declared
with a .PACKED directive, the debugger automatically displays the value as
a packed decimal data type.

2. You can deposit packed decimal data. The syntax is the same as it is on VAX.

2.12.5 Debugging Code with Floating-Point Data
The following list provides important information about debugging compiled VAX
MACRO code with floating-point data on an Alpha system:

1. You can use the EXAMINE/FLOAT command to examine an Alpha integer
register for a floating-point value.

Even though there is a set of registers for floating-point operations on Alpha
systems, those registers are not used by compiled VAX MACRO code that
contains floating-point operations. Only the Alpha integer registers are used.

Floating-point operations in compiled VAX MACRO code are performed by
emulation routines that operate outside the compiler. Therefore, performing
VAX MACRO floating-point operations on, say, R7, has no effect on Alpha
floating-point Register 7.

2. When using the EXAMINE command to examine a location that was declared
with a .FLOAT directive or other floating-point storage directives, the
debugger automatically displays the value as floating-point data.

3. When using the EXAMINE command to examine the G_FLOAT data type,
the debugger does not use the contents of two registers to build the value for
VAX data.

Consider the following example:

EXAMINE/G_FLOAT R4

In this example, the lower longwords of R4 and R5 are not used to build the
value as is the case on VAX. Instead, the quadword contents of R4 are used.

The code the compiler generates for D_FLOAT and G_FLOAT operations
preserves the VAX format of the data in the low longwords of two
consecutive registers. Therefore, using EXAMINE/G_FLOAT on either of
these two registers will not give the true floating-point value, and issuing
DEPOSIT/G_FLOAT to one of these registers will not give the desired results.
You can manually combine the two halves of such a value, however. For
example, assume you executed the following instruction:
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MOVG DATA, R6

You could then read the G_FLOAT value which now resides in R6 and R7
with a sequence like the following:

DBG> EX R6
.MAIN.\%LINE 100\%R6: 0FFFFFFFF D8E640D1
DBG> EX R7
.MAIN.\%LINE 100\%R7: 00000000 2F1B24DD
DBG> DEP R0 = 2F1B24DDD8E640D1
DBG> EX/G_FLOAT R0
.MAIN.\%LINE 100\%R0: 4568.89900000000

4. You can deposit floating-point data in an Alpha integer register with the
DEPOSIT command. The syntax is the same as it is on a VAX system.

5. H_FLOAT is unsupported.
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Recommended and Required Source Changes

This chapter describes the coding constructs you should examine when porting
VAX MACRO code to OpenVMS Alpha. The occurrence of any of these in a
module can make porting take longer than it would otherwise. Although the
compiler can identify many of these practices and flag them with diagnostic
messages, recognizing them yourself will speed up the porting effort.

In most cases, it will be necessary to change your source code. The exceptions are
noted.

The coding constructs described in this chapter are:

• Stack usage (Section 3.1)

• Instruction stream (Section 3.2)

• Flow control mechanisms (Section 3.3)

• Dynamic image relocation (Section 3.4)

• Overwriting static data (Section 3.5)

• Static initialization using external symbols (Section 3.6)

• Transfer vectors (Section 3.7)

• Arithmetic exceptions (Section 3.8)

• Page size (Section 3.9)

• Locking pages into a working set (Section 3.10)

• Synchronization (Section 3.11)

3.1 Stack Usage
The OpenVMS calling standard defines a stack frame format for Alpha systems
substantially different from that defined for VAX systems. If your code relies on
the format of the VAX stack frame you will need to change it when porting it to
an Alpha system.

3.1.1 References to the Procedure Stack Frame
The compiler disallows references to positive stack offsets from FP, and flags them
as errors. A single exception to this rule is the practice whereby VAX MACRO
code establishes a dynamic condition handler by moving a routine address to
the stack location pointed to by FP. The compiler detects this and generates
the appropriate Alpha code for establishing such a handler. However, if the
write to 0(FP) occurs inside a JSB routine, the compiler will flag it as an error.
The compiler allows negative FP offsets, as used for referring to stack storage
allocated at procedure entry.
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Recommended Change
If possible, remove stack frame references entirely, rather than converting to the
Alpha format. For example, if the offending code was attempting to change saved
register values, store the new value in a stack temporary and set the register
value on routine exit (removing the register from the entry register mask).

3.1.2 References Outside the Current Stack Frame
By monitoring stack depth throughout a VAX MACRO module, the compiler
detects references in a routine to data pushed on the stack by its caller and flags
them as errors.

Recommended Change
You must eliminate references in a routine to data pushed on the stack by its
caller. Instead, pass the required data as parameters or pass a pointer to the
stack base from which the data can be read.

3.1.3 Nonaligned Stack References
At routine calls, the compiler octaword-aligns the stack, if the stack is not already
octaword-aligned. Some code, when building structures on the stack, makes
unaligned stack references or causes the stack pointer to become unaligned. The
compiler flags both of these with information-level messages.

Recommended Change
Provide sufficient padding in data elements or structures pushed onto the stack,
or change data structure sizes. Because unaligned stack references also have an
impact on VAX performance, you should apply these fixes to code designed for
both the VAX and Alpha architectures.

3.1.4 Building Data Structures on the Stack
A common coding practice is to produce a structure on the stack by pushing the
elements and relying on auto decrement to move the stack pointer to allocate
space. The problems with this technique follow:

• If the SDL source for the structure being built is modified to pad the structure
in order to align fields, the code will be broken. If the code does not contain
assume statements this will not be detected at compile time.

• If the size of a field is extended, the current instruction will not access all the
data and this will also go undetected.

Recommended Change
To correct the first problem and detect the second, use the coding technique
illustrated in this example. Consider the following code example:

; Build a descriptor on the stack.
;
MOVW length, -(SP)
MOVB type, -(SP)
MOVB class, -(SP)
MOVAL buffer, -(SP)

Replace this code with the following:

SUBL2 DSC$S_DSCDEF, SP ; pre-allocate space on stack
MOVW length, DSC$W_LENGTH(SP)
MOVB type, DSC$B_DTYPE(SP)
MOVB size, DSC$B_CLASS(SP)
MOVAL buffer, DSC$A_POINTER(SP)
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3.1.5 Quadword Moves Into the VAX SP and PC
Due to architectural differences between VAX and Alpha computers, it is not
possible to completely emulate quadword moves into the VAX stack pointer
(SP) and the program counter (PC) without programmer intervention. The VAX
architecture defines R14 as the SP and R15 as the PC. A MOVQ instruction with
SP as the target would simultaneously load the VAX SP and PC, as shown in the
following example:

MOVQ R0,SP ; Contents of R0 to SP, R1 to PC

MOVQ REGDATA, SP ; REGDATA to SP
; REGDATA+4 to PC

If the compiler encounters a MOVQ instruction with SP as the destination, it
generates a sign-extended longword load from the supplied source into R30 (the
Alpha stack pointer) and issues the following informational message:

%AMAC-I-CODGENINF, (1) Longword update of Alpha SP, PC untouched

Recommended Change
If the intended use of the MOVQ instruction was to achieve the VAX behavior, a
MOVL instruction should be used, followed by a branch to the intended address,
as shown next:

MOVL REGDATA, SP ; Load the SP
MOVL REGDATA+4, R0 ; Get the new PC
JMP (R0) ; And Branch

If the intended use of the MOVQ instruction was to load the stack pointer with
an 8-byte value, the EVAX_LDQ built-in should be used instead, as shown next:

EVAX_LDQ SP, REGDATA

3.2 Instruction Stream
The following VAX MACRO coding practices and VAX instructions either do not
work on OpenVMS Alpha or they can produce unexpected results.

3.2.1 Data Embedded in the Instruction Stream
The compiler detects data embedded in the instruction stream, and reports it as
an error.

Data in the instruction stream often takes the form of a JSB instruction followed
by a .LONG. This construct allows VAX MACRO code to implicitly pass a
parameter to a JSB routine which locates the data by using the return address on
the stack. Another occasional use of data in the code stream is to make the data
contiguous with the code in memory, so that it can be relocated as a unit.

Recommended Change
For implicit JSB parameters, pass the parameter value in a register. For values
larger than a longword, put the data in another program section (psect) and
explicitly pass its address.

Because static data must reside in a separate data psect, any code that tries to
relocate code and data together must be rewritten.
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3.2.2 Run-Time Code Generation
The compiler detects branches to stack locations and to static data areas and
flags them as errors.

Recommended Change
You must either remove or modify code that builds instructions for later
execution, branches to stack locations, or branches to static data areas. If the
code is absolutely necessary, you should conditionalize it for VAX, and generate
corresponding, suitable Alpha code.

3.2.3 Dependencies on Instruction Size
Code that computes branch offsets based on instruction lengths, for example,
must be changed.

Recommended Change
Use a label and standard branch or a CASE instruction for computed GOTOs.

3.2.4 Incomplete Instructions
Some CASE instructions in OpenVMS VAX code are not followed by offset tables,
but instead depend on psect placement by the linker to complete the instruction.
The compiler will flag the incomplete instruction as an error.

Recommended Change
Complete the instruction in the module or build a table of addresses in a data
psect, and replace the CASE instruction with code to select a destination address
from the table and branch.

3.2.5 Untranslatable VAX Instructions
Because the compiler cannot translate the following VAX instructions, it flags
them as errors:

• LDPCTX and SVPCTX

• XFC

• ESCD, ESCE, and ESCF

• BUGx

Recommended Change
These instructions usually appear in code that is highly dependent on the VAX
architecture. You will need to rewrite such code to port it to Alpha systems.

3.2.6 References to Internal Processor Registers
Pay special attention to the following instructions:

• MFPR

• MTPR

Recommended Change
Verify that they reference valid Alpha internal processor registers (IPRs). If
they do not, they will be flagged. For more information about the Alpha internal
processor registers, refer to the Alpha Architecture Reference Manual.
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3.2.7 Use of Z and N Condition Codes with the BICPSW Instruction
The BICPSW instruction is supported, but the Z and N condition codes cannot be
set at the same time. Setting the Z condition code will clear the N condition code
and vice versa.

Recommended Change
If you find that your code sets both condition codes at the same time, modify the
code.

3.2.8 Interlocked Memory Instructions
The Alpha Architecture Reference Manual, Third Edition describes strict rules
for using interlocked memory instructions. In particular, branches within or into
LDxL/STxC sequences are not allowed. Branches out of interlocked sequences are
valid and need not change. The Alpha 21264 (EV6) processor and all subsequent
Alpha processors are more stringent than their predecessors in their requirement
that these rules be followed. The Alpha 21264 processor was first supported by
OpenVMS Alpha Version 7.1-2.

The MACRO-32 compiler observes these rules in the code it generates from
MACRO-32 source code. However, the compiler provides EVAX_LQxL and EVAX_
STxC built-ins which enable programmers to write these instructions directly in
source code.

To help ensure that these instructions are used in conformance with the rules
for using interlocked memory instructions, additional checking was added to the
MACRO-32 compiler, starting in Version 3.1 of the compiler for OpenVMS Alpha
Version 7.1-2 and in Version 4.1 for OpenVMS Alpha Version 7.2.

The compiler reports the following warning messages under the circumstances
described:

BRNDIRLOC, branch directive ignored in locked memory sequence
Explanation: The compiler found a .BRANCH_LIKELY directive within an
LDx_L/STx_C sequence.
User Action: None. The compiler will ignore the .BRANCH_LIKELY
directive and, unless other coding guidelines are violated, the code will work
as written.

BRNTRGLOC, branch target within locked memory sequence in routine
’routine_name’
Explanation: A branch instruction has a target that is within an LDx_
L/STx_C sequence.
User Action: To avoid this warning, rewrite the source code to avoid
branches within or into LDx_L/STx_C sequences. Branches out of interlocked
sequences are valid and are not flagged.

MEMACCLOC, memory access within locked memory sequence in routine
’routine_name’
Explanation: A memory read or write occurs within an LDx_L/STx_C
sequence. This can be either an explicit reference in the source code, such as
"MOVL data, R0", or an implicit reference to memory. For example, fetching
the address of a data label (e.g., "MOVAB label, R0") is accomplished by a
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read from the linkage section, the data area that is used to resolve external
references.
User Action: To avoid this warning, move all memory accesses outside the
LDx_L/STx_C sequence.

RETFOLLOC, RET/RSB follows LDx_L instruction
Explanation: The compiler found a RET or RSB instruction after an LDx_
L instruction and before finding an STx_C instruction. This indicates an
ill-formed lock sequence.
User Action: Change the code so that the RET or RSB instruction does not
fall between the LDx_L instruction and the STx_C instruction.

RTNCALLOC, routine call within locked memory sequence in routine ’routine_
name’
Explanation: A routine call occurs within an LDx_L/STx_C sequence.
This can be either an explicit CALL/JSB in the source code, such as "JSB
subroutine", or an implicit call that occurs as a result of another instruction.
For example, some instructions such as MOVC and EDIV generate calls to
run-time libraries.
User Action: To avoid this warning, move the routine call or the instruction
that generates it, as indicated by the compiler, outside the LDx_L/STx_C
sequence.

STCMUSFOL, STx_C instruction must follow LDx_L instruction
Explanation: The compiler found an STx_C instruction before finding an
LDx_L instruction. This indicates an ill-formed lock sequence.
User Action: Change the code so that the STx_C instruction follows the
LDx_L instruction.

Recommended Change
If the compiler detects any nonconformant use of interlocked memory instructions,
follow the recommended user actions described with these warning messages.

3.2.9 Use of the MOVPSL Instruction
The MOVPSL instruction fetches the Alpha PS, whose contents differ from the
VAX PSL (processor status longword). For example, the Alpha PS does not
contain the condition code bits. For more information about the Alpha PS, refer
to the Alpha Architecture Reference Manual.

Recommended Change
The MOVSPL instruction is rarely used. If your code contains the MOVPSL
instruction, you will need to rewrite the code to port it to Alpha systems.

3.3 Flow Control Mechanisms
Certain flow control mechanisms used with VAX MACRO do not produce the
desired results on Alpha systems. Therefore, some changes to your code are
either recommended or required.

Included in this category are several frequently used variations of modifying the
return address on the stack, from within a JSB routine, to change the flow of
control. All must be recoded.

3–6 Recommended and Required Source Changes



Recommended and Required Source Changes
3.3 Flow Control Mechanisms

3.3.1 Communication by Condition Codes
The compiler detects a JSB instruction followed immediately by a conditional
branch, or a conditional branch as the first instruction in a routine, and generates
an error message.

Recommended Change
Return a status value or a flag parameter to take the place of implicit
communication by means of condition codes.

For example:

BSBW GET_CHAR
BNEQ ERROR ; Or BEQL, or BLSS or BGTR, etc

can be replaced with:

BSBW GET_CHAR
BLBC R0, ERROR ; Or BLBS

If you are already using R0, you must push it onto the stack and restore it later
when you have handled the error.

3.3.2 Branches from JSB Routines into CALL Routines
The compiler will flag, with an information-level message, a branch from a
JSB routine into a CALL routine, if the .JSB_ENTRY routine saves registers.
The reason such a branch is flagged is because the procedure’s epilogue code to
restore the saved registers will not be executed. If the registers do not have to be
restored, no change is necessary.

Recommended Change
The .JSB_ENTRY routine is probably trying to execute a RET on behalf of its
caller. If the registers that were saved by the JSB_ENTRY must be restored
before executing the RET, change the common code in the .CALL_ENTRY to a
.JSB_ENTRY which may be invoked from both routines.

For example, consider the following code example:

Rout1: .CALL_ENTRY
.
.

X: .
.
.
RET

Rout2: .JSB_ENTRY INPUT=<R1,R2>, OUTPUT=<R4>, PRESERVE=<R3>
.
.
BRW X
.
.
RSB

To port such code to an Alpha system, break the .CALL_ENTRY routine into two
routines, as follows:
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Rout1: .CALL_ENTRY
.
.
JSB X
RET

X: .JSB_ENTRY INPUT=<R1,R2>, OUTPUT=<R4>, PRESERVE=<R3>
.
.
RSB

Rout2: .JSB_ENTRY INPUT=<r1,r2>, OUTPUT=<R4>, PRESERVE=<R3>
.
.
JSB X
RET
.
.
RSB

3.3.3 Pushing an Address onto the Stack
The compiler detects any attempt to push an address onto the stack (for instance,
PUSHAB label) to cause a subsequent RSB to resume execution at that location
and flags this practice as an error. (On VAX systems, the next RSB would return
to the routine’s caller.)

Recommended Change
Remove the PUSH of the address, and add an explicit JSB to the target label
just before the current routine’s RSB. This will result in the same control flow.
Declare the target label as a .JSB_ENTRY point.

For example, the compiler would flag the following code as requiring a source
change.

Rout: .JSB_ENTRY
.
.
PUSHAB continue_label
.
.
RSB

By adding an explicit JSB instruction, you could change the code as follows. Note
that you would place the JSB just before the RSB. In the previous version of the
code, it is the RSB instruction that transfers control to continue_label, regardless
of where the PUSHAB occurs. The PUSHAB is removed in the new version.

Rout: .JSB_ENTRY
.
.
.
JSB continue_label
RSB

3.3.4 Removing the Return Address from the Stack
The compiler detects the removal of the return address from the stack (for
instance, TSTL (SP)+) and flags this practice as an error. The removal of a
return address in VAX code allows a routine to return to its caller’s caller.
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Recommended Change
Rewrite the routine so it returns a status value to its caller that indicates that
the caller should return to its caller. Alternatively, the initial caller could pass
the address of a continuation routine, to which the lowest-level routine can
JSB. When the continuation routine RSBs back to the lowest-level routine, the
lowest-level routine RSBs.

For example, the compiler would flag the following code as requiring a source
change:

Rout1: .JSB_ENTRY
.
.
JSB Rout2
.
RSB

Rout2: .JSB_ENTRY
.
.
JSB Rout3 ; May return directly to Rout1
.
RSB

Rout3: .JSB_ENTRY
.
.
TSTL (SP)+ ; Discard return address
RSB ; Return to caller’s caller

You could rewrite the code to return a status value, as follows:

Rout2: .JSB_ENTRY
.
.
JSB Rout3
BLBS R0, No_ret ; Check Rout3 status return
RSB ; Return immediately if 0

No_ret: .
.
RSB

Rout3: .JSB_ENTRY
.
.
CLRL R0 ; Specify immediate return from caller
RSB ; Return to caller’s caller

3.3.5 Modifying the Return Address
The compiler detects any attempt to modify the return address on the stack and
flags it as an error.

Recommended Change
Rewrite the code that modifies the return address on the stack to return a status
value to its caller instead. The status value causes the caller to either branch to a
given location or contains the address of a special .JSB_ENTRY routine the caller
should invoke. In the latter case, the caller should RSB immediately after issuing
the JSB to a special .JSB_ENTRY routine.

For example, the compiler would flag the following code as requiring a source
change.

Recommended and Required Source Changes 3–9



Recommended and Required Source Changes
3.3 Flow Control Mechanisms

Rout1: .JSB_ENTRY
.
.
JSB Rout2 ; Might not return
.
RSB

Rout2: .JSB_ENTRY
.
.
MOVAB continue_label, (SP) ; Change return address
.
RSB

You could rewrite the code to incorporate a return value as follows:

Rout1: .JSB_ENTRY
.
.
JSB Rout2
TSTL R0 ; Check for alternate return
BEQL No_ret ; Continue normally if 0
JSB (R0) ; Call specified routine
RSB ; and return

No_ret: .
.
RSB

Rout2: .JSB_ENTRY
CLRL R0
.
.
MOVAB continue_label, R0 ; Specify alternate return
RSB

3.3.6 Coroutine Calls
Coroutine calls between two routines are generally implemented as a set of JSB
instructions within each routine. Each JSB transfers control to a return address
on the stack, removing the return address in the process (for instance, (JSB
@(SP)+). The compiler detects coroutine calls and flags them as errors.

Recommended Change
You must rewrite the routine that initiates the coroutine linkage to pass an
explicit callback routine address to the other routine. The coroutine initiator
should then invoke the other routine with a JSB instruction.

For example, consider the following coroutine linkage:

Rout1: .JSB_ENTRY
.
JSB Rout2 ; Rout2 will call back as a coroutine
.
JSB @(SP)+ ; Coroutine back to Rout2
.
RSB

Rout2: .JSB_ENTRY
.
JSB @(SP)+ ; coroutine back to Rout1
.
RSB
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You could change the routines participating in such a coroutine linkage to
exchange explicit callback routine addresses (here, in R6 and R7) as follows:

Rout1: .JSB_ENTRY
.
.
MOVAB Rout1_callback, R6
JSB Rout2
RSB

Rout1_callback: .JSB_ENTRY
.
.
JSB (R7) ; Callback to Rout2
.
RSB

Rout2: .JSB_ENTRY
.
.
MOVAB Rout2_callback, R7
JSB (R6) ; Callback to Rout1
RSB

Rout2_callback: .JSB_ENTRY
.
RSB

To avoid consuming registers, the callback routine addresses could be pushed
onto the stack at routine entry. Then, JSB @(SP)+ instructions could still be used
to perform ‘‘direct’’ JSBs to the callback routines. In the following example, the
callback routine addresses are passed in R0, but pushed immediately at routine
entry:

Rout1: .JSB_ENTRY
.
.
MOVAB Rout1_callback, R0
JSB rout2
RSB

Rout1_callback: .JSB_ENTRY
PUSHL R0 ; Push callback address received in R0
.
.
JSB @(SP)+ ; Callback to rout2
.
.
RSB

Rout2: .JSB_ENTRY
PUSHL R0 ; Push callback address received in R0
.
.
MOVAB Rout2_callback, R0
JSB @(SP)+ ; Callback to Rout1
RSB

Rout2_callback: .JSB_ENTRY
.
.
RSB
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3.3.7 Using REI to Change Modes
A common VAX use of the REI instruction is to change modes by pushing an
explicit target PC and PSL on the stack. This code cannot be compiled without
some changes to the source code for the following reasons:

• The destination code requires that a linkage section pointer be established.
REI does not provide a way to do this.

• An REI frame on an Alpha system is more complex than on a VAX system
and includes saved registers. In addition, all subroutines have epilogue code
to restore saved, nonscratch registers. A new syntax would be necessary to
accommodate register passing and restoration.

• The mode change means that the process will be executing on a different
stack at the target. This places new requirements on cleaning up the
previous stack.

Recommended Change
A system routine, EXE$REI_INIT_STACK, has been created to perform the
corresponding function for Alpha systems. This routine accepts the new mode
and a callback routine address as parameters. This routine has the advantage of
being usable from higher level languages as well.

You must restructure existing code so that this routine call can be used. The
code label where execution is to continue must be declared with an entry point
directive, since it will be called by the system routine.

The following examples show two ways that the REI instruction is used in VAX
MACRO code for changing modes and one way to accomplish the same thing
using the EXE$REI_INIT_STACK routine for Alpha.

Before (1)

PUSH new_PSL
PUSHl new_PC
REI

Before (2)

PUSHl new_PSL
JSB 10$
.
.
.
CONTINUE ;With new PSL
.
.
.
10$: REI

After

PUSHL Continuation_routine
PUSH new_mode ;Not a PSL
CALLS #2, exe$rei_init_stack
.
.
.
Continuation routine: .JSB_ENTRY

When your program reaches the continuation routine it will be executing in a
new mode at a new location, the FP will be cleared, and the old mode stack will
be reinitialized.
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3.3.8 Loop Nesting Limit
The compiler must identify loops in program code in order to generate code
correctly. A loop is a ‘‘nested’’ loop if it is inside another loop or if it partially
overlaps another loop. If loops are nested more than 32 levels deep, the compiler
will report a fatal error, and compilation will terminate. The VAX MACRO–
32 assembler did not need to identify loops, and so did not enforce such a
restriction.

Recommended Change
If the compiler reports this error, restructure the code so that the program does
not exceed the limit.

3.4 Dynamic Image Relocation
On VAX systems, you can copy position independent code (PIC) from one address
range to another, and it assembles and runs correctly. If you compile this code for
Alpha, which includes a range of code that you copied using source code labels, it
does not work for two reasons. First, the compiled code may not be in the same
order as the source code. Second, the code requires the linkage section to make
external references. Not only is the linkage section in another psect, but it also
contains absolute addresses fixed up by the linker and image activator.

Recommended Change
Replicate the code or otherwise eliminate the copy of code from one address range
to another.

3.5 Overwriting Static Data
The VAX MACRO assembler allows complete freedom in overwriting previously
initialized static storage. This is usually done by changing the current location
counter with a ‘‘.=’’ construct.

By contrast, the MACRO-32 compiler restricts overwriting so that partial
overwriting of an existing data item is not allowed, except for .ASCII data. You
may overwrite:

• Any scalar item with another of the same size

• Any storage left blank (declared with .BLKx or ‘‘.=.+n’’)

• Sections of .ASCII data with other .ASCII or .BYTE directives

Recommended Change
Where possible, change your code to one of the following forms that is allowed:

• Code that overwrites data declared by any of the scalar storage directives
(.BYTE, .WORD, or .LONG, and so forth) using a directive of the same type
or one that occupies the same number of bytes. The items must be the same
size at the same location; they cannot partially overlap. For instance:

LAB1: .WORD 1
.WORD 2
.=LAB1
.WORD 128

• Partial overwriting of .ASCII data
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You can overwrite portions of previously written .ASCII data using .ASCII
or .BYTE. (Since .ASCIZ and .ASCIZ are implemented as a pair of .ASCII/
.BYTE directives, they can also overwrite .ASCII). For example:

DATA: .ascii /abcdefg/
.=data

.ascii /z/ ; change "a" to "z"
.=data

.byte 0 ; change "z" to 0
.=data+4

.ascii /xyz/ ; change "efg" to "xyz"

The new data must be completely within the bounds of the previous .ASCII
string. The following is illegal:

DATA: .ascii /abcdefg/
.=data+4

.ascii /lmnop/ ; exceeds end of previous .ASCII

Partial overwriting with other directive types (.LONG, and so forth), is not
allowed.

3.6 Static Initialization Using External Symbols
Some forms of static initialization using external symbols are not allowed.

Recommended Change
Where possible, change your code to one of the forms that is allowed. This
can often be done by defining additional symbols using $xxxDEF macros. The
compiler includes support for expressions of the form:

<symbol1 +/- offset1> OPR <symbol2 +/- offset2>

where OPR can be:

+ : Add
- : Subtract
* : Multiply
/ : Divide
@ : Arithmetic shift
& : Logical inclusive AND
! : Logical inclusive OR
\ : Logical exclusive OR

where symbol1 and symbol2 (both optional) are external values or labels in
another psect, and where offset1 and offset2 may be expressions but must
resolve to compile-time constants.

If a static initialization expression cannot be reduced to this form, the compiler
will report an illegal static initialization. Use brackets to ensure correct operator
precedence.

3.7 Transfer Vectors
The compiler flags any occurrence of the .TRANSFER directive in VAX MACRO
code as an error unless you have specified /noflag=directives. In that case, no
message is reported, but the .TRANSFER directive is ignored.
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On VAX systems, you can establish universal entry points for relocatable code in
shareable images by explicitly defining transfer vectors in VAX MACRO source
code. On Alpha systems, you establish them by declaring the symbol values of
universal entry points in a linker options file. The linker constructs a symbol
vector table within the shareable image that allows external images to locate
relocatable universal procedure entry points and storage addresses.

Recommended Change
You must remove the transfer vector from the VAX MACRO source. When linking
the object file produced by the compiler, you must specify a linker options file
that includes the SYMBOL_VECTOR statement. Within the SYMBOL_VECTOR
statement, you must list each universally-visible, relocatable symbol (procedure
entry point or data address), indicating whether each is DATA or a PROCEDURE.

Note that the linker builds the symbol vector in the order in which the symbols
appear in the linker options file. You must retain this symbol order over the
course of later builds of the shareable images. That is, you can add entries to the
end of the symbol list or remove entries, but ongoing entries must keep the same
ordinal position in the list. For more information about transfer vectors, refer to
the OpenVMS Linker Utility Manual.

3.8 Arithmetic Exceptions
On Alpha systems, the treatment of arithmetic exceptions is different from and
incompatible with that of VAX systems. Exception handlers designed for a VAX
system that field arithmetic exceptions will be unable to match the expected
signal names with those actually signaled on Alpha systems.

On VAX systems, the architecture ensures that arithmetic exceptions are reported
synchronously, whereas on Alpha systems, arithmetic exceptions are reported
asynchronously. On a VAX system, a VAX arithmetic instruction that causes an
exception (such as an overflow) enters any exception handlers immediately and
no subsequent instructions are executed. The program counter (PC) reported to
the exception handler is that of the failing arithmetic instruction. This allows
application programs, for example, to resume the main sequence, with the failing
operation being emulated or replaced by some equivalent or alternate set of
operations.

On Alpha systems, a number of instructions (including branches and jumps)
can execute beyond that which caused the exception. These instructions may
overwrite the original operands used by the failing instruction, therefore causing
information integral to interpreting or rectifying the exception to be lost. The PC
reported to the exception handler is not that of the failing instruction, but rather
is that of some subsequent instruction. When the exception is reported to an
application’s exception handler, it may be impossible for the handler to fix up the
input data and restart the instruction.

Because of this fundamental difference in arithmetic exception reporting, the
OpenVMS Alpha operating system defines a new, single condition code, SS$_
HPARITH, to indicate all of the arithmetic exceptions. For information about
the SS$_HPARITH exception signal array, see Migrating to an OpenVMS AXP
System: Recompiling and Relinking Applications.1

1 This manual has been archived but is available on the OpenVMS Documentation
CD–ROM.
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Recommended Change
If the condition handling routine in your application only counts the number
of arithmetic exceptions that occurred, or aborts when an arithmetic exception
occurs, it does not matter that the exception is delivered asynchronously on
Alpha. These condition handling routines require only the addition of a test for
the SS$_HPARITH condition code. The VAX arithmetic exceptions will never
be returned on Alpha (except from translated VAX images). If your application
attempts to restart the operation that caused the exception, you must either
rewrite your code or use a compiler qualifier or directive that ensures the exact
reporting of arithmetic exceptions. Note, however, that the compiler must drain
the instruction pipeline after using each arithmetic instruction to provide this
function, which severely affects performance.

The EVAX_TRAPB built-in can be used to force any preceding traps to be
signaled. Because of the performance impact of this built-in, it should be used
only after arithmetic instructions you need to isolate.

3.9 Page Size
A set of macros has been developed which can be used to standardize the way
page size dependencies are coded and to make future changes easier. These are
discussed in Appendix D.

3.10 Locking Pages into a Working Set
Pages are commonly locked down in the following ways:

• At image initialization, locking a section of code for the life of the image. This
method uses the $LKWSET system service call to lock the pages in memory.
The $LKWSET call is often in a different module from the code to be locked.

• On the fly, locking down a small section of code for a specific operation. This
method often uses the poor programmer’s lockdown method of raising IPL
and specifying the IPL as a data location at the end of the code to be locked.

On an Alpha system, not only must the code pages be locked in memory, but the
code’s linkage section must also be locked. Because of this and other constraints,
the LOCK_SYSTEM_PAGES, UNLOCK_SYSTEM_PAGES, PMLREQ, and
PMLEND macros do not exist on Alpha systems.

Recommended Change
To minimize code changes, both cases are accommodated by means of several new
macros.

For lockdown done at image initialization time, three macros are provided:
two as begin and end markers to delimit code to be locked, and an additional
initialization macro to create the descriptors and issue the $LKWSET calls.

To lock and unlock code where poor programmer’s lockdown or other on-the-fly
lockdown was done, two other macros are provided. For architectural reasons
discussed in this section, these macros also use the $LKWSET and the $ULWSET
system service calls to lock and unlock pages.

These macros reside in LIB.MLB, since anyone needing to lock pages into the
working set should already be executing privileged code.
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Note

These two methods (lockdown done at image initialization time and
lockdown done on the fly) cannot be combined in one image. The
$ULWSET service issued by the on-the-fly lockdown will also unlock
the section that was locked at initialization time. You must choose one
method or the other for the entire image. Be particularly careful in
images that contain modules compiled from different source languages.

How the Alpha Architecture Affects Locking Pages
Locking pages into a working set is much more complicated on an Alpha system
than it is on a VAX system, for the following reasons:

1. It is not sufficient to lock the code in memory. Since the code will make
references to its linkage section for various values and routine addresses, the
linkage section must also be locked.

2. Due to the optimization that is done by the compiler, it is not sufficient to put
labels before and after the code to be locked—the compiler may move some of
the code between the labels to an area outside of their scope.

3. The common Poor Programmer’s method of raising IPL and specifying the
IPL as a data location at the end of the code to be locked does not work for
these reasons as well as for the following reasons:

The sequence requires the execution of multiple instructions, making it
impossible to reference the IPL and raise IPL atomically

Alpha compiler technology prevents code and data, for example, the
longword containing the IPL, from being in the same program section

The only way to lock pages into the working set on Alpha is to call the system
service $LKWSET.

Using Psects to Delineate Code
The macros provided here use psects to enclose the section of code to be locked.
The macros create three psects, name them sequentially, and use them in the
following way:

• The beginning and ending labels of the code are defined in the first and last
psects, respectively

• The code itself is put in the middle psect

Provided that the attributes of all psects are the same, the linker will place them
sequentially in the image. The same thing must be done for the linkage section,
which requires a second $LKWSET call.

Since all code to be locked anywhere in the image goes into the same psect, this
method of using psects has the side effect of locking all lockable code when any
requester locks any section. This is probably advantageous; Alpha pages are at
least 8KB and most requesters are locking a pagelet or less, so most of the time
all of the code to be locked will fit on a single page.

Note

If the code is being locked because the IPL will be raised above 2, where
page faults cannot occur, make sure that the delimited code does not call
run-time library routines or other procedures. The VAX MACRO compiler
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generates calls to routines to emulate certain VAX instructions. An image
that uses these macros must link against the system base image so
that references to these routines are resolved by code in a nonpageable
executive image.

Image Initalization-Time Lockdown
For image initialization-time lockdown, three macros are used:

• $LOCKED_PAGE_START

• $LOCKED_PAGE_END

• $LOCK_PAGE_INIT

The macros $LOCKED_PAGE_START and $LOCKED_PAGE_END mark the
beginning and end of a code segment which may be locked. The code delineated
by these macros must contain complete routines—execution cannot fall through
either macro, nor can the locked code be branched into or out of. Any attempt to
branch into or out of the locked code section, or to fall through the macros will be
flagged by the compiler with the following error message:

%AMAC-E-MULTLKSEC, Routines which share code must use the same linkage psect.

$LOCKED_PAGE_END has an optional parameter, LINK_SECT, which is used
to specify the linkage psect to return to after the routine is executed. It is only
used if the linkage psect in effect when the $LOCKED_PAGE_START macro was
executed was not the default linkage psect, $LINKAGE.

The macro $LOCK_PAGE_INIT must be executed in the initialization routines of
an image which is using $LOCKED_PAGE_START and $LOCKED_PAGE_END
to delineate areas to be locked. It creates the necessary psects and issues the
$LKWSET calls to lock the code and linkage sections into the working set. R0
and R1 are destroyed by this macro.

$LOCK_PAGE_INIT has an optional parameter, ERROR, which is an error
address to which to branch if one of the $LKWSET calls fail. If this address is
reached, R0 reflects the status of the failed call, and R1 contains 0 if the call to
lock the code failed, or 1 if that call succeeded but the call to lock the linkage
section failed.

Note that since psects are used to identify code to be locked, the $LOCK_PAGE_
INIT macro need not be in the same module as the code delineated by the
$LOCKED_PAGE_START and $LOCKED_PAGE_END macros. The invocation of
$LOCK_PAGE_INIT locks all delineated code in the entire image.

Table 3–1 shows the code changes necessary for using these macros. The
delineating labels are replaced by the $LOCKED_PAGE_START and $LOCKED_
PAGE_END macros. The descriptor is eliminated, and the $LKWSET call in the
initialization code is replaced by $LOCK_PAGE_INIT.
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Table 3–1 Image Initialization-Time Lockdown

Code
Section On VAX Systems On Alpha Systems

Data
declaration

LOCK_DESCRIPTOR:
.ADDRESS LOCK_START
.ADDRESS LOCK_END

Nothing. Eliminate the descriptor
altogether.

Initialization

$LKWSET_S LOCK_DESCRIPTOR
BLBC R0,ERROR

$LOCK_PAGE_INIT ERROR

Main code

LOCK_START:

Routine_A:
.
.
.

RSB
LOCK_END:

$LOCKED_PAGE_START
Routine_A:

.

.

.
RSB
$LOCKED_PAGE_END

Locking Code Written in Other Languages
Code written in other programming languages can also be locked down
by using the $LOCK_PAGE_INIT macro in a VAX MACRO module. Any
code in any module written in any language will be locked by this macro
if the psect $LOCK_PAGE_2 is used for the generated code and the psect
$LOCK_LINKAGE_2 is used for the generated linkage section.

On-the-Fly Lockdown
For on-the-fly lockdown, $LOCK_PAGE and $UNLOCK_PAGE, respectively, mark
the beginning and end of a section of code to be locked. The marked code becomes
a separate routine in the locked psect, where all code locked anywhere in the
image is placed.

$LOCK_PAGE locks the pages and linkage section of the locked routine into the
working set and JSRs to it. This macro is placed inline in executable code. All
code between this macro and the matching $UNLOCK_PAGE macro is included
in the locked routine and is locked down.

$UNLOCK_PAGE returns from the locked routine and then unlocks the
pages and linkage section from the working set. The macro is placed inline in
executable code at some point after a $LOCK_PAGE macro.

$LOCK_PAGE and $UNLOCK_PAGE both have an optional parameter, ERROR,
which is an error address to which to branch if the $LKWSET or $ULWSET
calls fail. $UNLOCK_PAGE has a second optional parameter, LINK_SECT.
LINK_SECT is a linkage psect to which to return if the linkage psect in effect
when the $LOCK_PAGE macro was executed was not the default linkage psect,
$LINKAGE.

All registers are preserved by both macros unless the error address parameter is
present and one of the calls fail, in which case R0 reflects the status of the failed
call. R1 then contains 0 if the call to lock or unlock the code failed, and 1 if that
call succeeded but the call to lock or unlock the linkage section failed.
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Control must enter the code through the $LOCK_PAGE macro, and must leave
through the $UNLOCK_PAGE macro. The local symbol block that is in effect
when the $LOCK_PAGE macro is executed is restored when the $UNLOCK_
PAGE macro is executed, but since the locked code becomes a separate routine,
the locked code itself is a separate local symbol block. Even if named symbols are
used, branches into or out of the locked code section are not allowed, and will be
flagged by the compiler with the following error:

%AMAC-E-MULTLKSEC, Routines which share code must use the same linkage psect.

Note that since the locked code is made into a separate routine, any references
to local stack storage within the routine will have to be changed, as the stack
context is no longer the same.

Note

Because on-the-fly lockdown requires the overhead of four system
service calls plus an extra subroutine call every time it is executed, it
is recommended that this be changed to initialization-time lockdown if
the lockdown is done for any performance-critical code. If other routines
in the image use initialization-time lockdown, then you must change the
on-the-fly lockdown to initialization-time lockdown.

Table 3–2 shows the code changes required to use these macros for on-the-fly
lockdown. Note that the $UNLOCK_PAGE macro precedes the RSB, so that it is
executed. Any status being passed by the routine in R0 and R1 remains intact
because $UNLOCK_PAGE preserves these registers.

Table 3–2 On-the-Fly Lockdown

Code Section On VAX Systems On Alpha Systems

Main code

Routine_A:
.
.
.

SETIPL 100$
.
.
.

RSB
100$: .LONG IPL$SYNCH

Routine_A:
.JSB_ENTRY
.
.
.

$LOCK_PAGE
.
.
.

$UNLOCK_PAGE
RSB

Table 3–3 shows the same original code and the changes necessary for
initialization-time lockdown.
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Table 3–3 Image Initialization-Time Lockdown with the Same Code

Code Section On VAX Systems On Alpha Systems

Initialization

Nothing. $LOCK_PAGE_INIT

Main code

Routine_A:
.
.
.

SETIPL 100$
.
.
.

RSB
100$: .LONG IPL$SYNCH

$LOCKED_PAGE_START

Routine_A:
.JSB_ENTRY
.
.
.

RSB
$LOCKED_PAGE_END

3.11 Synchronization
The following statements and recommendations regarding synchronization are
relevant to the porting of code from VAX systems to Alpha systems:

1. Code that issues longword operations to aligned longwords in memory
continues to work on Alpha systems without additional synchronization
required. This is architecturally guaranteed.

The Alpha architecture extends this guarantee to include quadword
operations to aligned quadwords in memory. However, this is not backwards-
compatible to VAX systems. Only Alpha code can depend upon this feature.

2. Interlocked instructions (BBSSI, BBCCI, and ADAWI) still work. However,
keep the following in mind when you use them:

a. When compiling these instructions, the MACRO-32 compiler provides
memory barrier functionality implicitly.

b. These instructions assume a byte granularity environment. If the data
segment on which these instructions operate can be concurrently written
by different threads, you may need to impose additional synchronization
of the data segment using the MACRO-32 compiler’s PRESERVE feature.

c. Another way to address the byte granularity problem and achieve greater
performance at the same time is to restructure the data segments to be
unpacked. That is, the bit that is changed by BBSSI or BBCCI, or the
word that is modified by ADAWI, should reside in a longword where the
other portions of the longword are not modified by an independent and
concurrent instruction thread.

Further separation of the data in question, such that independent
and concurrent access to any location in the aligned 128-byte lock
range that contains the data is not occurring, will result in additional
performance gains on many Alpha implementations of the Load-
locked/Store-conditional instructions.

3. The VAX interlocked queue instructions work unchanged on Alpha systems
and result in the PALcode equivalents being called which incorporate the
necessary interlocks and memory barriers.
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Note that the noninterlocked queue instructions are also compiled to their
PALcode equivalents and that they are still atomic on a single processor.

4. The VAX synchronization tools work unchanged on Alpha. All of the
following mechanisms use interlocked instructions directly or indirectly for
synchronization. The interlocked instructions that are used provide memory
barriers transparently.

• Event Flags—all of the system services that manipulate them

• Spin locks—all of the acquisition and release operators (LOCK and
UNLOCK, FORKLOCK and FORKUNLOCK, DEVICELOCK and
DEVICEUNLOCK)

• Mutexes—protected by spin locks

Note

This synchronization guarantee is only true for multiprocessing systems.
The uniprocessing version of spin locks does not use interlocked
instructions. As a result, memory barriers are not provided in
uniprocessor spin lock, mutex, and lock manager synchronization.

• Lock Manager—protected by spin locks

5. Regarding ASTs, concurrent threads and atomicity, one must either redesign
the code or force atomicity using features provided by the compilers. The
MACRO-32 compiler provides the PRESERVE feature.

6. Code that modifies exception handlers may require changes if it is possible
for an outstanding arithmetic trap or a machine abort or both to occur
asynchronously. The TRAPB and DRAINA instructions provide the
synchronization mechanisms that are required. If you want to force
synchronization when changing handlers, you must manually add these
to your program as shown in the following example:

ADDL3 R1, R2, 4(R3) ; Save total
EVAX_TRAPB ; Insure any arithmetic traps handled by

; existing handler
MOVAB HANDLER2, 0(FP) ; Enable new condition handler

7. When writing OpenVMS Alpha assembly language code, make sure that you
understand the read/write ordering of the Alpha architecture. Encode MB
instructions where necessary.
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Improving the Performance of Ported Code

This chapter describes how you can improve the performance of your ported code.
The topics described in this chapter follow:

• Aligning data (Section 4.1)

• Code flow and branch prediction (Section 4.2)

• Code optimization (Section 4.3)

• Common-based referencing (Section 4.4)

4.1 Aligning Data
An unaligned data reference will work but will be slow on OpenVMS Alpha,
because the system must take an unaligned address fault to complete the
unaligned reference. If it is known that a data reference is unaligned, the
compiler can generate unaligned quadword loads and masks to manually extract
the data. This is slower than an aligned load but much faster than taking an
alignment fault. Global data labels that are not longword or quadword aligned
are flagged with information-level messages.

In addition, unaligned memory modification references cannot be made atomic
with /PRESERVE=ATOMICITY or .PRESERVE ATOMICITY. If this is attempted,
it will cause a fatal reserved operand fault.

4.1.1 Alignment Assumptions
By default, the compiler assumes the following:

• Addresses in registers used as base pointers are longword aligned at routine
entry

• External references are longword aligned

• Addresses that resulted from certain types of instructions, such as DIVL, are
assumed unaligned

Every time a register is changed, the compiler determines whether the base
address in the register is still aligned. If the register and specified offset result
in an aligned address, the compiler uses an aligned load or store for a memory
reference. The compiler attempts to track register usage in terms of whether
the base address remains aligned. When a stored memory address is loaded, for
instance, MOVL 4(R1),R0, or used indirectly for instance, MOVL@4(R1),R0, the
compiler assumes the resulting address is aligned.

For quadword memory references such as MOVQ instructions, the compiler
assumes the base address is quadword aligned, unless it has determined by
means of its register tracking code that the address may not be longword aligned.
In other words, quadword register alignment is not tracked—only longword
alignment.
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Quadword references in Alpha built-ins, such as those in the following example,
will be in new code, where alignment should be correct. Therefore all memory
references in the following example will use aligned quadword load/stores:

EVAX_LDQ R1, (R2)
EVAX_ADDQ (R1), #1, (R3)

If an Alpha built-in (other than EVAX_LDQU or EVAX_STQU) is used on an
address that is not quadword aligned, an alignment fault will occur at run time.

4.1.2 Directives and Qualifier for Changing Alignment Assumptions
The compiler provides two directives and one qualifier for changing the compiler’s
alignment assumptions. Both directives enable the compiler to produce more
efficient code. The .SET_REGISTERS directive allows you to specify whether a
register is aligned or unaligned. This directive should be used when the result
of an operation is the reverse of what the compiler expects. It also allows you to
declare registers that the compiler would not otherwise detect as input or output
registers.

The .SYMBOL_ALIGNMENT directive allows you to specify the alignment of any
memory reference that uses a symbolic offset. This directive should be used when
you know the data will be aligned for every use of the symbolic offset.

These directives are described in detail in Appendix B. The examples in each
description show how to use them.

The /UNALIGN qualifier to the MACRO/MIGRATION command tells the compiler
to assume unaligned all the time for all register-based memory references rather
than try to track the alignment. This does not affect stack-based or static
references where the compiler knows the alignment.

This qualifier is described in detail in Appendix A.

4.1.3 Precedence of Alignment Controls
The order of precedence of the compiler’s alignment controls, from strongest
(.SYMBOL_ALIGNMENT) to weakest (built-in assumptions and tracking
mechanisms), follows:

1. .SYMBOL_ALIGNMENT directive

2. .SET_REGISTER directive

3. /UNALIGN qualifier

4. Built-in assumptions and tracking mechanisms

4.1.4 Recommendations for Aligning Data
The following recommendations are provided for aligning data:

• If references to the data must be made atomic with /PRESERVE=ATOMICITY
or .PRESERVE ATOMICITY, the data must be aligned.

• Do not fix alignment problems in public interfaces; this could break existing
programs.
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• For data in internal or privileged interfaces, do not automatically make
changes to improve data alignment. You should consider the frequency
with which the data structure is accessed, the amount of work involved
in realigning the structure, and the risk that things might go wrong. In
judging the amount of work involved, make sure you know all accesses to
the data, do not just guess. If you own all accesses in the code for which you
are responsible and if you are making changes in the module (or modules)
anyway, then it is safe to fix the alignment problem.

• Do not routinely unpack byte and word data into longwords or quadwords.
The time to do this is when you are fixing an alignment problem (word not on
word boundary), subject to the aforementioned cautions and constraints, or if
you know the data granularity is a problem.

• If you do not own all the accesses to the data, there still may be circumstances
under which fixing alignment is appropriate. If the data is frequently
accessed, if performance is a real issue, and if you must unavoidably scramble
the data structure anyway, it makes sense to align the structure at the same
time.

It is important that you notify other programmers whose code may be
affected. Do not assume in such cases that all related modules will recompile
or that program documentation will help others detect errant data cell
separation assumptions. Always assume that changes like this will reveal
irregular programming practices and not go smoothly.

4.2 Code Flow and Branch Prediction
The Alpha architecture is pipelined, which means that before completing
the current instruction, it starts to execute several instructions beyond it.
By tailoring the code to keep the pipeline filled, you can make the code run
significantly faster.

On each conditional branch, the Alpha architecture attempts to predict whether
or not the branch is taken so that it can correctly fill the instruction pipeline
with the next instruction to be executed. The architecture predicts that forward
conditional branches will not be taken and backward conditional branches will
be taken. A mispredicted branch costs extra time because the pipeline must be
flushed, and, in addition, the instruction at the branch destination may not be in
the instruction cache.

The compiler tries to follow the flow of the VAX MACRO code to generate Alpha
code that has the most common code path in a contiguous block, to allow the
pipelined Alpha architecture to process the code with the greatest efficiency.
However, in some situations, the compiler’s default rules do not generate the
most efficient code. In performance sensitive code sections, you can often improve
the efficiency of the generated code by giving the compiler information about
which code paths will most likely be taken.
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4.2.1 Default Code Flow and Branch Prediction
Generally, the compiler generates Alpha code that follows unconditional VAX
MACRO branches and falls through conditional VAX MACRO branches unless
it is directed otherwise. For example, consider the following VAX MACRO code
sequence:

(Code block A)
BLBS R0,10$
(Code block B)

10$:
(Code block C)
BRB 30$

20$:
.
(Code block D)
.

30$:
(Code block E)

The Alpha code generated for this sequence looks like the following:

(Code block A)
BLBS R0,10$
(Code block B)

10$:
(Code block C)

30$:
(Code block E)

Note that the compiler fell through the BLBS instruction, continuing with the
instructions immediately following the BLBS. At the BRB instruction, it did not
generate a branch instruction at all but followed the Alpha code generated from
Code block C with the Alpha code generated from Code block E, at the branch
destination. Code from Code block D at label 20$ will be generated at a later
point in the routine. If there is no branch to the label 20$, the compiler will
report the following informational message and will not generate Alpha code for
Code block D:

UNRCHCODE, unreachable code

In most cases, this algorithm produces Alpha code that matches the assumptions
of the architecture:

• If a conditional branch is backward in the VAX MACRO code, then the
destination likely has been generated already in the Alpha code, and so the
generated branch will also be backward.

• If the conditional branch is forward in the VAX MACRO code, then the
destination will likely not have been generated yet in the Alpha code, and so
the generated branch will also be forward.

However, because the compiler follows unconditional branches, the destination of
a backward VAX MACRO branch may not have been generated yet. In this case,
a conditional branch that was backward in the VAX MACRO source code may
become a forward branch in the generated Alpha code. See Section 4.2.5 for a
further discussion and resolution of this problem.
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There are some cases where the compiler may assume that a forward branch is
taken. For example, consider the following common VAX MACRO coding practice:

JSB XYZ ;Call a routine
BLBS R0,10$ ;Branch to continue on success
BRW ERROR ;Destination too far for byte offset

10$:

In this case, and any case where the inline code following the branch is only a
few lines and does not rejoin the code flow at the branch destination, the forward
branch is considered taken. This eliminates the delay that occurs on Alpha
systems for a mispredicted branch. The compiler will automatically change the
sense of the branch, and will move the code between the branch and the label out
of line to a point beyond the normal exit of the routine. For this example it would
generate the following code:

JSR XYZ
BLBC $L1

10$:
.
.
.
(routine exit)

$L1: BRW ERROR

4.2.2 Changing the Compiler’s Branch Prediction
The compiler provides two directives, .BRANCH_LIKELY and .BRANCH_
UNLIKELY, to change its assumptions about branch prediction. The directive
.BRANCH_LIKELY is for use with forward conditional branches when the
probability of the branch is large, say 75 percent or more. The directive
.BRANCH_UNLIKELY is for use with backward conditional branches when
the probability of the branch is less than 25 percent.

These directives should only be used in performance-sensitive code. Furthermore,
you should be more cautious when adding .BRANCH_UNLIKELY, because it
introduces an additional branch indirection for the case when the branch is
actually taken. That is, the branch is changed to a forward branch to a branch
instruction, which in turn branches to the original branch target.

There is no directive to tell the compiler not to follow an unconditional branch.
However, if you want the compiler to generate code that does not follow the
branch, you can change the unconditional branch to be a conditional branch that
you know will always be taken. For example, if you know that in the current code
section R3 always contains the address of a data structure, you could change a
BRB instruction to a TSTL R3 followed by a BNEQ instruction. This branch will
always be taken, but the compiler will fall through and continue code generation
with the next instruction. This will always cause a mispredicted branch when
executed, but may be useful in some situations.
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4.2.3 How to Use .BRANCH_LIKELY
If your code has forward conditional branches that you know will most likely
be taken, you can instruct the compiler to generate code using that assumption
by inserting the directive .BRANCH_LIKELY immediately before the branch
instruction. For example:

MOVL (R0),R1 ; Get structure
.BRANCH_LIKELY
BNEQ 10$ ; Structure exists
.
(Code to deal with missing structure, which is too large for
the compiler to automatically change the branch prediction)
.

10$:

The compiler will follow the branch and will modify the code flow as described in
the previous example, moving all the code that deals with the missing structure
out of line to the end of the module.

4.2.4 How to Use .BRANCH_UNLIKELY
If your code has backward conditional branches which you know will most
likely not be taken, you can instruct the compiler to generate code using that
assumption by inserting the directive .BRANCH_UNLIKELY immediately before
the branch instruction. For example:

MOVL #QUEUE,R0 ;Get queue header
10$: MOVL (R0),R0 ;Get entry from queue

BEQL 20$ ;Forward branch assumed unlikely
. ;by default
. ;Process queue entry
.
TSTL (R0) ;More than one entry (known to be
.BRANCH_UNLIKELY ;unlikely)
BNEQ 10$ ;This branch made into forward

20$: ;conditional branch

The .BRANCH_UNLIKELY directive is used here because the Alpha hardware
would predict a backward branch to 10$ as likely to be taken. The programmer
knows it is a rare case, so the directive is used to change the branch to a forward
branch, which is predicted not taken.

There is an unconditional branch instruction at the forward branch destination
which branches back to the original destination. Again, this code fragment is
moved to a point beyond the normal routine exit point. The code that would be
generated by the previous VAX MACRO code follows:

LDQ R0, 48(R27) ;Get address of QUEUE from linkage sect.
10$: LDL R0, (R0) ;Get entry from QUEUE

BEQ R0, 20$
.
. ;Process queue entry
.
LDL R22, (R0) ;Load temporary register with (R0)
BNE R22,$L1 ;Conditional forward branch predicted

20$: ;not taken by Alpha hardware
.
.
.
(routine exit)

$L1: BR 10$ ;Branch to original destination
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4.2.5 Forward Jumps into Loops
Because of the way that the compiler follows the code flow, a particular case that
may not compile well is a forward unconditional branch into a loop. The code
generated for this case usually splits the loop into two widely separated pieces.
For example, consider the following macro coding construct:

(Allocate a data block and set up initial pointer)
BRB 20$

10$: (Move block pointer to next section to be moved)

20$: (Move block of data)
(Test - is there more to move?)
(Yes, branch to 10$)

(Remainder of routine)

The macro compiler will follow the BRB instruction when generating the code flow
and will then fall through the subsequent conditional branch to 10$. However,
because the code at 10$ was skipped over by the BRB instruction, it will not be
generated until after the end of the routine. This will convert the conditional
branch into a forward branch instead of a backward branch. The generated code
layout will look like the following:

(Allocate a data block and set up initial pointer)
20$: (Move block of data)

(Test - is there more to move?)
(Yes, branch to 10$)
.
.
(Remainder of routine)
(Routine exit)
.
.

10$: (Move block pointer to next section to be moved)
BRB 20$

This results in the loop being very slow because the branch to 10$ is always
predicted not taken, and the code flow has to keep going back and forth between
the two locations. This situation can be fixed by inserting a .BRANCH_LIKELY
directive before the conditional branch back to 10$. This will result in the
following code flow:

(Allocate a data block and set up initial pointer)
20$: (Move block of data)

(Test - is there more to move?)
(No, branch to $L1)
10$: (Move block pointer to next section to be moved)

BRB 20$
$L1:

(Remainder of routine)

4.3 Code Optimization
The MACRO-32 compiler performs several optimizations on the generated code.
It performs all of them by default except VAXREGS. You can change these default
values with the /OPTIMIZE switch on the command line. The valid options are:

• ADDRESSES

The compiler recognizes that the same address is referenced multiple times,
and only loads the address once for use by multiple references.
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• REFERENCES

The compiler recognizes that the same data value is referenced multiple
times, and only loads the data once for use by multiple references, subject to
restrictions to ensure that the data being used is not stale.

• PEEPHOLE

The compiler identifies instruction sequences that can be identically
performed by smaller instruction sequences, and replaces the longer
sequences with the shorter ones.

• SCHEDULING

The compiler uses its knowledge of the nature of the multiple instruction
issue ability of the Alpha architecture to reschedule the code for optimum
performance.

• VAXREGS

By default, the registers from R13 through R28 may be used as temporary
scratch registers by the compiler if they are not used in the source code.
When VAXREGS is specified, the compiler may also use any of the VAX
register set (R0 through R12) that are not explicitly used by the MACRO
source code. VAX registers used in this way will be restored to their original
values at routine exit unless declared SCRATCH.

Note

Debugging is simplified if you specify /NOOPTIMIZE, because the
optimizations include relocating and rescheduling code. For more
information, see Section 2.12.1.

4.3.1 Using the VAXREGS Optimization
To use the VAXREGS optimization, you must ensure that all routines correctly
declare their register usage in their .CALL_ENTRY, .JSB_ENTRY, or .JSB32_
ENTRY routine declarations. In addition, you must identify any VAX registers
that are required or modified by any routines that are called. By default, the
compiler assumes that no VAX registers are required as input to any called
routine, and that all VAX registers except R0 and R1 are preserved across
the call. To declare this usage, use the READ and WRITTEN qualifiers to the
compiler directive .SET_REGISTERS. For example:

.SET_REGISTERS READ=<R3,R4>, WRITTEN=R5
JSB DO_SOMETHING_USEFUL

In this example, the compiler will assume that R3 and R4 are required inputs
to the routine DO_SOMETHING_USEFUL, and that R5 is overwritten by the
routine. The register usage can be determined by using the input mask of DO_
SOMETHING_USEFUL as the READ qualifier, and the combined output and
scratch masks as the WRITE qualifier.

Note

Using the VAXREGS qualifier without correct register declaration for both
routine entry points and routine calls will produce incorrect code.
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4.4 Common-Based Referencing
On an Alpha system, references to data cells generally require two memory
references—one reference to load the data cell address from the linkage section
and another reference to the data cell itself. If several data cells are located in
proximity to one other, and the ADDRESSES optimization is used, the compiler
can load a register with a common base address and then reference the individual
data cells as offsets from that base address. This eliminates the load of each
individual data cell address and is known as common-based referencing.

The compiler performs this optimization automatically for local data psects when
the ADDRESSES optimization is turned on. The compiler generates symbols of
the form $PSECT_BASEn to use as the base of a local psect.

To use common-based referencing for external data psects, you must create a
prefix file which defines symbols as offsets from a common base. The prefix file
cannot be used when assembling the module for OpenVMS VAX because the VAX
MACRO assembler does not allow symbols to be defined as offsets from external
symbols.

4.4.1 Creating a Prefix File for Common-Based Referencing
The following example illustrates the benefits of creating a prefix file to use
common-based referencing. It shows:

• Code generated without the use of a prefix file

• How to create a prefix file

• Code generated with the use of a prefix file

Consider the following simple code section (CODE.MAR), which refers to data
cells in another module (DATA.MAR):

Module DATA.MAR:

.PSECT DATA NOEXE
BASE::
A:: .LONG 1
B:: .LONG 2
C:: .LONG 3
D:: .LONG 4

.END

Module CODE.MAR:

.PSECT CODE NOWRT

E:: .CALL_ENTRY
MOVL A,R1
MOVL B,R2
MOVL C,R3
MOVL D,R4
RET
.END

When compiling CODE.MAR without using common-based referencing, the
following code is generated:

In the linkage section:

.ADDRESS A

.ADDRESS B

.ADDRESS C

.ADDRESS D
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In the code section (not including the prologue/epilogue code):

LDQ R28, 40(R27) ;Load address of A from linkage section
LDQ R26, 48(R27) ;Load address of B from linkage section
LDQ R25, 56(R27) ;Load address of C from linkage section
LDQ R24, 64(R27) ;Load address of D from linkage section
LDL R1, (R28) ;Load value of A
LDL R2, (R26) ;Load value of B
LDL R3, (R25) ;Load value of C
LDL R4, (R24) ;Load value of D

By creating a prefix file that defines external data cells as offsets from a common
base address, you can cause the compiler to use common-based referencing for
external references. A prefix file for this example, which defines A, B, C, and D in
terms of BASE, follows:

A = BASE+0
B = BASE+4
C = BASE+8
D = BASE+12

When compiling CODE.MAR using this prefix file and the ADDRESSES
optimization, the following code is generated:

In the linkage section:

.ADDRESS BASE ;Base of data psect

In the code section (not including the prologue/epilogue code):

LDQ R16, 40(R27) ;Load address of BASE from linkage section
LDL R1, (R16) ;Load value of A
LDL R2, 4(R16) ;Load value of B
LDL R3, 8(R16) ;Load value of C
LDL R4, 12(R16) ;Load value of D

In this example, common-based referencing shrinks the size of both the code and
the linkage sections and eliminates three memory references. This method of
creating a prefix file to enable common-based referencing of external data cells
can be useful if you have one large, separate module that defines a data area
used by many modules.
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MACRO-32 Programming Support for 64-Bit

Addressing

This chapter describes the 64-bit addressing support provided by the MACRO-32
compiler and associated components. The changes are primarily for argument
passing and receiving and for address computations.

5.1 Guidelines for 64-Bit Addressing
The following guidelines pertain to using 64-bit addressing in VAX MACRO code
that is compiled for OpenVMS Alpha:

• Limit its use to code that you have ported to OpenVMS Alpha.

For any new development on OpenVMS Alpha, Compaq recommends the use
of higher-level languages.

• Make 64-bit addressing explicit in your code.

The 64-bit addressing qualifiers, macros, directives, and built-ins produce
code that is more reliable and easier to maintain.

5.2 New and Changed Components for 64-Bit Addressing
The new and changed components that provide MACRO-32 programming support
for 64-bit addressing are shown in Table 5–1.

Table 5–1 New and Changed Components for 64-Bit Addressing

Component Description

$SETUP_CALL64 New macro that initializes the call sequence.

$PUSH_ARG64 New macro that does the equivalent of argument
pushes.

$CALL64 New macro that invokes the target routine.

$IS_32BITS New macro for checking the sign extension of the low
32 bits of a 64-bit value.

$IS_DESC64 New macro for determining if descriptor is a 64-bit
format descriptor.

QUAD=NO/YES New parameter for page macros to support 64-bit
virtual addresses.

/ENABLE=QUADWORD The QUADWORD parameter was extended to include
64-bit address computations.

(continued on next page)
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Table 5–1 (Cont.) New and Changed Components for 64-Bit Addressing

Component Description

.CALL_ENTRY QUAD_
ARGS=TRUE | FALSE

QUAD_ARGS=TRUE | FALSE is a new parameter
that indicates the presence (or absence) of quadword
references to the argument list.

.ENABLE
QUADWORD/.DISABLE
QUADWORD

The QUADWORD parameter was extended to include
64-bit address computations.

EVAX_SEXTL New built-in for sign extending the low 32 bits of a
64-bit value into a destination.

EVAX_CALLG_64 New built-in to support 64-bit calls with variable-size
argument lists.

$RAB64 and $RAB64_STORE New RMS macros for using buffers in 64-bit address
space.

5.3 Passing 64-Bit Values
The method that you use for passing 64-bit values depends on whether the size
of the argument list is fixed or variable. These methods are described in the
following sections.

5.3.1 Calls with a Fixed-Size Argument List
For calls with a fixed-size argument list, use the new macros shown in Table 5–2.

Table 5–2 Passing 64-Bit Values with a Fixed-Size Argument List

Step Use...

1. Initialize the call sequence $SETUP_CALL64

2. ‘‘Push’’ the call arguments $PUSH_ARG64

3. Invoke the target routine $CALL64

An example of using these macros follows. Note that the arguments are pushed
in reverse order, which is the same way a 32-bit PUSHL instruction is used.

MOVL 8(AP), R5 ; fetch a longword to be passed
$SETUP_CALL64 3 ; Specify three arguments in call
$PUSH_ARG64 8(R0) ; Push argument #3
$PUSH_ARG64 R5 ; Push argument #2
$PUSH_ARG64 #8 ; Push argument #1
$CALL64 some_routine ; Call the routine

The $SETUP_CALL64 macro initializes the state for a 64-bit call. It is required
before $PUSH_ARG64 or $CALL64 can be used. If the number of arguments
is greater than six, this macro creates a local JSB routine, which is invoked to
perform the call. Otherwise, the argument loads and call are inline and very
efficient. Note that the argument count specified in the $SETUP_CALL64 does
not include a pound sign (#). (The standard call sequence requires octaword
alignment of the stack with its arguments at the top. The JSB routine facilitates
this alignment.)
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The inline option can be used to force a call with greater than six arguments to
be done without a local JSB routine. However, there are restrictions on its use
(see Appendix E).

The $PUSH_ARG64 macro moves the argument directly to the correct argument
register or stack location. It is not actually a stack push, but it is the analog of
the PUSHL instructions used in a 32-bit call.

The $CALL64 macro sets up the argument count register and invokes the target
routine. If a JSB routine was created, it ends the routine. It reports an error if
the number of arguments pushed does not match the count specified in $SETUP_
CALL64. Both $CALL64 and $PUSH_ARG64 check that $SETUP_CALL64 has
been invoked prior to their use.

5.3.1.1 Usage Notes for $SETUP_CALL64, $PUSH_ARG64, and $CALL64
Keep these points in mind when using $SETUP_CALL64, $PUSH_ARG64, and
$CALL64:

• The arguments are read as aligned quadwords. To pass a longword from
memory, move it to a register first, and then use that register in $PUSH_
ARG64, as shown in the example in Section 5.3.1. Similarly, if you know the
quadword you want to pass is unaligned, move the value to a register first.
Also, keep in mind that indexed operands, such as (R4)[R0], will be evaluated
using quadword indexing when used in $PUSH_ARG64.

• If the number of arguments is greater than six, so that a local JSB routine is
created, no SP or AP references are allowed between the $SETUP_CALL64
and $CALL64. The $PUSH_ARG64 and $CALL64 macros do report uses of
these registers in operands, but they are not allowed in other instructions in
this range and cannot be flagged. To pass an AP- or SP-based argument in
this case, move it to a register before the $SETUP_CALL64 invocation.

• If the number of arguments is greater than six, do not rely on values in
registers above R15 surviving the $SETUP_CALL64 invocation. Use a
nonscratch register as a temporary register instead. For example, suppose
you want to pass a value from a stack location, and the call has more than
six arguments. In this case, you need to move the value to a register. Rather
than using a scratch register such as R28, use a VAX register, such as R0. If
all the VAX registers are in use, use R13, R14, or R15.

• It is safe to use the scratch registers above R16 within the range between the
$SETUP_CALL64 and the $CALL64. However, you must be careful not to use
an argument register that has already been loaded. The argument registers
are loaded in downward order, from R21 through R16. So, suppose a call
passes six arguments. It is not safe to use R21 after the first $PUSH_ARG64,
because that has loaded R21. The $PUSH_ARG64 macro checks for operands
that refer to argument registers that have already been loaded. If any are
found, the compiler reports a warning. The safest approach is to use registers
R22 through R28 when a temporary register is required.

Note

The $SETUP_CALL64, $PUSH_ARG64, and $CALL64 macros are
intended to be used in an inline sequence. That is, you cannot branch into
the middle of a $SETUP_CALL64/$PUSH_ARG64/$CALL64 sequence,
nor can you branch around $PUSH_ARG64 macros or branch out of the
sequence to avoid the $CALL64.
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For more information about $SETUP_CALL64, $PUSH_ARG64, and $CALL64,
see Appendix E.

5.3.2 Calls with a Variable-Size Argument List
For calls with a variable-size argument list, use the new EVAX_CALLG_64
built-in, as shown in the following steps:

1. Create an in-memory argument list.

2. Call a routine, passing the in-memory argument list. For example:

EVAX_CALLG_64 (Rn), routine

The argument list in the EVAX_CALLG_64 built-in is read as a series of
quadwords, beginning with a quadword argument count.

5.4 Declaring 64-Bit Arguments
You can use QUAD_ARGS=TRUE, a new .CALL_ENTRY parameter, to declare
the use of quadword arguments in a routine’s argument list. With the presence of
the QUAD_ARGS parameter, the compiler behaves differently when a quadword
reference to the argument list occurs. First, it does not force argument-list
homing, which such a reference normally requires. (An argument list containing
a quadword value cannot be homed because homing, by definition, packs the
arguments into longword slots.) Second, unaligned memory reference will not
be reported on these quadword references to the argument list.

Note that the actual code generated for the argument-list reference itself is not
changed by the presence of the QUAD_ARGS clause, except when the reference is
in a VAX quadword instruction, such as MOVQ. For the most part, QUAD_ARGS
only prevents argument-list homing due to a quadword reference and suppresses
needless alignment messages. This suppression applies to both EVAX_ built-ins
and VAX quadword instructions such as MOVQ.

For VAX quadword instructions, the QUAD_ARGS clause causes the compiler
to read the quadword argument as it does for EVAX_ built-ins—as an actual
quadword. Consider the following example:

MOVQ 4(AP), 8(R2)

If the QUAD_ARGS clause is specified, MOVQ stores the entire 64 bits of
argument 1 into the quadword at 8(R2). If the QUAD_ARGS clause is not
specified, MOVQ stores the low longwords of arguments 1 and 2 into the
quadword at 8(R2).

QUAD_ARGS also affects the code generated for deferred mode operands that are
AP-based. If the effective address must be loaded from an argument in memory,
it will be read as a quadword, rather than a longword, if QUAD_ARGS is in
effect.

5.4.1 Usage Notes for QUAD_ARGS
Keep these points in mind when using QUAD_ARGS:

• AP-based quadword argument-list references look strange because they
appear to overlap. You can improve this situation by defining symbolic names
for the argument-list offsets, for example, FIRST_ARG, SECOND_ARG, and
so forth. Users are encouraged to define meaningful symbolic names that
describe the uses of the arguments to make the source code more readable.
Alternatively, you can still use direct argument register references to refer to
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the first six arguments. Either way, it is useful to declare QUAD_ARGS to
ensure that the argument list is not homed.

• Routines that share code must have the same setting for QUAD_ARGS. If
they do not, the compiler will report a warning message.

• JSB routines cannot refer to their caller’s argument list if the caller has
QUAD_ARGS. References to AP within JSB routines require that the last
CALL_ENTRY have its argument list homed. HOME_ARGS and QUAD_
ARGS are mutually exclusive.

• QUAD_ARGS causes the $ARGn symbols, which the compiler places in the
debug symbol table, to be defined as quadwords rather than longwords. These
symbols allow easy access to received argument values and can be used in
place of register numbers or stack offsets when debugging with the symbolic
debugger.

5.5 Specifying 64-Bit Address Arithmetic
There are no explicit pointer-type declarations in MACRO-32. You can create a
64-bit pointer value in a register in a variety of ways. The most common are the
EVAX_LDQ built-in for loading an address stored in memory and the MOVAx for
getting the address of the specified operand.

After a 64-bit pointer value is in a register, an ordinary instruction will access
the 64-bit address. The amount of data read from that address depends on the
instruction used. Consider the following example:

MOVL 4(R1), R0

The MOVL instruction reads the longword at offset 4 from R1, regardless of
whether R1 contains a 32- or 64-bit pointer.

However, certain addressing modes require the generation of arithmetic
instructions to compute the effective address. For VAX compatibility, the
compiler computes these as longword operations. For example, 4 + <1@33> yields
the value 4 because the shifted value exceeds 32 bits. If quadword mode is
enabled, the upper bit will not be lost.

In compilers shipping with previous versions of OpenVMS Alpha, the
/ENABLE=QUADWORD qualifier (and the corresponding .ENABLE
QUADWORD and .DISABLE QUADWORD directives) only affected the mode
in which constant expression evaluations were performed. For OpenVMS Alpha
Version 7.0, these have been extended to affect address computations. They will
result in addresses being computed with quadword instructions, such as SxADDQ
and ADDQ.

To have quadword operations used throughout a module, specify
/ENABLE=QUADWORD on the command line. If you want quadword operations
applied only to certain sections, use the .ENABLE QUADWORD and .DISABLE
QUADWORD directives to enclose those sections.

There is no performance penalty when using /ENABLE=QUADWORD.
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5.5.1 Dependence on Wrapping Behavior of Longword Operations
The compiler cannot use quadword arithmetic for all addressing computations
because existing code may rely on the wrapping behavior of the 32-bit operations.
That is, code may perform addressing operations that actually overflow 32 bits,
knowing that the upper bits are discarded. Doing the calculation in quadword
mode causes an incompatibility.

Before using /ENABLE to set quadword evaluation for an entire module, check
the existing code for dependence on longword wrapping. There is no simple way
to do this, but as a programming technique, it should be rare and may be called
out in the code.

The following example shows the wrapping problem:

MOVAL (R1)[R0], R2

Suppose R1 contains the value 7FFFFFFF and R0 contains 1. The MOVAL
instruction generates an S4ADDL instruction. The shift and add result exceeds
32 bits, but the stored result is the low 32 bits, sign-extended.

If quadword arithmetic were used (S4ADDQ), the true quadword value would
result, as shown in the following example:

S4ADDL R0, R1, R2 => FFFFFFFF 80000003
S4ADDQ R0, R1, R2 => 00000000 80000003

The wrapping problem is not limited to indexed-mode addressing. Consider the
following example:

MOVAB offset(R1), R0

If the symbol offset is not a compile-time constant, this instruction causes a value
to be read from the linkage section and added (using an ADDL instruction) to the
value in R1. Changing this to ADDQ may change the result if the value exceeds
32 bits.

5.6 Sign Extending and Checking
A new built-in, EVAX_SEXTL (sign-extend longword), is available for sign
extending the low 32 bits of a 64-bit value into a destination. This built-in makes
explicit the sign extension of the low longword of the source into the destination.

EVAX_SEXTL takes the low 32 bits of the 64-bit value, fills the upper 32 bits
with the sign extension (whatever is in bit 31 of the value) and writes the 64-bit
result to the destination.

The following examples are all legal uses:

evax_sextl r1,r2
evax_sextl r1,(r2)
evax_sextl (r2), (r3)[r4]

As shown by these examples, the operands are not required to be registers.

A new macro, $IS_32BITS, is available for checking the sign extension of the low
32 bits of a 64-bit value. It is described in Appendix E.
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5.7 Alpha Instruction Built-ins
The compiler supports many Alpha instructions as built-ins. Many of these built-
ins (available since the compiler first shipped) can be used to operate on 64-bit
quantities. The function of each built-in and its valid operands are documented
in Appendix C.

5.8 Calculating Page-Size Dependent Values
A parameter, QUAD=NO/YES, for supporting 64-bit virtual addresses is available
for each of the page macros, as shown in the following list:

• $BYTES_TO_PAGES

• $NEXT_PAGE

• $PAGES_TO_BYTES

• $PREVIOUS_PAGE

• $START_OF_PAGE

These macros provide a standard, architecture-independent means for calculating
page-size dependent values. For more information about these macros, see
Appendix D.

5.9 Creating and Using Buffers in 64-Bit Address Space
The $RAB and $RAB_STORE control block macros have been extended for
creating and using data buffers in 64-bit address space. The 64-bit versions are
named $RAB64 and $RAB64_STORE, respectively. The rest of the RMS interface
is restricted to 32 bits at this time. For more information about $RAB64 and
$RAB64_STORE, see the OpenVMS Programming Concepts Manual, Volume I.

5.10 Coding for Moves Longer Than 64 KB
The MACRO-32 instructions MOVC3 and MOVC5 properly handle 64-bit
addresses but the moves are limited to a 64 KB length. This limitation is because
MOVC3 and MOVC5 accept word-sized lengths.

For moves longer than 64 KB, use OTS$MOVE3 and OTS$MOVE5. OTS$MOVE3
and OTS$MOVE5 accept longword-sized lengths. (LIB$MOVC3 and LIB$MOVC5
have the same 64 KB length restriction as MOVC3 and MOVC5.) An example of
replacing MOVC3 with OTS$MOVE3 follows.

Code using MOVC3:

MOVC3 BUF$W_LENGTH(R5), (R6), OUTPUT(R7) ; Old code, word length

The equivalent 64-bit code with longword length:

$SETUP_CALL64 3 ; Specify three arguments in call
EVAX_ADDQ R7, #OUTPUT, R7
$PUSH_ARG64 R7 ; Push destination, arg #3
$PUSH_ARG64 R6 ; Push source, arg #2
MOVL BUF$L_LENGTH(R5), R16
$PUSH_ARG64 R16 ; Push length, arg #1
$CALL64 OTS$MOVE3

MOVL BUF$L_LENGTH(R5), R16
EVAX_ADDQ R6, R16, R1 ; MOVC3 returns address past source
EVAX_ADDQ R7, R16, R3 ; MOVC3 returns address past destination
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Because MOVC3 clears R0, R2, R4, and R5, make sure that these side effects are
no longer needed.

OTS$MOVE3 and OTS$MOVE5 are documented with other LIBOTS routines in
the OpenVMS RTL General Purpose (OTS$) Manual.
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A
Compiler Qualifiers

This appendix describes the invocation format of the MACRO-32 Compiler for
OpenVMS Alpha and each of its qualifiers.

MACRO/MIGRATION
Invokes the MACRO-32 Compiler for OpenVMS Alpha to compile one or more
VAX MACRO assembly language source files into native OpenVMS Alpha object
code.

Format

MACRO/MIGRATION filespec[+...]

Parameters

filespec[+...]
Specifies a VAX MACRO assembly language source file to be compiled. If you
specify more than one file, separate the file specifications with plus signs ( + ).
File specifications separated by plus signs are concatenated into one input file
and produce a single object file and, if indicated, a listing file.

Note

Unlike the VAX assembler, the MACRO-32 compiler does not support the
creation of separate object files when the source files are separated by a
comma ( , ).

You cannot include a wildcard character in a file specification. For each file
specification, the compiler command supplies a default file type of MAR.

The compiler creates output files of one version higher than the highest version
existing in the target directory.

Description

The qualifiers to the MACRO/MIGRATION command serve as either command
(global) qualifiers or positional qualifiers. A command qualifier affects all the
files specified in the command. A positional qualifier affects only the file that
it qualifies. All MACRO/MIGRATION qualifiers except /LIBRARY are usable as
either command or positional qualifiers. The /LIBRARY qualifier is a positional
qualifier only.

Many of the qualifiers take one or more arguments. If you specify only one
argument, you can omit the parentheses.
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The compiler supports most of the standard MACRO qualifiers. Some of these
qualifiers have additional options unique to the compiler and some of them are
missing one or more VAX MACRO options. The compiler also supports several
new qualifiers, unique to the compiler. All of these qualifiers are shown in
Table A–1.

Table A–1 Compiler Qualifiers

Standard MACRO
Qualifiers New Qualifiers

/DEBUG /FLAG
/DIAGNOSTICS /MACHINE
/DISABLE1 /OPTIMIZE
/ENABLE1 /PRESERVE
/LIBRARY /RETRY_COUNT
/LIST /SYMBOLS
/OBJECT /TIE
/SHOW /UNALIGNED

/WARN

1With additional options unique to the compiler and some VAX MACRO options missing

Qualifiers

/DEBUG=(option[,...])
/NODEBUG
Includes or excludes local symbols in the symbol table or traceback information in
the object module. You can specify one or more of the following options:

Option Description

ALL Makes local symbols and traceback information in the object
module available to the debugger. This qualifier is equivalent
to /ENABLE=(DEBUG,TRACEBACK).

NONE Makes local symbols and traceback information in the
object module unavailable to the debugger. This qualifier
is equivalent to /DISABLE=(DEBUG,TRACEBACK).

SYMBOLS Makes all local symbols in the object module available and
all traceback information unavailable to the debugger. This
qualifier is equivalent to /ENABLE=SYMBOLS.

TRACEBACK Makes traceback information in the object module available
and local symbols unavailable to the debugger. This qualifier
is equivalent to /ENABLE=TRACEBACK.

The default value for /DEBUG is ALL. The /DEBUG qualifier overrides
/ENABLE=(DEBUG,TRACEBACK) or /DISABLE=(DEBUG,TRACEBACK),
regardless of their order on the command line.
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Note

Debugging can be simplified by specifying /NOOPTIMIZE. This qualifier
prevents the movement of generated code across source line boundaries.

For more information about debugging, see the OpenVMS Debugger Manual.

/DIAGNOSTICS[=filespec]
/NODIAGNOSTICS (default)
Creates a file containing assembler messages and diagnostic information. If
you omit the file specification, the default file name is the same as the source
program; the default file type is DIA.

No wildcard characters are allowed in the file specification.

The diagnostics file is reserved for use with Compaq layered products, such as the
VAX Language-Sensitive Editor (LSE).

/DISABLE=(option[,...])
/NODISABLE
Provides initial settings for the compiler functions that can be controlled by the
.DISABLE and .ENABLE MACRO directives.

You can specify one or more of the following functions:

Option Description

DEBUG Excludes local symbol table information in the object file
for use with the debugger. If the /DEBUG qualifier is also
specified, it overrides /DISABLE=(DEBUG,TRACEBACK) or
/ENABLE=(DEBUG,TRACEBACK), regardless of their order
on the command line.

FLAGGING Deactivates compiler flagging.
GLOBAL Disables the assumption that undefined symbols are external

symbols.
OVERFLOW Deactivates production of overflow trap code for the following

opcodes: ADDx, ADWC, INCx, ADAWI, SUBx, SBWC, DECx,
MNEGx, MULx, CVTxy (where x is greater than y, for
example CVTLB), AOBxx, ACBL, and SOBxx.

QUADWORD Disables support for quadword literal and address
expressions.

SUPPRESSION Prevents the listing of unreferenced symbols in the symbol
table.

TRACEBACK Disables the provision of traceback information to the
debugger. If the /DEBUG qualifier is also specified,
it overrides /DISABLE=(DEBUG,TRACEBACK) or
/ENABLE=(DEBUG,TRACEBACK), regardless of their order
on the command line.

By default, at compiler activation, FLAGGING, GLOBAL, and SUPPRESSION
are enabled, and DEBUG, OVERFLOW, QUADWORD, and TRACEBACK are
disabled.
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The /NODISABLE qualifier has the same effect as omitting the /DISABLE
qualifier. It can also be used to negate the effects of any /DISABLE qualifiers
specified earlier in the command line.

Note

If /DISABLE is used two or more times in the command line, the last
/DISABLE will override all previous uses of /DISABLE. The options not
specified in the final /DISABLE will revert to their default values.

Furthermore, if /ENABLE and /DISABLE are used in the same command
line for the same option, /DISABLE will always prevail, regardless of its
position in the command line.

Workaround—If you want to disable two or more options, specify them
in the following way:

/DISABLE=(xxxx, yyyy)

/ENABLE=(option[,...])
/NOENABLE
Provides initial settings for the compiler functions that can be controlled by the
.DISABLE and .ENABLE MACRO directives.

You can specify one or more of the following functions:

Option Description

DEBUG Includes local symbol table information in the object file
for use with the debugger. If the /DEBUG qualifier is also
specified, it overrides /ENABLE=(DEBUG,TRACEBACK) or
/DISABLE=(DEBUG,TRACEBACK), regardless of their order
on the command line.

FLAGGING Activates compiler flagging.
GLOBAL Assumes undefined symbols are external symbols.
OVERFLOW Activates production of overflow trap code for the following

opcodes: ADDx, ADWC, INCx, ADAWI, SUBx, SBWC, DECx,
MNEGx, MULx, CVTxy (where x is greater than y, for
example CVTLB), AOBxx, ACBL, and SOBxx.

QUADWORD Provides support for quadword literal and address
expressions.

SUPPRESSION Provides listing of unreferenced symbols in the symbol table.
TRACEBACK Provides traceback information to the debugger.

If the /DEBUG qualifier is also specified, it
overrides /ENABLE=(DEBUG,TRACEBACK) or
/DISABLE=(DEBUG,TRACEBACK), regardless of their
order on the command line.

By default, at compiler activation, FLAGGING, GLOBAL, TRACEBACK, and
SUPPRESSION are enabled, and DEBUG, OVERFLOW, and QUADWORD are
disabled.
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The /NOENABLE qualifier has the same effect as not specifying the /ENABLE
qualifier. It can also be used to negate the effects of any /ENABLE qualifiers
specified earlier in the command line.

Note

For every option of the /ENABLE qualifier, if /ENABLE and /DISABLE
are used in the same command line for the same option, /DISABLE will
always prevail, regardless of its position in the command line.

You may want to enable an option previously disabled through the use
of a symbol. For example, you may have incorporated the following
frequently used options into the DCL symbol MAC, as follows:

MAC::== MACRO/MIGRATION/NOTIE/DISABLE=FLAGGING

To enable FLAGGING using the symbol MAC, issue the following
command:

$ MAC /NODISABLE/ENABLE=FLAGGING

/FLAG=(option[,...])
/NOFLAG
Specifies which classes of informational messages the compiler reports. The
options are:

Option Description

ALIGNMENT Reports unaligned stack and memory references.
ALL Enables all options.
ARGLIST Reports that the argument list has been homed. (See

Section 2.3.1.)
CODEGEN Reports run-time code generation, such as self-

modifying code. (See Section 3.2.2.)
DIRECTIVES Reports unsupported directives.
HINTS Reports input/output/auto-preserved register hints.
INSTRUCTIONS Reports instructions that use absolute addresses that

may compile correctly, but should be examined anyway,
because the desired absolute address may be different
on an Alpha computer.

JUMPS Reports branches between routines.
NONE Disables all options.
STACK Reports all messages caused by user stack

manipulation.

At compiler activation, flagging is enabled by default for all options except
HINTS.

Compiler Qualifiers A–5



Compiler Qualifiers
MACRO/MIGRATION

Note

Use of the /NOFLAG and /FLAG qualifiers together to activate a specific
subset of cross-compiler messages does not work as expected. When used
together, as in /NOFLAG/FLAG=(keyword,keyword), instead of activating
only the messages specified by the keywords, all cross-compiler messages
are activated. However, use of /FLAG=(none,keyword) activates only
those messages specified by the keyword.

Note that specifying /NOFLAG or /FLAG=NONE does not disable the reporting of
coding constructs that would prevent a successful compilation. The compiler
continues to report code that you must change, such as an up-level stack
reference.

/LIBRARY
/NOLIBRARY
Positional qualifier.

The associated input file to the /LIBRARY qualifier must be a macro library.
The default file type is MLB. The /NOLIBRARY qualifier has the same effect as
not specifying the /LIBRARY qualifier, or negates the effects of any /LIBRARY
qualifiers specified earlier in the command line.

The compiler can search up to 16 libraries, one of which is always
STARLET.MLB. This number applies to a particular compilation, not necessarily
to a particular MACRO command. If you enter the MACRO command so that
more than one source file is compiled, but the source files are compiled separately,
you can specify up to 16 macro libraries for each separate compilation. More than
one macro library in a compilation causes the libraries to be searched in reverse
order of their specification.

A macro call in a source program causes the compiler to begin the following
sequence of searches:

1. An initial search of the libraries specified with the .LIBRARY directive. The
compiler searches these libraries in the reverse order of that in which they
were declared.

2. If the macro definition is not found in any of the libraries specified with
the .LIBRARY directive, a search of the libraries specified in the MACRO
command line (in the reverse order in which they were specified).

3. If the macro definition is not found in any of the libraries specified in the
command line, a search of STARLET.MLB.

/LIST[=filespec]
/NOLIST
Creates or omits an output listing, and optionally provides an output file
specification for it. The default file type for the listing file is LIS. No wildcard
characters are allowed in the file specification.

An interactive MACRO command does not produce a listing file by default. The
/NOLIST qualifier, present either explicitly or by default, causes errors to be
reported on the current output device.

The /LIST qualifier is the default for a MACRO command in a batch job. The
/LIST qualifier allows you to control the defaults applied to the output file
specification by the placement of the qualifier in the command line.
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/MACHINE
/NOMACHINE (default)
Enables machine code listing, if it and the /LIST qualifier are both specified in
the command line.

/OBJECT[=filespec]
/NOOBJECT
Creates or omits an object module. It also defines the file specification. By
default, the compiler creates an object module with the same file name as the
first input file. The default file type for object files is OBJ. No wildcard characters
are allowed in the file specification.

The /OBJECT qualifier controls the defaults applied to the output file specification
by the placement of the qualifier in the command line.

/OPTIMIZE[=(option[,...])]
/NOOPTIMIZE
Enables or disables optimization options. All options are enabled by default
except VAXREGS. (See Section 4.3.1.)

Option Description

[NO]PEEPHOLE Peephole optimization
[NO]SCHEDULE Code scheduling
[NO]ADDRESSES Common base address loading
[NO]REFERENCES Common data referencing
[NO]VAXREGS Allow the use of VAX registers (R0 through R12) as

temporary registers when they appear to be unused
ALL All optimizations
NONE No optimizations

Note that /ALL turns on VAXREGS, which may generate incorrect code unless all
register usage of all routines in the module have been correctly declared.

/PRESERVE[=(option[,...])]
/NOPRESERVE (default)
Directs the compiler to generate special OpenVMS Alpha assembly code
throughout a module for all VAX MACRO instructions that rely on VAX
guarantees of operation atomicity or granularity. (See Section 2.10.) The options
are:

Option Description

GRANULARITY Preserves the rules of VAX granularity of writes.
Specifying /PRESERVE=GRANULARITY causes the
compiler to use Alpha Load-locked and Store-conditional
instruction sequences in code it generates for VAX
instructions that perform byte, word, or unaligned
longword writes.

Compiler Qualifiers A–7



Compiler Qualifiers
MACRO/MIGRATION

Option Description

ATOMICITY Preserves atomicity of VAX modify operations.
Specifying /PRESERVE=ATOMICITY causes the
compiler to use Load...Locked and Store...Conditional
instruction sequences in code it generates for
instructions with modify operands.

/PRESERVE and /PRESERVE=(GRANULARITY,ATOMICITY) are equivalent.
When preservation of both granularity and atomicity is enabled, and the compiler
encounters a VAX coding construct that requires both granularity and atomicity
guarantees, it enforces atomicity over granularity.

If you are aware of specific sections of VAX MACRO code that require VAX
granularity and atomicity guarantees, you can forego compiler enforcement
of these guarantees for the entire module and use the .PRESERVE and
.NOPRESERVE directives (see Appendix B) to indicate those sections. Therefore,
if you can isolate that code where granularity and atomicity must apply, these
directives allow you to optimize the generated code by preventing the compiler
from generating expanded Alpha code unnecessarily.

Atomicity is guaranteed on multiprocessing systems as well as uniprocessing
systems when you specify /PRESERVE=ATOMICITY.

When the /PRESERVE qualifier is present, you can control the number of times
compiler-generated code retries a granular or atomic update by specifying the
/RETRY_COUNT qualifier.

Warning

If /PRESERVE=ATOMICITY is turned on, any unaligned data references
will result in a fatal reserved operand fault. See Section 2.10.5. If
/PRESERVE=GRANULARITY is turned on, unaligned word references to
addresses assumed aligned will also cause a fatal reserved operand fault.

/RETRY_COUNT=count
Specifies to the compiler the number of times the following operations should be
performed in generated code:

Retries of operations performed in source by a VAX interlocked instruction

Retries of atomic or granular updates if the /PRESERVE qualifier or
.PRESERVE directive is present

If the /RETRY_COUNT qualifier is not present, the compiler generates code that
performs an infinite number of retries of these operations.

/SHOW[=(function[,...])]
/NOSHOW[=(function[,...])]
Provides initial settings for the functions controlled by the compiler directives
.SHOW and .NOSHOW.

You can specify one or more of the following functions:

CONDITIONALS Lists unsatisfied conditional code associated with .IF and
.ENDC MACRO directives.
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CALLS Lists macro calls and repeat range expansions.
DEFINITIONS Lists macro definitions.
EXPANSIONS Lists macro expansions.
BINARY Lists binary code generated by the expansion of macro

calls.

/SYMBOLS
/NOSYMBOLS (default)
Generates a symbol table and psect synopsis table for the listing file if it and the
/LIST qualifier are both specified in the command line.

/TIE (default)
/NOTIE
Ensures that proper external callouts are generated for translated images.
Translated images are images that were translated with the DECMigrate (also
known as VEST) facility. The Translated Image Environment (TIE) allows
translated images to execute as if on an OpenVMS VAX system. Use /NOTIE for
better performance if you do not make calls to translated images.

/UNALIGNED
/NOUNALIGNED (default)
Forces the compiler to use unaligned loads and stores for all register-based
memory references (except those that are FP–based or SP–based or are references
to local aligned static data).

By default, the compiler assumes that addresses in registers used as base pointers
(except those that are FP–based or SP–based) are longword-aligned at routine
entry, and generates code to load BYTE, WORD, and LONG data accordingly.
This can result in run-time alignment faults, with significant performance impact,
if the assumption is incorrect. Specifying /UNALIGNED causes the compiler to
generate code assuming pointers are unaligned. This code is significantly larger,
but is more efficient than handling an alignment fault.

Note

The compiler does not track quadword register alignment. For quadword
memory references (such as in VAX MOVQ instructions), the compiler
assumes the base address is quadword aligned, unless it has determined
the address may not be longword-aligned in its register tracking code.
Quadword references in OpenVMS Alpha built-in uses are always
assumed to be quadword aligned. Since these must be in new code, the
data should be properly aligned.

The /UNALIGNED qualifier is generally appropriate only for modules where data
is often unaligned, but which are not sufficiently performance sensitive to merit
the correction of the data alignment in the source.

/WARN=[[option]...]
/NOWARN
Turns off all informational level or warning level messages. Both are on by
default.
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Option Description

INFO Turns on all informational level messages
NOINFO Turns off all informational level messages
WARN Turns on all informational and warning level messages
NOWARN Turns off all informational and warning level messages
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B
Compiler Directives

This appendix begins by briefly describing the compiler’s support of the VAX
MACRO assembler directives. Then it lists the specialized directives of the
MACRO-32 Compiler for OpenVMS Alpha and describes each one in detail.

B.1 Support of VAX MACRO Assembler Directives
The compiler supports most of the standard VAX MACRO assembler directives
discussed in the VAX MACRO and Instruction Set Reference Manual. However,
the following directives that are supported by the VAX MACRO assembler do
not make sense for compiled code. Consequently, the compiler flags them and
continues execution. You can disable the flagging of these directives by specifying
/NOFLAG=DIRECTIVES.

• .ENABLE and .DISABLE ABSOLUTE—for forcing absolute addressing modes

• .ENABLE and .DISABLE TRUNCATION—for enabling floating point
truncation

• .LINK—for specifying linker options in a linker options file

• .DEFAULT—for setting displacement lengths

• .OPDEF and .REFn —for defining opcodes

• Alignment directives (.ALIGN, .EVEN, and .ODD) in code psects

• .TRANSFER (see Section 3.7)

• .MASK

Note

The length of the argument to a .ASCID directive is limited to 996
characters when using the MACRO-32 Compiler for OpenVMS Alpha. No
such restriction exists in the VAX MACRO Assembler.

B.2 Compiler Directives
The MACRO-32 Compiler for OpenVMS Alpha provides the following specialized
directives:

• .BRANCH_LIKELY

• .BRANCH_UNLIKELY

• .CALL_ENTRY

• .DEFINE_PAL

• .DISABLE
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• .ENABLE

• .EXCEPTION_ENTRY

• .GLOBAL_LABEL

• .JSB_ENTRY

• .JSB32_ENTRY

• .LINKAGE_PSECT

• .PRESERVE

• .SET_REGISTERS

• .SYMBOL_ALIGNMENT

You can use certain arguments to these directives to indicate register sets. You
express a register set by listing the registers, separated by commas, within angle
brackets. For example:

<R1,R2,R3>

If only one register is in the set, no angle brackets are used. For example:

R1

.BRANCH_LIKELY

Instructs the compiler that the following branch will likely be taken. Therefore,
the compiler generates code that incorporates that assumption.

Format

.BRANCH_LIKELY

There are no parameters for this directive.

Example

MOVL (R0),R1
.BRANCH_LIKELY
BNEQ 10$
.
.
.

10$

The compiler will move the code between the BNEQ instruction and label 10$ to
the end of the module, and change the BNEQ 10$ to a BEQL to the moved code.
It will then continue immediately following the BEQL instruction with generation
of the code starting at label 10$. This will eliminate the delay that occurs on
Alpha systems for a mispredicted branch.
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.BRANCH_UNLIKELY

Instructs the compiler that the following branch will likely not be taken.
Therefore, the compiler generates code that incorporates that assumption.

Format

.BRANCH_UNLIKELY

There are no parameters for this directive.

Description

The .BRANCH_UNLIKELY directive instructs the compiler that the following
conditional branch will likely not be taken. The compiler then generates code
that incorporates that assumption.

Alpha system hardware predicts that forward conditional branches are not taken.
Therefore, if a .BRANCH_UNLIKELY directive precedes a branch that will be
in the forward direction, it has no effect. However, if it precedes a branch that
would be backward, code is generated to force the branch to be forward, to an
out-of-line branch back to the actual branch destination.

.BRANCH_UNLIKELY should be used only in cases where the branch is very
unlikely, not just less frequent than the fall-through case.

Example

MOVL #QUEUE,R0 ;Get queue header
10$: MOVL (R0),R0 ;Get entry from queue

BEQL 20$ ;Forward branch assumed unlikely
.
. ;Process queue entry
.
TSTL (R0) ;More than one entry (known to be unlikely)
.BRANCH_UNLIKELY
BNEQ 10$ ;This branch made into forward

20$: ;conditional branch

The .BRANCH_UNLIKELY directive is used here because the Alpha hardware
would predict a backward branch to 10$ as likely to be taken. The programmer
knows it is a rare case, so the directive is used to change the branch to a forward
branch, which is predicted not taken.

.CALL_ENTRY

Declares the entry point of a called routine to the compiler. This entry declaration
will save and restore the full 64 bits of any registers (except R0 and R1) that are
modified by the routine and are not declared as scratch or output.

Format

.CALL_ENTRY [max_args] [,home_args=TRUE | FALSE]
[,quad_args=TRUE | FALSE] [,input] [,output] [,scratch]
[,preserve] [,label]
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Parameters

max_args
Maximum number of arguments the called procedure expects. The compiler uses
this value as the number of longwords it allocates in the fixed temporary region of
the stack frame, if the argument list must be homed. If homing is not necessary,
the max_args count is not required. The compiler flags procedure entry points,
where max_args has not been specified, that require homed argument lists.

Note that, for .CALL_ENTRY routines in which max_args exceeds 14, the
compiler uses the received argument count, or max_args, whichever is smaller,
when homing the argument list.

home_args=TRUE | FALSE
Indication to the compiler that the called procedure’s argument list should or
should not be homed. The home_args argument overrides the compiler’s default
logic, as explained in Section 2.3.1, for determining the circumstances under
which an argument list must be homed.

quad_args=TRUE | FALSE
Indication to the compiler that the called procedure’s argument list will have
quadword references.

input=<>
Register set that indicates those registers from which the routine receives input
values.

This register set informs the compiler that the registers specified have meaningful
values at routine entry and are unavailable for use as temporary registers even
before the first compiler-detected use of the registers. Specifying registers in this
register set affects compiler temporary register usage in two cases:

• If you are using the VAXREGS optimization switch. This optimization allows
the compiler to use as temporary registers any of the VAX registers which are
not explicitly being used by the VAX MACRO code.

• If you are explicitly using any of the Alpha registers (R13 and above).

In either of these cases, if you do not specify a register that is being used as
input in the input argument, the compiler may use the register as a temporary
register, corrupting the input value.

This register set has no effect on the compiler’s default register preservation
behavior. If you are not using the VAXREGS optimization switch or any of the
Alpha registers, the input mask is used only to document your routine.

output=<>
Register set that indicates those registers to which the routine assigns values
that are returned to the routine’s caller. Registers included in this register set are
not saved and restored by the compiler, even if they are modified by the routine.

This register set also informs the compiler that the registers specified have
meaningful values at routine exit and are unavailable for use as temporary
registers even after the last compiler-detected use of the registers. Specifying
registers in this register set affects compiler temporary register usage in two
cases:
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• If you are using the VAXREGS optimization switch. This optimization allows
the compiler to use as temporary registers any of the VAX registers which are
not explicitly being used by the VAX MACRO code.

• If you are explicitly using any of the Alpha registers (R13 and above).

In either of these cases, if you do not specify a register that is being used
as output in the output argument, the compiler may use the register as a
temporary register, corrupting the output value.

scratch=<>
Register set that indicates registers that are used within the routine but which
should not be saved and restored at routine entry and exit. The caller of the
routine does not expect to receive output values nor does it expect the registers
to be preserved. Registers included in this register set are not saved and restored
by the compiler, even if they are modified by the routine.

This also pertains to the compiler’s temporary register usage. The compiler may
use registers R13 and above as temporary registers if they are unused in the
routine source code. Because R13 through R15 must be preserved, if modified,
according to the OpenVMS Alpha calling standard, the compiler preserves those
registers if it uses them.

However, if they appear in the scratch register set declaration, the compiler
will not preserve them if it uses them as temporary registers. As a result, these
registers may be scratched at routine exit, even if they were not used in the
routine source but are in the scratch set. If the VAXREGS optimization is used,
this applies to registers R2 through R12, as well.

preserve=<>
Register set that indicates those registers that should be preserved over the
routine call. This should include only those registers that are modified and whose
full 64-bit contents should be saved and restored.

This register set causes registers to be preserved whether or not they would have
been preserved automatically by the compiler. Note that because R0 and R1 are
scratch registers, by calling standard definition, the compiler never saves and
restores them unless you specify them in this register set.

This register set overrides the output and scratch register sets. If you specify a
register both in the preserve register set and in the output or scratch register
sets, the compiler will report the warning:

%AMAC-W-REGDECCON, register declaration conflict in routine A

label=name
Optionally specify a label as in a VAX MACRO .ENTRY directive. This can be
used if a module is to be common between VAX and Alpha, the VAX version needs
to reference the entry with a .MASK directive, and the Alpha version needs to use
one or more of the special .CALL_ENTRY parameters. When the label parameter
is specified and the symbol VAX is defined, an .ENTRY directive is used. (See
Section 1.6.3). If the symbol VAX is not defined, it creates the label and does a
normal .CALL_ENTRY. Note that label is not the first parameter. Therefore,
you cannot simply replace .ENTRY with .CALL_ENTRY. You must use the label
parameter declaration.
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.DEFINE_PAL

Defines an arbitrary PALcode function such that it can be called later in the
MACRO source.

Format

.DEFINE_PAL name, pal_opcode, [,operand_descriptor_list]

Parameters

name
Name of the PALcode function. The compiler applies the prefix EVAX_ to the
specified name (for instance, EVAX_MTPR_USP).

pal_opcode
Opcode value of the PALcode function. PALcode opcodes are listed in the Alpha
Architecture Reference Manual.

Be sure to use angle brackets around the function code when specifying it in
hexadecimal format (^X). If you specify the function code in decimal format, angle
brackets are not necessary.

operand_descriptor_list
A list of operand descriptors that specifies the number of operands and the type
of each. Up to 6 operand descriptors are allowed in the list. Be careful to specify
operands correctly so that the compiler can correctly track register and stack
usage. Table B–1 lists the operand descriptors.

Table B–1 Operand Descriptors

Access Type
Data Type

Byte Word Longword Octaword

Address AB AW AL AQ

Read-only RB RW RL RQ

Modify MB MW ML MQ

Write-only WB WW WL WQ

Description

By default, the compiler defines many OpenVMS Alpha PALcode instructions as
built-ins. These are listed in Appendix C. If you need to use an OpenVMS Alpha
PALcode instruction that is not available as a compiler built-in, you must define
the built-in yourself using the .DEFINE_PAL directive.
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Example

.DEFINE_PAL MTPR_USP, <^X23>, RQ

Note

This is an example—the compiler compiles MTPR instructions directly to
PAL calls.

.DISABLE

Disables compiler features over a range of source code.

Format

.DISABLE argument-list

Parameters

argument-list
You can use one or more of the symbolic arguments listed in the following table:

Option Description

DEBUG Excludes local symbol table information in the object file for
use with the debugger.

FLAGGING Deactivates compiler flagging.
GLOBAL Disables the assumption that undefined symbols are external

symbols.
OVERFLOW Deactivates production of overflow trap code for the following

opcodes: ADDx, ADWC, INCx, ADAWI, SUBx, SBWC, DECx,
MNEGx, MULx, CVTxy (where x is greater than y, for
example CVTLB), AOBxx, ACBL, and SOBxx.

QUADWORD Disables support for quadword literal and address
expressions.

SUPPRESSION Stops the listing of unreferenced symbols in the symbol table.
TRACEBACK Stops providing traceback information to the debugger.
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.ENABLE

Enables compiler features over a range of source code.

Format

.ENABLE argument-list

Parameters

argument-list
You can use one or more of the symbolic arguments listed in the following table:

Option Description

DEBUG1 Includes local symbol table information in the object file for
use with the debugger.

FLAGGING Activates compiler flagging.
GLOBAL Assumes undefined symbols are external symbols.
OVERFLOW Activates production of overflow trap code for the following

opcodes: ADDx, ADWC, INCx, ADAWI, SUBx, SBWC, DECx,
MNEGx, MULx, CVTxy (where x is greater than y, for
example CVTLB), AOBxx, ACBL, and SOBxx.

QUADWORD Provides support for quadword literal and address
expressions.

SUPPRESSION Provides a listing of unreferenced symbols in the symbol
table.

TRACEBACK2 Provides traceback information to the debugger.

1To take effect, you must compile with /DEBUG or /ENABLE=DEBUG.
2To take effect, you must compile with /DEBUG or /ENABLE=TRACEBACK.

.EXCEPTION_ENTRY

Declares the entry point of an exception service routine to the compiler.

Format

.EXCEPTION_ENTRY [,stack_base]

Parameters

preserve=<>
Register set that forces the compiler to save and restore across the routine call
the contents of registers. By default, the compiler saves at routine entry and
restores at routine exit the full 64-bit contents of any register that is modified by
a routine.
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In the case of an .EXCEPTION_ENTRY routine, exception dispatching saves R2
through R7 on the stack (along with the PC and PSL) and the values of these
registers are restored by the REI instruction executed by the routine itself. Other
registers, if used, are saved in code generated by the compiler, and all other
registers are saved if the routine issues a CALL or JSB instruction.

stack_base
Register into which the stack pointer (SP) value is moved at routine entry. At
exception entry points, exception dispatching pushes onto the stack registers
R2 through R7, the PC, and the PSL. Note that the Alpha counterpart for the
VAX register known as the PSL is the processor status (PS) register. The value
returned to the register specified in the stack_base helps an exception service
routine locate the values of these registers.

You can use the macro $INTSTKDEF in SYS$LIBRARY:LIB.MLB to define
symbols for the area on the stack where R2-R7, the PC, and the PSL are stored.
The symbols are:

• INTSTK$Q_R2

• INTSTK$Q_R3

• INTSTK$Q_R4

• INTSTK$Q_R5

• INTSTK$Q_R6

• INTSTK$Q_R7

• INTSTK$Q_PC

• INTSTK$Q_PS

You can then use these symbols in the exception routine, as offsets to
the stack_base value. By using the appropriate symbolic offset with the
stack_base value, the exception routine can access the saved contents of any
of these registers. For example, the exception routine could examine the PSL to
see what access mode was in effect when the exception was taken.

Description

The .EXCEPTION_ENTRY directive indicates the entry point of an exception
service routine. At routine entry, R3 must contain the address of the procedure
descriptor. The routine must exit with an REI instruction.

You should declare with the .EXCEPTION_ENTRY directive all of the following
interrupt service routines:

• Interval clock

• Interprocessor interrupt

• System/processor correctable error

• Power failure

• System/processor machine abort

• Software interrupt
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.GLOBAL_LABEL

Declares a global label in a routine that is not an entry point to the routine.

Format

Label: .GLOBAL_LABEL

There are no parameters for this directive.

Description

The .GLOBAL_LABEL directive declares a global label within a routine that is
not a routine entry point. Unless declared with .GLOBAL_LABEL, global labels
in code (specified with "::") are assumed to be entry point labels, which require
declaration. If they are not declared, they are flagged as errors.

The compiler also allows the address of a global label to be stored (for instance,
by means of PUSHAL instruction). (The compiler flags as an error any attempt
to store a label that has not been declared as a global label or an entry point.)

By using the .GLOBAL_LABEL directive, the user is acknowledging that the
stored code address will not be the target of a CALL or JSB instruction. Global
labels must appear inside routine boundaries.

Labels declared with the .GLOBAL_LABEL directive can be used as the newpc
argument in calls to the $UNWIND (Unwind Call Stack) system service because
it allows the address of the label to be stored.

However, there is no provision in the compiler to automatically adjust the stack
pointer at such labels to remove arguments passed on the stack or compensate
for stack alignment. If the call stack is unwound back to an alternate PC in the
calling routine, the stack may still contain arguments and alignment bytes, and
any stack-based references that expect this adjustment to the caller’s original
stack depth (which happened automatically on VAX) will be incorrect.

Code that contains labels declared with this directive that are to be used as
alternate PC targets for $UNWIND must be examined carefully to ensure correct
behavior, with particular emphasis on any references based on the stack pointer.

.JSB_ENTRY

Declares the entry point of a JSB routine to the compiler. This entry declaration
will save and restore the full 64 bits of any registers (except R0 and R1) that
are modified by the routine and are not declared as scratch or output. See also
.JSB32_ENTRY.

Format

.JSB_ENTRY [input] [,output] [,scratch] [,preserve]
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Parameters

input=<>
Register set that indicates those registers from which the routine receives input
values.

This register set informs the compiler that the registers specified have meaningful
values at routine entry and are unavailable for use as temporary registers even
before the first compiler-detected use of the registers. Specifying registers in this
register set affects compiler temporary register usage in two cases:

• If you are using the VAXREGS optimization switch. This optimization allows
the compiler to use as temporary registers any of the VAX registers which are
not explicitly being used by the VAX MACRO code.

• If you are explicitly using any of the Alpha registers (R13 and above).

In either of these cases, if you do not specify a register that is being used as
input in the input argument, the compiler may use the register as a temporary
register, corrupting the input value.

This register set has no effect on the compiler’s default register preservation
behavior. If you are not using the VAXREGS optimization switch or any of the
Alpha registers, the input mask is used only to document your routine.

output=<>
Register set that indicates those registers to which the routine assigns values
that are returned to the routine’s caller. Registers included in this register set are
not saved and restored by the compiler, even if they are modified by the routine.

This register set also informs the compiler that the registers specified have
meaningful values at routine exit and are unavailable for use as temporary
registers even after the last compiler-detected use of the registers. Specifying
registers in this register set affects compiler temporary register usage in two
cases:

• If you are using the VAXREGS optimization switch. This optimization allows
the compiler to use as temporary registers any of the VAX registers which are
not explicitly being used by the VAX MACRO code.

• If you are explicitly using any of the Alpha registers (R13 and above).

In either of these cases, if you do not specify a register that is being used
as output in the output argument, the compiler may use the register as a
temporary register, corrupting the output value.

scratch=<>
Register set that indicates registers that are used within the routine but which
should not be saved and restored at routine entry and exit. The caller of the
routine does not expect to receive output values nor does it expect the registers
to be preserved. Registers included in this register set are not saved and restored
by the compiler, even if they are modified by the routine.

The compiler may use registers R13 and above as temporary registers if they are
unused in the routine source code. Because R13 through R15 must be preserved,
if modified, according to the OpenVMS Alpha calling standard, the compiler
preserves those registers if it uses them.
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However, if they appear in the scratch register set declaration, the compiler
will not preserve them if it uses them as temporary registers. As a result, these
registers may be scratched at routine exit, even if they were not used in the
routine source but are in the scratch set. If the VAXREGS optimization is used,
this applies to registers R2 through R12, as well.

preserve=<>
Register set that indicates those registers that should be preserved over the
routine call. This should include only those registers that are modified and whose
full 64-bit contents should be saved and restored.

This register set causes registers to be preserved whether or not they would have
been preserved automatically by the compiler. Note that because R0 and R1 are
scratch registers, by calling standard definition, the compiler never saves and
restores them unless you specify them in this register set.

This register set overrides the output and scratch register sets. If you specify a
register both in the preserve register set and in the output or scratch register
sets, the compiler will report the following warning:

%AMAC-W-REGDECCON, register declaration conflict in routine A

Note

For procedures declared with the .JSB_ENTRY directive, the MACRO-32
compiler automatically generates a null frame procedure descriptor.

Because no new context is set up by a null frame procedure, a side effect
is that there is no guarantee of completely accurate debugger information
about such procedures in response to SHOW CALLS and SHOW STACK
commands. For example, the line number in the called null procedure (to
which a JSB is done) may be reported as the line number in the calling
procedure from which the JSB is issued.

.JSB32_ENTRY

Declares the entry point of a JSB routine to the compiler. This directive does
not preserve any VAX register values (R2 through R12) unless the PRESERVE
parameter is specified. The routine itself may save and restore registers by
pushing them on the stack, but this will not preserve the upper 32 bits of the
registers. See also .JSB_ENTRY.

Warning

The .JSB32_ENTRY directive can be a great time-saver if you are sure
that you can use it. If you use .JSB32_ENTRY in a situation where the
upper 32 bits of a register are being used, it may cause very obscure and
difficult-to-track bugs by corrupting a 64-bit value that may be several
calling levels above the offending routine.

.JSB32_ENTRY should never be used in an AST routine, condition
handler, or any other code that can be executed asynchronously.
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Format

.JSB32_ENTRY [input] [,output] [,scratch] [,preserve]

Parameters

input=<>
Register set that indicates those registers from which the routine receives input
values.

For the .JSB32_ENTRY directive, this register set is used only to document your
code.

output=<>
Register set that indicates those registers to which the routine assigns values
that are returned to the routine’s caller.

For the .JSB32_ENTRY directive, this register set is used only to document your
code.

scratch=<>
Register set that indicates registers that are used within the routine but which
should not be saved and restored at routine entry and exit. The caller of the
routine does not expect to receive output values nor does it expect the registers to
be preserved.

The scratch argument also pertains to the compiler’s temporary register usage.
The compiler may use registers R13 and above as temporary registers if they are
unused in the routine source code. Because R13 through R15 must be preserved,
if modified, according to the OpenVMS Alpha calling standard, the compiler
preserves those registers if it uses them.

However, if they appear in the scratch register set declaration, the compiler
will not preserve them if it uses them as temporary registers. As a result, these
registers may be scratched at routine exit, even if they were not used in the
routine source but are in the scratch set.

Because R2 through R12 are not preserved by default, their inclusion in the
scratch is for documentation purposes only.

preserve=<>
Register set that indicates those registers that should be preserved over the
routine call. This should include only those registers that are modified and whose
full 64-bit contents should be saved and restored.

This register set causes registers to be preserved by the compiler. By default, no
registers are preserved by the .JSB32_ENTRY directive.

This register set overrides the output and scratch register sets. If you specify a
register both in the preserve register set and in the output or scratch register
sets, the compiler will report the warning:

%AMAC-W-REGDECCON, register declaration conflict in routine A
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Description

The .JSB32_ENTRY directive is an alternative way of declaring a JSB entry
point. It is designed to streamline the declaration of VAX MACRO routines that
operate within a well-defined, bounded application environment, such as that
of a single application or a self-contained subsystem. For any routine declared
with the .JSB32_ENTRY directive, the compiler does not automatically save or
restore any VAX registers (R2 through R12), therefore leaving the current 32-bit
operation untouched. When you use the .JSB32_ENTRY directive to declare a
JSB entry point, you are responsible for declaring and saving registers which
must be preserved.

If the externally visible entry points of a subsystem can be called from the 64-bit
environment, those entry points should not be declared with .JSB32_ENTRY.
Instead, .JSB_ENTRY (or .CALL_ENTRY) should be used so that the full 64-bit
register values are saved, if necessary.

.LINKAGE_PSECT

Allows the name of the linkage section psect to be changed.

Format

.LINKAGE_PSECT program-section-name

Parameters

program_section_name
Name of the program section. The name can contain up to 31 characters,
including any alphanumeric character and the special characters underline (_),
dollar sign ($), and period (.).

Description

The .LINKAGE_PSECT directive allows you to locate a routine’s linkage section
by reference to other psects within the routine. This facilitates such operations
as locking code within memory (see Section 3.10) and forcing code location. An
example of forcing code location is to explicitly place the psect in the image
created by the linker, using linker options. This would let you use adjacent psects
to find their bounds.

You can use the .LINKAGE_PSECT directive multiple times within a single
source module to set different linkage sections for different routines. However,
note that a routine’s linkage section remains the same for the entire routine.
The name of the routine’s linkage section is the one specified in the last
.LINKAGE_PSECT directive before the routine’s entry point directive.

The compiler reports a fatal error if different linkage sections are specified for
routines that share code paths.

The .LINKAGE_PSECT directive sets the psect attributes to be the same as the
default linkage psect $LINKAGE. The attributes are the same as the normal
psect default attributes except the linkage psect is set NOEXE NOWRT.

You can change the linkage section psect attributes using the .PSECT directive
after declaring the psect with .LINKAGE_PSECT.
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Example

.LINKAGE_PSECT LINK_001

.PSECT LINK_000
LS_START:

.PSECT LINK_002
LS_END:

This code allows a program to use LS_START and LS_END in computations to
determine the location and size of the linkage section (LINK_001) of the routine.

.PRESERVE

Directs the compiler to generate special Alpha assembly code for VAX MACRO
instructions, within portions of the source module, that rely on VAX guarantees of
operation atomicity or granularity.

Format

.[NO]PRESERVE argument-list

Parameters

argument-list
One or more of the symbolic arguments listed in the following table:

Option Description

GRANULARITY Preserves the rules of VAX granularity of writes.
Specifying .PRESERVE GRANULARITY causes the
compiler to use Alpha Load-locked and Store-conditional
instruction sequences in code it generates for VAX
instructions that perform byte, word, or unaligned
longword writes.

ATOMICITY Preserves atomicity of VAX modify operations.
Specifying .PRESERVE ATOMICITY causes the compiler
to use Load-locked and Store-conditional instruction
sequences in code it generates for instructions with
modify operands.

Description

The .PRESERVE and .NOPRESERVE directives cause the compiler to generate
special Alpha assembly code for VAX MACRO instructions, within portions of the
source module, that rely on VAX guarantees of operation atomicity or granularity
(see Section 2.10).

Use of .PRESERVE or .NOPRESERVE without specifying GRANULARITY or
ATOMICITY will affect both options. When preservation of both granularity and
atomicity is enabled, and the compiler encounters a VAX coding construct that
requires both granularity and atomicity guarantees, it enforces atomicity over
granularity.
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Alternatively, you can use the /PRESERVE and /NOPRESERVE compiler
qualifiers to affect the atomicity and granularity in generated code throughout an
entire MACRO source module.

Atomicity is guaranteed for multiprocessing systems as well as uniprocessing
systems when you specify .PRESERVE ATOMICITY.

When the .PRESERVE directive is present, you can use the /RETRY_COUNT
qualifier on the command line to control the number of times the compiler-
generated code retries a granular or atomic update.

Warning

If .PRESERVE ATOMICITY is turned on, any unaligned data references
will result in a fatal reserved operand fault. See Section 2.10.5. If
.PRESERVE GRANULARITY is turned on, unaligned word references to
addresses assumed aligned will also cause a fatal reserved operand fault.

Example

INCW 1(R0)

This instruction, when compiled with .PRESERVE GRANULARITY, retries the
insertion of the new word value, if it is interrupted. However, when compiled
with .PRESERVE ATOMICITY, it will also refetch the initial value and increment
it, if interrupted. If both options are specified, it will do the latter.

.SET_REGISTERS

This directive allows the user to override the compiler’s alignment assumptions,
and also allows implicit reads/writes of registers to be declared.

Format

.SET_REGISTERS argument-list

Parameters

argument-list
One or more of the arguments listed in the following table. For each argument,
you can specify one or more registers.

Option Description

aligned=<> Declares one or more registers to be aligned on longword
boundaries.

unaligned=<> Declares one or more registers to be unaligned. Because
this is an explicit declaration, this unaligned condition will
not produce a fault at run time.

read=<> Declares one or more registers, which otherwise the
compiler could not detect as input registers, to be read.

B–16 Compiler Directives



Compiler Directives
.SET_REGISTERS

Option Description

written=<> Declares one or more registers, which otherwise the
compiler could not detect as output registers, to be written
to.

Description

The aligned and unaligned qualifiers to this directive allow the user to override
the compiler’s alignment assumptions. Using the directive for this purpose in
certain cases can produce more efficient code (see Section 4.1).

The read and written qualifiers to this directive allow implicit reads and writes
of registers to be declared. They are generally used to declare the register usage
of called routines and are useful for documenting your program.

With one exception, the .SET_REGISTERS directive remains in effect (ensuring
proper alignment processing) until the routine ends, unless you change the value
in the register. The exception can occur under certain conditions when a flow
path joins the code following a .SET_REGISTERS directive.

The following example illustrates such an exception. R2 is declared aligned, and
at a subsequent label, 10$, which is before the next write access to the register,
a flow path joins the code. R2 will be treated as unaligned following the label,
because it is unaligned from the other path.

INCL R2 ; R2 is now unaligned
.
.
.
BLBC R0, 10$
.
.
.
MOVL R5, R2
.SET_REGISTERS ALIGNED=R2
MOVL R0, 4(R2)

10$: MOVL 4(R2), R3 ; R2 considered unaligned
; due to BLBC branch

The .SET_REGISTERS directive and its read and written qualifiers are
required on every routine call that passes or returns data in any register
from R2 through R12, if you specify the command line qualifier and option
/OPTIMIZE=VAXREGS. That is because the compiler allows the use of unused
VAX registers as temporary registers when you specify /OPTIMIZE=VAXREGS.

Examples

1. DIVLR0,R1
.SET_REGISTERS ALIGNED=R1
MOVL 8(R1), R2 ; Compiler will use aligned load.

In this example, the compiler would normally consider R1 unaligned after
the division. Any memory references using R1 as a base register (until it
is changed again) would use unaligned load/stores. If it is known that the
actual value will always be aligned, performance could be improved by adding
a .SET_REGISTERS directive, as shown.
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2. MOV1 4(R0), R1 ; Stored memory addresses assumed
.SET_REGISTERS UNALIGNED=R1 ; aligned so explicitly set it unaligned
MOVL 4(R1), R2 ; to avoid run-time fault.

In this example, R1 would be considered longword aligned after the MOVL. If
it is actually unaligned, an alignment fault would occur on memory reference
that follows at run time. To prevent this, the .SET_REGISTERS directive can
be used, as shown.

3. .SET_REGISTERS READ=<R3,R4>, WRITTEN=R5
JSB DO_SOMETHING_USEFUL

In this example, the read/written attributes are used to explicitly declare
register uses which the compiler cannot detect. R3 and R4 are input registers
to the JSB target routine, and R5 is an output register. This is particularly
useful if the routine containing this JSB does not use these registers itself, or
if the SET_REGISTERS directive and JSB are embedded in a macro. When
compiled with /FLAG=HINTS, routines which use the macro would then have
R3 and R4 listed as possible input registers, even if they are not used in that
routine.

.SYMBOL_ALIGNMENT

This directive associates an alignment attribute with a symbol definition for a
register offset. You can use this directive when you know the alignment of the
base register. This attribute guarantees to the compiler that the base register has
the same alignment, which enables the compiler to generate optimal code.

Format

.SYMBOL_ALIGNMENT argument-list

Parameters

argument-list
One of the arguments listed in the following table.

Option Description

long Declares longword alignment for any symbol that you declare after
this directive.

quad Declares quadword alignment for any symbol that you declare after
this directive.

none Turns off the alignment specified by the preceding .SYMBOL_
ALIGNMENT directive.

Description

The .SYMBOL_ALIGNMENT directive is used to associate an alignment attribute
with the fields in a structure when you know the base alignment. It is used in
pairs. The first .SYMBOL_ALIGNMENT directive associates either longword
(long) or quadword (quad) alignment with the symbol or symbols that follow.
The second directive, .SYMBOL_ALIGNMENT none, turns it off.
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Any time a reference is made with a symbol with an alignment attribute, the
base register of that reference, in effect, inherits the symbol’s alignment. The
compiler also resets the base register’s alignment to longword for subsequent
alignment tracking. This alignment guarantee enables the compiler to produce
more efficient code sequences.
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Example

OFFSET1 = 4
.SYMBOL_ALIGNMENT LONG
OFFSET2 = 8
OFFSET3 = 12
.SYMBOL_ALIGNMENT QUAD
OFFSET4 = 16
.SYMBOL_ALIGNMENT NONE
OFFSET5 = 20

.

.

.
CLR1 OFFSET2(R8)

.

.

.
MOVL R2, OFFSET4(R6)

For OFFSET1 and OFFSET5, the compiler will use only its tracking information
for deciding if Rn in OFFSET1(Rn) is aligned or not. For the other references, the
base register will be treated as longword (OFFSET2 and OFFSET3) or quadword
(OFFSET4) aligned.

After each use of OFFSET2 or OFFSET4, the base register in the reference is
reset to longword alignment. In this example, the alignment of R8 and R6 will
be reset to longword, although the reference to OFFSET4 will use the stronger
quadword alignment.
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Compiler Built-Ins

This appendix describes the two sets of built-ins provided with the MACRO-32
Compiler for OpenVMS Alpha. They are:

• Alpha instruction built-ins which are used to access Alpha instructions for
which there are no VAX equivalents.

• Alpha PALcode built-ins which are used to emulate the VAX instructions for
which there are no Alpha equivalents and to perform other functions such as
quadword queue manipulations.

Both sets of built-ins are presented in tables. The second column of each table
specifies the operands the built-in expects, where:

WL = write longword
ML = modify longword
AL = address of longword
WQ = write quadword
RQ = read quadword
MQ = modify quadword
AQ = address of quadword
AB = address of byte
AW = address of word
WB = write byte
WW = write word

Note

Be careful when mixing built-ins with VAX MACRO instructions on the
same registers. The code generated by the compiler expects registers
to contain 32-bit sign extended values, but it is possible to create
64-bit register values that are not in this format. Subsequent longword
operations on these registers could produce incorrect results.

Therefore, make sure to return registers to 32-bit sign extended format
before using them in VAX MACRO instructions as source operands.
(Loading the register with a new value using a VAX MACRO instruction
(such as MOVL) returns it to this format.)

C.1 Alpha Instruction Built-Ins
Ported VAX MACRO code sometimes requires access to Alpha native instructions
to deal directly with a 64-bit quantity or to include an Alpha instruction that has
no VAX equivalent. The compiler provides built-ins to allow you access to these
instructions.
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You use these built-ins in the same way that you use native VAX instructions,
using any VAX operand mode. For example, EVAX_ADDQ 8(R0),(SP)+,R1 is
legal. The only exception is that the first operand of any Alpha load/store built-in
(EVAX_LD*, EVAX_ST*) must be a register.

It is recommended that you place any built-in within an ".IF DF,EVAX"
conditional code block unless the module is Alpha specific. They can appear in
Alpha specific portions of the macro definitions described in Appendix D.

The following byte and word built-ins are included in the MACRO-32 compiler,
starting with OpenVMS Alpha Version 7.1:

• EVAX_LDBU

• EVAX_LDWU

• EVAX_STB

• EVAX_STW

• EVAX_SEXTB

• EVAX_SEXTW

The best environment in which to run code that contains the byte and word built-
ins is on an Alpha computer that implements these instructions in hardware.
If you run such code on an OpenVMS Alpha system that implements them by
software emulation, the following limitations exist:

• Significant performance loss

The overhead of handling the exception to trigger the software emulation
causes a significant performance loss. If software emulation is in effect, you
will see the following message:

%SYSTEM-I-EMULATED, an instruction not implemented on this processor was emulated

• Some capabilities not present in the software emulation

The software emulation is not capable of providing all the capabilities
that would be present on a system that implemented the the instructions
in hardware. Code that executes in inner access modes and at elevated
IPL is allowed to use these instructions. For example, activation of the
software emulator above IPL 2 will not cause a bugcheck. However, certain
applications where these instructions might be useful, such as direct writes
to hardware control registers, will be impossible, because such applications
require the presence of address lines whose function cannot be emulated.

Furthermore, if the code with these built-ins executes on a system without either
the byte and word software emulator or a processor that implements the byte
and word instructions in hardware, it will incur a fatal exception, such as the
following:

%SYSTEM-F-OPCDEC, opcode reserved to Digital fault at
PC=00000000000020068,PS=0000001B

Table C–1 summarizes the Alpha built-ins supported by the compiler.

Note

Memory references in the MACRO-32 compiler built-ins are always
assumed to be quadword aligned except in EVAX_SEXTB, EVAX_SEXTW,
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EVAX_LDBU, EVAX_LDWU, EVAX_STB, EVAX_STW, EVAX_LDQU, and
EVAX_STQU.

Table C–1 Alpha Instruction Built-Ins

Built-in Operands Description

EVAX_SEXTB <RQ,WB> Sign extend byte

EVAX_SEXTW <RQ,WW> Sign extend word

EVAX_SEXTL <RQ,WL> Sign extend longword

EVAX_LDBU <WQ,AB> Load zero-extended byte from memory

EVAX_LDWU <WQ,AQ> Load zero-extended word from memory

EVAX_LDLL <WL,AL> Load longword locked

EVAX_LDAQ <WQ,AQ> Load address of quadword

EVAX_LDQ <WQ,AQ> Load quadword

EVAX_LDQL <WQ,AQ> Load quadword locked

EVAX_LDQU <WQ,AQ> Load unaligned quadword

EVAX_STB <RQ,AB> Store byte from register to memory

EVAX_STW <RQ,AW> Store word from register to memory

EVAX_STLC <ML,AL> Store longword conditional

EVAX_STQ <RQ,AQ> Store quadword

EVAX_STQC <MQ,AQ> Store quadword conditional

EVAX_STQU <RQ,AQ> Store unaligned quadword

EVAX_ADDQ <RQ,RQ,WQ> Quadword add

EVAX_SUBQ <RQ,RQ,WQ> Quadword subtract

EVAX_MULQ <RQ,RQ,WQ> Quadword multiply

EVAX_UMULH <RQ,RQ,WQ> Unsigned quadword multiply high

EVAX_AND <RQ,RQ,WQ> Logical product

EVAX_OR <RQ,RQ,WQ> Logical sum

EVAX_XOR <RQ,RQ,WQ> Logical difference

EVAX_BIC <RQ,RQ,WQ> Bit clear

EVAX_ORNOT <RQ,RQ,WQ> Logical sum with complement

EVAX_EQV <RQ,RQ,WQ> Logical equivalence

EVAX_SLL <RQ,RQ,WQ> Shift left logical

EVAX_SRL <RQ,RQ,WQ> Shift right logical

EVAX_SRA <RQ,RQ,WQ> Shift right arithmetic

(continued on next page)
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Table C–1 (Cont.) Alpha Instruction Built-Ins

Built-in Operands Description

EVAX_EXTBL <RQ,RQ,WQ> Extract byte low

EVAX_EXTWL <RQ,RQ,WQ> Extract word low

EVAX_EXTLL <RQ,RQ,WQ> Extract longword low

EVAX_EXTQL <RQ,RQ,WQ> Extract quadword low

EVAX_EXTBH <RQ,RQ,WQ> Extract byte high

EVAX_EXTWH <RQ,RQ,WQ> Extract word high

EVAX_EXTLH <RQ,RQ,WQ> Extract longword high

EVAX_EXTQH <RQ,RQ,WQ> Extract quadword high

EVAX_INSBL <RQ,RQ,WQ> Insert byte low

EVAX_INSWL <RQ,RQ,WQ> Insert word low

EVAX_INSLL <RQ,RQ,WQ> Insert longword low

EVAX_INSQL <RQ,RQ,WQ> Insert quadword low

EVAX_INSBH <RQ,RQ,WQ> Insert byte high

EVAX_INSWH <RQ,RQ,WQ> Insert word high

EVAX_INSLH <RQ,RQ,WQ> Insert longword high

EVAX_INSQH <RQ,RQ,WQ> Insert quadword high

EVAX_TRAPB <> Trap barrier

EVAX_MB <> Memory barrier

EVAX_RPCC <WQ> Read process cycle counter

EVAX_CMPEQ <RQ,RQ,WQ> Integer signed compare, equal

EVAX_CMPLT <RQ,RQ,WQ> Integer signed compare, less than

EVAX_CMPLE <RQ,RQ,WQ> Integer signed compare, less equal

EVAX_CMPULT <RQ,RQ,WQ> Integer unsigned compare, less than

EVAX_CMPULE <RQ,RQ,WQ> Integer unsigned compare, less equal

EVAX_BEQ <RQ,AQ> Branch equal

EVAX_BLT <RQ,AQ> Branch less than

EVAX_BNE <RQ,AQ> Branch not equal

EVAX_CMOVEQ <RQ,RQ,WQ> Conditional move/equal

EVAX_CMOVNE <RQ,RQ,WQ> Conditional move/not equal

EVAX_CMOVLT <RQ,RQ,WQ> Conditional move/less than

EVAX_CMOVLE <RQ,RQ,WQ> Conditional move/less or equal

EVAX_CMOVGT <RQ,RQ,WQ> Conditional move/greater than

EVAX_CMOVGE <RQ,RQ,WQ> Conditional move/greater or equal

(continued on next page)
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Table C–1 (Cont.) Alpha Instruction Built-Ins

Built-in Operands Description

EVAX_CMOVLBC <RQ,RQ,WQ> Conditional move/low bit clear

EVAX_CMOVLBS <RQ,RQ,WQ> Conditional move/low bit set

EVAX_MF_FPCR <WQ> Move from floating-point control register

EVAX_MT_FPCR <WQ,RQ> Move to floating-point control register

EVAX_ZAP <RQ,RQ,WQ> Zero bytes

EVAX_ZAPNOT <RQ,RQ,WQ> Zero bytes with NOT mask

C.2 Alpha PALcode Built-Ins
Alpha PALcode built-ins, primarily for privileged code, are used in the same way
that Alpha instruction built-ins are used with two exceptions:

• For the queue PAL functions, the compiler does not move the input arguments
to the Alpha registers before issuing the PAL call as it does for all other
functions. Therefore, you must supply the code to do that.

• When using a built-in for a PAL call that returns a value, the source code
must explicitly read R0 for the return value.

Certain Alpha PALcode built-ins, EVAX_INSQHIQR, EVAX_INSQTIQR,
EVAX_REMQHIQR, and EVAX_REMQHITR, support the manipulation of
quadword queues, a function that VAX MACRO-32 does not support. If you use
these built-ins, you must supply the code to move the input arguments to R16
(and R17, for EVAX_INSQxxxx), as shown in the following example:

MOVAB Q_header, R16 ; Set up address of queue header for PAL call
EVAX_REMQHIQR ; Remove quadword queue entry
EVAX_STQ R0, entry ; Save entry address returned in R0

The Alpha PALcode built-ins are listed in Table C–2.

Note

You can use the .DEFINE_PAL compiler directive to custom-define a
built-in for an Alpha PALcode operation that is not listed in this table.
See Appendix B for additional information.

Table C–2 Alpha PALcode Built-Ins

Built-in Operands Description

EVAX_CFLUSH <RQ> Cache flush

EVAX_DRAINA <> Drain aborts

EVAX_LDQP <AQ> Load quadword physical

EVAX_STQP <AQ,RQ> Store quadword physical

(continued on next page)
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Table C–2 (Cont.) Alpha PALcode Built-Ins

Built-in Operands Description

EVAX_SWPCTX <AQ> Swap privileged context

EVAX_BUGCHK <RQ> Bugcheck

EVAX_CHMS <> Change mode supervisor

EVAX_CHMU <> Change mode user

EVAX_IMB <> Instruction memory barrier

EVAX_SWASTEN <RQ> Swap AST enable

EVAX_WR_PS_SW <RQ> Write processor status software field

EVAX_MTPR_ASTEN <RQ> Move to processor register ASTEN

EVAX_MTPR_ASTSR <RQ> Move to processor register ASTSR

EVAX_MTPR_AT <RQ> Move to processor register AT

EVAX_MTPR_FEN <RQ> Move to processor register FEN

EVAX_MTPR_IPIR <RQ> Move to processor register IPIR

EVAX_MTPR_IPL <RQ> Move to processor register IPL

EVAX_MTPR_PRBR <RQ> Move to processor register PRBR

EVAX_MTPR_SCBB <RQ> Move to processor register SCBB

EVAX_MTPR_SIRR <RQ> Move to processor register SIRR

EVAX_MTPR_TBIA <> Move to processor register TBIA

EVAX_MTPR_TBIAP <> Move to processor register TBIAP

EVAX_MTPR_TBIS <AQ> Move to processor register TBIS

EVAX_MTPR_TBISD <AQ> Move to processor register, TB invalidate single DATA

EVAX_MTPR_TBISI <AQ> Move to processor register, TB invalidate single
ISTREAM

EVAX_MTPR_ESP <AQ> Move to processor register ESP

EVAX_MTPR_SSP <AQ> Move to processor register SSP

EVAX_MTPR_USP <AQ> Move to processor register USP

EVAX_MFPR_ASN <> Move from processor register ASN

EVAX_MFPR_AT <> Move from processor register AT

EVAX_MFPR_FEN <> Move from processor register FEN

EVAX_MFPR_IPL <> Move from processor register IPL

EVAX_MFPR_MCES <> Move from processor register MCES

EVAX_MFPR_PCBB <> Move from processor register PCBB

EVAX_MFPR_PRBR <> Move from processor register PRBR

EVAX_MFPR_PTBR <> Move from processor register PTBR

EVAX_MFPR_SCBB <> Move from processor register SCBB

EVAX_MFPR_SISR <> Move from processor register SISR

EVAX_MFPR_TBCHK <AQ> Move from processor register TBCHK

(continued on next page)
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Table C–2 (Cont.) Alpha PALcode Built-Ins

Built-in Operands Description

EVAX_MFPR_ESP <> Move from processor register ESP

EVAX_MFPR_SSP <> Move from processor register SSP

EVAX_MFPR_USP <> Move from processor register USP

EVAX_MFPR_WHAMI <> Move from processor register WHAMI

EVAX_INSQHILR <> Insert entry into longword queue at head interlocked-
resident

EVAX_INSQTILR <> Insert entry into longword queue at tail interlocked-
resident

EVAX_INSQHIQR <> Insert entry into quadword queue at head interlocked-
resident

EVAX_INSQTIQR <> Insert entry into quadword queue at tail interlocked-
resident

EVAX_REMQHILR <> Remove entry from longword queue at head
interlocked-resident

EVAX_REMQTILR <> Remove entry from longword queue at tail
interlocked-resident

EVAX_REMQHIQR <> Remove entry from quadword queue at head
interlocked-resident

EVAX_REMQTIQR <> Remove entry from quadword queue at tail
interlocked-resident

EVAX_GENTRAP <> Generate trap exception

EVAX_READ_UNQ <> Read unique context

EVAX_WRITE_UNQ <RQ> Write unique context
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This appendix describes macros designed to facilitate the porting of VAX MACRO
code to an OpenVMS Alpha system. They are grouped according to their function,
as follows:

• Page-related calculations (see Section D.1)

• Saving and restoring Alpha registers (see Section D.2)

• Locking pages into a working set (see Section D.3)

Note that you can use certain arguments to the macros described in this appendix
to indicate register sets. To express a register set, list the registers, separated by
commas, within angle brackets. For instance:

<R1,R2,R3>

If the set contains only one register, omit the angle brackets:

R1

D.1 Page-Related Calculations
This section describes the following macros that provide a standard, architecture-
independent means for calculating page-size dependent values:

• $BYTES_TO_PAGES

• $NEXT_PAGE

• $PAGES_TO_BYTES

• $PREVIOUS_PAGE

• $ROUND_RETADR

• $START_OF_PAGE

These macros reside in the directory SYS$LIBRARY:STARLET.MLB and can be
used by both application code and system code. Because application code does
not have access to SYSTEM_DATA_CELLS, the user must supply the relevant
masks, shift values, and so on.

The shift values are correlated with the page size of the processor. The rightshift
values are negative; the leftshift values are positive, as shown in Table D–1.

Macros for Porting to OpenVMS Alpha D–1



Macros for Porting to OpenVMS Alpha
D.1 Page-Related Calculations

Table D–1 Shift Values

Page size rightshift leftshift

512 bytes (VAX) -9 9

8K (Alpha) -13 13

16K1 -14 14

32K1 -15 15

64K1 -16 16

1If a future Alpha system implements this architecturally-permitted larger page size.

Typically, the application issues a call to $GETSYI (specifying the SYI$_
PAGESIZE item descriptor) to obtain the CPU-specific page size and then
compute other values from the page size that is returned.

The following conventions apply to the macros described in this section:

• If the destination operand is blank, the source operand is used as the
destination.

• All macros conditionalize code on the symbols VAXPAGE and BIGPAGE.

• Several macros allow for page-size-independent code on VAX systems with
the independent=YES argument. These macros generate code in which
I-stream fetches are changed to memory accesses. Because this is inherently
slower on a VAX system, the default value of the independent argument is
NO.

$BYTES_TO_PAGES

Converts a byte count to a page count.

Format

$BYTES_TO_PAGES source_bytcnt, dest_pagcnt, rightshift, roundup=YES,
quad=YES

Parameters

source_bytcnt
Source byte count.

dest_pagcnt
Destination of page count.

rightshift
Location of application-provided value to shift (in place of multiply). This value is
a function of the page size, as shown in Table D–1.

roundup=YES
If YES, page-size–1 is added to byte count before shifting; if NO, page count is
truncated. Any other value is treated as the user-specified address of the page-
size–1 value. Note that roundup=YES is incompatible with the presence of the
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rightshift argument; invoking the macro with both these arguments generates a
compile-time warning.

quad=YES
If YES, the conversion supports 64-bit addressing. If NO, the conversion does not
support 64-bit addressing.

$NEXT_PAGE

Computes the virtual address of the first byte in the next page.

Format

$NEXT_PAGE source_va, dest_va, clearbwp=NO, user_pagesize_addr,
user_mask_addr, quad=YES

Parameters

source_va
Source virtual address.

dest_va
Destination of virtual address within next page.

clearbwp=NO
If YES, masks the byte-within-page portion of the source virtual address.
The clearbwp=NO option is a performance enhancement, avoiding unnecessary
instructions if you know you are starting on a page boundary or you are intending
to divide by page-size anyway.

user_pagesize_addr
Location of the page-size value (returned by a call to the $GETSYI system service
specifying the SYI$_PAGESIZE item descriptor) in the application data area.
If this argument is blank, the macro uses MMG$GL_PAGESIZE (bigpage) or
MMG$C-VAX-PAGE-SIZE (vaxpage).

user_mask_addr
Location of the application-provided byte-within-page mask. If this argument is
blank, the macro uses MMG$GL_BWP_MASK if user_pagesize_addr is also
blank. Otherwise, it subtracts one from the contents of the user_pagesize_addr
and uses that value.

quad=YES
If YES, the conversion supports 64-bit addressing. If NO, the conversion does not
support 64-bit addressing.
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$PAGES_TO_BYTES

Converts a page count to a byte count.

Format

$PAGES_TO_BYTES source_pagcnt, dest_bytcnt, leftshift, quad=YES

Parameters

source_pagcnt
Source page count.

dest_bytcnt
Destination of byte count.

leftshift
Location of application-provided value to shift (in place of multiply). This value is
a function of the page size, as shown in Table D–1.

quad=YES
If YES, the conversion supports 64-bit addressing. If NO, the conversion does not
support 64-bit addressing.

$PREVIOUS_PAGE

Computes the virtual address of the first byte in the previous page.

Format

$PREVIOUS_PAGE source_va, dest_va, clearbwp=NO, user_pagesize_addr,
user_mask_addr, quad=YES

Parameters

source_va
Source virtual address.

dest_va
Destination of virtual address within previous page.

clearbwp=NO
If YES, masks the byte-within-page portion of the source virtual address.
The clearbwp=NO option is a performance enhancement, avoiding unnecessary
instructions if you know you are starting on a page boundary or you are intending
to divide by page-size anyway.

user_pagesize_addr
Location of the page-size value (returned by a call to the $GETSYI system service
specifying the SYI$_PAGESIZE item descriptor) in the application data area.
If this argument is blank, the macro uses MMG$GL_PAGESIZE (bigpage) or
MMG$C-VAX-PAGE-SIZE (vaxpage).
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user_mask_addr
Location of the application-provided byte-within-page mask. If this argument is
blank, the macro uses MMG$GL_BWP_MASK if user_pagesize_addr is also
blank. Otherwise, it subtracts one from the contents of the user_pagesize_addr
and uses that value.

quad=YES
If YES, the conversion supports 64-bit addressing. If NO, the conversion does not
support 64-bit addressing.

$ROUND_RETADR

Rounds the range implied by the virtual addresses in a retadr array returned
from a memory management system service to a range that is the factor of
CPU-specific pages. The return value can be supplied as an inadr array in a
subsequent call to another memory management system service.

Format

$ROUND_RETADR retadr, full_range, user_mask_addr, direction=ASCENDING

Parameters

retadr
Address of array of two 32-bit addresses, typically returned from $CRMPSC or a
similar service. This value can be in the form of either "label" or "(Rx)".

full_range
Output array of two longwords. FULL_RANGE[0] is retadr[0] rounded down to
a CPU-specific page boundary, and FULL_RANGE[1] is retadr[1] rounded up to
one less than a CPU-specific page boundary (that is, to the last byte in the page).

user_mask_addr
Location of application-provided byte-within-page mask. If this argument is
blank, the macro uses MMG$GL_BWP_MASK on an OpenVMS Alpha system and
VA$M_BYTE on an OpenVMS VAX system.

direction=ASCENDING
Direction of rounding. The keywords are defined in the following table:

ASCENDING retadr[0] < retadr[1]
DESCENDING retadr[1] < retadr[0]
UNKNOWN Values are compared at run time, then proper

rounding is performed
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$START_OF_PAGE

$START_OF_PAGE

Converts a virtual address to the address of the first byte within that page.

Format

$START_OF_PAGE source_va, dest_va, user_mask_addr, quad=YES

Parameters

source_va
Source virtual address.

dest_va
Destination of virtual address of first byte within page.

user_mask_addr
Location of application-provided byte-within-page mask. If this argument is
blank, the macro uses MMG$GL_BWP_MASK in OpenVMS Alpha systems and
MMG$C-VAX-PAGE-SIZE - 1 (defined in $pagedef) in OpenVMS VAX systems.

quad=YES
If YES, the conversion supports 64-bit addressing. If NO, the conversion does not
support 64-bit addressing.

D.2 Saving and Restoring Alpha Registers

Frequently, VAX MACRO source code must save and restore register values,
either because that is part of the defined interface or the code requires work
registers. On OpenVMS VAX, code may invoke any number of macros to do
this. On OpenVMS Alpha, you cannot simply replace these macros with 64-bit
pushes and pops to and from the stack, because there is no guarantee that the
macro caller has a quadword-aligned stack. Instead, you should replace such
macro invocations with $PUSH64 and $POP64 macros. These macros, located in
STARLET.MLB, preserve all 64 bits of a register but use longword references to
do so.

$POP64

Pops the 64-bit value on the top of the stack into an Alpha register.

Format

$POP64 reg

Parameters

reg
Register into which the macro places the 64-bit value from the top of the stack.

D–6 Macros for Porting to OpenVMS Alpha



Macros for Porting to OpenVMS Alpha
$POP64

Description

$POP64 takes the 64-bit value at the top of the stack and places it in an Alpha
register using longword instructions. This is to avoid using quadword instructions
when an alignment fault should be avoided, but restoring all 64 bits is necessary.

$PUSH64

Pushes the contents of an Alpha 64-bit register onto the stack.

Format

$PUSH64 reg

Parameters

reg
Register to be pushed onto the stack.

Description

$PUSH64 takes an Alpha 64-bit register and puts it on the stack using longword
instructions. This is to avoid using quadword instructions when an alignment
fault should be avoided, but saving all 64 bits is necessary.

D.3 Locking Pages into a Working Set

Five macros are provided for locking pages into a working set. These macros
reside in SYS$LIBRARY:LIB.MLB. For a complete description of how to use these
macros, see Section 3.10.

Three macros are used for image initialization-time lockdown, and two macros
are used for on-the-fly lockdown.
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Note

If the code is being locked because the IPL will be raised above 2, where
page faults cannot occur, make sure that the delimited code does not
call run-time library or other procedures. The VAX MACRO compiler
generates calls to routines to emulate certain VAX instructions. An image
that uses these macros must link against the system base image so
that references to these routines are resolved by code in a nonpageable
executive image.

D.3.1 Image Initialization-Time Lockdown

The three macros for image initialization-time lockdown follow:

• $LOCK_PAGE_INIT

• $LOCKED_PAGE_END

• $LOCKED_PAGE_START

$LOCK_PAGE_INIT

Required in the initialization routines of an image that is using $LOCKED_
PAGE_START and $LOCKED_PAGE_END to delineate areas to be locked at
initialization time.

Format

$LOCK_PAGE_INIT [error]

Parameters

[error]
Address to which to branch if one of the $LKWSET calls fail. If this address is
reached, R0 reflects the status of the failed call, and R1 contains 0 if the call to
lock the code failed, or 1 if that call succeeded but the call to lock the linkage
section failed.

Description

$LOCK_PAGE_INIT creates the necessary psects and issues the $LWKSET calls
to lock into the working set the code and linkage sections that were declared by
$LOCKED_PAGE_START and $LOCKED_PAGE_END. R0 and R1 are destroyed
by this macro.

The psects locked by this macro are $LOCK_PAGE_2 and $LOCK_LINKAGE_2.
If code sections in other modules, written in other languages, use these psects,
they will be locked by an invocation of this macro in a VAX MACRO module.
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$LOCKED_PAGE_END

$LOCKED_PAGE_END

Marks the end of a section of code that may be locked at image initialization time
by the $LOCK_PAGE_INIT macro.

Format

$LOCKED_PAGE_END [link_sect]

Parameters

[link_sect]
Psect to return to if the linkage psect in effect when the $LOCKED_PAGE_
START macro was executed was not the default linkage psect, $LINKAGE.

Description

$LOCKED_PAGE_END is used with $LOCKED_PAGE_START to delineate
code that may be locked at image initialization time by the $LOCK_PAGE_INIT
macro. The code delineated by these macros must contain complete routines—
execution cannot fall through either macro, nor can you branch into or out of the
locked code. Any attempt to branch into or out of the locked code section or to fall
through the macros will be flagged by the compiler with an error.

$LOCKED_PAGE_START

Marks the start of a section of code that may be locked at image initialization
time by the $LOCK_PAGE_INIT macro.

Format

$LOCKED_PAGE_START

There are no parameters for this macro.

Description

$LOCKED_PAGE_START is used with $LOCKED_PAGE_END to delineate
code that may be locked at image initialization time by the $LOCK_PAGE_INIT
macro. The code delineated by these macros must contain complete routines—
execution may not fall through either macro, nor may the locked code be branched
into or out of. Any attempt to branch into or out of the locked code section or to
fall through the macros will be flagged by the compiler with an error.

D.3.2 On-the-Fly Lockdown

The two macros for on-the-fly lockdown follow:

• $LOCK_PAGE

• $UNLOCK_PAGE
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$LOCK_PAGE

Marks the beginning of a section of code to be locked on the fly.

Format

$LOCK_PAGE [error]

Parameters

[error]
Address to branch to if one of the $LKWSET calls fail.

Description

This macro is placed inline in executable code and must be followed by the
$UNLOCK_PAGE macro. The $LOCK_PAGE/$UNLOCK_PAGE macro pair
creates a separate routine in a separate psect. $LOCK_PAGE locks the pages and
linkage section of this separate routine into the working set and JSRs to it. All
code between this macro and the matching $UNLOCK_PAGE macro is included
in the locked routine and is locked down.

All registers are preserved by this macro unless the error address parameter is
present and one of the calls fail. If that happens, R0 reflects the status of the
failed call. R1 then contains 0 if the call to lock the code failed or 1 if that call
succeeded but the call to lock the linkage section failed.

If the ERROR parameter is used, the ERROR label must be placed outside the
scope of the $LOCK_PAGE and $UNLOCK_PAGE pair. This is because the error
routine is branched to before calling the subroutine that the $LOCK_PAGE and
$UNLOCK_PAGE routines create.

Note that since the locked code is made into a separate routine, any references
to local stack storage within the routine will have to be changed, as the stack
context is no longer the same. Also, you cannot branch into or out of the locked
code from the rest of the routine.

$UNLOCK_PAGE

Marks the end of a section of code to be locked on the fly.

Format

$UNLOCK_PAGE [error][,LINK_SECT]

Parameters

[error]
An error address to which to branch if one of the $ULKWSET calls fail.

[link_sect]
Linkage psect to return to if the linkage psect in effect when the $LOCK_PAGE
macro was executed was not the default linkage psect, $LINKAGE.
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$UNLOCK_PAGE

Description

$UNLOCK_PAGE returns from the locked routine created by the $LOCK_PAGE
and $UNLOCK_PAGE macro pair and then unlocks the pages and linkage section
from the working set. This macro is placed inline in executable code after a
$LOCK_PAGE macro.

All registers are preserved by this macro unless the error address parameter is
present and one of the calls fail. If that happens, R0 reflects the status of the
failed call. R1 then contains 0 if the call to unlock the code failed or 1 if that call
succeeded but the call to unlock the linkage section failed.

If the error parameter is used, the error label must be placed outside the
scope of the $LOCK_PAGE and $UNLOCK_PAGE pair. This is because the
error routine is branched to after returning from the subroutine created by the
$LOCK_PAGE and $UNLOCK_PAGE routines.
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E
MACRO-32 Macros for 64-Bit Addressing

This appendix describes the MACRO-32 macros for manipulating 64-bit
addresses, for checking the sign extension of the low 32 bits of 64-bit values, and
for checking descriptors for the 64-bit format.

These macros reside in the directory ALPHA$LIBRARY:STARLET.MLB
(generally synonymous with SYS$LIBRARY:STARLET.MLB) and can be used
by both application code and system code. The page macros have also been
enhanced for 64-bit addresses. The support is provided by a new parameter,
QUAD=NO/YES.

Note that you can use certain arguments to the macros described in this appendix
to indicate register sets. To express a register set, list the registers, separated by
commas, within angle brackets. For example:

<R1,R2,R3>

If the set contains only one register, the angle brackets are not required.

E.1 Macros for Manipulating 64-Bit Addresses
This section describes the following macros, designed to manipulate 64-bit
addresses:

• $SETUP_CALL64

• $PUSH_ARG64

• $CALL64

$SETUP_CALL64

Initializes the call sequence.

Format

$SETUP_CALL64 arg_count, inline=true or false

Parameters

arg_count
The number of arguments in the call.

inline
Forces inline expansion, rather than creation of a JSB routine, when set to
TRUE. If there are six or fewer arguments, the default is INLINE=FALSE.
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$SETUP_CALL64

Description

This macro initializes the state for a 64-bit call. It must be used before using
$PUSH_ARG64 and $CALL64.

If there are six or fewer arguments, the code is always in line.

By default, if there are more than six arguments, this macro creates a JSB
routine that is invoked to perform the actual call. However, if the inline option is
specified as INLINE=TRUE, the code is generated in line. This option should be
enabled only if the code in which it appears has a fixed stack depth. A fixed stack
depth can be assumed if no RUNTIMSTK or VARSIZSTK messages have been
reported. Otherwise, if the stack alignment is not at least quadword, there might
be many alignment faults in the called routine and in anything the called routine
calls. The default behavior (INLINE=FALSE) does not have this problem.

If there are more than six arguments, there can be no references to AP or SP
between a $SETUP_CALL64 and the matching $CALL64, because the $CALL64
code may be in a separate JSB routine. In addition, temporary registers (R16 and
above) may not survive the $SETUP_CALL64. However, they can be used within
the range, except where R16 through R21 interfere with the argument registers
already set up. In such cases, higher temporary registers should be used instead.

Note

The $SETUP_CALL64, $PUSH_ARG64, and $CALL64 macros are
intended to be used in an inline sequence. That is, you cannot branch into
the middle of a $SETUP_CALL64/$PUSH_ARG64/$CALL64 sequence,
nor can you branch around $PUSH_ARG64 macros or branch out of the
sequence to avoid the $CALL64.

$PUSH_ARG64

Does the equivalent of argument pushes for a call.

Format

$PUSH_ARG64 argument

Parameters

argument
The argument to be pushed.

Description

This macro pushes a 64-bit argument for a 64-bit call. The macro $SETUP_
CALL64 must be used before you can use $PUSH_ARG64.

Arguments will be read as aligned quadwords. That is, $PUSH_ARG64 4(R0) will
read the quadword at 4(R0), and push the quadword. Any indexed operations will
be done in quadword mode.
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$PUSH_ARG64

To push a longword value from memory as a quadword, first move it into a
register with a longword instruction, and then use $PUSH_ARG64 on the
register. Similarly, to push a quadword value that you know is not aligned, move
it to a temporary register first, and then use $PUSH_ARG64.

If the call contains more than six arguments, this macro checks for SP or AP
references in the argument. If the call contains more than six arguments, SP
references are not allowed, and AP references are allowed only if the inline option
is used.

The macro also checks for references to argument registers that have already
been set up for the current $CALL64. If it finds such references, a warning is
reported to advise the user to be careful not to overwrite an argument register
before it is used as the source in a $PUSH_ARG64.

The same checking is done for AP references when there are six or fewer
arguments; they are allowed, but the compiler cannot prevent you from
overwriting one before you use it. Therefore, if such references are found, an
informational message is reported.

Note that if the operand uses a symbol whose name includes one of the strings
R16 through R21, not as a register reference, this macro might report a spurious
error. For example, if the invocation $PUSH_ARG64 SAVED_R21 is made after R21
has been set up, this macro will unnecessarily report an informational message
about overwriting argument registers.

Also note that $PUSH_ARG64 cannot be in conditional code. $PUSH_ARG64
updates several symbols, such as the remaining argument count. Attempting to
write code that branches around a $PUSH_ARG64 in the middle of a $SETUP_
CALL64/$CALL64 sequence will not work properly.

$CALL64

Invokes the target routine.

Format

$CALL64 call_target

Parameters

call_target
The routine to be invoked.

Description

This macro calls the specified routine, assuming $SETUP_CALL64 has been used
to specify the argument count, and $PUSH_ARG64 has been used to push the
quadword arguments. This macro checks that the number of pushes matches
what was specified in the setup call.

The call_target operand must not be AP- or SP-based.
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E.2 Macros for Checking Sign Extension and Descriptor Format

The macros in this section are used for checking certain values and directing
program flow based on the outcome of the check.

$IS_32BITS

Checks the sign extension of the low 32 bits of a 64-bit value and directs the
program flow based on the outcome of the check.

Format

$IS_32BITS quad_arg, leq_32bits, gtr_32bits, temp_reg=22

Parameters

quad_arg
A 64-bit quantity, either in a register or in an aligned quadword memory location.

leq_32bits
Label to branch to if quad_arg is a 32-bit sign-extended value.

gtr_32bits
Label to branch to if quad_arg is greater than 32 bits.

temp_reg=22
Register to use as a temporary register for holding the low longword of the source
value—R22 is the default.

Description

$IS_32BITS checks the sign extension of the low 32 bits of a 64-bit value and
directs the program flow based on the outcome of the check.

Examples

1. $is_32bits R9, 10$

In this example, the compiler checks the sign extension of the low 32 bits of
the 64-bit value at R9 using the default temporary register, R22. Depending
on the type of branch and the outcome of the test, the program either
branches or continues in line.

2. $is_32bits 4(R8), 20$, 30$, R28

In this example, the compiler checks the sign extension of the low 32 bits of
the 64-bit value at 4(R8) using R28 as a temporary register and, based on the
check, branches to either 20$ or 30$.
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$IS_DESC64

Tests the specified descriptor to determine if it is a 64-bit format descriptor, and
directs the program flow based on the outcome of the test.

Format

$IS_DESC desc_addr, target, size=long or quad

Parameters

desc_addr
The address of the descriptor to test.

target
The label to branch to if the descriptor is in 64-bit format.

size=long
The size of the address pointing to the descriptor. Acceptable values are ‘‘long’’
(the default) and ‘‘quad’’.

Description

$IS_DESC64 tests the fields which distinguish a 64-bit descriptor from a 32-bit
descriptor. If it is in 64-bit form, a branch is taken to the specified target. The
address to be tested is read as a longword, unless SIZE=QUAD is specified.

Examples

1. $is_desc64 r9, 10$

In this example, the descriptor pointed to by R9 is tested, and if it is in 64-bit
form, a branch to 10$ is taken.

2. $is_desc64 8(r0), 20$, size=quad

In this example, the quadword at 8(R0) is read, and the descriptor it points to
is tested. If it is in 64-bit form, a branch to 20$ is taken.
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ADAWI instruction

synchronization guarantees, 3–21
Addresses

passing 64-bit values, 5–2, E–1
specifying 64-bit computing, 5–5

Addressing
64-bit, 1–2

Addressing guidelines
64-bit, 5–1

Address loading optimization
enabling, A–7

.ALIGN directive, B–1
Aligning data, 4–1, A–9

atomicity considerations, 2–23
compiler alignment assumptions, 4–1
precedence of alignment controls, 4–2
recommendations, 4–2

Alignment assumptions, 4–1
quadword memory references, 4–1

Alpha assembly language code
See Alpha instructions, Alpha assembly

language object code, and Code
Alpha assembly language object code

obtaining from compiler, A–7
Alpha instructions

See also Alpha assembly language object code
and Code

generated for atomicity, 2–19, 2–23
generated for granularity, 2–20
using, 3–22, C–1 to C–5

Alpha MACRO compiler
See MACRO-32 compiler

AP
modifying, 2–7
offsets from, 2–6
references from, 2–6 to 2–7
references from .JSB_ENTRY routines, 2–6

ARCH_DEFS.MAR, 1–8
$ARGn symbols, 2–27
Argument list

determining when homed, A–5
forcing the homing of, 2–7, B–4
FP-based references to, 2–6
homed, 2–6

Argument list (cont’d)
indicating quadword references, B–4

Argument lists
fixed-size, 5–2
suppressing homing, 5–4
variable-size, 5–4

Argument pointer (AP)
See AP

Arguments
declaring quadword, 5–4
maximum number of, 2–7, B–4

Arithmetic traps, 3–15, 3–22
.ASCID directive, B–1
Assembly language code

See Alpha instructions, Alpha assembly
language object code, Code, VAX MACRO
instructions, and VAX MACRO source code

Assembly language instructions
Alpha built-ins, 5–7

ASTs (asynchronous system traps)
preserving atomicity, 3–22

Atomicity, 3–22
See also Synchronization
alignment considerations, 2–23
byte and word-write operations, 2–20, A–7,

B–15
interlocked instructions, 2–24
preserving, 2–19, A–7, B–15
read-modify-write operations, 2–18, A–7, B–15
when cannot be guaranteed, 2–22 to 2–23

Atomicity controls
precedence over granularity, 2–22

B
Base address

See Common-based referencing
BBCCI instruction

synchronization guarantees, 3–21
BBSSI instruction

synchronization guarantees, 3–21
BICPSW

restriction on Z and N condition codes, 3–5
Branch

between local routines, 2–13
detecting between routines, A–5
from JSB routine to CALL routine, 3–7
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Branch (cont’d)
into a loop, 4–7
target of indeterminate, 2–4
to label plus offset, 1–6, 3–3

Branch prediction, 1–2, 2–19, 4–3
.BRANCH_LIKELY directive, 4–3
.BRANCH_UNLIKELY directive, 4–3
changing the compiler’s, 4–5

.BRANCH_LIKELY directive, 4–5, B–2
how to use, 4–6

.BRANCH_UNLIKELY directive, 4–5, B–3
how to use, 4–6

BUGx, 3–4
Built-ins, C–1 to C–7

Alpha assembly language instructions, 5–7,
C–3 to C–5

Alpha PALcode routines, 1–2, C–5 to C–7
defining PALcode, B–6
EVAX_LQxL, 3–5
EVAX_STxC, 3–5

Byte count
converting to page count, D–2

Byte granularity
preserving, 2–20, A–7, B–15

$BYTES_TO_PAGES macro, D–2

C
$CALL64 macro, 5–1, E–3

passing 64-bit values, 5–2
CALL entry point

declaring, 2–6 to 2–8, B–3
Call frame

manually assembling, 1–6
CALLG instruction, 2–6

argument count exceeds 255, 2–6
CALLS instruction, 2–6
.CALL_ENTRY directive, 1–4, 2–4, 2–6 to 2–8,

B–3
$ARGn symbols, 2–27
compiler’s temporary register usage, B–5
homing arguments, 2–7
QUAD_ARGS parameter

declaring 64-bit values, 5–1, 5–4
CASE instructions

required changes, 3–4
Code

common for VAX and Alpha, 1–7 to 1–8, B–5
debugging, 2–27
instruction scheduling, 1–3
interleaved instructions, 1–3
moved, 1–3
moving, 1–2, 2–27
optimization, 4–7, A–7
relocation, 1–2, 2–27
removing, 1–3
replicating, 1–3
run-time generation, 3–4

Code (cont’d)
self-modifying, 1–6, 3–4

Code scheduling optimization, 4–7
enabling, A–7

Coding conventions, 1–7
Coding practices

fixing nonportable, 3–1 to 3–22
identifying common nonportable, 1–5

Common base address, 4–9
Common-based referencing, A–7

See also /OPTIMIZE qualifier
external, 4–10
local, 4–9

Common code, 1–7 to 1–8, B–5
Compiler

See MACRO-32 compiler
Compiling

files required, 2–25
Concurrent threads

preserving atomicity, 3–22
Conditionalized code, 1–8
Condition codes

interroutine communication, 3–7
restriction on Z and N, 3–5

Condition handlers, 3–1, 3–15
establishing within .CALL_ENTRY routine,

2–8
modifying, 3–22

Conventions
coding, 1–7
consistent register declarations, 2–2
maintaining common MACRO sources, 1–7

Coroutines, 3–10 to 3–11

D
Data

See also Aligning data
embedded in code, 1–6, 3–3
overwriting, 3–13

Debugging compiled code
$ARGn symbols, 2–27
differences from debugging assembled code,

2–27
symbols for routine arguments, 2–27
treatment of routine arguments, 2–27
with floating-point data, 2–29
with packed decimal data, 2–29

/DEBUG qualifier, A–2
ALL option, A–2
NONE option, A–2
SYMBOLS option, A–2
TRACEBACK option, A–2

.DEFAULT directive, B–1

.DEFINE_PAL directive, B–6
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Descriptor formats
checking with $IS_DESC macro, E–5

Development environment, 1–7
Diagnostic messages

disabling reporting, 1–4
interpreting, 1–4

/DIAGNOSTICS qualifier, A–2
Differences between compiler and assembler, 1–2

instruction scheduling, 1–2, 1–3
interleaved instructions, 1–2, 1–3
reserved operand faults, 1–3

Directives, 2–25, B–1
unsupported, A–5, B–1

.DISABLE ABSOLUTE directive, B–1

.DISABLE directive, 1–4
FLAGGING option, B–7
OVERFLOW option, B–7
QUADWORD option, 5–1, B–7

/DISABLE qualifier, A–2
FLAGGING option, A–3, A–4
OVERFLOW option, A–3, A–4
QUADWORD option, A–3, A–4

.DISABLE TRUNCATION directive, B–1
DRAINA instruction, 3–22
Dynamic image relocation, 3–13

E
emphasis>(Alpha Architecture Reference Manual),

3–5
Emulation library, 3–4

required files, 2–25
.ENABLE ABSOLUTE directive, B–1
.ENABLE directive, 1–4

FLAGGING option, B–8
OVERFLOW option, B–8
QUADWORD option, 5–1, B–8

/ENABLE qualifier, A–2
FLAGGING option, A–4
OVERFLOW option, A–4
QUADWORD option, 5–1, A–4

.ENABLE TRUNCATION directive, B–1
Entry-point directives, 1–4, 2–3 to 2–14, B–3,

B–8, B–10, B–12
register sets, 1–4
when to use, 2–4

Entry-point register arguments
compiler hints, 2–12
declaring, 2–10 to 2–13
input, 2–10

Entry-point register set
declaring, 2–8 to 2–9
scratch, 2–11

Entry points
when to declare, 2–4

Epilogue code
preserving registers, 2–3, 2–10
using REI to change modes, 3–12

Error messages
interpreting, 1–4

ESCD instruction, 3–4
ESCE instruction, 3–4
ESCF instruction, 3–4
EV6 Alpha processor, 3–5
EVAX_CALLG_64 built-in

64-bit address support, 5–2, 5–4
EVAX_SEXTL built-in

sign extension for 64-bit address support, 5–2,
5–6

.EVEN directive, B–1
Event flags

synchronization guarantees, 3–22
Exception entry point

declaring, 2–14, B–8
Exception handlers

modifying, 3–22
.EXCEPTION_ENTRY directive, 1–4, 2–5, 2–14,

B–8
EXE$REI_INIT_STACK

using to change mode, 3–12

F
Faults

reserved operand, 1–3
Flagging

disabling, A–3, A–4, B–7
enabling, A–4, B–8
specifying, A–5

/FLAG qualifier, 1–4, 2–12, A–2, A–5
Floating-point data

debugging code with, 2–29
Floating-point instructions, 2–16
Flow control mechanisms, 3–6

branches from JSB routines, 3–6
condition codes, 3–6

FP
Alpha register, 2–2
modifying, 1–6
negative offsets, 3–1
positive offsets, 3–1
referencing local storage, 1–6

Frame pointer (FP)
See FP

G
Generated code, 1–6, 3–4

detecting, A–5
.GLOBAL_LABEL directive, B–10
Granularity

byte and word-write operations, 2–20, A–7,
B–15

interlocked instructions, 3–21
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Granularity controls
subordinate to atomicity, 2–22

H
Hints

enabling, 2–12, A–5
for specifying registers, 1–4, 2–12

Homed argument list, 2–6
$ARGn symbols, 2–28
detecting, A–5

home_arg argument
.CALL_ENTRY directive, 2–6

I
Image

relocating, 3–13
Informational messages

disabling reporting, A–9
Input register argument, 1–4
Input register mask, 2–10
Input register set, B–4, B–11, B–13
Instructions

Alpha, 2–19, 2–20, 2–23
compiler built-ins for Alpha assembly language,

5–7
floating-point, 2–16
incomplete, 3–4
interleaving, 1–3
interlocked memory, 3–5
packed decimal, 2–14
unsupported, 3–4
using Alpha, 1–2, 3–22, C–1 to C–5

Instruction scheduling
differences between VAX and Alpha, 1–3
optimization, 4–7

Instruction size
dependency on, 3–4

Instruction stream
data embedded in, 1–6, 3–3
modifying, 3–22

Interlocked instructions
atomicity, 2–24
synchronization guarantees, 3–21

Interlocked queue instructions
synchronization guarantees, 3–21

Internal processor registers
See IPRs

IPRs (internal processor registers), 3–4
$IS_32BITS macro

checking sign extension, 5–1, 5–6, E–4
$IS_DESC64 macro

checking if format descriptor is 64-bit, 5–1
$IS_DESC macro

checking if format descriptor is 64-bit, E–5

J
JMP instruction

to external module, 1–6
.JSB32_ENTRY directive, 1–4, 2–5, B–12

compiler’s temporary register usage, B–13
JSB entry point

32-bit mode, B–12
declaring, 2–8 to 2–10, B–10, B–12

JSB parameter
implicit, 3–3

.JSB_ENTRY directive, 1–4, 2–5, 2–8 to 2–13,
B–10

$ARGn symbols, 2–27
compiler’s temporary register usage, B–11

JSR instruction, 2–8
Jump

into a loop, 4–7

L
Label

defining as global, B–10
LDPCTX instruction, 3–4
LDx_L instruction, 2–24, A–7, B–15
LIB$MOVC3 routine, 5–7
LIB$MOVC5 routine, 5–7
LIBOTS routines, 5–7
/LIBRARY qualifier, A–2
Linkage pair, 2–3
Linkage section, 2–3

locating, B–14
naming, B–14

.LINKAGE_PSECT directive, B–14

.LINK directive, B–1
Linking, 2–26
Listing

obtaining assembly code, A–7
Listing file

line numbering, 2–26
VAX MACRO compiler, 2–26

/LIST qualifier, A–2
Load locked instruction

See LDx_L instruction
Location counter

manipulating, 3–13
$LOCKED_PAGE_END, D–9
$LOCKED_PAGE_START, D–9
Locking pages

code written in other languages, 3–19
image initialization, 3–18
on the fly, 3–19
system working set, 3–16 to 3–21

Lock manager
synchronization guarantees, 3–22
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$LOCK_PAGE, D–10
$LOCK_PAGE_INIT, D–8
Logical names

required by compiler, 2–25
Longword operations

aligned longwords, 3–21
Loops

nesting, 3–13

M
/MACHINE qualifier, A–2, A–7
MACRO/MIGRATION command, A–1 to A–10
MACRO-32 code

See Code and VAX MACRO source code
MACRO–32 compiler

64-bit addressing support, 5–1, E–1
MACRO-32 compiler, 1–1

alignment assumptions, 4–1
built-ins, C–1 to C–7
conditional branch assumptions, 4–4
definition, 1–1
differences between it and assembler, 1–2
directives, 2–25, B–1
emulation routine library, 2–25
features, 1–1 to 1–2
invoking, 2–25, A–1
limitations of, 1–1, 2–1
messages, 1–4
overview, 2–1
qualifiers, A–1 to A–10
temporary register usage, 2–2, 2–12, B–5,

B–11, B–13
MACRO–32 Compiler for OpenVMS Alpha

problems and restrictions, 3–3
quadword moves into the VAX SP and PC, 3–3

MACRO-64
See Alpha instructions and Alpha assembly

language object code
Macro libraries, 2–25
.MASK directive, B–1
max_arg argument

.CALL_ENTRY directive, 2–6
MB instructions

preserving atomicity, 3–22
Memory

detecting unaligned references, A–5
modifying in one operation, 2–18
unaligned references, 2–18

Memory barrier
implicit in interlocked instructions, 3–21

Messages
disabling reporting, 1–4, A–9
interpreting, 1–4

Methodology
porting, 1–4

MFPR instruction, 3–4
MOVC3 instruction, 5–7
MOVC5 instruction, 5–7
MOVPSL instruction, 3–6
MTPR instruction, 3–4
Mutexes

synchronization guarantees, 3–22

N
$NEXT_PAGE macro, D–3
Nonportable coding practices, 1–5

fixing, 3–1 to 3–22
/NOSYMBOLS qualifier, A–9
/NOTIE qualifier, A–9

O
/OBJECT qualifier, A–2
.ODD directive, B–1
Opcode

moving to stack or data area, 1–6
.OPDEF directive, B–1
Operand descriptors, B–6
Optimization

addresses, 4–7, 4–9
aligning data, 4–1
branch prediction, 4–3
code, 4–7
common-based referencing, 4–9
declaring register usage, 4–8
instructions, 4–7
multiple data references, 4–7
VAX registers, 4–7

/OPTIMIZE qualifier, A–2, A–7
ADDRESSES option, 4–7, A–7
PEEPHOLE option, 4–7, A–7
REFERENCES option, 4–7, A–7
SCHEDULING option, 4–7, A–7
VAXREGS option, 4–7, A–7

OTS$MOVE3 routine, 5–7
OTS$MOVE5 routine, 5–7
Output register argument, 1–4
Output register set, B–4, B–11, B–13
Overflow trap code

activates production, A–3, A–4, B–8
deactivates production, B–7

P
Packed decimal data

debugging code with, 2–29
Packed decimal instructions, 2–14
Page count

converting to byte count, D–4
Page locking

system working set, 3–16 to 3–21
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Page size
calculations based on, 5–1, 5–7, D–1 to D–6
dependencies, 3–16
macro parameter for 64-bit addressing, 5–1,

5–7
$PAGES_TO_BYTES macro, D–4
PALcode

See Built-ins
Peephole optimization

enabling, A–7
Performance

See Optimization
PIC

See Position independent code
Pointer-type declarations, 5–5
Poor programmer’s lockdown, 3–16 to 3–21
$POP64 macro, D–6
POPR instruction, 2–9
Porting process, 1–4
Position independent code (PIC), 3–13
Precedence

alignment controls, 4–2
atomicity, 2–22
granularity, 2–22

Prefix file, 1–8
.PRESERVE directive

ATOMICITY option, 2–19, 3–22, B–15
GRANULARITY option, 2–20, 3–21, B–15,

B–16
/PRESERVE qualifier, A–2

ATOMICITY option, 2–19, 3–22, A–7
GRANULARITY option, 2–20, 3–21, A–7

Preserve register set, B–5, B–8, B–12, B–13
$PREVIOUS_PAGE, D–4
Procedure descriptor, 2–3, 2–4
Process for porting VAX MACRO code, 1–4
Prologue code

preserving register contents, 2–10
preserving registers, 2–3

Psects
to delineate code, 3–17

$PUSH64 macro, D–7
PUSHR instruction, 2–9
$PUSH_ARG64 macro, 5–1, E–2

passing 64-bit values, 5–2

Q
Quad parameter, D–2, D–3, D–4, D–5, D–6
Quadword addresses

computing, 5–5
Quadword arguments

declaring, 5–4
passing, 5–2

Quadword literal mode
disabling, A–3, A–4, B–7
enabling, A–4, B–8

Quadword moves into the VAX SP and PC, 3–3
Quadword operations

aligned quadwords, 3–21
Qualifiers, A–1 to A–10
Queue instructions

synchronization guarantees, 3–22

R
$RAB64 macro, 5–2, 5–7
$RAB64_STORE macro, 5–2, 5–7
$RAB macro, 5–7
$RAB_STORE macro, 5–7
.REFn directive, B–1
Registers

available for use by MACRO-32 code, 2–1 to
2–2

declaring at routine entry points, 1–7, 2–10 to
2–13

differences between Alpha and VAX, 2–1
entry-point

help for specifying, 2–12
preserving contents, 2–7, 2–8, 2–9, 2–10
preserving in prologue and epilogue code, 2–3,

2–10
restoring contents, 2–7, 2–8, 2–9, 2–10
restrictions, 2–2
saving and restoring on stack, D–6 to D–7
saving contents, 2–7, 2–8, 2–9, 2–10

REI instruction
modifying the instruction stream, 3–22
using to change mode, 3–12

REI target
constructing, 1–6

Reserved operand faults, 1–3
/RETRY_COUNT qualifier, A–2
Return address

modifying, 3–6, 3–9
pushing onto stack, 1–5, 3–8
removing from stack, 1–5, 3–8

RMS macros
support for data buffers in 64-bit address space,

5–2, 5–7
$ROUND_RETADR macro, D–5
Routine linkage, 2–3

S
Scratch register argument, 2–11
Scratch register set, B–5, B–11, B–13
Self-modifying code, 1–6, 3–4

detecting, A–5
$SETUP_CALL64 macro, 5–1, E–1

passing 64-bit values, 5–2
.SET_REGISTERS directive, 4–1, 4–2, B–16
/SHOW qualifier, A–2
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Sign extension
checking with $IS_32BITS macro, 5–6, E–4
using EVAX_SEXTL built-in, 5–6

Source changes
required, 1–5 to 1–6, 3–1 to 3–22

Source code
See VAX MACRO source code

SP
Alpha register, 2–2

Spin locks
synchronization guarantees, 3–22

Stack
allocating space on, 1–5
building data structures on, 3–2
detecting unaligned references, A–5
pushing label onto, 1–5
pushing return address onto, 1–5, 3–8
referencing data outside current stack frame,

3–2
removing return address from, 1–5, 3–8
unaligned references to, 3–2

Stack base
for exception service routines, 2–14, B–9

Stack pointer (SP)
See SP

Stack usage
required changes, 3–1

STARLET.MLB, 2–4, 2–25
STARLET.OLB, 2–25
$START_OF_PAGE macro, D–6
Static data

overwriting, 3–13
Store conditional instruction

See STx_C instruction
STx_C instruction, 2–24, A–7, B–15
SVPCTX instruction, 3–4
Symbolic variables

for debugging routine arguments, 2–27
Symbols

architecture-specific, 1–8
/SYMBOLS qualifier, A–2, A–9
Symbol vectors, 3–14
.SYMBOL_ALIGNMENT directive, 4–1, B–18
Synchronization, 3–21 to 3–22

See also Atomicity

T
Threads

preserving atomicity, 3–22
/TIE qualifier, A–2, A–9
.TRANSFER directive, 3–14, B–1
Transfer vectors, 3–14
TRAPB instruction, 3–22
Traps

arithmetic, 3–15, 3–22
floating-point instruction, 2–17

Traps (cont’d)
packed decimal instruction, 2–15

U
/UNALIGNED qualifier, 4–1, A–2, A–9
$UNLOCK_PAGE, D–10

V
VAX dependencies

removing, 1–8
VAX instructions

detecting problematic, A–5
VAX MACRO

See MACRO
VAX MACRO source code

common for VAX and Alpha, 1–7 to 1–8
compiling, 2–25, A–1
conditionalizing for architecture, 1–8
untranslatable instructions, 3–4

VAXREGS option, 2–11, 4–8
Vectors

symbol, 3–14
transfer, 3–14

Virtual address
converting to first byte in next page, D–3
converting to first byte in previous page, D–4
converting to first byte within page, D–6

W
Warning messages

disabling reporting, A–9
/WARN qualifier, 1–4, A–2, A–9

X
XFC instruction, 3–4

Index–7




	OpenVMSMACRO-32Porting andUser’s Guide
	Contents
	Preface
	Intended Audience
	Document Structure
	Related Documents
	Reader’s Comments
	How to Order Additional Documentation
	Conventions

	Part I Concepts and Methodology
	1 Preparing to Port VAX MACRO Code
	1.1 Compiler Features
	1.2 Differences Between the Compiler and the Assembler
	1.2.1 Moving Code
	1.2.2 Replicating Code
	1.2.3 Removing Code
	1.2.4 Interleaving Instructions
	1.2.5 Reserved Operand Faults

	1.3 Step-by-Step Porting Process
	1.4 Identifying Nonportable VAX MACRO Coding Practices
	1.5 Establishing Useful Coding Conventions
	1.6 Maintaining Common Sources for VAX and Alpha Systems
	1.6.1 Including Compiler Directive Definitions
	1.6.2 Removing VAX Dependencies
	1.6.3 Using Architecture-Specific Symbols

	1.7 Using the MACRO-32 Compiler

	2 How to Use the MACRO-32 Compiler
	2.1 Using Alpha Registers
	2.2 Routine Calls and Declarations
	2.2.1 Linkage Section
	2.2.2 Prologue and Epilogue Code
	2.2.3 When to Declare Entry Points
	2.2.4 Directives for Designating Routine Entry Points
	2.2.5 Code Generation for Routine Calls

	2.3 Declaring CALL Entry Points
	2.3.1 Homed Argument Lists
	2.3.2 Saving Modified Registers
	2.3.3 Modifying the Argument Pointer
	2.3.4 Establishing Dynamic Condition Handlers in Called Routines

	2.4 Declaring JSB Routine Entry Points
	2.4.1 Differences Between .JSB_ENTRY and .JSB32_ENTRY
	2.4.2 Two General Cases for Using .JSB32_ENTRY
	2.4.3 PUSHR and POPR Instructions Within JSB Routines
	2.4.4 Establishing Dynamic Condition Handlers in JSB Routines

	2.5 Declaring a Routine’s Register Use
	2.5.1 Input Argument for Entry Point Register Declaration
	2.5.2 Output Argument for Entry Point Register Declaration
	2.5.3 Scratch Argument for Entry Point Register Declaration
	2.5.4 Preserve Argument for Entry Point Register Declaration
	2.5.5 Help for Specifying Register Sets

	2.6 Branching Between Local Routines
	2.7 Declaring Exception Entry Points
	2.8 Using Packed Decimal Instructions
	2.8.1 Differences Between the VAX and Alpha Implementations

	2.9 Using Floating-Point Instructions
	2.9.1 Differences Between the VAX and Alpha Implementations
	2.9.2 Impact on Routines in Other Languages

	2.10 Preserving the Atomicity and Granularity of VAX MACRO
	2.10.1 Preserving Atomicity
	2.10.2 Preserving Granularity
	2.10.3 Precedence of Atomicity Over Granularity
	2.10.4 Examples When Atomicity Cannot Be Guaranteed
	2.10.5 Alignment Considerations for Atomicity
	2.10.6 Interlocked Instructions and Atomicity

	2.11 Compiling and Linking
	2.11.1 Line Numbering in Listing File
	2.11.2 Linking an Object Module

	2.12 Debugging
	2.12.1 Code Relocation
	2.12.2 Symbolic Variables for Routine Arguments
	2.12.3 Locating Arguments Without $ARGn Symbols
	2.12.4 Debugging Code with Packed Decimal Data
	2.12.5 Debugging Code with Floating-Point Data


	3 Recommended and Required Source Changes
	3.1 Stack Usage
	3.1.1 References to the Procedure Stack Frame
	3.1.2 References Outside the Current Stack Frame
	3.1.3 Nonaligned Stack References
	3.1.4 Building Data Structures on the Stack
	3.1.5 Quadword Moves Into the VAX SP and PC

	3.2 Instruction Stream
	3.2.1 Data Embedded in the Instruction Stream
	3.2.2 Run-Time Code Generation
	3.2.3 Dependencies on Instruction Size
	3.2.4 Incomplete Instructions
	3.2.5 Untranslatable VAX Instructions
	3.2.6 References to Internal Processor Registers
	3.2.7 Use of Z and N Condition Codes with the BICPSW Instruction
	3.2.8 Interlocked Memory Instructions
	3.2.9 Use of the MOVPSL Instruction

	3.3 Flow Control Mechanisms
	3.3.1 Communication by Condition Codes
	3.3.2 Branches from JSB Routines into CALL Routines
	3.3.3 Pushing an Address onto the Stack
	3.3.4 Removing the Return Address from the Stack
	3.3.5 Modifying the Return Address
	3.3.6 Coroutine Calls
	3.3.7 Using REI to Change Modes
	3.3.8 Loop Nesting Limit

	3.4 Dynamic Image Relocation
	3.5 Overwriting Static Data
	3.6 Static Initialization Using External Symbols
	3.7 Transfer Vectors
	3.8 Arithmetic Exceptions
	3.9 Page Size
	3.10 Locking Pages into a Working Set
	3.11 Synchronization

	4 Improving the Performance of Ported Code
	4.1 Aligning Data
	4.1.1 Alignment Assumptions
	4.1.2 Directives and Qualifier for Changing Alignment Assumptions
	4.1.3 Precedence of Alignment Controls
	4.1.4 Recommendations for Aligning Data

	4.2 Code Flow and Branch Prediction
	4.2.1 Default Code Flow and Branch Prediction
	4.2.2 Changing the Compiler’s Branch Prediction
	4.2.3 How to Use .BRANCH_LIKELY
	4.2.4 How to Use .BRANCH_UNLIKELY
	4.2.5 Forward Jumps into Loops

	4.3 Code Optimization
	4.3.1 Using the VAXREGS Optimization

	4.4 Common-Based Referencing
	4.4.1 Creating a Prefix File for Common-Based Referencing


	5 MACRO-32 Programming Support for 64-Bit Addressing
	5.1 Guidelines for 64-Bit Addressing
	5.2 New and Changed Components for 64-Bit Addressing
	5.3 Passing 64-Bit Values
	5.3.1 Calls with a Fixed-Size Argument List
	5.3.2 Calls with a Variable-Size Argument List

	5.4 Declaring 64-Bit Arguments
	5.4.1 Usage Notes for QUAD_ARGS

	5.5 Specifying 64-Bit Address Arithmetic
	5.5.1 Dependence on Wrapping Behavior of Longword Operations

	5.6 Sign Extending and Checking
	5.7 Alpha Instruction Built-ins
	5.8 Calculating Page-Size Dependent Values
	5.9 Creating and Using Buffers in 64-Bit Address Space
	5.10 Coding for Moves Longer Than 64 KB

	Part II Reference
	A Compiler Qualifiers
	MACRO/MIGRATION

	B Compiler Directives
	B.1 Support of VAX MACRO Assembler Directives
	B.2 Compiler Directives
	.BRANCH_LIKELY
	.BRANCH_UNLIKELY
	.CALL_ENTRY
	.DEFINE_PAL
	.DISABLE
	.ENABLE
	.EXCEPTION_ENTRY
	.GLOBAL_LABEL
	.JSB_ENTRY
	.JSB32_ENTRY
	.LINKAGE_PSECT
	.PRESERVE
	.SET_REGISTERS
	.SYMBOL_ALIGNMENT


	C Compiler Built-Ins
	C.1 Alpha Instruction Built-Ins
	C.2 Alpha PALcode Built-Ins

	D Macros for Porting to OpenVMS Alpha
	D.1 Page-Related Calculations
	$BYTES_TO_PAGES
	$NEXT_PAGE
	$PAGES_TO_BYTES
	$PREVIOUS_PAGE
	$ROUND_RETADR
	$START_OF_PAGE

	D.2 Saving and Restoring Alpha Registers
	$POP64
	$PUSH64

	D.3 Locking Pages into a Working Set
	D.3.1 Image Initialization-Time Lockdown
	$LOCK_PAGE_INIT
	$LOCKED_PAGE_END
	$LOCKED_PAGE_START

	D.3.2 On-the-Fly Lockdown
	$LOCK_PAGE
	$UNLOCK_PAGE



	E MACRO-32 Macros for 64-Bit Addressing
	E.1 Macros for Manipulating 64-Bit Addresses
	$SETUP_CALL64
	$PUSH_ARG64
	$CALL64

	E.2 Macros for Checking Sign Extension and Descriptor Format
	$IS_32BITS
	$IS_DESC64


	Index
	Tables
	Table 3–1 Image Initialization-Time Lockdown
	Table 3–2 On-the-Fly Lockdown
	Table 3–3 Image Initialization-Time Lockdown with the Same Code
	Table 5–1 New and Changed Components for 64-Bit Addressing
	Table 5–2 Passing 64-Bit Values with a Fixed-Size Argument List
	Table A–1 Compiler Qualifiers
	Table B–1 Operand Descriptors
	Table C–1 Alpha Instruction Built-Ins
	Table C–2 Alpha PALcode Built-Ins
	Table D–1 Shift Values




