
•

•

•

•

•

TOPS-20
User's Guide
AA-4179C-TM, AD-4179C-T1 , AD-4179C-T2

December 1982

This document introduces users to the TOPS-20 operating
system. It describes how to use the system, obtain system
information, create files, modify files, and run programs.

This document updates the document of the same name, Order
No. AA-4179C-TM .

OPERATING SYSTEM:

SOFTWARE:

TOPS-20 V4.1 (KS/KL Model A)
TOPS-20 V5.1 (KL Model B)

TOPS-20 EXEC V5.1

Software and manuals should be ordered by title and order number. In the United States. send orders
to the nearest distribution center. Outside the United States, orders should be directed to the nearest
DIGITAL Field Sales Office or representative .

Northeast/Mid-Atlantic Region

Digital Equipment Corporation
PO Box CS2008
Nashua, New Hampshire 03061
Telephone:(603)884-6660

Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation
Accessories and Supplies Center Accessories and Supplies Center
1050 East Remington Road 632 Caribbean Drive
Schaumburg, Illinois 60195 Sunnyvale, Calilornia 94Q86
Telephone:(312)640-5612 Telephone :(408)734-4915

d1g1tal equipment corporat1on • marlboro massachusetts

First Printing, March 1976
Revised, October 1976
Revised, May 19n
Updated, January 1978
Updated, Aprll 1978
Revised, January 1980
Updated, Aprll 1982
Updated, December 1982

© Digital Equipment Corporation 1976, 1980, 1982. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation :

~D~DD~o ··
DEC MASS BUS UNIBUS
DE Cm ate PDP VAX
DECsystem- 1 O P/OS VMS
DECSYSTEM- 20 Professional VT
DECUS Rainbow Work Processor
DECwriter RSTS
DIBOL RSX

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
documentation.

•

•

•

•

•

I

•

•

•

•

PREFACE

CHAPTER 1

CHAPTER

1.1
1. 2
1. 3
1. 4
1. 4 .1
1. 4. 2
1. 5
1. 5 .1
1. 5. 2
1. 5. 3
1. 5. 4
1. 6
1. 6 .1
1. 6. 2
1. 7

1. 8
1. 9
1. 9 .1
1. 9. 2
1. 9. 3
1. 9. 4
1. 9. 5
1.9.5.1
1.9.5.2
1.9.5.3

2

2.1
2.2
2.3

2.4
2. 4 .1
2. 4. 2
~. 4. 3
2. 4. 4

2.5
2.6
2.7
2. 7 .1
2.7.2
2. 7. 3

CONTENTS

GETTING ON AND OFF THE SYSTEM

RECOGNIZING KEYBOARD SYMBOLS
GETTING THE ATTENTION OF THE SYSTEM
GETTING INFORMATION ABOUT YOUR TERMINAL
DECLARING THE TERMINAL TYPE

Controlling Terminal Output
Setting the Terminal Speed

STARTING A JOB WITH LOGIN
User Names
Passwords
Accounts
Session-Remark

RECEIVING MESSAGES
Ordinary Messages
Alerts

EXECUTING COMMANDS AUTOMATICALLY DURING
LOGIN
ENDING A JOB WITH LOGOUT
SETTING ADDITIONAL TERMINAL PARAMETERS

Setting the Terminal Page Length
Setting the Terminal Line Width
Using Formfeeds
Using Tab Stops
Using Uppercase and Lowercase Letters
Testing for Lowercase Letters
Raising Lowercase Letters in Input
Printing Lowercase Letters in Output

COMMUNICATING WITH THE SYSTEM

USING TOPS-20 COMMANDS
OBTAINING A LIST OF TOPS-20 COMMANDS
OBTAINING INFORMATION ABOUT THE PARTS OF A
COMMAND
TYPING COMMANDS

Full Input
Recognition Input
Abbreviated Input
Combined Recognition and Abbreviated
Input

CONTINUING COMMANDS
ADDING COMMENTS
CORRECTING INPUT ERRORS

DELETE - Erasing a Ch a ract e r
CTRL/ R - Reprinting a Line
CTRL/ U - Erasing an Entire Line

iii

1-1

1-1
1-3
1-4
1-5
1-7
1-9
1-10
1-11
1-11
1-11
1-12
1-1 2
1-12
1-12.2

1-12.3
1-13
1-13
1-14
1-14
1-14
1-15
l-15
1-15
1-16
1-16

2-1

2-1
2-4

2-5
2-6
2-6
2-7
2-8

2-10
2-10
2-11
2-11
2-11
2-12
2-12

April 1982

I

2. 7. 4
2. 7. 5

2. 8

CHAPTER 3

3 .1
3. 2
3. 3
3.4
3 .5
3.6

CHAPTER 4

4.1
4 .1.1
4. 1. 2
4 .1. 3
4 .1. 4
4. 1. 5
4 .1. 6
4 .1. 7
4.2
4.3
4.4
4.5

I 4.5.1

CHAPTER 5

5.1
5 .1.1
5. 1. 2
5.2
5.3
5.4
5. 4 .1
5.5
5. 5 .1
5.6

5.7
5.8
5.9
5.10
5.11
5.12
5.13

CHAPTER 6

6 .1
6.2
6.2.1
6. 2. 2
6. 2. 3

CONTENTS (CONT.)

CTRL/ W - Erasing a Word
CTRL/ H - Reprinting Part of an Erroneous
Command Line

OPERATING SYSTEM STOPPAGE

COMMUNICATING WITH OTHER USERS

GETTING A LIST OF USERS ON THE SYSTEM
LINKING WITH OTHER TERMINALS
SENDING MAIL
COMMUNICATING WITH THE OPERATOR
CONTROLLING MESSAGES FROM USERS
CONTROLLING SYSTEM MESSAGES

FILE SPECIFICATIONS

COMPLETE FORM OF A FILE SPECIFICATION
Device Names - dev:
Director y Names - <DIR >
Project-Programmer Numbers - [PPN)
Filenames - name
File Types - .typ
Generation Numbers - .gen
File Attributes - ;A, ;P, ;T

USING WILDCARDS TO SPECIFY FILES
SPECIFYING SPECIAL CHARACTERS - CTRL/ V
TYPING FILE SPECIFICATIONS
USING LOGICAL NAMES

The De v ice DSK:

CREATING AND EDITING FILES

SELECTING AN EDITOR
EDIT
TV

USING EDIT TO CREATE A FILE
ENTERING THE CONTENTS OF A FILE
SAVING THE FILE

Using the E Command
USING THE EDIT COMMAND

Using Switches with EDIT
RECALLING ARGUMENTS TO CREATE AND EDIT
COMMANDS
USING LINE NUMBERS
PRINTING LINES IN A FILE
CHANGING LINES IN A FILE
DELETING LINES IN A FILE
INSERTING LINES IN A FILE
MOVING LINES IN A FILE
EDITING FILES IN ANOTHER DIRECTORY

US ING DISK FILES

USING FILE STRUCTURES
PROTECTING DIRECTORIES AND FILES

Directory Protection Numbers
File Protection Numbers
Checking Protection Numbers

iv

2-13

2-14
2-15

3-1

3-1
3-2
3-4
3-5
3-5
3-6

4-1

4-1
4-2
4-2
4-3
4-4
4-4
4-4
4-6
4-6.1
4-8
4-8
4-10
4-13

5-1

5-1
5-2
5-2
5-2
5-4
5-5
5-5
5-7
5-8

5-9
5-10
5-11
5-12
5-13
5-13
5-14
5-16

6-1

6-1
6-4
6-4
6-5
6-5

April 1982

•

•

•

•

•

•
CHAPTER

•
CHAPTER

•
CHAPTER

•

6. 2. 4
6.2.5
6.3
6.4
6.5
6.6
6.7
6.8
6.8.1
6.8.2
6.8.3
6.9
6.10
6.11
6.11.1
6.11.2

6.11.3
6.11.4
6.11.5

7

7.1
7.2
7. 2 .1

7. 2. 2

7. 2. 3
7.2.4
7. 3

8

8.1
8.2
8.3
8.4
8. 5
8. 5 .1
8. 5. 2

8.5.3
8.6

9

9.1
9 .1.1
9 .1. 2
9 .1. 3
9 .1. 4
9. 2
9. 2 .1
9.2.2

CONTENTS (CONT.)

Printing a File Protection Number
Changing a File Protection Number

USING TEMPORARY FILES
CONNECTING TO DIRECTORIES
ACCESSING DIRECTORIES
COPYING FILES
APPENDING FILES
PRINTING FILES

Modifying a PRINT Request
Canceling a PRINT Request
Setting Defaults for the PRINT Command

DELETING AND RESTORING FILES
REGULATING DISK FILE STORAGE
LONG TERM OFF-LINE FILE STORAGE

Archiving Files
Getting Information About Archive Status
of Files
Canceling an Archive Request
Retrieving an Archived File
Archiving Expired Files Automatically

USING MAGNETIC TAPE

USING MAGNETIC TAPE STORAGE
USING UNLABELED TAPES

Using Unlabeled Tapes With Tape
Allocation Enabled
Using Unlabeled Tapes With Tape
Allocation Disabled
Setting Tape Parameters
Positioning The Tape

USING LABELED TAPES

RUNNING SYSTEM PROGRAMS AND OTHER USERS'
PROGRAMS

RUNNING SYSTEM PROGRAMS
GIVING COMMANDS TO SYSTEM PROGRAMS
GETTING INFORMATION ABOUT SYSTEM FEATURES
RUNNING USER PROGRAMS
CONTROLLING PROGRAMS

Typing CTRL/ C to Halt Execution
Typing CTRL/ O to Stop Output to Your
Terminal
Typing CTRL/ T to Print the Run Status

RUNNING PROGRAMS WITHOUT DESTROYING MEMORY

PRODUCING AND RUNNING YOUR OWN PROGRAMS

PRODUCING A SIMPLE PROGRAM
The Source Program
Executing the Program
Debugging the Program
Saving the Program for Future Use

PREPARING A MULTI-MODULE PROGRAM
Writing and Entering Modules into Files
Executing the Program

v

6-6
6-7
6-7
6-7
6-9
6-11
6-12
6-13
6-14
6-15
6-15
6-16
6-18
6-21
6-21

6-22
6-23
6-23
6-24

7-1

7-1
7-1

7-2

7-2
7-3
7-4
7-4

8-1

8-1
8-1
8-2
8-3
8-3
8-4

8 -4
8-5
8-7

9-1

9-1
9-1
9-2
9-3
9-5
9-5
9-6
9-7

April 1982

I

9. 2. 3
9. 2. 4
9. 2. 4 .1
9. 2. 4. 2
9. 2. 4. 3
9. 2. 4. 4
9. 2. 4. 5
9. 2. 5

9. 2. 6
9.2.7
9. 3
9. 3 .1

9.3.1.1
9. 3. 2

9. 3. 2 .1
9. 3. 2. 2
9. 3. 2. 3
9. 3. 3

9. 3. 4

9. 3. 5

9. 3. 6

CHAPTER 10

10.1
10.1.1
10.1.2
10.1.2.1
10.1.3
10.1.4
10.2
10.3

APPENDIX A

APPENDIX B

APPENDIX C

INDEX

FIGURE 2-1
9-1

CONTENTS (CONT.)

Producing a Cross-Reference Listing
Using Subroutine Libraries
Entering the Subroutines into Files
Compiling the Subroutines
Creating the Library File
Using the Library File
Changing a Subroutine in the Library
Loading and Saving the Program for
Future Use
Saving Arguments in Indirect Files
Comparing Changes in Files

USING THE LOAD-CLASS COMMANDS
Object (Relocatable) and Executable
Programs
Using Relocatable Object Programs
Selecting a File and Recognizing the
Programming Language
Using Nonstandard File Types
Using the File Type .REL
Examples
Compiling Only Out-of-Date Object
Programs
Remembering Arguments to LOAD-Class
Commands
Concatenating Files to Produce One
Source Program
Specifying Special Actions with Switches

USING BATCH

SUBMITTING A BATCH JOB
Creating a Control File
Submitting a Control File to Batch
Setting Defaults for the SUBMIT Command
Checking a Batch Job
Examining the Output from a Batch Job

MODIFYING A BATCH JOB
CANCELING A BATCH JOB

TOPS-20 COMMANDS

STANDARD FILE TYPES

THE BAUD-RATE SWrTCHES FOR VT50 AND VT52
TERMINALS

FIGURES

Fields of A Command
Source, Object, and Executable Programs

vi

9-7
9-9
9-10
9-11
9-11
9-12
9-13

9-14.1
9-15
9-lfi
9-17

9-17
9-18

9-19
9-20
9-20
9-21

9-21

9-22

9-23
9-23

10-1

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-7

A-1

B-1

C-1

Index-1

2-3
9-18

April 1982

•

•

•

•

•

•

•

•

•

TABLE 1-1
2-1
4-1
4-2
4-3
5-1
5-2
6-1
6-2
8-1
8-2
9-1

10-1
B-1

CONTENTS (CONT.)

TABLES

Special Function Keys
Accepted Command Abbreviations
System Device Names
Special System Programs
Symbolic Generation Numbers
Some Standard File Types
EDIT Print Commands
Directory Protection Digits
File Protection Digits
CTRL/ T Status Messages
Unexpected Process Termination Messages
LOAD-Class Command Standard File
Specifications
Illegal Commands In Batch Jobs
Standard File Types

vii

1-2
2-9
4-2
4-3
4-5
5-3
5-11
6-4
6-5
8-6
8-6

9-20
10-2

B-1

•

•

•

•

•

•

•

•

•

PREFACE

The TOPS-20 User's Guide describes the functions that you can perform
with the TOPS-20 operating system. This manual is the middle document
in a series of three TOPS-20 user-oriented manuals. The audience for
the TOPS-20 User's Guide ranges from the entry level first-time user
to the experienced higher level language programmer.

Before you begin to use the TOPS-20 User's Guide, you should read the
first document in the series, Getting Started With TOPS-20, to become
familiar with the operating system. This manual provides sufficient
information for you to create and edit files and run a few simple
programs.

Once you learn about the functions described in the TOPS-20 User's
Guide, you can refer to the third and most advanced manual in the
series, the TOPS-20 Commands Reference Manual, for complete
descriptions of all of the TOPS-20 commands and how to use them.

The following suggests a list of chapters to read according to the
level of information you need to do your job.

• If you are a first time user, such as a librarian, clerk, or
data entry person, read Chapters 1,2,3,8,10.

• If you are a system administrator, or a new operator, read
Chapters 4,5,6,7.

• If you are a programmer, read Chapter 9.

All examples in the TOPS-20 User's Guide are produced on an LA36 hard
copy terminal, using the system editor, EDIT .

The following list contains the titles and order numbers for the
documentation referenced in this manual:

e Getting Started With TOPS-20 AA-4187D-TM

• TOPS-20 Commands Reference Manual AA-51158-TM

e TOPS-20 User Utilities Guide AA-D850A-TM

• TOPS-20 Tape Processing Manual AA-Hl80A-TM

e TOPS-20 System Manager's Guide AA-4169F-TM

• EDIT Reference Manual AA-5415A-TM

ix

e TV Editor Manual AA-Hl81A-TM

e TOPS-10 / TOPS-20 Batch Reference Manual AA-H374A-TK •

•

•

•

•
x

I

•

•

•

•

CHAPTER l

GETTING ON AND OFF THE SYSTEM

This chapter describes:

• Recognizing keyboard symbols (Section 1.1)

• Getting the attention of the system (Section 1.2)

• Getting information about the terminal (Section 1.3)

• Declaring the terminal type (Section 1.4)

• Controlling terminal output (Section 1.4.1)

• Setting the terminal speed (Section 1.4.2)

• Starting a job with LOGIN (Section 1.5)

• Receiving messages (Section 1.6)

• Executing commands automatically during LOGIN (Section 1.7)

• Ending a job with LOGOUT (Section 1.8)

• Setting additional terminal parameters (Section 1.9)

The TOPS-20 commands and system programs introduced in this chapter
are:

INFORMATION
LOGIN
LOGOUT
PUSH

RDMAIL
SET
TERMINAL

1.1 RECOGNIZING KEYBOARD SYMBOLS

Although many different types and models of terminals exist, they all
have similar keyboards that resemble typewriters.

Before you begin using the system, become familiar with the keyboard
on the terminal. In addition to the standard characters (letters,
numbers, and punctuation) and the space bar, there are keys that
perform special functions. Table 1-1 describes these keys and their
functions .

1-1

Key

CTRL
(Control)

DELETE

ESC
(Escape)

GETTING ON AND OFF THE SYSTEM

Table 1-1
Special Function Keys

Function

The CTRL (or control) key initiates a number of system
functions when it is used in conjunction with another
character.

To type a control character, hold down the CTRL key,
and at the same time press the character you want.
For example: to type a CTRL/ C, hold down the CTRL key
and at the same time press the letter C. In most
cases this prints (echoes) on your terminal as AC.

The DELETE key erases characters. On some terminals
this key is labeled RUBOUT.

The ESC (or escape)
different functions.

key initiates a variety of

At

• It completes a command and prompts you with a
guideword.

• It completes an argument.

•
•

•
•

NOTE

Using ESC to complete a command or
request a guideword is called
recognition. Refer to Section 2.2.2 for
a complete description.

It ends input to some system programs.

It causes special functions to be performed
some programs.

TOPS-20 command level, the ESC key

does not echo on your terminal.

causes a question mark (?) to be printed if
made an error.

by

you

• causes the terminal bell to ring when you try to
use it to complete a command and you have not
typed sufficient information.

At system program level, depending upon the program
you are running, the ESC key sometimes echoes on the
terminal as a dollar sign.

On some terminals this key is labeled ALT or ALTMODE.

1-2

I

•

•

•

•

•

•

•

•

•

Key

RETURN

TAB

GETTING ON AND OFF THE SYSTEM

Table 1-1 (Cont.)
Special Function Keys

Function

The RETURN key confirms to the system that you have
completed a line and causes the terminal's cursor or
printing head to go to the beginning of the next line.

Unless you are told otherwise, terminate all command
lines by pressing the RETURN key.

On some terminals this key is labeled CR.

The TAB
to the
normally
aligning

key causes the cursor or printing head to move
right to the next tab stop. Tab stops are
every eight spaces. This is useful for

columns of data and for formatting programs.

If there is no TAB key on your terminal, use
duplicate the function of the TAB Key.
Section 1.9.4 for more information on tabs.)

CTRL/ I to
(Refer to

1.2 GETTING THE ATTENTION OF THE SYSTEM

Type a CTRL/C or RETURN 1 to get the attention of the system. In this
case (before logging in), CTRL/ C does not echo o n the terminal.

I

After you type one of these cha r acters , a system identification I
message and the TOPS-20 prompt@ are printed on the terminal. If you
type anything other than these characters, the system ignor es the
character and warns you by ringing the terminal bell.

If you do not receive the system identification message after typing
CTRL/ C or RETURN 1 , then one of the following conditions exis ts: I

• The system is down

• Your terminal is set at the wrong speed for the line you are
connected to (refer to Section 1.4.2 for information on
setting the terminal speed)

• The system is not available for your use

• The system is full

• Your t e rminal i s not connected to the s yste m

If the system is not available for your use you r e ceive one of the
following messages:

e ?LOGGING IN ON LOCAL TERMINALS IS CURRENTLY DISALLOWED

e ?LOGGING IN ON REMOTE TERMINALS IS CURRENTLY DISALLOWED

This feature is not available with TOPS-20 monitor s prior to
Version 5 .

EXEC Version 5 .1 1-3 December 1982

I

I

I

GETTING ON AND OFF THE SYSTEM

If you receive one of these messages, the1 operator has set the system
to prevent timesharing. The system nptifies you when it resumes its
timesharing operation by printing on your terminal a message similar
to the following:

SYSTEM RESfARTING, WAIT., ,

and after a pause,

lFRDM OPERATOR : SYSTEM IN OPERATIONJ

If the system is full, you receive one of the following messages 1

?FULL
No more fork.·;;.
No more Job s lot s
No more SPT s l ot~

No more ~·. w 2:.:;,F· l.r1 ~.~ s;::;.-a ct-:·1

Wait a few minutes; then type CTRL/ C again. Repeat this until you
receive the system identification message. The explanation that
follows ?FULL is meaningful to the system manager and to system
programmers. If you must wait an excessive length of time before
successfully logging in, you might want to b ring the error message to
the attention of one of these people.

If you do not receive the system identification message because the
terminal speed and the line speed are not compatible, you must reset
one or both of the speeds . Refer to Section 1.4.2 for more
information on setting terminal speed.

1.3 GETTING INFORMATION ABOUT YOUR TERMINAL

Terminals have different characteristics for printing information ,
depending on their type and speed . Because you have not yet told the
system the kind of terminal you are using, the system automatically
sets defaults for the terminal. These defaults set parameters such as
the terminal page length at 66 lines and the line width at 72
characters, in addition to setting lowercase and tabs. The
INFORMATION TERMINAL command displays the settings of these parameters
or values, along with other characteristics of your terminal.

Afte r the system prints the system i dentif ication message a nd the
TOPS-20 prompt (@), you are at TOPS-20 command level. When you are at
TOPS-20 command level, you can give commands to the system. Type the
TOPS-20 command INFORMATION (ABOUT) TERMINAL-MODE and press RETURN.
The system prints the information about your terminal.

In TOPS-20 monitors prior to version 5, you will receive only the
message "?FULL".

EXEC Version 5.1 1-4 December 1982

I

•
I

•

•

•

•

•

GETTING ON AND OFF THE SYSTEM

- EXAMPLE -

@JNFORMATION <ABOUT> TERMINAL-MODE <FOR TERMINAL >
TERMINAL SYSTEM-DEFAU LT
TERMINAL SPEED 300
RECEIVE LINKS
REFUSE ADVI CE
RECEIVE SYSTEM- MESSAGE S
TERM I NAL PAU SE CON l COMMAND
TERMINAL NO PAUSE CON> END-OF-PAGE
TERMINA L LENGTH 66
TERMINAL WIDTH 72
TERMINAL LOW ERCA SE
TER MINA L RAI SE
TE RMINAL NO FLAG
TERMINA L I NDIC ATE
TERMI NAL NO FORMFEED
TE RMINAL NO TABS
TER MINA L NO IMMEDIAT E
TER MI NAL FULLD UPL EX

Note that you can specify a te r minal line numbe r after the (FOR
TERMINAL) guidewords. This al lows you to obtain informa t ion abou t
another user's terminal. The s y stem uses you r terminal line number a s
the default when you do no t specify o ne . Th e SYSTAT c o mmand
(discussed in Section 3.1) shows t h e l ine n umbe rs for all u s e rs on the
system .

1. 4 DECLARING THE TERMINAL TYPE

Once you are at TOPS-20 command l evel, you can inform the system of
the type of terminal you are using.

Te r mi nal Ty p es
Re cognize d by the Sy ste m

HARD COPY VIDEO

MODEL 33 VKl OO
MODEL 35 VT05
MODEL 37 VT5 0
EXECUPORT (TI) VT52
LA30 VTlOO
LA36 VT12 5
LA38
LA120

NOTE

Installations can add other t e r mina l s t o
their indiv id ua l s y ste ms.

To declare the t e rminal type, giv e the TERMI NAL (MODE IS) command , and
type in the e xact t y pe of y o u r t e r mi nal . In th i s example , the
t e rminal t ype is a n LA36.

TOPS-20 Version 5 1-5 .1\pril 1982

I

I

I

I

GETTING ON AND OFF THE SYSTEM

- EXAMPLE -

fr> TERMINAL (MDDE IS) L A36
@

After you identify the terminal type to the system, all subsequent
output conforms to preset terminal parameters for that type. The
terminal type specifies the proper values for:

Form feed
Tab
Outputting lowercase characters
Line width
Page length

If you do not s e t the proper parameters for the terminal, you may find
the output format undesirable for your work.

After you identify the terminal type, you can again give the
INFORMATION (ABOUT) TERMINAL-MODE command to see the parameters that
were set as a result of your TERMINAL command.

Tell the system you are using an LA36 by giving the TERMINAL (MODE IS)
command; then give the INFORMATION (ABOUT) TERMINAL-MODE command.

- EXAMPLE -

@TERMINr'\L <MOD E I S) LA 36
@I NFORMATION <ABOUT) TERMINAL - MODE CFOR TERMINAL>

TERMINAL LA36
TERMINAL SPEED 300
f;:E CEI VE LINK S
F~ EFUSE AD VI CE
RECEJVE SYST EM - ME SSA GE S
TERMINAL PA US E CON) COMMA ND
TE RMINAL NO PAU SE CON) END - OF -P AGE
TER MINAL LE NGTH 66
TER MI NA L WIDTH 13 2
TERM I NAL LOWERCA SE
TERMINAL RAI SE
IT RMINA L NO FLA G
TE RMINAL I NDIC AT E
TE RMINAL NO FORM FEED
TFR M IN AL NO TAB S
TERMINAL NO IMMEDIAT E
TER MI NAL FUL LDUPL EX

Setting the terminal type changes only the following parameters:
terminal type, length, width, lowercase, formfeed, and tab.
Therefore, when you identify the terminal as an LA36, the output
conforms to the parameters for that type of terminal, that is, a page
length of 66 lines, a line width of 132 characters, lowercase letters,
no mechanical formfeed, and no mechanical tabs.

Identifying the terminal type for a video terminal additionally allows
more effective use of the DELETE key. The system erases the last
character you typed on the screen rather than print the character
followed by a backslash, as it does on a hard-copy terminal.

TOPS-20 Version 5 1-6 April 1982

•

•

•

•

•

•

•

•

•

GETTING ON AND OFF THE SYSTEM

1.4.1 Controlling Terminal Output

The following commands control output to terminals:

TERMINAL PAUSE (ON) COMMAND

TERMINAL PAUSE (ON) END-OF-PAGE

TERMINAL PAUSE (ON) CHARACTER x (AND UNPAUSE ON) y 1

TERMINAL NO PAUSE (ON) END-OF-PAGE

TERMINAL PAUSE (ON) COMMAND allows you to stop output to the terminal
at any time by typing CTRL/ S, and continue output by typing CTRL/Q.
This command is the default for all terminal types.

TERMINAL PAUSE (ON) END-OF-PAGE automatically stops output to the
terminal when the output is equal to the current page length set for
the terminal. When the system stops the output, it rings the terminal
bell and waits for you to type CTRL/ Q, The CTRL/Q r esumes the output .
This preven'ts the output from rolling off a video terminal screen so
rapidly that you cannot read it. However, if you want to stop the
output before the end of the page, type CTRL/ S. This command is the
default if you declare your terminal to be a video terminal, for
example a VT52.

NOTE

You can also stop and continue output
with the characters you specified in a
TERMINAL PAUSE (ON) CHARACTER command. 1

The system default characters are CTRL/ S
and CTRL/ Q, however. The TERMINAL PAUSE
(ON) CHARACTER command 1 is discussed
b e low.

TERMINAL NO PAUSE (ON) END-OF-PAGE prevents the output from stopping
at the end of the page. This command is the default if you declare
your terminal to be a hard-copy terminal, for e xample an LA36 .

If TERMINAL PAUSE (ON) END-OF-PAGE
terminal output to stop at the
command:

is not set , and you need the
end of a page, give the following

- EXAMPLE -

@TERMINAL PAUSE CONl END- OF - PAGE
@

If TERMINAL PAUSE (ON) END-OF-PAGE is set, and you do not want the
terminal to stop output at the end of the page, give the following
command:

- EXAMPLE -

@TERMINAL NO PAUSE CO Nl END- OF- PAGE
@

I

This command i s not a vailable with TOPS-2 0 monitors prior to I
Ver sion 5.
EXEC Version 5.1 1- 7 December 1982

GETTING ON AND OFF THE SYSTEM

TERMINAL PAUSE (ON) CHARACTER x (AND UNPAUSE ON) y 1 allows you to
choose your own pause and continue characters. These characters are
alternatives to the CTRL/S and CTRL/Q default characters. You can
specify the x and y arguments of the command in several ways. Some of
the more common forms are:

• an ASCII code in octal

• a character within double quotation marks (" ")

• the word SPACE to specify the space bar

Octal ASCII codes for the keyboard characters are listed in several
TOPS-20 manuals. The TOPS-10/TOPS-20 Batch Reference Manual, for
example, lists these codes.

To specify the space bar as both the pause and continue character,
give the following command:

-EXAMPLE-

TER MINAL PAUSE CON> C ~A RACTE R SPACE <AND UNPAUSE ON l SPACE

To see the characters that you may have specified in the TERMINAL
PAUSE (ON) CHARACTER x (AND UNPAUSE ON) y command, 1 give the
INFORMATION (ABOUT) TERMINAL-MODE command:

- EXAMPLE -

@INFO RMATION <ABOUT> TERMIN AL -M ODE (fOJ;: TERMINAL. I 14 5
TER MINA L VT5 2

(~

TER MINA L SP EED 300 9600
RECEIVE LINK S
r;:EFUSE ADVICE
RECEIVE SYSTEM -M ESSAGE S
TE RMINA L. PAUSE <ON/ COMMAND
TERMINAL PAUSE CON) END-OF-PAGE
TER MINA L PAU SE <ONl CHARA CTER SPA CE
TERMINAL LENGTH 2 4
TE RMINA L WI DTH 77
TERMIN AL LOWER CASE
TER MINAL NO RAI SE
TERMINAL NO FLAG
TER MI NAL INDICA TE
TERM INA L NO FORMFE ~D

TERMINAL TAI:!'i
TERM I NAL NO IMME DIATE
TERMINAL FULL.DUPL EX

In this example, the continuation character is not displayed, because
it is the same as the pause character (SPACE). Also, if you specify
the TERMINAL NO PAUSE (ON) COMMAND or the TERMINAL NO PAUSE (ON)
END-OF-PAGE command, or if the system default characters, CTRL/S and
CTRL/Q, are in effect, the TERMINAL PAUSE (ON) CHARACTER 1 line does
not appear in the information display.

This command is not available with TOPS-20 monitors prior to
Version 5.

EXEC Version 5.1 1-8 December 1982

•

•

•

I

•

•

•

GETTING ON AND OFF THE SYSTEM

NOTE

Several terminal types require that you
change the pause and continue characters
to something other than CTRL/ S and
CTRL/ Q. For example, the VT125 and the
VTlOO with the printer port option do
not recognize these characters. Also
note that CTRL/ A is the default pause
and continue character in a TOPS-20
network environment.

1.4.2 Setting the Terminal Speed

To change the rate at which data is input from or output to your
terminal, set the terminal speed. This rate is called a baud rate.

When you set the terminal speed, you affect two different speeds, the
line speed and the terminal speed. Although yo u use the TERMINAL
(MODE IS) SPEED command to set the terminal speed, you actually change
the speed of the line to which your terminal is connected. You must
then manually change the switch on your terminal to be compatible with
the changed line speed.

Terminals operate at speeds ranging from 10 to 960 characters per
second. The speeds are stated in baud rates: 10 characters per
second is 110 baud; 30 characters per second is 300 baud.

The system manager determines the speed for each line when the system
starts up. Usually 300 baud is the slowest speed at which a line is
set.

NOTE

Do not use a line speed greater than 300
baud if you are connected to the
computer via a telephone unless you have
special 1200 baud equipment. Also, do
not set the line speed to greater than
300 baud if you are using an LA36
hard-copy terminal.

To change the speed of the line you are using, give the TERMINAL (MODE
IS) SPEED command. After you press RETURN to end the command,
manually change the setting on the terminal. (Note that y ou set line
speeds with a command; you set terminal speeds by manually changing
switches on the terminal.)

TOPS-20 Version 5 1-9 April 1982

GETTING ON AND OFF THE SYSTEM

NOTE

On some hard-copy terminals,
to change the baud rate is
the left of the keyboard. If
set your hard-copy terminal
greater than 300, contact the

the switch
located at

you have
to a speed
operator.

On some video terminals, the switch to
change the baud rate is located on the
underside or the back of the terminal.
On others it is located on the keyboard.

To change the line speed for input and output to 2400 baud, give the
TERMINAL (MODE IS) SPEED command.

- EXAMPLE -

ff!TH:M I NAL (MDDE I ~:;) SPEED (UF I NF'UT) 2400 (AND OUTPUT) 2400

If you set only the input speed for the line and do not specify the
output speed, the system assumes that the output speed is the same as
the input speed.

If you are using a hard-copy terminal and accidentally set a speed
incompatible with your terminal, you cannot correct it. Contact the
operator, give your terminal line number, and ask him to set your line
at the speed you want.

If you are using a video terminal and accidentally set an incorrect
line speed, you may be able to correct the speed by using the switches
located on the bottom of the terminal. Set the terminal switches to
be consistent with the incorrect line speed: then correct the line
speed. Reset the terminal switches to a valid position to resume
input and output. (Refer to Appendix C for a list of compatible line
speeds and terminal speeds.)

After you start a job on the system, you may find there are more
terminal parameters you need to set in addition to those already
described. Section 1.5 describes starting a work session with LOGIN.
Section 1.9 explains the additional parameters you can set.

1.5 STARTING A JOB WITH LOGIN

To start working on the system, you must give the LOGIN command. The
LOGIN command validates you as a user, creates your job, and begins
charging your account.

The LOGIN command requires a user name, a password, and an account.
The command also allows you to add remarks concerning the work
session. After you give the LOGIN command, the system creates a job
and prints a line containing the job number, terminal number, date and
time. The system prints a @ on the next line: you are now at TOPS-20
command level.

1-10 April 1982

•

•

•

•

•

•

•

•

•

GETTING ON AND OFF THE SYSTEM

- EXAMPLE -

2 102 Development Ssstem, TOPS-20 Monitor 4(2505)
@L(JG IN (l.J!~ ER) ~3 AFn IN I (PAS::; wmrn)_(ACCOUNT) ;;i11

Job 57 on TTY1 27 23-Jul -79 09 !48 : 4 0
@

1.5.1 User Names

Your user name identifies you to the system and
user name comprises up to 39 alphanumeric
hyphens and periods.

to other users. A
characters, including

1.5.2 Passwords

To provide the security necessary
user selects a password that
password comprises up to 39
hyphens.

in a large timesharing system, each
must be given when logging in. A

alphanumeric characters, including

Only you and the system manager know your password. When you type
your password, it is not printed on the terminal; this prevents
others from learning it and logging in to your area without y our
authorization .

1.5.3 Accounts

To log in to the system, you must give a valid account. An account
comprises up to 39 alphanumeric characters including hyphens. Your
account is billed for central processor unit (CPU) usage and for file
storage.

Once you log in, all charges are made to the account you give in the
LOGIN command unless you specify otherwise. If you must change your
account during a job, give the SET ACCOUNT command or include the ;A
attribute in the file specification. (Refer to Section 4.1.7, file
attributes.) However, you can change it only to another valid
account.

NOTE

Not all installations require va lid
accounts. Ask your system manager, if
you have any question on your account .

1-11 April 1982

I

GETTING ON AND OFF THE SYSTEM

1.5.4 Session-Remark

The LOGIN command allows for an optional argument following your
account. If you press the ESC key after typing your account, the
system prints the guidewords (SESSION-REMARK). You can then type one
line of text to identify a specific work session for accounting
purposes. This session remark cannot exceed 39 alphanumeric
characters, including hyphens and spaces. If you need to change the
SESSION-REMARK during a job, give the SET SESSION-REMARK command.

You can see the current session-remark for your job when you give the
INFORMATION (ABOUT) JOB-STATUS command.

1.6 RECEIVING MESSAGES

1.6.l Ordinary Messages

Many types of messages can be printed on your terminal; one is a
message of the day; another is a notice that you have a message from
another user. If there is a message for you, the system informs you
by printing on the next line: YOU HAVE A MESSAGE. A message of the
day (also called a system message) is sent to all users on the system.
This type of message automatically prints on the terminal before you
receive the TOPS-20 prompt. You do not have to type a command to
receive it.

- EXAMPLE -

2 10 2 DeveloPrnent S~s tern, TOPS - 20 Monitor 4(2505)
@I.. OG IN (USER > ~:>AFn IN I < PASS ~JOFd:i)_(ACCOUNT> 341.

Job 5 7 on TTY1. 27 23-Jul -7 9 09:49:24

DATE:
FFWM!
TD:

23····JAN -·79
OPEl';:ATDF;:

GY ~'>TEM

SUBJECT : SYSTEM SHUTDOWN

Th e s~stem will net be available tomorrow from noon to 2:00 P+m+
due to s cheduled ma intena nce.

@

When you receive notice that you have a message from another user, use
the RDMAIL program to read it. To start the RDMAIL program, type
RDMAIL and press RETURN. The system prints a message to insert the
date and time. To read the message for the first time you do not need
to type in the date and time; just press RETURN. The RDMAIL program
then prints the message on the terminal.

1-12 April 1982

•

•

•

•

•

•

•

•

GETTING ON AND OFF THE SYSTEM

- EXAMPLE -

2 10 2 Deve lop ment S~stem, TOPS-20 Mo n itor 4 (2505)
@LOGIN (USER) SAFn IN l (PA~;swor;: D)_ (ACCOUNT) 3 41

Job 5 7 o n TTY1 27 23- Ju l -79 09149 : 57
YOU HAV E A ME SSAGE

@FWMAIL
DATE AND T I ME (/H FOR HELP)

DA TE: 23-JUL- 79
Fl:WM ! CO MBS
TO: f.; M:TINI

SUBJEC T: ProJect Me e ti n g

The re will b e a P roJe ct meetins toda~ a t 4 p, m, in the
En Ll i neeri n S Confe r e n ce Room.

To stop the message from printing on the terminal, type CTRL/O. To
return to TOPS-20 command level immediate ly, type two CTRL/ Cs.

You can receive new messages while you are logged in. If someone
sends a message to you while you are logged in, the system rings the
terminal bell and prints the line:

[YOU HAVE A MESSAGE FROM sende r]

Use the RDMAIL program to read the message.

If a new message of the day is sent after you log in, t h e system
notifies you by printing the following:

CNEW MESS AGE-OF- THE DA Y AVAI LABLEJ

To read the new message of the day, use the RDMAIL program and type / M
on the same line as Date and Time (/ H for h e lp). The / M swi tch
instructs RDMAIL to look at the message of the day file and print the
new message on your terminal.

- EXAMPLE -

@RDMAIL
DATE AND TIME < / H F CJJ:;; HELP) .L.!i

DATE! 2 3 - JUL-79
FJ:;;OM: OF'EJMTOR
TO! S YSTEM

SUBJECT! Line P ri n ter Pa Per

A new s hi p me nt of lineP r i nte r paper i s no w avai l a b l e for an~one

who need s t o r ep leni s h paper •

@

1-12.l April 1982

GETTING ON AND OFF THE SYSTEM

To read any of the messages again, use the RDMAIL program and type the
date and time using the format

mmm/ dd / yyyy hh:mm

where:

mmm is the first three letters of the month
dd is the day
yyyy is the year
hh is the hour
mm is the minute

If you type only the date, the system uses the time of 00:01 on that
date.

Refer to the TOPS-20 User Utilities Guide for a complete description
of the RDMAIL program.

1.6.2 Alerts

Another type of message that can be printed on your terminal is known
as an alert. You can arrange for the system to buzz your terminal and
issue a one-line message at any future time. You do this by giving
the SET ALERT command.

- EXAMPLE -

@SET ALERT CAT TIME > 9 !4 5 ! 00 <ME SS AG E) GET READY FOR 10100100 MEETING

[09145100 aler t - GET READ Y FOR 10 100!00 MEETINGJ

You can also be notified at a time that is
time. The following example sends an
current time:

- EXAMPLE -

relative to the current
alert 10 minutes from the

@S ET ALERT CAT TIME > +00110100 ! ME SS AGE> END OF COFFEE BREAK!

[1 0 1021 26 alert - END OF COFFEE BREA K' J

If you wish to be alerted at the same times, include the appropriate
SET ALERT commands in your LOGIN.CMD file. This file is discussed in
Section 1.7. Refer to the TOPS-20 Commands Reference Manual for
complete information on SET ALERT.

To obtain a listing of all outstanding alert requests, give the
INFORMATION (ABOUT) ALERTS (PENDING) command.

TOPS-20 Version 5 1-12.2 April 1982

•

•

•

•

•

•

•

•

GETTING ON AND OFF THE SYSTEM

- EXAMPLE -

@INFORMATION <ABOUT> ALERTS <PENDING >
Ne x t alert at 1-Jul-82 11: 25 :00
Other alerts set f or!

1 -Jul-82 11!45!00
1-Jul-82 12:00:00
1-Jul-82 13!00!00
1-Jul-82 16!3o:oo
1-Jul-82 16!55!00 - ALMOST TIME TO GO HOME!
1-Jul-82 17! 00 !00
1-Jul-82 17 !11!00
2-Jul-82 00:00:00 - SUBMIT WEEKLY REPORT BY NOON
14-Jul-82 09!00!0 0 - GOING AWAY LUNCHEON FOR MANAGER TODA Y

Alerts are automatic

The line "Alerts are automatic" indicates that alerts are issued
whether or not you are running a program. Your issuing of the SET
AUTOMATIC or the SET NO AUTOMATIC command determines whether or not
the system interrupts programs to issue you alerts. If SET NO
AUTOMATIC is in effect, you are notified only when your terminal is
about to type the TOPS-20 prompt (@), that is, upon the completion of
a TOPS-20 command.

Note that when you log out, all pending alerts are cleared. You have
to reset them when you log in again, unless they are specified in your
LOGIN.CMD or COMAND.CMD command file .

1.7 EXECUTING COMMANDS AUTOMATICALLY DURING LOGIN

You can create a LOGIN.CMD file that contains the TOPS-20 commands you
want executed when you log in. The system automatically reads this
file every time you log in. After executing these commands, the
system prints any output from the commands followed by the message END
OF LOGIN.CMD and the TOPS-20 prompt (@).

If there is an error with one of the commands, the system processes
the commands up to the one in error. When the system encounters the
error, it stops reading the file and prints the following message .

%ERROR WHILE READING LOGIN . CMD.1, FILE ABORTED

If you receive the above message, correct the error and try again.

NOTE

The system processes the LOGIN command
line before it reads the LOGIN.CMD file.
Therefore, you are still successfully
logged in to the system, even if the
LOGIN.CMD file contains an error .

TOPS-20 Version 5 1-12.3 April 1982

I

GETTING ON AND OFF THE SYSTEM

For example, if you always use a VT52 terminal, you
TERMINAL (MODE IS) VT52 command in a LOGIN.CMD file.
log in, the system reads the LOGIN.CMD file and
terminal as a VT52. All output from the terminal
parameters set for a VT52.

can include
Every time

recognizes
conforms to

a
you
the
the

You can also create a COMAND.CMD file that contains any TOPS-20
commands you want executed when you log in. The COMAND.CMD file
differs from the LOGIN.CMD file because the system automatically reads
the COMAND.CMD file whenever you give a PUSH command as well as every
time you log in. (Refer to Section 8.6 for an example using the PUSH
command.) After executing the commands in the COMAND.CMD file, the
system prints any output from the commands followed by the message END
OF COMAND.CMD and the TOPS-20 prompt.

Note that the system reads the LOGIN.CMD file before it reads the
COMAND.CMD file. If there are conflicting commands in the two files,
the last command executed (that is, the one in the COMAND.CMD file)
takes precedence.

TOPS-20 Version 5 1-12.4 April 1982

I

•

•

•

•

•

•

•

•

GETTING ON AND OFF THE SYSTEM

If there is an error with one of the commands in the COMAND.CMD file,
the system processes the commands up to the one in error. When the
system encounters the error, it stops reading the file and prints the
following message:

%ERROR WHILE READING COMAND.CMD.1, FILE ABORTED.

If you receive the above message, correct the error and try again.

NOTE

The system processes the LOGIN command
line or the PUSH command before it reads
the COMAND.CMD file. Therefore, you are
still successfully logged in to the
system or the PUSH command is still in
effect, even if the COMAND.CMD file
contains an error .

Refer to Chapter 5 for information on how to create files.

1.8 ENDING A JOB WITH LOGOUT

When you complete your work, give the LOGOUT command. The LOGOUT
command ends the job and prints a message similar to the following:

@LOGOUT
Killed Job 57, User SARTIN!, Account 341, TTY 127,
at 23-Jul-79 09:49:36, Used o:o:oo in 0:00:12

If you type CTRL/ C to get the system's attention and fail to log in
within 5 minutes, the system automatically logs you off the system and
prints the LOGOUT message. This message is similar to the following:

AUTOLOGOUT
Killed Job 9, TTY 26,

a t 23- Jul - 79 Used o:o:o in 5:15

If you are on a dial up line, the system hangs up the line .

To start the LOGIN process again, type another CTRL/ C.

1.9 SETTING ADDITIONAL TERMINAL PARAMETERS

After you log in to the system, you may f ind you need to set
additional terminal parameter s for your work. Sections 1.9.1 through
1.9.5 describe more parameters you can set . For a complete
description of all parameters you can set with the TERMINAL command,
refer to the TOPS-20 Commands Reference Manual. If you are reading
this manual for the first time, you can skip these sections until
later .

1-13

I

GETTING ON AND OFF THE SYSTEM

1.9.l Setting the Terminal Page Length

When you declare the terminal type, the system sets a page length for
the terminal. The length of the page varies depending on the type of
terminal. To change the page length, give the TERMINAL (MODE IS)
LENGTH command.

The system uses the page length to determine where to
output when TERMINAL PAUSE (ON) END-OF-PAGE is set.
is also important when using formfeeds.

stop terminal
The page length

To change the page length to 30, give the following command.

- EXAMPLE -

@TERMINAL <MOD E IS) LENGTH <OF PAGE IS) 30

1.9.2 Setting the Terminal Line Width

The system sets a line width for the terminal when you identify the
terminal type. To change the line width, give the TERMINAL (MODE IS)
WIDTH command. The width can be set at a minimum of 8 characters per
line to a maximum of 255 characters per line.

To change the line width to 50, give the following command.

- EXAMPLE -

@TEf.;; MINAL <MODE IS) W!.!.l:i <OF LINE IS) ~

If a line of input or output on your terminal exceeds the
for the terminal, the system prints the maximum number of
on one line and continues printing on the following lines.
affect the number of lines the system prints when page mode

1.9.3 Using Formfeeds

width set
characters

This can
is set.

On a hard-copy terminal with a mechanical formfeed, the system
advances the paper to the top of the next page by outputting a
formfeed character (CTRL/ L). On a hard-copy terminal without a
formfeed mechanism, the system can simulate a formfeed by outputting
the proper number of linefeeds. Usually the system prints AL instead
of advancing the paper.

To advance the paper to the top of the next page and prevent the AL
from printing, give the TERMINAL (MODE IS) NO INDICATE command. Use
this command to print a memo, report, or information that you want to
appear on individual pages.

- EXAMPLE -

@TERMINAL <MODE IS> NO INDICATE <FORMFEED)

When you declare the terminal type, the system simulates formfeeds if
they are required by the terminal. You can also use the TERMINAL NO
FORMFEED command to force the system to simulate formfeeds regardless
of the terminal type.

1-14

•

•

•

•

•

•

•

•

•

•

GETTING ON AND OFF THE SYSTEM

1.9.4 Using Tab Stops

Many terminals have automatic tab stops set at every eighth column.
Pressing the tab key moves the print head or cursor just beyond the
column whose number is the next larger multiple of eight. This is
desirable for quicker output at slow line speeds. When the terminal
does not have mechanical tab stops, the system simulates them by
moving the printing head or cursor the proper number of spaces to the
right. When you declare the terminal type, the system simulates tab
stops if they are required by the terminal.

To simulate tab stops regardless of terminal type, give the TERMINAL
(MODE IS) NO TABS command.

- EXAMPLE -

@TERMINAL <MODE IS> NO TABS <EXIST ON TERMINAL>

1.9.5 Using Uppercase and Lowercase Letters

You can control the way the system handles uppercase and lowercase
letters as they are sent to and from your terminal. If you prepare
text files, or include comments in your programs, you probably want to
use both uppercase and lowercase letters.

The system controls case shifting separately on input and output.
Therefore, you may type lowercase letters on a terminal that can only
print uppercase letters. The lowercase letters you type are sent to
the system as lowercase, but they appear on your terminal as
uppercase.

The examples in the following sections contain a line beginning with
an exclamation mark. Using an exclamation mark at the beginning of a
line indicates to the system that the information you type on that
line is a comment. Refer to Section 2.6 for more information on
adding comments.

1.9.5.1 Testing for Lowercase Letters - You
terminal is capable of sending lowercase
TERMINAL (MODE IS) LOWERCASE command. Type a
characters are lowercase.

- EXAMPLE -

can determine if your
letters by giving the

few words to see if the

@TERMINAL <MODE IS) LOWERCASE <EXISTS ON TERMINAL)
@! THIS IS A TEST

If the terminal is capable of doing so, it will send lowercase
letters. If the terminal sends uppercase letters, the system may be
raising the lowercase letters you type to the corresponding uppercase
letters. Give the command TERMINAL (MODE IS) NO RAISE, and type
again.

- EXAMPLE -

@TERMINAL (MODE IS> NO RAISE <TERMINAL INPUT>
@! This is a test

1-15

GETTING ON AND OFF THE SYSTEM

If your terminal still prints uppercase letters, it is not capable of
printing lowercase letters. However, the terminal may be able to send
lowercase letters to the system. To find out, give the TERMINAL (MODE
IS) NO LOWERCASE and TERMINAL (MODE IS) FLAG commands. When you give
the TERMINAL (MODE IS) FLAG command, the system flags each uppercase
letter by printing an apostrophe before it. To flag uppercase
letters, you must also set TERMINAL (MODE IS) NO LOWERCASE, and type a
third line.

@TERMINAL <MODE IS> NO LOWERCASE <EXISTS ON TERMINAL>
@TEf:;;M INAL <MODE IS) FLAG <UPPERCASE CHARACTERS)
@!_'THIS IS A TEST

If only the uppercase letters you typed are flagged (the uppercase
letter preceded by a '), the terminal can send lowercase letters but
is printing them as corresponding uppercase letters. If all the
letters you typed are flagged (as in the following example) the
terminal can send only uppercase letters.

@TERMINAL <MODE IS> NO LOWERCASE <EXISTS ON TERMINAL>
@TERMINAL. <MODE IS) FLAG <UPPERCASE CHARACTERS)
@ _! _,I' t:!' l 'L' l ' .L' a_' I's'§' I

1.9.5.2 Raising Lowercase Letters in Input - To raise any lowercase
letter you type to the corresponding uppercase letter, give the
TERMINAL RAISE command. To restore the ability to type lowercase
letters give the TERMINAL NO RAISE command. TERMINAL RAISE is the
default.

The following example illustrates typing in lowercase, converting to
uppercase and returning to lowercase.

@TERMINAL <MODE IS) LOWERCASE
@! This is a line in UPPercase and lowercase
@terminal <MODE IS) raise <TERMINAL INPUT>
@!NOW ALL THE TERMINAL CAN TYPE IS UPPERCASE
@TERMINAL <MODE IS> NO RAISE <TERMINAL INPUT>
@! Thi s is a return to UPPercase and lowercase.

1.9.5.3 Printing Lowercase Letters in Output - To print lowercase
letters (on a terminal capable of printing lowercase letters), give
the TERMINAL (MODE IS) LOWERCASE command.

@TERMINAL <MODE IS> LOWERCASE <EXISTS ON TERMINAL>

To print all uppercase letters (on a terminal capable of printing
lowercase letters), give the TERMINAL (MODE IS) NO LOWERCASE command.

@T ERMI NAL <MODE IS> NO LOWERCASE <EXISTS ON TERMINAL>

If the terminal cannot print lowercase letters and you want
which letters are uppercase and which are lowercase, give the
(MODE IS) FLAG command. (Remember to set TERMINAL (MODE
LOWERCASE as well.)

1-16

to know
TERMINAL

IS) NO

I

•

•

•

•

•

•

•

•

•

CHAPTER 2

COMMUNICATING WITH THE SYSTEM

This chapter describes:

• Using TOPS-20 commands (Section 2.1)

• Obtaining a list of TOPS-20 commands (Section 2. 2)

• Obtaining information about the parts of a command (Section
2. 3)

• Typing commands (Section 2.4)

• Continuing commands (Section 2.5)

• Adding comments (Section 2.6)

• Correcting input errors (Section 2.7)

• Operating system stoppage (Section 2.8)

The TOPS-20 commands mentioned in this chapter are:

CONTINUE
CONNECT
DAYTIME
DIRECTORY

EXECUTE
EXPUNGE
INFORMATION
LOGIN

2.1 USING TOPS-20 COMMANDS

LOGOUT
PRINT
TALK
TERMINAL

A TOPS-20 command is an instruction that specifies the func tion y o u
want the TOPS-20 Operating System to perform. By gi v ing TOPS-20
commands you accomplish your work through t h e operating s ystem.

Each TOPS-20 command contains one or more of t h e follow i ng parts:

1. Command name

2. Guidewords

3. Arguments

4. Switches

5. Subcommands

6. Command terminator

2-1

I

COMMUNICATING WITH THE SYSTEM

The command name identifies the command and its function. Guidewords
can assist you in identifying the argument you should type. (Guide
words are al~ays printed within parentheses.) An argument is the
response you enter after a guideword. This argument further
identifies the information the system needs to process the command.
Switches and subcommands allow you to select more precise options to a
given command. Using a switch or a subcommand, you can also override
default options that are part of the command. A command terminator
ends the command and is a carriage return (RET or CR key) or a line
feed (Line Feed or LF key).

Some commands require no arguments. The following example illustrates
the DAYTIME command, which does not require an argument.

- EXAMPLE -

@DAYTIME
Tuesda~' Julw 23, 1979 09:50:41

@

Other commands require one or more arguments. Arguments can be
letters, numbers , or a combination of both. A common argument is a
filename. (Refer to Section 4.1.4 for a description of filenames.)
To find out which kind of argument you should type, press ESC after
you give the command. The system prints the guideword, prompting you
for the kind of argument to type. If the command does not need an
argument, when you press ESC , the system rings the terminal bell. The
following example illustrates the DIRECTORY command followed by the
guidewords (OF FILES) and the fi lename TEST.FOR as the argument:

- EXAMPLE -

@DIRECTORY <OF FILES> TEST.FOR

PS:<PORADA>
TEST.FOR .3

Some commands accept switches while others accept subcommands. With
switches and subcommands, you can be more specific about what you want
the command to do.

A switch is a slash followed by an option. The option may be followed
by a colon and an argument. Switches specify details about the action
of the given command. You can give one or more switches to a command
by typing them on the same line as the command. To include a switch,
type a slash (/), followed by the option. Some options require that a
value, preceded by a colon, also be given. The foll owing example
shows the use of a single switch and its value to print four copies of
the file TEST.FOR.3:

- EXAMPLE -

@PRINT <FILES> TEST.FOR.3/COPIES:4
[Job TEST Queued, ReGues t-ID 41, Limit 27]
@

If you try to give a switch on a TOPS-20 command that does not accept
switches, the system prints an error message. The format of the error
message differs depending upon the command you attempted.

2- 2

I

•

•

•

•

•

•

•

•

•

COMMUNICATING WITH THE SYSTEM

A subcommand resembles a switch in its function. The difference
between switches and subcommands is the syntax. While you enter
switches on the same line as the command, you enter each subcommand on
a separate line following the command line.

To include subcommand(s), end the command line by typing a comma, and
press RETURN. The system prints the subcommand level prompt, @@, to
indicate that you can now type subcommands. Subcommands, like TOPS-20
commands, contain subcommand names, guidewords, and arguments of their
own. You can give several subcommands, but each one must be typed on
a separate line. To end each subcommand, press RETURN. After you
type your last subcommand, press RETURN; the system prints @@; press
RETURN again. The system then processes the command and its
subcommand(s). When the system prints the single@ you are back at
TOPS-20 command level. The following example demonstrates the use of
a single subcommand to the DIRECTORY command:

@DIRECTORY <OF FILES>i
@@DELETED <FILES ONLY>
@@

PS: <PORADA>
TEST.FOR.2

,QOR.1
.REL.3

TOTAL OF 3 FILES
@

- EXAMPLE -

If you try to enter subcommand level in a TOPS-20
not accept subcommands, the system prints a
message. The format of the error message differs
command you attempted, but is similar to the
example.

- EXAMPLE -

@PRINT <FILES> !

command that does
? and / or an error

depending upon the
one in the following

?Invalid PRINT command - Not a switch - does not besin with slash
@

Each part of a TOPS-20 command or subcommand is referred to as a field
and is separated from each adjacent field by a space. Figure 2-1
shows the fields of the LOGIN command.

@LOGIN (USER> user name <PASSWORD> Password

< ACC!OUNT> rtceor~]:,

argument
guideword

command name

guideword
argument

argument
guideword

Figure 2-1 Fields of A Command

2-3

I

I

I

COMMUNICATING WITH THE SYSTEM

2.2 OBTAINING A LIST OF TOPS-20 COMMANDS

After the system outputs an @, you can type a -question mark (?) to
print the list of TOPS-20 commands.

NOTE

Refer to Section 1.4.1, Controlling
Terminal Output, if you have a video
terminal and want to prevent output from
rolling off the screen too rapidly.

- EXAMPLE -

2102 Development Swstem' TOPS-20 Monitor 4(2505)
@? Command, one of the following:

ACCESS
ATTACH
CLOSE
CF~EATE

DEASSIGN
DETACH
EDIT
EXECUTE
HELP
MERGE
PUNCH
REFUSE
REWIND
START
rnrnECTORY
UNDELETE
OR SYSTEM

@

ADVISE
BACKSPACE
COMPILE
CREF
DEBUG
DIRECTORY
ENABLE
EXPUNGE
INFORMATION
MODIFY
PUSH
REMARK
RUN
SUBMIT
TERMINAL
UNLOAD

PROGRAM NAME

APPEND
BREAK
CONNECT
CS AVE
DEFINE
DISABLE
END-ACCESS
FDIRECTORY
LOAD
MOUNT
R
RENAME
SAVE
SYSTAT
TRANSLATE
VD I RECTORY

ARCHIVE
BUILD
CONTINUE
DAYTIME
DELETE
DISCARD
EOF
FORK
LOGIN
POP
RECEIVE
RESET
SET
TAKE
TYPE

ASSIGN
CANCEL
COPY
DDT
DEPOSIT
DISMOUNT
EXAMINE
GET
LOGOUT
PRINT
REENTER
RETRIEVE
SKIP
TALK
UN ATTACH

To stop the printing of this list, type two CTRL/Cs, which returns you
to TOPS-20 command level.

You can use the question mark to list the TOPS-20 commands beginning
with a specific letter or letters. For example, to list commands
beginning with the letter S, type S followed by a question mark. The
system prints the commands beginning with the letter S, then reprints
the line up to the point where you typed the ?.

- EXAMPLE -

@S "!' Command' one of the followins:
SAVE SET SKIP START SUBMIT SYSTAT

@S

2-4

I

•

•

•

•

•

•

•

•

•

COMMUNICATING WITH THE SYSTEM

2.3 OBTAINING INFORMATION ABOUT THE PARTS OF A COMMAND

You can type a question mark following a command or subcommand to
print a list of possible arguments for the command. For example, type
the TERMINAL command followed by a question mark. The system prints
all the possible arguments and reprints the command.

- EXAMPLE -

@TERMINAL <MODE IS) ?
33

one of the following:

FLAG
HELF'
LA30
LINE-HALFDUPLEX
PAUSE
TABS
VT05
WIDTH

@TERMINAL <MODE IS>

35
FORMFEED
IMMEDIATE
LA36
LOWERCASE
RAISE
TERMINET
VTl.00

37
FULLDUPLEX
INDICATE
LA38
NO
SPEED
TI
VT50

EXECUF'ORT
HALFDUPLEX
LA120
LENGTH
PAGE
SYSTEM- DEFAULT
TYPE
VT52

Give the LENGTH argument, and press ESC. The system prints (OF PAGE
IS):

@TERMINAL <MODE IS> LENGTH <OF PAGE IS>

Type another question mark to
expects you to give. The
command .

find out which argument the system
system prints NUMBER and reprints the

@TERMINAL <MODE IS> LENGTH <OF PAGE IS>l NUMBER
@TERMINAL <MODE IS> LENGTH <OF PAGE IS>

Choose a number (the example uses 20); type it in and press RETURN.

@TERMINAL <MODE IS> LENGTH <OF PAGE IS> ~
@

Some commands do not require arguments. If you type a command
followed by a question mark and that command does not require further
arguments, the system prints the message CONFIRM WITH CARRIAGE RETURN.
This informs you that you are at the end of the command. Press RETURN
to confirm the command and to have the system perform the function you
requested.

- EXAMPLE -

@DAYTIME ? CONFIRM WITH CARRIAGE RETURN
@DAYTIME

In addition, the question mark can be used to list the subcommands and
switches of a command. To list the subcommands of a command, type a
question mark at subcommand level (indicated by @@). The system
prints the list of subcommands. For example, type the DIRECTORY
command followed by a comma, and press RETURN. When you receive the
@@, type a question mark .

2-5

COMMUNICATING WITH THE SYSTEM

- EXAMPLE -

@DIRECTORY <OF FILES> L
@@? confirm wi th carriase return

or o n e of the followins:
ACCOUNT
ARCHIVE
CHECKSUM
CRAM
DELETED
EVERYTHING
GENERATION - RETENTION - COUNT
INVISIBLE
LENGTH
NO
OUTPUT
REVERSE
SINCE
SMALLER
US ER

(~(!!

ALPHABETICALLY
BEFORE
CHRONOLOGICAL
DATES
DOUBLE SPACE
FIND
HEADING
LARGER
LPT
OFFLINE
F'FWTECTION
SEPARATE
SIZE
TIMES

To list the switches of a command, type the command; type a slash
followed by a question mark. The system prints the list of switches
for that command. Remember that all switches begin with a slash. For
example, type the PRINT command, followed by a slash and a question
mark.

- EXAMPLE -

@E:Jll.liI <FI LE S > r~ /SPOOLED-OUTPUT
or Job switc hr one of the followins:

/ ACCOUNT: /AFTER:
/ FORMS: /GENERIC
/LIMIT: /LOWERCASE
/NOTIFY: /PRIOR I TY:
/UPPERCASE /USER:
or File switc h, one of the followins:

/DESTINATION-NODE:
/JOBNAME:
/NOTE:
/UNIT:

/BEGIN: / COPIES: /DELETE /FILE: /HEADER
/REPORT: /MODE: /NOHEADER /PRESERVE /PRINT:

/SEQUENCE: /SPACING:
@PRINT <FILES)/

2.4 TYPING COMMANDS

You can type TOPS-20 co~mands to the system by using either full
input, recognition input, abbreviated input, or a combination of these
methods.

The LOGIN command, which identifies you to the system, is used in
Sections 2.4.1 through 2.4.3 to demonstrate full, recognition, and
abbreviated input.

2.4.1 Full Input

To give a command using full input, type the complete command name,
guidewords, arguments and subcommands or switches (if any), using a
space to separate the fields. To log in using full input, type the

2-6

•

•

•

•

•

•

•

•

•

•

COMMUNICATING WITH THE SYSTEM

complete LOGIN command line. In this example, the system does not
print the guideword (PASSWORD) or the actual password although both
were typed by the user.

- EXAMPLE -

@b..QQ.1!:! <USER> SARTIN! <ACCOUNT> 341

2.4.2 Recognition Input

To give
command
command
make it

a command using recognition input, type a portion of the
and press ESC. In order for the system to di~tinguish this

from other commands, you must type enough of the command to
unique. The system responds in one of the following ways:

1. prints the remainder of the command name.

2. prints a guideword.

3. prints the temainder of the argument.

4. rings the terminal bell, indicating that you need to type
more information.

5. prints ?, indicating that you made an error.

Continue typing and pressing ESC
Recognition input requires less
less likely to make a mistake .

until the command is complete.
typing than full input, so you are

To log in using recognition input, type LOG and press ESC; the system
finishes the LOGIN command by printing IN and the guideword (USER).
You can also use recognition on your user name. (Here the user name
is SARTIN!.) Type SAR and press ESC; the system finishes the user
name by printing TINI and the guideword (PASSWORD). Type the complete
password (it is not printed) and press ESC; the system prints
(ACCOUNT). Type the account (here it is 341) and press RETURN.

In the following example, type the underlined portions of the command.
At the point where the underlining stops, press ESC .

- EXAMPLE -

@LOGIN <USER> SARTIN! <PASSWORD>_<ACCOUNT> 341

If you use recognition where it is ambiguous, the system rings the
terminal bell. Type more information, or type a question mark to
determine what the system wants you to type.

Use recognition with the INFORMATION command. Type INFO and press
ESC; the system prints RMATION (ABOUT). Type a T and press ESC; the
system rings the terminal bell because you did not give enough
information. To find out what information the system needs, type a ?.
The system prints TAPE-PARAMETERS and TERMINAL-MODE. This tells you
that the system could not complete the argument beginning with the
letter T because there are two possibilities to choose from,. and you
did not type enough of the argument to distinguish which one you
wanted. Type an E and press ESC; this time the system prints RMINAL
(MODE IS). Press RETURN to end the command.

2-7

I

COMMUNICATING WITH THE SYSTEM

- EXAMPLE -

@INFORMATION <ABOUT> T? ONE OF THE FOLLOW I NG:
TAPE- PARAMETERS
TERMINAL- MODE

@INFORMATION <ABOUT> TERMINAL-MODE
TERMINAL LA36

@

TERMINAL SPEED 300
RECEIVE LINK!:>
REFUSE ADVICE
RECEIVE SYSTEM- MESSAGES
TERMINAL PAUSE CON> COMMAND
TERMINAL NO PAUSE <ON> END-OF-PAGE
TERMINAL LENGTH 66
TERMINAL WIDTH 132
TERMINAL LOWERCASE
TERMINAL RAISE
TERMINAL NO FLAG
TERMINAL INDICATE
TERMINAL NO FORMFEED
TERMINAL NO TABS
TERMINAL NO IMMEDIATE
TERMINAL FULLDUPLEX

If you use recognition where it is not appropriate (such as at the end
of a command or when a password is required), the system prints ? or
rings the terminal bell.

You can use recognition in typing arguments, subcommands, and file
specifications. When typing file specifications, you can also use
CTRL/F to complete the rest of a partial file specification. (Refer
to Chapter 4 for more information on using recognition with file
specifications.)

2.4.3 Abbreviated Input

To give a command using abbreviated input, type only enough of the
command to distinguish it from any other command. Usually, typing the
first three letters is sufficient to distinguish one command from
another. Abbreviated input requires the least amount of typing of the
various methods of input.

To log in using abbreviated input, type LOG and leave a space; type
the full user name (here it is SARTIN!) and leave a space; type the
password (it is not printed) and leave a space; type the account
(here it is 341) and press RETURN.

- EXAMPLE -

@LOG SARTIN! 341

Certain commands have accepted abbreviations, even though the
abbreviation is not unique. Table 2-1 lists some of the commands that
require special abbreviations.

2-8

I

•

•

•

•

•

•

•

•

•

COMMUNICATING WITH THE SYSTEM

Table 2-1
Accepted Command Abbreviations

Command

CONTINUE
CONNECT
EXECUTE
EXPUNGE
LOGIN
LOGOUT

Accepted Abbreviation

CON
CONN
EX
EXP
LOG
LOGO

Some commands can be distinguished by typing only one or two letters.
For example, several TOPS-20 commands begin with the letter A:
ACCESS, ADVISE, APPEND, ASSIGN, and ATTACH. You can give any of these
commands, by typing only the first two letters. To give the APPEND
command you need only type AP; to give the ACCESS command, you need
type only AC.

NOTE

When using one or two letters to
distinguish commands, keep in mind that
as the system develops, new commands
will be added and existing abbreviations
may require more letters to identify a
unique command .

The same method of using abbreviated input for TOPS-20 commands
applies for the arguments and subcommands to those commands. In the
INFORMATION command, there are two arguments beginning with the letter
T: TAPE-PARAMETERS and TERMINAL {MODE IS). To get information about
the terminal parameters, just type the abbreviation TE.

- EXAMPLE -

@INFORMATION T? ONE OF THE FOLLOWING:
TAPE-PARAMETERS
TERMINAL-MODE

@INFORMATION <ABOUT) If
TERMINAL LA36

@

TERMINAL SPEED 300
RECEIVE LINKS
REFUSE ADVICE
RECEIVE SYSTEM-MESSAGES
TERMINAL PAUSE <ON> COMMAND
TERMINAL NO PAUSE <ON> END-OF-PAGE
TERMINAL LENGTH 66
TERMINAL WIDTH 132
TERMINAL LOWERCASE
TERMINAL RAISE
TERMINAL NO FLAG
TERMINAL INDICATE
TERMINAL NO FORMFEED
TERMINAL NO TABS
TERMINAL NO IMMEDIATE
TERMINAL FULLDUPLEX

2-9

I

COMMUNICATING WITH THE SYSTEM

In the DIRECTORY command, there are four subcommands beginning with
the letter S: SEPARATE, SINCE, SIZE, and SMALLER. To print a list of I
files in your directory, including the number of pages of each file,
use the subcommand SIZE. Type DIRECTORY followed by a comma; the
system prints the subcommand prompt, @@, ; type the abbreviation SIZ.

- EXAMPLE -
@PIBECIQBXz
@@.§11
@@

PGS

PS:<SARTINI >
CHAPT2.QXT.13 3

.TXT.14 3
LOGIN.CMD.2 1
MAIL.TXT.1 2

I NATTACH.TST.1 1
VERCBL.BAT.1 2

.CBL.1 1

Total of 13 Pases in 7 files
@

NOTE

You can type more letters than are
required to uniquely identify a command. •
Abbreviated input simply makes the
system more convenient to use.

2.4.4 Combined Recognition and Abbreviated Input

You can mix these two methods of typing commands. Use abbreviated
input for the parts of the command you know, and use recognition for
the parts of the command you are uncertain of. You can give the LOGIN
command using the combination of input methods.

- EXAMPLE -

@LOG SARTIN! <ACCOUNT> 341

To give this command, type LOG and leave a space; type the user name
(here it is SARTIN!) and leave a space; type the password and press
ESC. After the system prints (ACCOUNT), type the account (here it is
341) and press RETURN.

2.5 CONTINUING COMMANDS

If a command is longer than one line, type a hyphen at the e nd of the
line, press RETURN, and continue typing the command on the next line.

2-10

•

•

•

•

•

•

•

COMMUNICATING WITH THE SYSTEM

Do not type a hyphen in the middle of a word or the middle of a file
specification. (Refer to Section 4.1 for a description of file
specifications.)

2.6 ADDING COMMENTS

To add a comment at the end of a command line, type an exclamation
mark (!) followed by the text. End the comment by typing another
! or, if you are at the end of a line, press RETURN. The text you
type between the exclamation marks or between an exclamation mark and
the end of the line does not affect the command.

The following example shows how to add comments with the PRINT
command:

- EXAMPLE -

@PR INT <FI LES> TEST. FOR ! OL[I FI LE
[Job TEST Queued, ReGuest-ID 47, Limit 27J
@

If the comment you include exceeds one line, type a hyphen at the end
of the line, press RETURN, and continue typing.

To type a complete line as a comment, start the l ine with
with ! or RETURN.

and end it

The ! is also useful when conversing with another user while linked
via the TALK command. (Refer to Section 3.2 for information on using
the TALK command.)

2.7 CORRECTING INPUT ERRORS

Five keys help you correct input mistakes . These keys are DELETE,
CTRL/R, CTRL/U, CTRL/W , and CTRL/ H. Except for CTRL/H, these keys are
effective only before you press RETURN to end the command .

2.7.1 DELETE - Erasing a Character

To erase a character, press DELETE. Each time yo u press DELETE, the
system erases the last character you typed and prints the erased
character, followed by a backslash (\). When you delete all
characters and spaces back to the @ sign, the system r ings the
terminal bell.

NOTE

If you are using a video termi nal that
you have declared as a video terminal,
the system erases t he characters from
the screen rather than printing the
character fo llowed by a backslas h, (\)
as it does on a hard-copy terminal .

2-11

I

COMMUNICATING WITH THE SYSTEM

The following example illustrates the use of DELETE when typing the
TERMINAL command.

- EXAMPLE -

@TERMINAL <MOD E IS> L0366\3\0\A36

To try this example, type TER and press ESC; the system prints MINAL
(MODE IS). Type L036; then press DELETE three times to erase the
incorrect characters. The system prints 6\3\ 0\. Type A36 and press
RETURN.

2.7.2 CTRL/R - Reprinting a Line

To reprint a command line, incorporating the editing performed by
DELETE, type CTRL/ R. CTRL/ R prints a clean copy of the command line
for you to check.

NOTE

If you are using a video terminal that
you have declared as a video terminal,
the system overprints the current line
instead of printing the current command
on the next line. In this case, CTRL/R
does not produce a line different from
the current line.

The following example illustrates the use of CTRL/R with the TERMINAL
command.

- EXAMPLE -

@TERMINAL (MODE IS) L036 \6 \3\0\A36 (mL1R)
@TERMINAL <MODE IS> LA36

To try this example, type TER and press ESC; the system prints MINAL
(MODE IS). Type L036 and press DELETE three times to erase the three
characters; then type A36. Type a CTRL/R on the same line. This
control character does not echo on the terminal. The system reprints
the command line, incorporating the typing corrections you made using
DELETE.

2.7.3 CTRL/U - Erasing an Entire Line

To erase the current command line, type CTRL/ U.
line and prevents the system from processing it.
not echo on the terminal, the system prints three
command line and a @ sign on the following line.

NOTE

CTRL/U deletes the
Although CTRL/U does
Xs at the end of the

If you are using a video terminal that
you have declared as a video terminal,
the system erases the line from the
screen rather than printing the three
Xs.

2-12

•

•

•

•

•

•

•

•

•

•

COMMUNICATING WITH THE SYSTEM

The following example illustrates the use of CTRL/U with the TERMINAL
command.

- EXAMPLE -

@TERMINAL <MODE IS> LENGTH XXX
[~

To try this example, type TER and press ESC; the system prints MINAL
(MODE IS). Type LENGTH, followed by CTRL/U . The system prints three
Xs on the same line and the @ prompt on the next line.

2.7.4 CTRL/W - Erasing a Word

To erase a word, type CTRL/W. Although CTRL/W does not echo on the
terminal, the system prints an underscore and you can continue typing
the command.

NOTE

If you are using a video terminal that
you have declared as a video terminal,
the system removes the characters from
the screen instead of printing the
underscore .

The following example illustrates the use of CTRL/ W with the TERMINAL
command. To see what was deleted by CTRL/ W, use CTRL/R to reprint the
line.

- EXAMPLE -

@TERMINAL (MODE IS) LENGTH (cm .iR)

@TERMINAL <MODE IS>

To try this example, type TER and press ESC. The system prints MINAL
(MODE IS). Type LENGTH and then type CTRL/W . The system prints an
underscore, and you can continue to type the command. To see what was
deleted by CTRL/W, type a CTRL/R to reprint the line.

If you are using CTRL/ W in commands that contain punctuation, the
system prints an underscore and deletes all letters and numbers
(alphanumerics) back to a punctuation character. The next CTRL/ W you
type deletes the punctuation character and all l etters and numbers
back to the ne xt punctuation character. A punctuation character in
this case (using CTRL/W) is defined as any character other than letter
or digit; (such as space, period, comma, hyphen, parenthesis).

The example below illustrates the use of CTRL/ W with a command line
that contains punctuation characters. To do this example, type PRI
and press ESC; the system prints NT (FILES). Type TEST.FOR.3.

@PRINT <FI LES > TEST.FOR.3

Type CTRL/W; the system prints an underscore and deletes back to the
first period it finds . Type CTRL/ R to reprint the line.

@PR INT (FI LES> TEST• FOR• 3 (cm1R)

@PRINT <FILES> TEST.FOR.

2-13

COMMUNICATING WITH THE SYSTEM

Type CTRL/W again;
to the next period.

the system prints an underscore and
Type CTRL/ R to reprint the line.

deletes back

@PRINT <FILES> TEST .FOR._(cm 1•)
@PRINT <FILES> TEST.

Type CTRL/W a third time; the system prints an underscore and deletes
back to the space. Type CTRL/R to reprint the line.

@PRINT <FILES> TEST ._(cm 1•)
@PRINT <FILES)

Type CTRL/W once more; the system prints an underscore and deletes
only the space, because there are two adjacent punctuation characters
{the space and the right parenthesis). Type a second CTRL/W; the
system prints another underscore and deletes back to the left
parenthesis. Type CTRL/R to reprint the line.

@PR I NT <FI LES) _(cm 1•)
Ci!F'RINT <

Type CTRL/W; the system prints an underscore and deletes back to the
next space, because again there are two adjacent punctuation
characters {left-hand parenthesis and space). Type a second CTRL/W;
the system prints another underscore and deletes back to the @ sign.
Type CTRL/R to reprint the line.

@PRINT (_(<m 1•)
@

2.7.5 CTRL/H - Reprinting Part of an Erroneous Command Line

If you make an error in a command line and press RETURN, the system
prints ?, and sometimes an error message. To reprint the command line
up to the erroneous field, type CTRL/H. {It will echo on the
terminal.) The system reprints the command line up to the field that
is in error, and you can now complete the command correctly.

The following example illustrates the use of CTRL/H with the
command:

- EXAMPLE -

@TERMINAL <MODE IS> LENGTH-WIDTH

@:.ti
@TERMINAL <MODE IS> LENGTH 66

TERMINAL

To try this example, type TER and press ESC; the system prints MINAL
{MODE IS). Type LENGTH-WIDTH and press RETURN. The system prints ?.
{There is no TERMINAL command argument LENGTH-WIDTH. The argument is
LENGTH or WIDTH but not both.) Type CTRL/H; the system reprints the
command line up to the erroneous field. You can finish the command
correctly by typing LENGTH 66.

2-14

•

•

•

•

•

•

•

•

•

•

COMMUNICATING WITH THE SYSTEM

2.8 OPERATING SYSTEM STOPPAGE

The TOPS-20 Operating System may stop unexpectedly because of a
malfunction. When the operating system stops, the terminal does not
print or receive any characters you type. This indicates that the
part of the computer controlling input from and output to the terminal
is malfunctioning. If the system can recover from this error, it
prints:

CDECSYSTEM-20 CONTINUEDJ

You may lose a few seconds of typing, but after this message prints on
the terminal, you can continue your work.

When a fatal error occurs (the entire computer stops working), the
system outputs the message:

XDECSYSTEM-20 NOT RUNNING

When the system resumes operation, it outputs the message:

SYSTEM RESTARTINGr WAIT •••

and after a few moments, it prints another message, similar to the
following:

[FROM OPERATOR:SYSTEM IN OPERATIONJ

Once the system restarts after a fatal error, you must type a CTRL/C
and log in to the system again. If you have changed the speed of your
line with the TERMINAL SPEED command, you may have to reset the speed,
depending upon the default speed set by the system manager.

After a fatal error, some of your files may be missing or incomplete.
Contact the operator to have these files restored from the system
backup tapes .

2-15

•

•

•

•

•

•

•

•

•

•

CHAPTER 3

COMMUNICATING WITH OTHER USERS

This chapter describes:

• Getting a list of users on the system {Section 3.1)

• Linking with other terminals (Section 3 .2)

• Sending mail {Section 3.3)

• Communicating with the operator (Section 3.4)

• Controlling messages from users (Section 3.5)

• Controlling system messages (Section 3.6)

The TOPS-20 commands and p.rograms mentioned in this chapter are:

BREAK
INFORMATION
MAIL
PLEASE
RECEIVE

REFUSE
REMARK
SYS TAT
TALK

3.1 GETTING A LIST OF USERS ON THE SYSTEM

To get a list of users currently on the system, give the SYSTAT
command. The SYSTAT command reports on the status of the system:

The following example shows typical output from a SYSTAT command:

- EXAMPLE -

@SY STAT
T•Je 31-J•Jl-79 9:45:27 UP 2:09:08
15+9 Jobs Load av <cl ass 0) 8.74 7 .10 4.36

Job Line Pros ram User
6 152 EXEC SAMBERG
7 42 EXEC DBE LL
8 174 EXEC WALLACE
9 123 EXEC DRUEKE

10 150 EXEC WHEELER
11 75 VTECO HURLEY
12 3 MON MED R.ACE
13 175 EXEC SYLOR
14 37 EXEC WEISS

3-1

COMMUNICATING WITH OTHER USERS

15 117 EXEC LEAPLINE
16 102 EXEC WEBBER
17 50 EXEC GUNN
18 121 EXEC ORAN
1.9 215 NfWNOF LNEFF
20* 41 SYS TAT SARTIN I

1 205 PTYCON OPERATOR
2 207 MF ORK OPERATOR
3 210 NETCON OPERATOR
4 211 OPR OPERATOR
o:.-
,J 2 TV OPERATOR

30 212 ACJ OPERATOR
;·52 213 EXEC OPERATOR
33 DET PERF OPERATOR
38 214 IBMSPL OPERATOR
56 DET EXEC OPERATOR

@

The first line of output gives the day of the week, date, time, and
the length of time since the system was last started. In the above
example, the date is Tuesday, July 31, 1979 at 9:45:27 AM. The system
has been up just over two hours.

The second line gives the number of user jobs plus the number of
operator jobs. The last three numbers on this line indicate the load
average on the system over a one, five, and fifteen minute period.
The load average is a measure of system demand.

The third line contains the column headings for the job number, the
line number, the program and the user.

If you want to talk to a user on the system, you can communicate by
linking terminals, or by sending mail.

3.2 LINKING WITH OTHER TERMINALS

One way to communicate wi th a user that is logged-in to the system is
by linking terminals. This allows you to conduct a two-way
conversation. To link terminals, give the TALK command followed by
the name of the user you want to talk to. The system prints a message
informing you that the terminals are linked, and prints the @ sign on
the following line. Now, everything you type, or the system prints on
your terminal is also printed on the terminal you are linked with.

- EXAMPLE -

@I..fil:JS (TO) tl.a.YQ

LINK FROM SARTIN!' TTY26
(~

After you see the @ sign, you can conduct your conversation using one
of the following options: an exclamation mark, the REMARK command, or
a combination of both options.

Begin each line you type with an exclamation mark (!). After you
press RETURN, the system prints an @ sign on the following line and
you can continue typing, beginning each line with an exclamation mark.
If you do not begin the line you type with an !, after you press
RETURN, the system prints the message ?UNRECOGNIZED COMMAND.

3-2

I

•

•

•

•

•

•

•

•

•

COMMUNICATING WITH OTHER USERS

- EXAMPLE -

@TALK (TO) MAYO

LINK FROM SARTIN!, TTY26
@! This is a test.
@

To avoid typing the exclamation mark on each line when you have
several lines of text, give the REMARK command. After you give the
REMARK command, the system prints a message advising you to type the
remark, and end it with CTRL/ Z. The system does not print an @ sign
when you use REMARK. After you type the message and end with CTRL/ Z,
the system prints the @ sign on the following line.

- EXAMPLE -

@Ifil:..!S < T 0 > M.Y.Q

LINK FROM SARTIN!, TTY26
@REMARK
T~Pe remark. End with CTRL/Z

PER YOUR REQUEST, A NEW COPY OF THE
UPDATED LIST OF MANUALS IS AYAILABLE
IN THE DIRECTORY <NEW-MANUALS>. ~z

@

You can use a combination of the exclamation mark and the REMARK
command when you TALK with another user. Use REMARK for a several
line comment and the ! for a shorter comment. To end the link with
another user's terminal, give the BREAK command. The other user can
also give the BREAK command to end the link with your terminal.

- EXAMPLE -

@TALK <TO> MAYO

LINK FROM SARTIN!, TTY26
@REMAF~K
TwPe remark. End with CTRL/Z •

PER YOUR REQUEST, A NEW COPY QF THE
UPDATED LIST OF MANUALS IS AVAILABLE
IN THE DIRECTORY <NEW- MANUALS>. ~z
@!THANKS, I HAVE SEVERAL ITEMS TO ADD TO THE LIST.
@!SEND MAIL TO HOLLAND WITH THE INFO.
@~ <LINKS>
@

When you are linked to another user's terminal, the other user's job
is not affected by what you type. For example , if another user is
running a program that is waiting for a command, and you TALK to that
user, the system does not interpret what you type as a command to that
user's program. However, if the user you are linked to is outputting,
whatever you type will appear on that output on the user's terminal
(but not in the user's output file) .

3-3

COMMUNICATING WITH OTHER USERS

If the user you want to TALK to does not want to receive links from
another terminal, the system rings the bells on both terminals five
times, then prints the following message on your terminal:

?Refused, use "MAIL" to send mail to user

Refer to Section 3.5 for information on refusing and receiving links.

If the user you want to TALK to is not logged in, the system prints
the following message:

?User is not lossed in

Use "MAIL" to send mail to user

3.3 SENDING MAIL

Another way to communicate with a user is to send mail with the MAIL
program. You can send mail to a user currently on the system, or to a
user who is not logged in. The MAIL program can also send messages to
a group of users. To start the MAIL program, type MAIL and press
RETURN; the system prints TO:. Type the user name or names (if you
type a group of user names, separate them with commas); the system
prints CC:. Type the name(s) of the user or users you want to receive
a copy of the mail; the system prints SUBJECT:. Type a one-line
heading for the message; the system prints MESSAGE (TERMINATE WITH
ESC OR CTRL/Z) :. Type your message and end it with an ESC or CTRL/ Z.
If there are no errors, the system prints a three-line message
confirming that the mail was sent.

- EXAMPLE -

@MAIL
TO: PORADA, [I.CROWLEY, MCELMOYLE
cc: BROPHY
SUBJECT: SYSTEM CHANGES
MESSAGE <TERMINATE WITH ESC OR CTRLIZ>:

THERE IS A LIST OF THE NEW SYSTEM
CHANGES AVAILABLE IN THE PROJECT
ROOM. ~z

PROCESSING MAIL •••
NO ERFWRS
- DONE·-·
(~

If you send mail fr equently to a group of users, store the list of
names in a file. Then, when you run the MAIL program, instead of
typing the entire list of names after the TO:, you can type the name
of the file, preceded by an @ sign. (Refer to Chapter 4 for
information on specifying files and to Chapter 5 for information on
creating files.)

3-4

•

•

•

•

•

•

•

•

•

•

@MAIL.
TO: @.USERS.LST
cc:
SUBJECT:

COMMUNICATING WITH OTHER USERS

- EXAMPLE -

For a complete description of the MAIL program, refer to the TOPS-20
User Utilities Guide.

3.4 COMMUNICATING WITH THE OPERATOR

To communicate with the operator use the PLEASE program. This program
allows you to conduct a two-way conversation with the operator.

To start the PLEASE program, type PLEASE, followed by the message. If
the message exceeds one line, type a hyphen at the end of t he line and
continue typing on the next line. When you complete your message,
press RETURN. The system then notifies you that the message was sent,
the time it was sent, and advises you to wait for the operator to
reply.

- EXAMPLE -

@PL.EASE OPERATOR, WHAT TIME TODAY IS THE FRONT-END RELOAD?
(MESSAGE SENT AT 11:20:30 WAITING FOR OPERATOR RESPONSE]

11:20:40 Fram Operator Terminal 3:
=>AT NOON
@.

If you want to send a one-way message without a repl y from the
operator, use the /MESSAGE switch after you type PLEASE.

If the operator is not available, the system prints a message telling
you that no operator is in attendance.

For a complete description of the PLEASE program and its switches,
refer to the TOPS-20 User Utilities Guide .

3.5 CONTROLLING MESSAGES FROM USERS

You can specify if you want to receive links from other users. To see
if your terminal is set to RECEIVE or REFUSE LINKS, give the
INFORMATION (ABOUT) TERMINAL command. The RECEIVE LINKS command is
the default. If you do not want to allow other users to TALK to you,
give the REFUSE LINKS command •

3-5

I

COMMUNICATING WITH OTHER USERS

- EXAMPLE -

@INFORMATION <ABOUT> TERMINAL- MODE
TERMINAL LA36

@

TERMINAL SPEED 300
RECEIVE LINKS
REFUSE ADVICE
RECEIVE SYSTEM-MESSAGES
TERMINAL PAUSE <ON> COMMAND
TERMINAL NO PAUSE CON> END- OF- PAGE
TERMINAL LENGTH 66
TERMINAL WIDTH 132
TERMINAL LOWERCA SE
TERMINAL RAISE
TERMINAL NO FLAG
TERMINAL INDICATE
TERMINAL NO FORMFEED
TERMINAL NO TABS
TERMINAL NO IMMEDIATE
TERMINAL FULLDUPLEX

3.6 CONTROLLING SYSTEM MESSAGES

You can specify if you want to receive s y stemwide messages on your
terminal. To see if your terminal is set to RECEIVE or REFUSE
SYSTEM-MESSAGES, give the INFORMATION (ABOUT) TERMINAL command. The
RECEIVE SYSTEM-MESSAGES command is the default. If you elect to
REFUSE SYSTEM-MESSAGES, you will no longer see such messages as:

[CAUTION .. DISK SPACE LOW]
[SYSTEM GOING DOWN IN l MINUTE!!]
[DELETED FILES WILL BE EXPUNGED IN 30 SECONDS]
[SYSTEM EXPUNGE COMPLETED]

CAUTION

Us e the REFUSE SYSTEM-MESSAGES command
only when you need to produce
uninterrupted output (such as
hard-copy terminal). Remember
your t e rminal back to

on a
to set

RECEIVE
SYSTEM-MESSAGES after the output is
complete.

3-6

I

•

•

•

•

•

•

•

•

•

CHAPTER 4

FILE SPECIFICATIONS

This chapter describes:

• Complete form of a file specification (Section 4.1)

• Using wildcards to specify files (Section 4.2)

• Specifying special characters (Section 4.3)

• Typing file specifications (Section 4.4)

• Using logical names (Section 4.5)

The TOPS-20 commands and programs mentioned in t h i s chapter are:

ALGOL
COBOL
COPY
CREF
DEFINE

DIRECTORY
DUMPER
EDIT
FI LC OM
FORTRAN

INFORMATION
ISAM
LIBRARY
LINK
MAK LIB

RERUN
SET
TRANSLATE
TYPE

4.1 COMPLETE FORM OF A FILE SPECIFICATION

File specifications tell the system where to locate and identify the
file. The complete form of a file specification is:

dev: <dir >name.typ.gen;attribute

where:

dev:

<dir >

name

.typ

is a device name, a file structure name, or a
defined logical name. (A file structure is a name
used to reference specific disk devices. Logical
names are described in Section 4.5.)

is a directory name, or in special cases, a
project-programmer number that specifies an area
on the disk. You must always include the angle
brackets around a directory name.

is a filename that specifies a particular file in
the directory.

is a file type that helps identify the contents of
a file.

4-1

I

I

FILE SPECIFICATIONS

.gen is a generation number that specifies the number
of times the file has been changed.

;attribute is a modifier for the file and specifies a
distinctive characteristic for the file.

4.1.1 Device Names - dev:

A dev ice name designates the location of the file on a particular
device or file structure. (Refer to Section 6.1 for a descripion of
file structures.)

A device name consists of alphabetic characters that indicate the type
of device, a number specifying a particular device (when more than one
of a particular device is available), and a colon terminating the name
of the device. Table 4-1 lists some common DECSYSTEM-20 devices and
their device names.

Table 4-1
System Device Names

De v ice

Public File Structure
Your Connected Structure and Directory
Your Terminal
A Particular Terminal
A Particular Magnetic Tape -
Any Line Printer
A Particular Line Printer
Any Card Reader
A Particular Card Reader
Receptacle for unwanted program output

or supplier* of null input

The number n indicates a particular unit
has multiple units.

Device Name

usually PS:
OSK:
TTY:
TTYn:
MTAn:
LPT:
LPTn:
CDR:
CDRn:
NUL:

when the device

•

•
* For example, COPY (FROM) NUL: (TO) TEST.FIL erases the
contents of the file TEST. FIL. I e

A colon must terminate the device name. Examples of device names are:

TTY20:
MTAO:
LPT:
ADMIN:

the terminal connected to line 20
the magnetic tape unit numbered 0
a line printer
a file structure

If you omit a device name from a file specification, the system uses,
as a default, the device or file structure you are presently using.

4.1.2 Directory Names - <DIR>

One area of disk storage allocated for your use is your logged-in
directory. You reference your logged-in directory by using a
directory name, which is your user name, enclosed in brackets.
Therefore, if your user name is KIRSCHEN, you have a directory named
<KIRSCHEN > . You can use other directories in addition to your
logged-in directory.

4-2 April 1982

•

•

•

•

•

•

FILE SPECIFICATIONS

A directory name consists of up to 39 alphanumeric characters,
including period, hyphen, and underline. You can use the asterisk (*)
to specify a group of directories, though it is not actually part of a
directory name. (Refer to Section 4.2 for more information on using
an asterisk.) Directory names are always enclosed in brackets and are
used only when the device is a disk. Examples of directory names are:

<PORADA >
<MCELMOYLE >
<D.CROWLEY>
<NEXT-RELEASE >

4.1.3 Project-Programmer Numbers - [PPN]

Most programs and commands allow you to type a directory name, but a
few require a similar designator called a project-programmer number.
Table 4-2 lists the TOPS-20 system programs that require you to type a
project-programmer number instead of a directory name when you
reference files in directories. Your installation may also have other
system programs with this requirement.

Table 4-2
Special System Programs

ALGOL program
COBOL program
CREF program
FILCOM program
FORTRAN program

ISAM program
LIBARY program
LINK program
MAKLIB program
RERUN program

A project-programmer number consists of two numbers separated by a
comma and enclosed in square brackets. To find the project-programmer
number corresponding to a particular directory name, give the
TRANSLATE command. The following example shows how to find the
project-programmer number associated with the directory <KIRSCHEN >:

- EXAMPLE -

@TRANSLATE (DIRECTORY> <KIRSCHEN>
PS: <KIRSCHEN > CIS> PS:C4,516J
@

The FILCOM program, for example, requires a project-programmer number.
If you want to compare your version of the file PLEASE.MAC with the
version of the same file in user KIRSCHEN's directory, give the
following commands:

- EXAMPLE -

@FIL COM

*TTY: =PLEASE.MAC[4 , 516J,PLEASE.MAC/A

Refer to the TOPS-20 User Utilities Guide for a complete description
of the FILCOM program.

4-3

FILE SPECIFICATIONS

4.1.4 Filenames - name

Each file has a filename consisting of up
characters, including hyphen, dollar sign,
character * may be used to specify a group of
filename, but is not actually part of the
filenames are:

TEST
COMPUT
ACCTS
DATA-ITEM
10-MEM

to 39 alphanumeric
and underline. The

files with the same
filename. Examples of

Although most programs and commands allow filenames up to 39
characters long, some software components do not support this extended
length. If you are using any of the programs listed in Table 4-2, the
maximum length of a filename is six characters; the characters - and
are invalid in a filename; and the characters * and ? are used for

specifying a group of filenames where permitted by the program.

4.1.5 File Types - .typ

To help identify the contents of a file or give the same filename to
more than one file, specify a file type consisting of a period
followed by up to 39 alphanumeric characters, including hyphen and
underline. The character * can be used to specify a gr·oup of files
with the same file types, but is not actually part of the file type.
Examples of file types are:

.FOR

.DAT-PROGRAM-1

.ALG

.CBL

Refer to Appendix B for a list of standard file types.

Although most programs and commands allow file types up to 39
characters in length, some software programs do not recognize this
extended length. I f you are using any o f the programs listed in Table
4-2, the maximum length o f a fi le type is three characters; the
characters - and are invalid in a file type; and the characters *
and ? are used for specifying a group of file types where permitted
by the program.

4.1.6 Generation Numbers - .gen

A generation number identifies the version of the file .
create a new file and assign a generation number to it.

You can

When you type a file specification, you can include a generation
number. At times you may have more than one generation of a file,
especially if you previously gave the SET FILE GENERATION-RETENTION
COUNT command. The system always assumes that the most recent f il e is
the one wi t h the highest generation number . If you create a new f il e
with a generation number lower than an existing file with the same

. 4- 4

•

•

•

•

•

•

•

•

•

FILE SPECIFICATIONS

filename and type, you may have trouble saving and restoring it on
tape using DUMPER or using it with the LOAD-class commands (unless you
delete the version with the higher generation number). Refer to the
TOPS-20 User Utilities Guide for a description of the DUMPER program,
and to Section 9.3 of this manual for information on the LOAD-class
commands.

When you do not specify a generation number, the system selects one
according to the way you use the file:

1. If you create a new file, the system gives the new file a
generation number of 1.

2. If you use an existing file, the system selects the one with
the highest generation number.

3. If you create a new version of an existing file, the system
adds one to the highest generation number for that file .

4. If you delete or restore a file, the system deletes or
restores all versions of the file.

When you do specify a particular generation
the file with that generation number.
number as a positive number or as a symbol.
generation numbers. Refer to Table 4-3 for
the four symbolic generation numbers.

number, the system uses
You can give a generation
There are four symbolic
a list and description of

Table 4-3
Symbolic Generation Numbers

Generation Number

• 0

.-1

.-2

. -3 or *

Represents

the highest existing generation
number.

one greater than the highest
existing generation
number .

the lowest existing generation
number.

all existing generations .

For example, if you have three generations (.1,.2,.3) of the file
BACKUP.DAT, .O is the symbolic generation number for BACKUP.DAT.3, .-2
is the symbolic generation number for BACKUP.DAT.I, and .-1 is the
symbolic generation for BACKUP.DAT.4. Refer to Section 6.6 for an
example of how the system uses symbolic generation numbers.

Some installations limit the number of generations of any one file you
can keep. Therefore, if the limit is 3 and you create a fourth
generation of the file, the system deletes the file with the lowest
generation number. If you have the files BRKING.CBL.3,4,5, and you
create BRKING.CBL.6, the system deletes the oldest file
(BRKING.CBL.3). The system always assumes that the oldest file is the
one with the lowest generation number, and the most recent file is the
one with the highest generation number.

4-5

FILE SPECIFICATIONS

If you are using a file with any of the programs listed in Table 4-2,
you cannot include a generation number in the file specification.
These programs always use the highest existing generation number for
files if you are reading or the generation number 1 if you are
creating a file. If you are deleting a file, the program deletes all
generations.

4.1.7 File Attributes - ;A, ;P, ;T

File attributes specify distinctive characteristics for a file
specification. More than one attribute may appear in a file
specification. The three most common attributes are: ;A for account,
;P for protection, and ;T for temporary.

The account descriptor takes the form:

;Adescriptor

The descriptor is an account consisting of up to 39 alphanumeric
characters. All charges for file storage are billed to this account.
If you do not specify an account for your file specification, the
system uses the account you specified in your LOGIN command or your
last SET ACCOUNT command.

The file protection code takes the form:

;Pprotection

Protection is a valid TOPS-20 protection code.
Protecting Directories and Files.)

(Refer to Section 6.2,

A temporary file specification contains the file descriptor ;T and a
generation number of 100000 plus the number of the job that created
the file. (Refer to Section 6.3 for more information on temporary
files.) Temporary files are deleted when you log off the system.

A file attribute never distinguishes one file
defines a certain characteristic of the file.
give the command:

from another; it
For example, if you

- EXAMPLE -

@DIR ECTOR Y <OF FILES> *•*;Aaccount

the system prints a list of all the files with an account named
'account'.

NOTE

You can specify other file attributes
when working in a DECnet or magnetic
tape environment. Refer to the TOPS-20
Commands Reference Manual for the
complete list of attributes. The DECnet
documentation further describes the
DECnet-related file attributes.

4-6 April 1982

I

•

•

•

•

•

•

•

FILE SPECIFICATIONS

4.2 USING WILDCARDS TO SPECIFY FILES

You can use a wildcard character in a file specification to specify
files that have part or all of a directory name, filename, file type
or generation number that is the same in each file specification. The
asterisk (*) and the percent sign (%) are valid wildcard characters .

4-6.l April 1982

I

•

•

•

•

•

•

•

•

FILE SPECIFICATIONS

The asterisk matches any number of characters in a field
specification that uniquely identifies the file. The
example illustrates using the * to list all f iles in t he
<SMITH> with the file type .TXT:

- EXAMPLE -

IWIRECTORY <OF FILES> *• TXT

F'S: <SMITH>
DATA+TXT. 7
MAIL.TXT.5
TEST.TXT.1

TOTAL OF 3 FILES
@

of a file
following
director y

If you give the command DIRECTORY (OF FILES) L*, t he sys tem lists all
the filenames beginning with the letter L .

- EXAMPLE -

@[I I RECTORY <OF FI LES) L*

@

PS: <SMITH>
LAST.TXT.10
LEVEL.DAT+l
LIST.FOR.3
LL.TST.2
LOGIN.CMD.1
L..CJOF'. TXT • 6
LOST.DAT . 4

TOTAL OF 7 FILES

If you give the command DIRECTORY (OF FILES) *T, the system lists all
the filenames ending with the lette r T.

- EXAMPLE -

@DIRECTORY <OF FILES) *T

PS:<SMITH>
ACCTST.FOR.1
CKACCT.FOR.1
LAST.TXT.10
LI ST. FOR.3
LOST.DAT.4
NEWACT. FOR.1
TEST.FIL.1

TOTAL OF 7 FILES
@

4- 7

FILE SPECIFICATIONS

The percent sign matches a single character in a field of a file
specification that uniquely identifies the file. You cannot use a %
in a generation number. The following example illustrates using the %
to list all files in the directory <SMITH> containing four letters,
and beginning with the letter L and ending with the letters ST:

- EXAMPLE -

@[I !RECTORY <OF FI LES> hill

@

F'S: <SMITH>
LAST+TXT.10
LIST. FOR• 3
LOST+DAT+4

TOTAL OF 3 FILES

If you give the command DIRECTORY (OF FILES) L%, the system lists all
two-character filenames beginning with the letter L.

- EXAMPLE -

@DIRECTORY (OF FILES> L/.

@

F'S:<SMITH>
LL.TST+1

If you are using a file with any of the programs listed in Table 4-2,
you must use a different convention for specifying groups of files.
The * designates a group of filenames or file types, but must either
entirely replace the filename or file type, or occur at the end of the
filename or file type. Therefore, the construction TEST* is valid but
the construction *TEST is not.

NOTE

Not all programs in Table 4-2 accept *
in a filename or file type.

4.3 SPECIFYING SPECIAL CHARACTERS - CTRL/V

If you need to include a special character, that is, any character
other than an alphanumeric, or in a file specification, type
CTRL/V directly before it.

If you are using a file with any one of the programs listed in Table
4-2, do not use the CTRL/V feature.

4.4 TYPING FILE SPECIFICATIONS

There are two methods of typing a file spec i f ication in a command:
full input and recognition input. For f ull input, you type the
complete file specification. You always use full input when you are
creating a file. If you are using a file with any of the programs
listed in Table 4- 2 , you must always use full input: recognition is
not available.

4-8

•

•

•

•

•

•

•

•

•

•

FILE SPECIFICATIONS

Recognition input makes it easier for you to type file specifications .
You can make the system recognize file specifications by using either
CTRL/F or ESC. For file specifications, CTRL/F recognizes only the
current field of the specification, for example it completes a
directory name, filename, file type, generation number. The ESC key
recognizes as many subsequent fields as possible, including any
defaults. Many commands set up defaults so that you can press the ESC
key at the beginning of a file specification, causing the system to
print the full default file specification on your terminal.

The system considers generation numbers in specific ways.
are using an existing file, the system selects the highest
number; when you are creating a file and a file with that
and type already exists, the system assigns a generation
higher than the highest existing generation number.

When you
generation
same name
number one

The following examples illustrate the way the system considers
generation numbers. If you have two files in your directory,
TEST.TXT.2 and TEST.TXT.3, and you give the TYPE command to print the
TEST.TXT file, the system selects the file with the highest generation
number. Give the TYPE command, followed by the filename TEST.TXT and
press ESC. The system prints .3 (the highest generation number).

- EXAMPLE -

@TYPE <FILE> TEST.TXT.3

If you want to copy the file NEW.FIL.l to the destination file
TEST.TXT.3, give the COPY command, followed by the filename NEW.FIL
and press ESC; the system prints .1 and (TO). Type the filename
TEST.TXT and press ESC; the system assigns a generation number one
higher than the existing generation number. In this case, the
destination file becomes TEST.TXT.4.

- EXAMPLE -

@~ <FROM> NEW.FIL.1 <TO) TEST.TXT.4 !NEW GENERATION!

NOTE

You can use recognition on any part of
the file specification except the device
name field. When you use a device name,
you must always type this name in full.
If you do not type a device name, the
system uses OSK: (your connected file
structure), but does not print i t on
your terminal.

When you type more than one file specification, you can incorporate
recognition input when typing each file specification. You can also
incorporate wildcards with recognition input when you type a group of
files .

4-9

FILE SPECIFICATIONS

When you type more than one file specification on a line,
each file specification with a comma. The following
illustrates using commas to separate file specifications in
command.

separate
example
a COPY

- EXAMPLE -

~COPY <FROM> BCHECK.TST,CCHECK.TST,DCHECK.TST.1 <TO> CHECK.TST,S !NEW GENERATION!
BCHECK.TST.1 => CHECK.TST.S COKJ
CCHECK.TST.1 => CHECK.TST.6 COKJ
DCHECK.TST.1 => CHECK.TST,7 COKJ

4.5 USING LOGICAL NAMES

A logical name is a descriptive word used to establish a search
for locating files in other directories or on other structures.
you define a logical name, you tell the system where, and in
order, to search for a file.

route
When

which

A logical name comprises up to 39 alphanumeric characters, including
hyphen, dollar sign, and underline, followed by a colon. However, you
can use an abbreviated word for the logical name when you define the
search list.

For example, you are a member of a team working on a project. Your
team has a directory called <TEAM> on the structure PS: where the
members store all the completed programs for the project. When you
are looking for a project file and you are not sure of where it is,
you must look through your directory on PS:, and then through the
team's directory to find it. Instead of giving two separate DIRECTORY
commands for each directory, you can give one DIRECTORY command using
a logical name that will automatically search through both directories
until it finds the file. The example below illustrates defining a
logical name to search your directory, (here your user name is KONEN),
and then the team's directory. Include the structure name with the
directory names.

- EXAMPLE -

@DEFINE <LOGICAL NAME> fil:.bl <AS> F'S:<KONEN>,PS: <TEAM>
@

You now have the logical name ALL: defined as PS:<KONEN> and
PS:<TEAM>. If you want to search for the file TEST.FOR in either
directory, give the following command:

- EXAMPLE -

@DIRECTORY <OF FILES> ALL:TEXT.FOR

F'S: <TEAM>
TEST.FOR.5

The system searches first in the directory <KONEN> where
find the file, and then in the directory <TEAM> where it
file. If the file TEST.FOR exists in <KONEN> and in
system searches only until it finds the first file.

4-10

it does not
does find the

<TEAM>, the
In this case,

•

•

•

•

•

•

•

•

•

•

FILE SPECIFICATIONS

finding the file in <KONEN > , it does not continue the search in the
directory <TEAM>. When you give the DIRECTORY command, the system
always prints the name of the directory and the structure in which it
finds the file.

The logical name you define applies only to your current job. It
remains in effect until you either remove it, or end your job by
logging out. If you want the same defined logical name e very time you
log in, you can put the definition in your LOGIN.CMD file. (Refer to
Section 1.7 for information on LOGIN.CMD files.)

To find out what logical name you are using, you can give the
INFORMATION (ABOUT) LOGICAL-NAMES (OF) JOB command.

- EXAMPLE -

fr/INFORMATION <ABOUT> LOGICAL-NAMES <OF> .JOB
ALL: => PS! <KONEN>, PS: <TEAM>
@

There are also systemwide logical names that all users can give
without having to define them for each job. A systemwide logical
name, like SYS:, is usually defined by each installation and includes
the directories that contain standard system software. To print a
list of systemwide logical names, give the INFORMATION (ABOUT)
LOGICAL-NAMES (OF) SYSTEM command.

- EXAMPLE -

@INFORMATION <ABOUT) LOGICAL- NAMES <OF> SYSTEM
SYS ! => PS: <SUBSYS>,PS: <NEW>

When you define a logical name, you can include an existing systemwide
logical name in your definition. Each directory name, device name, or
other logical name you use in defining the logical name must be
separated by a comma. For example, you can set up a search route to
look for a file in the system directories, SYS:, then in <TEAM > and
<KONEN>.

- EXAMPLE -

@DEFINE <LOGICAL-NAME) TEST: SYS:, <TEAM>, <KONEN>
@

By defining the logical name TEST:, the system searches SYS:
because that was the first area you specified, and if it does
the file there, continues its search through <TEAM> next, and
through <KONEN>.

first,
not find
finally

If you copy a file to a logical name, the system places the file in
the first area defined in the logical name. For example, if you copy
the file CHECK.TST to the logical name ALL:, the system places the
file in the directory <KONEN > , because that directory was the first
area defined in ALL:.

- EXAMPLE -

@£QE1 <FILE> CHECK.TST.1 <TD> ALL!CHECK.TST.1 !NEW FILE!

4-11

FILE SPECIFICATIONS

If you are defining a logical name for a program listed in Table 4-2,
you cannot include the characters $, or in the logical name.
Also the logical name cannot exceed six characters, excluding the
colon.

To remove a logical name you have defined, give the DEFINE command,
but do not type any definition. After the DEFINE command, type the
logical name only, and press RETURN. The following example shows how
to remove the logical name TEST::

- EXAMPLE -

@DEFINE <LOGICAL - NAME> TEST:
@

You can also use the logical name as an abbreviation for all or part
of a file specification. Using a logical name saves you typing if
your file specification is lengthy.

The following example shows defining a logical name for a directory
name, and then giving the DIRECTORY command using the logical name:

- EXAMPLE -

@DEFINE <LOGICAL NAME> TS: <AS> PS: <TEST-SPECS>
@DI RECTORY <OF FI LES> Ifil

PS: <TEST- SPECS>
ACCU.DAT.4
ARCHIVE.DCJC,1
CHECK.TXT.7
SAMPLE.MEM+2

TOTAL OF 4 FILES
@

The following example shows defining a logical name for a filename,
and then giving the EDIT command followed by the logical name to get
the file. (Refer to Chapter 5 for information on EDIT.)

- EXAMPLE -

@DEFINE <LOGICAL NAME> PP: <AS> R4-PROJECT-PLAN.RNO
@EDIT PP:
Edit: R4 - PROJECT- PLAN.RN0.2

*

4-12

•

•

•

•

•

•

•

•

•

FILE SPECIFICATIONS

4.5.1 The Device OSK:

The system defines DSK: to be your connected structure and connected
directory. Any time a command or program wants to use a file in your
connected directory, it foll ows the definition of the logical name
DSK: to locate the file. Thus, if you want to alter the way each
system command and program searches for files, change the definition
of the logical name DSK:. The following type of definition:

- EXAMPLE -

@DEFINE <LOGICAL NAME > DSK!
@

CAS) DSK:, <TESTER>

is most common and tells the system to search in your connected
directory first; then, if t he file is not found, look in the
alternate directory <TESTER > on your connected structure .

NOTE

Make sure you do not inadvertent ly leave
out the c omma. If you do, DSK: is
defined as DSK: <TESTER> , and programs
and commands will l ook only in this
directory on the connected structu r e.

Another example is:

- EXAMPLE -

@D EFINE <LOGI CAL NAME > DS K! <AS> DSK:, ADMIN : <RECORD >• AD MIN ! <G ENLED >

The system searches your connected s tructure and directory first .
Then, if the file is not found, it looks on structure ADMIN : in
directories <RECORD > and <GENLED > .

When yo u create files, they are stored in your connected directory or
in the first item in your definition of the logical name DSK: .

4-13 April 1982

•

•

•

•

•

CHAPTER 5

CREATING AND EDITING FILES

This chapter describes:

• Selecting an editor (Section 5.1)

• Using EDIT to create a file (Section 5.2)

• Entering the contents of a file (Section 5.3)

• Saving the file (Section 5.4)

• Using the EDIT command (Section 5.5)

• Recalling arguments to the CREATE and EDIT commands (Section
5. 6).

• Using line numbers (Section 5.7)

• Printing lines in a file (Section 5.8)

• Changing lines in a file (Section 5 .9)

• Deleting lines in a file (Section 5 . 10)

• Inserting lines in a file (Section 5.11)

• Moving lines in a file (Section 5.12)

• Ed iting files in another directory (Section 5.13)

The TOPS-20 commands and programs mentioned in this chapter are :

CREATE
DEFINE
DIRECTORY

EDIT
TV

5 .1 SELECTING AN EDITOR

The TOPS-20 Operating System allows you to create or change files by
using a system editor program. There are two editors available for
your use, EDIT and TV .

If you want to always use the same editor, you can define that editor
as a logical name and place the command in your LOG IN . CMD file. If
you do not specify an e ditor, the system uses the default specified by
the s yste m manager .

5-1

CREATING AND EDITING FILES

5.1.l EDIT

EDIT is a line-or i ented editor. With
change a line by referencing the
characters, or retype the line. Some
use line numbers when giving error
used with some debuggers.

a line-oriented editor, you can
line number, then substitute

computer programming languages
messages. Line numbers are also

EDIT has an easy to learn and simple to use command language. You can
use EDIT effectively on either a hard-copy or video terminal.

The EDIT program description in this chapter provides enough
information for you to create files and do your editing work. For a
more complete description of EDIT, refer to the EDIT Reference Manual.

5.1.2 TV

TV is a character-oriented editor. With a character-oriented editor,
you can change one or more characters in a line without retyping the
line.

TV has a more powerful command language than EDIT. With this command
language, you can accomplish complex editing functions with fewer
commands.

For the most effective use of TV, you should use a video terminal. If
you need to use TV on a hard-copy terminal, refer to the TV Editor
Manual.

If you want to use TV, define it as the logical name EDITOR.

- EXAMPLE -

@DEFINE <LOGICAL NAME> EDITOR:CAS> SYS:TV.EXE
@

When you use the logical name feature to define TV as your editor, you
can use the TOPS-20 CREATE and EDIT commands described in this chapter
to create and edit your file with TV. When TV begins execution, it
clears the video screen, then prints a pointer (/\) at the top left
side of the screen, and an asterisk (*) prompt at the bottom left side
of the screen. You can now give commands to TV. For a complete
description of the TV program, refer to the TV Editor Manual.

5.2 USING EDIT TO CREATE A FILE

To create a new file, give the TOPS-20 command CREATE. The CREATE
command allows you to create a file by using the EDIT program. On the
same line, type the file specification to label the new file. You can
use any file specification as long as the filename contains 39
characters or less, and the file type contains 39 characters or less.
However, if the file you create must be translated using a language
compiler, then the filename can contain no more than six characters,
and the file type no more than three characters.

You can use any combination of letters and digits in a filename or
file type, but if you are creating a program or data for a program in
the file, use one of the standard file types listed in Table 5-1.

5-2

I

•

•

•

•

•

•

•

•

•

CREATING AND EDITING FILES

Table 5-1
Some Standard File Types

File Type Contents of File

.ALG A program written in the ALGOL language

.CBL A program written in the COBOL language

.DAT Data to be read by a FORTRAN program

.FOR A program written in the FORTRAN language

.MAC A program written in the MACRO language

Therefore, if you are creating a program in the FORTRAN language, use
the file type .FOR in the file specification. (Refer to Appendix A
for a complete list of standard file types.)

To create a file, type CREATE and press ESC. The system prints
(FILE). Type the filename and the file type, and press RETURN . The
following example shows how to create a new file with the filename
TEST and the file type :FOR:

@CREATE <FILE> TEST.FOR
InPut: TEST.FOR.1
00100

- EXAMPLE -

After you type the filename and file type and press RETURN, the system
creates the file and prints INPUT: followed by the filename, file
type and a generation number. You do not have to type a generation
number when you create a new file, because the system automatically
assigns a generation number of 1. EDIT prints the number 00100 on the
next line. You can now start to enter the contents of the file. For
easy reference, EDIT numbers each line in the file as you enter its
contents.

If you create a new file, and you already have a file with the same
filename and file type, the system prints a generation number greater
than 1. In order to keep this existing file, you must end the
creation of the new file. If you do not, the existing file will be
deleted when you exit from EDIT .

To end the creation of the new file, press ESC (even if you have not
typed anything): EDIT prints the EDIT prompt,*. Type EQ and press
RETURN: the system prints @. The EQ command instructs EDIT to End
the session and Quit, and the file you started to create is not saved.

@CREATE <FILE> TEST.FOR
InPut: TEST.FOR,2
00100 $
*EQ -
@

- EXAMPLE -

Choose a different filename and give the CREATE command again .

5-3

CREATING AND EDITING FILES

- EXAMPLE -

@CREATE <FILE> NUMBER.FOR
InPut: NUMBER.FOR.!
00100

You can now enter the program or data into the file.

5.3 ENTERING THE CONTENTS OF A FILE

To enter the
line number;
line number;
the contents

contents of a file, wait for the EDIT program to print a
then type a line and press RETURN. EDIT prints the next
type the next line and press RETURN. Continue entering

of the file in this manner until you complete your work.

If you make typing mistakes, use DELETE to delete a single character;
CTRL/ U to delete the entire line; CTRL/W to delete the previous word;
and CTRL/ R to reprint the line. (Refer to Section 2.7 for more
information on correcting input errors.)

When you finish entering lines, press ESC; the system prints the EDIT
prompt, * You can now do one of the following:

• End the EDIT program and save the file by typing the EDIT
command E and pressing RETURN.

• Continue to work in the file by giving EDIT commands.

The following example shows how to create a file and enter a short
FORTRAN program in the file. To do the following example, use tabs to
space the text:

- EXAMPLE -

@CREATE <FILE> NUMBER.FOR
InPut: NUMBER.FOR.!
00100 TYPE 101
00200 101 FORMAT (I TYPE A NUMBER. I)

00300 ACCEPT 102,x
00400 102 FORMAT <F)

00500 TYPE 103rX
00600 103 FORMAT (I YOU TYPED I , F)

00700 gm
OOBOO ~

*
Type CREATE and the new file specification NUMBER.FOR; press RETURN.
The system prints INPUT: followed by the new filename and file type,
and assigns a generation number of 1. EDIT then prints the line
number 00100. To type the first line, press TAB and type the word
TYPE, type a space, type the number 101 and press RETURN. EDIT prints
the line number 00200. Type the number 101, press TAB, type the word
FORMAT followed by a space, type (' TYPE A NUMBER. '), and press
RETURN.

Continue entering the FORTRAN program in this manner until the file is
complete.

5-4

•

•

•

•

•

•

•

•

•

•

CREATING AND EDITING FILES

5.4 SAVING THE FILE

You can save the file by using one of the following EDIT commands.

1. E - saves the file including the line numbers, ends the EDIT
program, and returns to TOPS-20 command level

2. EU - saves the file but removes the line numbers, ends the
EDIT program, and returns to TOPS-20 command level.
(EDIT creates new line numbers if y ou edit the file
later.)

3. B - saves the file and continues at EDIT command level.

5.4.l Using the E Command

To save the file and end the EDIT program:

1. Press ESC. This echoes as a $sign and tells the EDIT program
to stop inserting lines. The system prints the EDIT prompt,
* on the next line.

2. Type E. This notifies EDIT to end the session and save the
file. Press RETURN. The system types a blank line, prints
the file specification in brackets, and prints @ on the next
line.

The following example shows how to end EDIT and save the new file
NUMBER.FOR:

- EXAMPLE -

@CREATE <FILE> NUMBER.FOR
InP•Jt:
00100
00200
00300
00400
00500
00600
00700
00800
*f;

NUMBER.FOR.1
TYPE 101

101 FORMAT C' TYPE A NUMBER.')
ACCEPT 102,x

102 FORMAT CF>
TYPE 103,X

103 FORMAT C' YOU TYPED ',F)
END

CNUMBER.FOR.1J
@

If you want to save the file without line numbers and end the EDIT
program, type EU and press RETURN. The system inserts a blank line,
prints the file specification in brackets, and returns you to TOPS-20
command level.

You can save the file without ending EDIT by using the B command.
Type B and press RETURN. The system prints the name of the file and
leaves you at EDIT command level. The B command creates a backup file
with a file type beginning with the letter Q.

Every time you change an existing file and give an E or B command to
save the file, EDIT creates a backup file. The backup file is a copy
of the file before you enter the changes. EDIT creates the file type

5-5

CREATING AND EDITING FILES

for backup files by replacing the first letter of the file type of the
edited file with th e l e tter Q. The backup copy of the file NUMBER.FOR
would be NUMBER.QOR.

The following example illustrates how EDIT creates backup files when
you edit a file:

@CREATE <FILE> TEST.FIL
InPut: TEST.FIL.!
001 00 ONE HUNDRED
00200 1
*E;

CTEST.FIL.1J

(1!

- EXAMPLE -

After you create a file, onl y one copy of the file TEST.FIL.l exists.
EDIT does not create backup files when you use the CREATE command.
Give the DIRECTORY c o mmand to see that onl y one file exists.

- EXAMPLE -

cmIRECTORY <OF FILES) TEST

@

PS: <SAl:;;TINI >
TEST.FIL.!

Now, edit the file by inserting a line and saving the file.

Ci!EDIT <FILE> TEST. FIL
Edit:
*I200
00200
00300
*g

TEST.FIL.!

TWO HUNDRED
1

LTEST.FIL.2J
@

- EXAMPLE -

The original file TEST.FIL.l becomes the backup file TEST.QIL.l and
your current file is TEST.FIL.2.

- EXAMPLE -

@D !RECTORY <OF FI LES> lifil

PS: <SARTINI >
TEST.FIL.2

.CHL.1

Total of 2 files
@

Edit the file again by adding a third line and save the file.

5-6

•

•

•

•

•

•

•

•

•

•

CREATING AND EDITING FILES

@EDIT
Edit:
*1300
00300
00400
*!;

<FILE) TEST.FIL
TEST .FIL.2

THREE HUNDREP
!

[TEST.FIL.3J

- EXAMPLE -

The file TEST.FIL.2 becomes TEST.QIL.2 and the current file is
TEST.FIL. 3 .

@DIRECTORY <OF FILES> TEST

PS: <SARTINI >
TEST.FIL.3

.CHl ...• 2

Total of 2 files
@

Because the system default is set to keep only one generation of the
file and one generation of the backup file, the system deleted the
file TEST.QIL.l from the directory.

5.5 USING THE EDIT COMMAND

To change an existing file, give the TOPS-20 command EDIT. The .EDIT
command allows you to edit a file using the EDIT program. On the same
line, type the file specification of the file you want to change. The
system prints EDIT: followed by the file specification and generation
number. EDIT prints the EDIT prompt, *, on the next line indicating
that you are at EDIT command level. You can now enter EDIT commands.
(Refer to the EDIT Reference Manual for a complete description of the
EDIT commands.)

The following example shows how to edit a file:

@EDIT <FILE> NUMBER.FOR
Edit: NUMBER.FOR

*

- EXAMPLE -

If the file whose name you type does not exist, the system prints a
message and creates a file using the file specification you typed.

- EXAMPLE -

@EDIT <FILE> TEST.FOR

ZFile not found, Creatins New file
InP•Jt: TEST. FOR
00100

5-7

CREATING AND EDITING FILES

Usually the changes you make are incorporated in the current copy of
the file. However, if you want to leave the current copy untouched
and save the changes in another file, specify an output file
specification after the guidewords (OUTPUT AS). Give the EDIT
command, followed by the filename NUMBER.FOR and press ESC. The
system prints the generation number and the guidewords (OUTPUT AS);
then type the output filename TEST.FOR.

- EXAMPLE -

@EDIT CFILE> NUMBER.FOR.1 <OUTPUT AS> TEST.FOR
Edit: NUMBER.FOR.1
*1.1.f&
00450 REPEAT STEP 4
005!50 .!
*E:
(TEST.FOR.1J
@

5.5.1 Using Switches with EDIT

You can use switches with the EDIT command to specify options to the
command, or to override system default options.

For example, if you want to automatically save your file after you
insert a specified number of new lines, you can give the following
command with the file TEST.FOR:

- EXAMPLE -

@EDIT CFILE>IISAVE:lO TEST.FOR

In the above example, you specified the number 10 after the / !SAVE
switch. This means that after every 10 lines you insert, EDIT saves
the lines and prints the following message

[[loins auto - save, Please waitJ

followed by the filename. You can then continue to insert lines, and
EDIT will continue to save these lines after every 10 insertions.

If you want to always use specific switches when you edit a file, you
can create a SWITCH.IN! file and include the switch(es). Every time
you give the EDIT command, EDIT reads the SWITCH.IN! file and uses the
switches specified in that file.

The following example shows how to create a SWITCH.IN! file and
include an / !SAVE switch with EDIT:

- EXAMPLE -

@CREATE <FILE> SWITCH.IN!
lnPut: SWITCH.INI.1
00100 EDIT/ISAVE:lO
00200 !
*E
LSWITCH, INI, 1J
@

5-8

•

•

•

•

•

•

•

•

•

•

CREATING AND EDITING FILES

Now, instead of typing the command

- EXAMPLE -

@ED IT <FI LE) /I SAVE: 10 TEST. FOR

you can type the following command, and the / !SAVE switch will
automatically be included in the command:

- EXAMPLE -

If the switches occupy more than one line, use a hyphen at the end of
the first line and continue on the next line. (Refer to the EDIT
Reference Manual for a complete description of EDIT command options.)

NOTE

Create your SWITCH.IN! file in your
logged-in directory. Refer to Section
6.1 for a description of logged-in
directories .

5.6 RECALLING ARGUMENTS TO CREATE AND EDIT COMMANDS

The system remembers arguments typed to a suc cessful CREATE or EDIT
command. When you give a subsequent EDIT or CREATE command without
giving any arguments, the system uses the arguments from yo ur last
CREATE or EDIT command. Therefore, you can create a new file, exit
from the editor, do some other work on the system, then return to edit
that file without retyping the arguments.

The following example shows how to create a file and then
file. The EDIT command uses the arguments typed in
command.

- EXAMPLE-

@CREATE <FILE) FILE.TX!
Input! FILE.TXT.1
00:1.00
00200
00300

THI S FILE CONTAINS
TWO LINES,
!

*~

CFILE,TXT.1:1
*1300
oo:rno
00400

Now, THERE ARE THREE .
!

*s
l::FILE.TXT.2J

5-9

edit that
the CREATE

April 1982

CREATING AND EDITING FILES

When you want to edit this same file later (during the same terminal
session), do not include a generation number in the file
specification. If you include a generation number, the system uses
that exact generation and not the highest generation for that file.
For example, if you give the command CREATE (FILE) TEST.FOR.3 and save
the file by giving an E or EU command, your most recent file is
TEST.FOR.4. If you give the EDI~ command without any arguments, the
system tries to edit the file TEST.FOR.3 and not the most recent file
TEST.FOR.4. If TEST.FOR.3 exists, the s ystem uses that file; if it
does not exist (as in the following example), the system allows you to
create it.

@EDIT <FILE) TEST.FOR.3
Ed'I"t': TE!:> T. FUI~:, 3
*1~500

- EXAMPLE -

00!)0()
00600

THIS IS A TEST FILE,

*L
LTEST.FOR.4::1
!!1EDIT

%File not found, Creatins New file
lnPut: TEST.FOR.3
00100 1
*bi!

•
@ •

To correct this situation give the EDIT or CREATE command with a file
specification, but do not include a generation number.

@EDIT <FILE> TEST.FOR
Edit: TEST, FOF~. 3

*

5.7 USING LINE NUMBERS

- EXAMPLE -

You can locate and reference lines in your file by using line numbers.

When you save the file with an E command, EDIT saves the line numbers
along with the fi l e. When you give the EU command, EDIT removes the
line numbers before saving the file.

Line numbers consist of five digits, followed by a tab. The EDIT line
number default is 00100, through 99900, with increments of 100 for
each line. This default allows you to insert lines between existing
lines in the file. When specifying line numbers you do not need to
type the leading zeroes. For example, you can type 500 instead of
00500.

You can specify a group or range of lines in a file by typing the line
number of the first line in the group or range, followed by a colon
and the number of the last line in the group. For example, to specify
lines 600, 700, 800 , and 900, you can type 600:900.

5-10

•

•

•

•

•

•

•

CREATING AND EDITING FILES

5.8 PRINTING LINES IN A FILE

You can print one line, a group of lines, or an entire file. Table
5-2 lists the various forms of the print command y ou can use to print
lines.

Table 5-2
EDIT Print Commands

*P Prints the current line and the next 15 lines.

*P500 Prints line 500.

*P500:700 Prints lines 500 through 700.

*P ~ Prints the first line in a file.

P Prints the last line in a file.

*P. Prints the current line.

P~: Prints the entire file.

* <ESC > Prints the previous line (using ESC).

* <LF > Prints the next line (using LF).

To print lines in a file, give the P
command without any arguments, the
present location through the next 15
the EDIT prompt, *· Type P again;
and prints the next 15 lines in the
the file contains only 7 lines
file.

command. When you type the P
s y stem prints the lines from y our
lines (if they exist), and prints
the system reprints the last line

*E
00100
00200 101
00300
00400 102
00500
00600 103
00700

*

file. In the following example
so the P command prints the entire

- EXAMPLE -

TYF'E 101
FORMAT ('TYF'E A NUMBER.'>
ACCEPT 102,x
FORMAT <F>
TYF'E 103,x
FORMAT ('YOU TYf'E[I ' 'F >
END

To print one line, type P, followed by the number of the line.

*F'500
00500

*

- EXAMPLE -

TYF'E 103,X

To print the entire file, type P, an up-arrow, a colon, and an
asterisk.

5-11

Pr':
00100
00200 101
00300
00400 102
00500
00600 103
00700

*

CREATING AND EDITING FILES

- EXAMPLE -

TYPE 101
FORMAT <'TYPE A NUMBER.')
ACCEPT 102rX
FORMAT <F>
TYPE 103rX
FORMAT ('YOU TYPED'rF)
END

5.9 CHANGING LINES IN A FILE

You can change lines in a file by either completely replacing them, or
by substituting words or characters within the line.

To delete a line and replace it with another line, give the R command,
followed by the number of the line you want to replace. EDIT prints
the line number and you type the new line. On the next line, EDIT
prints a message confirming the line(s) you deleted.

The following example shows how to print line 200 and then replace it
with a similar line containing the word PLEASE and a comma:

*P200
00200 101
*Bl.Q.Q

- EXAMPLE -

FORMAT ('TYPE A NUMBER.'>

00200 101 FORMAT ('PLEASEr TYPE A NUMBER.'>
1 LINES (00200/1) DELETED

*
To substitute a word or characters in a line, give the S
followed by the word or characters you want to remove;
type the word or characters you want to insert; type ESC;
the line number where you want to make the substitution.

command,
type ESC;
and type

The following example shows how to substitute an exclamation mark for
the comma after PLEASE in line 200.

*Sr$!$200
00200 101

*

- EXAMPLE -

FORMAT ('PLEASE! TYPE A NUMBER.'>

NOTE

If you give an S command and press
RETURN, but forget to press an ESC in
the command line, the system prints S*
on the next line. Type CTRL/U. After
EDIT prints ABORTED , give the
command again. (Refer to the EDIT
Reference Manual for a description----of
the S* feature.)

5-12

I

I

I

I

I

•

•

•

•

•

CREATING AND EDITING FILES

If you do not know the line number containing the word
change, give the F command, followed by the word you
and press ESC. EDIT searches the file until it finds
prints the line containing the word.

you want to
want to change
the word and

To do the following example, give the F command to find PLEASE, then
give the S command to substitute an exclamation mark for the comma
after PLEASE:

- EXAMPLE -

*FPLEASE,$
00200 101 FORMAT <'PLEASE, TYPE A NUMBER.')
*SPLEASE,$PLEASE!$200
00200 101 FORMAT ('PLEASE! TYPE A NUMBER.'>

*

5.10 DELETING LINES IN A FILE

To delete a line or lines, type D, followed by the number or range of
numbers of the lines you want to delete. EDIT prints a message
confirming the lines you deleted.

- EXAMPLE -

*[1100
1 LINES (00100/1) DELETED

*
NOTE

If you delete some lines by mistake, you
can recover these lines by ending EDIT
using the EQ command. However, by using
the EQ command you also lose any changes
made to the file since you gave the last
CREATE or EDIT command .

5.11 INSERTING LINES IN A FILE

You can insert lines anywhere in your file: in the beginning, between
existing lines, or at the end of the file.

To insert a new line, type I, followed by the line number you want to
insert. For example to insert a line between the existing lines of
500 and 600, type I550. EDIT inserts the new line between the two
existing lines.

- EXAMPLE -

*1550
00550 NEW LINE

*
To insert a series of new lines between existing lines, type I,
followed by the number of the line preceding the location where you

5-13

CREATING AND EDITING FILES

want to insert the new lines, an exclamation mark (!), and the total
number of lines in the series you are inserting.

To do the following example, give the I command and insert three new
lines after line 600 but before line 700.

- EXAMPLE -

Y=2*X
TYPE 104,x,y

*1600 ! 3
00620
00640
00660
00680

104 FORMAT ('TWICE ',F,' IS',F)

*
When you insert a series of new lines between existing lines, EDIT
always selects an appropriate line number increment to accommodate the
number of lines you want to insert.

To insert a line at the beginning of a file, type I, followed by a
line number that is smaller than the number of the first line in the
file. To insert a line number at the end of a file, type I, followed
by a line number that is higher than the number of the last line in
the file. You can also type I*. In this case, after you press
RETURN, EDIT continues the line numbers as if you were creating a new
file.

5.12 MOVING LINES IN A FILE

You can move lines in a file by copying them or by transferring them.
When you copy lines, EDIT moves copies of the lines in one location in
the file to another. When you transfer lines, EDIT copies them to the
destination and deletes them from the original location in the file.

To copy lines from one location in a file to another, type C, followed
by the line number where you want to send the copied lines; type a
comma; type the line number where you want the copying to begin;
type a colon; and type the line number where you want the copying to
end.

The example below shows how to create a data file containing two
repetitive lines, and copy the lines into the file instead of retyping
them. To copy lines 100 and 200 after line 300, type C350,100:200.
Line number 350 is the destination of the copied lines 100 and 200.
EDIT prints INC1=00020, indicating the increment it uses to
accommodate the copied lines. Print the file to see the copied lines.

- EXAMPLE -

@CREATE <FILE) DATA.TST
InPut: DATA.TST.1
00100 12,14,16,17,18,2,4,5,
00200 2.6,5,4
00300 3r6r3r
00400 7,1
()()~:)()() rr; 9' 6, 14, 11 , 8, 2,
00600 1.LW
*C :~50, 100: 200
INC1=00020

5-14

•

•

•

•

•

•

•

•

•

•

P~:
00100
00200
00300
00350
00370
00400
00500
00600

*&

CREATING AND EDITING FILES

12,14,16,17,18,2,4,5,
2,6,5,4,
3,6,3,

7'1
11,9,6,14,11,9,2,
4,6'1

[[IATA.TST.1J
@

To transfer lines from one location in a file to another, type T,
followed by the line number where you want to send the transferred
lines; type a comma; type the line number where you want to begin
transferring; type a colon; and type the line number where you want
to end transferring .

The following example shows how to transfer lines 500 and 600 to the
beginning of the file, and print the file to see the transferred
lines:

- EXAMPLE -

@EDIT <FILE> DATA.TST
Edit: DATA.TST.3
*E
00100 12,14,16,17,18,2,4,5,
00200 2,6,5,4,
00250 11,9,6,14,11,9,2,
00300 3,6,3,
00350 12,14,16,17,19,2,4,5,
00370 2,6,5,4,
00400 7,1
00500 11,9,6,14,11,9,2,
00600 4,6'1
00700 12,14,16,17,19,2,4,5,
*Ho,500:600
INC:l =00020
P~:
00010
00030
00100
00200
00250
00300
00:~50

00370
00400
00700

*

11,9,6,14,11,9,2,
4,6,i
12,14,16,17,18,2,4,5,
2,6,5,4,
11,9,6,14,11,9,2,
3,6,3,
12,14,16,17,18,2,4,5,
2,6,5,4,
7'1
12,14,16,17,18,2,4,5,

If EDIT prints INCl=ORDER after you give the Tor C command, you know
there were not enough lines in the file between the line you specified
and the next line in the file to receive the transferred lines. The
EDIT program completes the transfer in this case, but the line numbers
are not in order. To renumber these lines give the N command. (Refer
to the EDIT Reference Manual for a description of the N command.)

5-15

CREATING AND EDITING FILES

5.13 EDITING FILES IN ANOTHER DIRECTORY

If y ou edit a file in a directory you are not connected to, the edited
output file usually appears in your connected directory. To put the
edited file back in its original directory, you must specify the
directory name (and structure name if the directory is on a different
structure) after the guidewords (OUTPUT AS).

For example, if you are connected to directory <PORADA> and edit the
file TEST.FIL.3 in directory <SARTIN! > without specifying the
directory where the file should be saved, the system places the edited
file in the directory <PORADA> and names it TEST.FIL.l. (No file
exists in directory <PORADA> with the filename TEST.FIL, so the system
assigns the generation number of 1.)

@EDIT
Edit:
*1400
00400
00500

*~

- EXAMPLE -

<FILE> <SARTINI>TEST.FIL.3 <OUTPUT AS>
<SARTINI >TEST.FIL.3

FOUR HUNDRED
!.

c:TEST. FIL .1J
@

Now, specify the directory <SARTIN! > after the guidewords (OUTPUT AS),
and the system saves the file in directory <SARTIN! > as TEST.FIL.4.

- EXAMPLE -

@~ <FILEJ <SARTINI >TEST .FIL.3 <OUTPUT AS> <SARTIN! >
Edit: <SARTINI >TEST.FIL.3
*1400
00400
00500
*~

FOUR HUNDRED
~

<SARTINI >C TEST.F I L.4J
@

NOTE

In order to create or edit files in
other directories, you must have access
rights to the directories, as well as
the right to create f iles. Refer to
Section 6.2 for i nformation on directory
and file protection.

5-16

•

•

•

•

•

•

•

•

•

•

CHAPTER 6

USING DISK FILES

This chapter describes:

• Using file structures (Section 6.1)

• Protecting directories and files (Section 6.2)

• Using temporary files (Section 6.3)

• Connecting to directories (Section 6.4)

• Accessing directories (Section 6.5)

• Copying files (S ection 6.6)

• Appending files (Section 6.7)

• Printing files (Section 6.8)

• Deleting a nd restoring files (Sect ion 6 .9)

• Regul ating disk file storage (Section 6.10)

• Long term off-line file storage (Section 6.11)

The TOPS-20 commands mentioned in this chapter are:

ACCESS
APPEND
ARCHIVE
CANCEL
CONNECT
COPY

DELETE
DIRECTORY
DISMOUNT
EDIT
EXPUNGE
INFORMATION

6.1 USING FILE STRUCTURES

LOGIN
MODIFY
MOUNT
PRINT
RENAME
RETRIEVE

SET
TYPE
UNDELETE
VD I RECTORY

/

A file structure comprises one or mor e disk packs containing your
files and other user files . A file structure name consists of
alphanumeric characters followed by a colon. Even though a file
structure contains several disk packs, it is referenced by one name.
You create and reference files on a structure by specifying the
structure name in the device field (dev:) of a file specification .

One file structure , called the public str ucture , always r ema in s on
line during system operation. This public structur e , u s ually n amed
PS:, contains a directory for every user of the system, and the
necessary accounting information to allow the users to log
in. (The examples in this manual refer to the publi c structure as

Tops-20 Version 5 6-1 Ap r il 1982

I

I
I
I

USING DISK FILES

PS:.) When you log in, you
public structure. This
directory and, in addition
some or all of your files.

are connected to your directory on the
directory is referred to as your logged-in
to the accounting information, contains

You can have and/or use files on structures other than the public
structure. Like the public structure, these structures also contain
directories and files. Unlike the public structure, you cannot log in
to these structures. Although the public structure remains on line
during system operation, other structures must be mounted (put on
line) and dismounted by the operator according to users' requests. To
request the mounting and dismounting of structures, use the MOUNT
STRUCTURE and DISMOUNT STRUCTURE commands.

The MOUNT STRUCTURE command informs the system that you require the
use of a specific file structure (other than the public one) . It
causes the system to increment a count, called the mount count. The
mount count for a structure is the number of users who have given the
MOUNT command for that structure. This count assures you that a
structure will remain mounted until you no longer need it. You
usually have to give the MOUNT command before using files on any
structure other than the public one. (Structures that require a MOUNT
command are termed "regulated;" other structures are termed
"unregulated.")

- EXAMPLE -

@MOUNT STRUCTURE <NAME> MISC:
Structure MISC: mounted
@

The DISMOUNT STRUCTURE command informs the system that you no longer
require the use of a structure and decrements the mount count for that
structure.

- EXAMPLE -

@DISMOUNT STRUCTURE <NAME> MISC:
Structure MISC: dismounted
@

After a structure is mounted, you can use the directories and files on
that structure, depending on the protection codes set for those
directories and files. (Refer to Section 6.2 for more information on
directory and file protection codes and Section 6.4 and 6.5 for more
information on connecting to directories and accessing files).

To find out which structures are presently mounted, give the
INFORMATION (ABOUT) STRUCTURE * command.

6-2 April 19 82

I

I

•

•

•

I

•

•

•

•

USING DISK FILES

- EXAMPLE -

@INFORMATION <ABOUT> STRUCTURE CNAME> *
Status of s tructure p§:
Mount count: 4, open file count: 227, units in structure:
Public Domestic
Use rs who have MOUNTed PS: SUSSMAN, TOMCZAK, LNEFF, DNEFF
Users ACCESSins PS! OPERATOR, R.ACE, SAMBERG, COMBS, SYLOR, KONEN,
COHEN, ZIMA, JENNESS, BLOUNT, SUSSMAN, REILLY , CIRINO, BERKOWITZ,
GUNN, HUTCHINS, LEACHE, SKOGLUND• HOFFMAN, OSMAN, ADLEY, FRIES,
ELFSTROM, HURLEY• WEISS. HOVSEPIAN, EIBEN.INFO, MILLER, BROWN, WEBBER,
JABLONSKY, ENGEL, BENCE, HOLLAND, DRUEKE, HALL, DBELL, BELANGER,
TOMCZAK, LEFEBVRE, GRANT, SHILLER, LNEFF, MCELMOYLE, HARAMUNDANIS,
SCOHEN, MIERSWA, LEAPLINE, SARTIN!, DNEFF• SCHMITT
User s CONNECTed to PS: OPERATOR, R.ACE, SAMBERG, SYLOR, KONEN,
CIRINO, BERKOWITZ, OSMAN, ELFSTROM, HURLEY, WEISS, BROWN, JABLONSKY,
ENGEL• DRUEKE, SARTIN!

6-2.1 April 1982

I

•

•

•

•

•

•

•

•

•

USING DISK FILES

Status of structure LANG:
Mount count: 11, oPen file count: 5, units in structure: 1
Domestic
Users who have MOUNTed LANG: OPERATOR, SYLOR, COHEN, REILLY, GUNN,
FRIES, HOVSEPIAN, JABLONSKY, SHILLER, SCOHEN, DNEFF
Users ACCESSins LANG: SYLOR, REILLY, GUNN, FRIES, SCOHEN
USERS CONNECTed to LANG: COHEN, GUNN, FRIES, SCOHEN

Status of structure SNARK:
Mount count: 26' open file count: o, units in structure: 1
Domestic
Users who have MOUNTed SNARK: OPERATOR, R.ACE, KONEN, ZIMA, JENNESS,
BLOUNT, SUSSMAN, REILLY, BERKOWITZ, GUNN, LEACHE, OSMAN, ADLEY,
HURLEY, HOVSEPIAN, MILLER, JABLONSKY, ENGEL, BENCE, HALL, DBELL,
TOMCZAK, GRANT, DNEFF, SCHMITT
Users ACCESSins SNARK: R.ACE, REILLY, OSMAN, HURLEY, MILLER, ENGEL,
HALL
Users CONNECTed to SNARK: BLOUNT, REILLY, MILLER, GRANT

Status of structure MISC:
Mount count: 37, open file count: 9, units in structure: 1
Domestic
Users who have MOUNTed MISC: OPERATOR, COMBS, ZIMA, JENNESS, SUSSMAN,
CIRINO, BERKOWITZ, GUNN, HUTCHINS, LEACHE, SKOGLUND, HOFFMAN, OSMAN,
ADLEY, FRIES, ELFSTROM, HOVSEPIAN, EIBEN.INFO, BROWN, WEBBER,
JABLONSKY, BENCE, HOLLAND, DRUEKE, DBELL, BELANGER, TOMCZAK, LEFEBVRE,
SHILLER, LNEFF, MCELMOYLE' HARAMUNDANIS, MIERSWA, LEAPLINE, DNEFF,
SCHMITT
Users ACCESSinS MISC:
EIBEN.INFO, HOLLAND,
LEAPLINE, DNEFF, SCHMITT

COMBS,
DBELL'

ZIMA, JENNESS, HUTCHINS, HOFFMAN,
TOMCZAK, LEFEBVRE, SHILLER, LNEFF,

Users CONNECTed to MISC: COMBS, ZIMA, JENNESS, SUSSMAN, HUTCHINS,
LEACHE, SKOGLUND, HOFFMAN, ADLEY, EIBEN.INFO, WEBBER, BENCE, HOLLAND,
DBELL, BELANGER' TOMCZAK, LEFEBVRE, SHILLER, LNEFF, MCELMOYLE,
HARAMUNDANIS, MIERSWA, LEAPLINE, DNEFF, SCHMITT

Status of structure REL4:
Mount count: 1, open file count: o, units in structure: 1
Foreisn
Users who have MOUNTed REL4: HOVSEPIAN
No users are ACCESSins REL4:
Users CONNECTed to REL4: HOVSEPIAN

Status of structure MEG6:
Mount count: 1, open file count: o, units in structure: 1
Foreisn
Users who have MOUNTed MEG6: DRUEKE
No users are ACCESSins MEG6:
No users CONNECTed to MEG6:

Status of structure PHH:
Mount count: 1, open file count: o, units in structure: 1
Domestic
Users who have MOUNTed PHH: HALL
No users are ACCESSins PHH:
Users CONNECTed to PHH: HALL

@

6-3

USING DISK FILES

6.2 PROTECTING DIRECTORIES AND FILES

The TOPS-20 file s y stem allows flexibility in sharing some or all of
your files with other users. Files and directories are protected at
three levels: owner, group member, and rest of the users. Usually
files are protected to prevent access from non-owners who are not
group members (rest of users). When you want to share files among a
known set of users, you can arrange to share files by asking your
system manager to establish a group. Members of a group can access
directories belonging to the group, and use files in that directory.
(For a complete description of groups, refer to the TOPS-20 System
Managers Guide.)

The access to each directory and file is determined by a protection
number. You may have some files in your directory that you do not
want to share. By setting the proper file protection you can prevent
users from accessing these files, while allowing them to use other
files in your director y .

Each directory protection number and file protection number comprises
six digits, divided into three distinct sections that contain two
digits each. The first two digits specify the owner's access; the
second two digits specify the group members' access; and the third
two digits specify all other users' (also called world) access.

PROTECTION CODE

dd dd dd

Owner Group All Users

6.2.1 Directory Protection Numbers

The digits in a protection number have different meanings, depending
on whether they are in a directory protection number or in a file
protection number. Table 6-1 lists the directory protection digits.

Digits

77

40

10

04

00

Table 6-1
Directory Protection Digits

Permit

Full access to the directory is permitted.

Access to files in the directory according to the
protection number on the individual files is
permitted. To delete and expunge the entire
director y (though these digits permit expunging files
on an individual basis), you must also assign the
digit 10. To create files, you must also assign the
digit 04.

Connect to the directory without giving a password,
undelete files, expunge the entire directory, change
times, dates and accounting information for files is
permitted. All other access is governed by the
protection on the individual file.

Create files in the directory.

Access to the directory is not permitted.

6-4

I

I

I

I

I

•

•

•

•

•

USING DISK FILES

You can add directory protection digits together. For example, if
your directory protection number is 774000, you have full access as
the owner of the directory, you allow members of the group to access
the directory according to the protection on individual files, and you
prohibit all other users from accessing the directory. If you want to
allow members of the group not only to access the directory, but also
to create files in your directory, you can add the directory
protection code 04 to the 40 to get 44. Your entire directory
protection code then becomes 774400.

The system default directory protection number is 777700. If you want
to either change your directory protection number, or find out what
your directory protection number is, contact your system manager.

6.2.2 File Protection Numbers

Table 6-2 lists the file protection digits .

Table 6-2
File Protection Digits

Digits Permit

77 Full access to the file.

40 Read the file.

20 Write and delete the file.

10 Execute the file

04 Append to the file.

02 List the file specification using the DIRECTORY
command .

00 List the file specification using the DIRECTORY
command only if the file is specified explicitly and
completely.

The system default protection number for files is generally 777700.
This means that the owner of a file and members of the owners group,
have full access, and all other users have no access to the files.

6.2.3 Checking Protection Numbers

To validate access to directories and files, the system scans the
protection code beginning with the two digits to the right, and moves
to the left until it has reached the highest level of access.

The system scans a file or directory protection number in the
following way:

1. It scans the two digits to the far right in the protection
code to see if all users have access.

6-5 April 19 82

I

l_

USING DISK FILES

2. If all users have access, you can access the file or
directory.

3. If all users do not have access, the system moves to the two
digits in the center of the protection numbe r to see if
members of the group have access.

4. If members of a group ha ve access, yo u can access the file or
directory if yo u are in the group .

5. If members of a group do not have access, the system moves to
the two digits to the far left of the protection code to see
if the owner has access.

6 . If the owner has access , yo u can access the fil e or director y
if you are the owner.

7. If the owne r does not have access, the system prints an error
message.

The protection system works in the followin g way. For example, you
want to type t he file TEST. TXT in user HOLLAND'S directory on you r
terminal. Befor e printing t he file you r equested, the system scans
the protection code on th e directory <HOLLAND> to validate that you
ha ve access. If you are not allowed t o access the directory, the
system prints an error message a nd cancels the command .

- EXAMPLE -

@TYPE <FILE> <HOLLAND>TEST.TXT
'YDil'<ECTOF\Y ACCEf:iS Pr~: IV I LEGES RECW Il'~ED
@

If the directory protection allows yo u the access, the system scans
the protection on the individual file TEST.TXT. If you are not
allowed to access the file, the system prints an error messag,e and
cancels the command .

- EXAM PLE -

@TYPE <FILE) <HOLLAND>TEST.TXT
?READ PROTECT VIOLATION FOR FILE <HOLLAND>TEST.TXT

If the file protection allows yo u to access the file, the system
prints the file on your terminal.

6.2.4 Printing a File Protection Number

To print the file protection numbe r, use the VDIRECTORY command (or
the DIRECTORY command with the PROTECTION subcommand).

- EXAMPLE -

@VDIRECTORY <OF FILES> TEST.FIL.*
PS! <PORADA >

TEST.FIL.1; P777700
@

1 110(7)

6-6

21-Au9-78 11!44!25

April 1982

•

•

•

•

•

•

•

•

•

USING DISK FILES

6.2.5 Changing a File Protection Number

To change a file protection number, use the SET FILE PROTECTION
command or the RENAME command.

- EXAMPLE -

@SET FILE PROTECTION <OF FILES > TEST.FIL.* <TO> 774400
TEST.FIL.1 [OK]

@

6.3 USING TEMPORARY FILES

Use a temporary file when you do not need to keep a file permanently,
such as a scratch file or a listing file. A temporary file has the
attribute ;T appended to its file specification. The ;T instructs the
system to delete and expunge the file when you log off the system .

To create a temporary file, add the temporary file descriptor (;T) at
the end of the file specification.

- EXAMPLE -

@COPY <FROM> TTY: (HJ) T.FIUT
THIS IS ONE - LINE FILE •

..:£
@DIRECTOF:Y <OF FILES> T .FIL

PB: <BW:lACI\ :::
T. FIL.. :L00020; T
(~

Note that the system assigns a generation numbe r of 100000
job number to the temporary file. Because this total is
every job, different jobs connected to the same directory
temporary files with the same name and different contents.

plus the
unique for
can have

The system deletes and expunges all your temporary fil e s wh e n you log
out. The system recognizes the temporary files b e cause the y hav e a
generation number of 100000 plus your job numbe r.

6.4 CONNECTING TO DIRECTORIES

I

When you log in, you are automatically conne cte d to the dir ec tory o n I
the publjc structure that has the same n a me as your u ser name. For
e xample, user McElmoyle is c onne cted to <MCELMOYLE > o n the public
structure:

- EXAMPLE -

(~LOGIN <USER) MCELMOYLE (PASSWORD>_< ACCOUNT> ill
Job 2 5 on TTY 2 6 31 - Aug- 79 14:40

@

If you need to work in another directory, you can connect to that
directory. When you connect to a directory, the system aut omatically
disconnects you from the directory you are prese ntly in and use s the

6 - 7 December 1 982

USING DISK FILES

new directory as your default directory. Your default directory is
the one the system assumes when you omit a directory name in a file
specification.

In addition, you have owner rights for that directory, just as if you
logged in to it . The owner rights for a directory are valid as long
as you are connected to that directory: the rights terminate when you
connect to another directory. You always retain the owner rights to
the files in your logged-in directory.

You can connect to a
on-line structure.
command and the name
prints PASSWORD: on
the directory.

directory on the public structure or on another
To connect to another directory, give the CONNECT
of the directory you want to use. The system
the following line, and you type the password for

The example below illustrates the effects of logging in, then
connecting to another directory on the public structure. When you
(user MCELMOYLE) log in to the system, yo u are connected to your own
director y on PS:. When you omit a directory name and / or structure
name in a file specification , the system assumes your logged-in
directory <MCELMOYLE > on the structure PS:. After you log in, connect
to the directory <BROWN> on PS:. Now, if you omit the directory name
and / or structure name in a file specification, the system assumes your
connected directory <BROWN > on PS:.

- EXAMPLE -

(;-JL_OG IN (USEI:;:) MCEL..MOYLE (F'A ~)SWORD) _ (ACCOUNT) 3 41
Job 25 on TT Y26 31 - Aus - 79 14 :56

@CONNECT <TD DIRECTORY) <BRO WN >
F'A~>SWCJF::D: _
(i)

LOGIN
User MCELMOYLE - - ---- - -

C
0
N
N
E
c
T

PS:

BROWN } Connected
Directory

1--- - ----1

~
Connected
Structure MR-5 -420· 79

When you give the CONNECT command for a directory that is located on a
different structur e , your default structure also changes . Th e system
assumes both the connected structure and the connected directory when
you omit them in a file specification.

The example below illustrates the effects of logging in on PS:
then connecting to a directory on another structure named MISC:.

6-8

and
Wh en

•

•

•

I

•

•

•

•

•

USING DISK FILES

you (user MCELMOYLE) log in, you are connected to you r directory on
PS:. After you log in, connect to the directory <BROPHY> on the
structure MISC:.

- EXAMPLE -

@LOGIN - <USER) MCELMOYLE <PASSWORD)_(ACCOUNT> 341
Job 28 on TTY26 31 - Aus-79 12:02

@CONNECT <TO DIRECTORY) MISC:<BROPHY>
PASSWORD:_
@.

PS:

CONNECT

MISC:

LOGIN
User MCELMOVLE------ - <MCELMOVLE> 1------------ < BROPHY>

-------1

~
Connected
Structure

} Connected
Directory

M R-S-421 -79

If you later omit a structure name or a directory name
specification, the system assumes the structure
directory <BROPHY > .

from a
MISC: and

file
the

If you forget which directory or structure you are connected to , give
the INFORMATION (ABOUT) JOB-STATUS command.

6. 5

- EXAMPLE -

@INFORMATION <ABOUT) JOB- STATUS
Job 28• User MCELMOYLE• MISC:<BROPHY > • Account 341• TTY26

@

ACCESSING DIRECTORIES

To access another directory and remain connected to your present
directory, give the ACCESS command. To complete the ACCESS command,
you must provide the password for the directory you want to access.

When you access a directory, you are actually working in your
connected directory but you a lso h ave owner and group rights to
another directory. This means that you can use the files in the
directory you have given the ACCESS command for by specifying that
directory in the file specification. Therefore, unless you specify
otherwise, the latest version of any file you update in either
directory appears in your connected directory. If you want the latest
version of the file to appear in the directory you accessed , you must
specify the directory name in the file specification. If the
directory you access is located on an on-line structure other than
your connected directory, you must specify the structure name in any
file specification.

6-9 April 1982

I
I

USING DISK FILES

The example below illustrates the effects of logging in, then
accessing another directory on PS:. When you (user MCELMOYLE) log in
to the system, you are connected to your own directory on PS:. After
you log in, access the directory <BROWN > on PS:. You have owner and
group rights for directory <BROWN>.

- EXAMPLE -

@LOG IN <USER) MCELMDYLE (F'ASf.>WOFW l _ (ACCCJUNT> ill
Job 32 on TT Y26 31-Aus-79 10:08

@ACCESS <TD DI RECTORY) <BROWN>
F'ASSWOF:D: _
@

LOGIN
User MCELMOYLE -------

A
c
c
E
s
s

PS:

} Connected} Has "owner"
Directory rights only

1---------t

BROWN }
MCELMOYLE has
"owner" and

1--------1 " group" rights

~
Connected
Structure M R-S-422-79

You can give the ACCESS command to more than one directory during a
job session. You can access a directory on one structure and then
access a directory on a different structure. If each directory you
access is located on a different structure, the owner and group rights
for these directories remain in effect throughout your entire job
session (from LOGIN to LOGOUT) or until a structure is dismounted. If
you access two or more directories on the same structure, only the
rights for the last directory you accessed remain in effect (until you
log out or the structure is dismounted). You always retain your owner
rights to your logged-in directory on the public structure. However,
when you give the ACCESS command to a different directory on the
publ i c structure, you lose the group privileges of your logged-in
directory.

You can log in, access another directory on the public structure, then
access a directory on another structure, MISC:, as in the following
example:

- EXAMPLE -

t~L.CJGIN <USER) MCEL.MCJYLE <F'ASSWDRD)_(ACCDUNT> 341
Job 32 TTY26 31 - Aus -·79 lO:OB

@ACCESS <TO DIRECTORY> < BROWN>
PASSWORD:_
@ACCESS <TO DIRECTORY) MISC: < BROF'HY>
F'ASSWOl'<D: _

6-10 April 1982

I

•

•

•

•

•

•

•

•

•

LOGIN
U- MCELMOYLE- ------­

A
c
c
E
s
s

6.6 COPYING FILES

USING DISK FILES

PS:

l Connected} !;185 ..

-f.J~J_r~ory ri;~~er
t--------1 -------~£~ESs

}
MCELMOYLE has --

BROWN "owner'' and
1--------1 "group" rights

~
Connected
Structure

MISC:

BROPHY }
MCELMOYLE has
"owner" and

1--------1 "group" rights

MR-5-423-79

You can copy a file to a new file and keep the original file, or you
can rename the file to a new file and lose the original file.

To copy one or more files to another file, give the COPY command. The
COPY command copies the contents of an existing file (called a source
file) to a destination file, and keeps the original file. To do the
following example, copy the existing file TESTl.DAT to the destination
file 2TEST.DAT .

- EXAMPLE -

@Q.Q.E! <FROM> TEST 1. [IAT. 1 <TO> 2TEST. [IAT. 2 ! New sene ration!
TEST1.[IAT.1 => 2TEST.[IAT.2 (OKJ

@

You can copy multiple files by using a wildcard. For example, if you
type COPY (FROM) *.FOR, the system places all files with the file type
.FOR into a destination file. If you type COPY (FROM) TEST.*, the
system places all files with the filename TEST into a destination
file.

- EXAMPLE -

@COPY <FROM> TEST.* <TO> NEWTST•*·-1
Tffi.FOR.1 => NEWTST+FOR.1 (QKJ
TEST.TXT.2 => NEWTST.TXT.1 COKJ

@

If you use recognition input in the above example, when you press ESC
after the filename NEWTST, the system rings the terminal bell, asking
you to type more information. In this example, type a period after
the filename, indicating to the system the end of the filename; and
press ESC. The system prints the wildcard character, *, and a .-1
generation number. The -1 generation number is a symbolic generation
number and indicates to you that when the system processes the command
line, it will use one greater than the highest number of each file.
(Refer to Section 4.1.5 for more information on symbolic generation
numbers.)

6-11

Use the RENAME command to
into another directory
the system simply changes
duplicating the file.

USING DISK FILES

change the name of a file or to put a file
on the same structure. When you use RENAME,
the file specification instead of actually

- EXAMPLE -

@RENAME <EXISTING FILE> TEST1.DAT.* CTO BE> TESTAL.DAT.-1
TEST1.DAT.1 => TESTAL.DAT.2 EOKJ

To move files from one structure to another, use the COPY command.
RENAME will not work across structures.

- EXAMPLE -

@COPY <FROM> MISCtTEST.FIL.5 CTO> TEST.FIL.1 !NEW FILE!
MISC:TEST.FIL.5 => TEST.FIL.1 COKJ

6.7 APPENDING FILES

To add the contents of one or more source files to the end of a
destination file, give the APPEND command. The destination file can
be an existing file or a new file. The following example shows how to
add the contents of the source file STAT.TXT.5 to the end of the file
CHECK.TXT:

- EXAMPLE -

@APPEND <SOURCE FILE> STAT.TXT.5 CTO> CHECK.TX!
STAT.TXT.5 EOKJ

You can append a series of files with the same filename or file type
using a wildcard. The following example shows how to append all files
with the file type .FOR. Notice that these files are appended in
alphabetical order when using a wildcard for the filename.

- EXAMPLE -

@APPEND <SOURCE FILE> *•FOR.O CTO> ATEST.FOR.1 !New file!
ACCOUN.FOR.2 COKJ
ACCTST.FOR.1 COKJ
CHECK.FOR.4 EOKJ
CKACCT.FOR.1 EOKJ
NEWACCT.FOR.1 COKJ
NEWTST.FOR.1 EOKJ
TEST.FOR.1 COKJ

You can append files from a directory on one structure to a directory
on another structure. The system prints the structure name, the
directory name and the filename of the source file, followed by the
message [OK) when the file has been appended.

- EXAMPLE -

@APPEND <SOURCE FILE> PSt<LATTA>SMALL.FOR CTO> MISC: <LATTA>LARGE.FOR
PS:<LATTA>SMALL.FOR.2 COKJ

6-12

•

•

•

•

•

•

•

•

•

•

USING DISK FILES

NOTE

Some programs, such as COBOL and SORT,
cannot use appended files.

6.8 PRINTING FILES

To print a file or files, give the PRINT command. The PRINT command
places entries into the line printer output queue.

- EXAMPLE -

@PRINT <FILES> UPDATE.CBL
[Job UPDATE Queued, Reauest-ID 57, Limit 27J
@

To see that your job is in the line printer output queue, give the
INFORMATION (ABOUT) OUTPUT-REQUESTS. The system lists all the jobs in
the queue. If you want only the entries of your job(s), include the
/USER switch.

- EXAMPLE -

@INFORMATION <ABOUT> OUTPUT-REQUESTS

Printer Que1..1e:
Job Name Rea+ Limit User

* BOX 53 270 LYONS On Unit:o
Started at 14:29:29, Printed 122 of 270 Pases * UPDATE 57 27 SARTIN! On Unit:l
Started at 14:3a:1a, Printed O of 27 Pases

MIDAS 34 27 REILLY /Forms: NARROW
There are 3 Jobs in the Queue <2 in Prosress>
@

You can control several conditions of your print request
switches with the PRINT command .

by using

To simply print a file, it is not necessary to include switches.
However, you can include .switches with the PRINT command. To obtain a
list of valid switches, type PRINT, followed by a ?. The list of
switches the system prints contains both job switches and file
switches.

- EXAMPLE -

@PRINT ? /SPOOLED-OUTPUT
or Job switch'

/ACCOUNT:
/FORMS:
/LIMIT:
/NOTIFY:
/UPPERCASE

one of the followins:
/AFTER:
/GENERIC
/LOWERCASE
/PRIOR !TY:
/USER:

or File switch' one of the followins:
/BEGIN: /COPIES: /DELETE
/MODE: /NOHEADER /PRESERVE
/SEQUENCE: /SPACING:

@PRINT

6-13

/DESTINATION-NODE:
/JOBNAME:
/NOTE:
/UNIT:

/FILE:
/PRINT:

/HEADER
/REPORT:

I

I

I

I

USING DISK FILES

If you include a job switch with the PRINT command, the entire job is
affected by the switch. For example, if you print three files and you
add the /AFTER: switch, all three files will be printed after the time
you specify.

- EXAMPLE -

@PRINT <FILES> LARGE.DAT• MYTEST.DAT, TESTl.DAT /AFTER:15-0CT-79
[Job LARGE (~ueued, Reauest--I D 58, Limit 27J
@INFORMATION CABOUT> OUTPUT-REQUESTS

Printer Queue:
Job Name Real Limit Ust~r

* BOX 53 270 LYONS On Unit:o
Started at 14:29:29, Printed 165 of 270 pages

MIDAS 34 27 REILLY / Forms :NARROW
LARGE 58 27 SARTIN! /After:15-0ct-79 oo:oo

There are 3 Jobs in the Queue Cl in Pro9ress)
@

If you include a file switch with the PRINT command, only
directly before the switch is affected. For example, if
three files and you add the / COPIES:6 switch after the first
the system prints six copies of the first file only.

- EXAMPLE -

the file
you print
filename,

@PRINT <FILES> LARGE.DAT/COPIES:6, HYTEST.DAT, TEST1.DAT
[Job LARGE Queued• ReGuest-ID 59, Limit 27
@

If you print three files and you add the / COPIES:6 switch before the
first filename, the system prints six copies of each of the three
files.

- EXAMPLE -

@PRINT CFILES)/COPIES:6,LARGE.DAT,HYTEST.DAT,TEST1.DAT
[Job LARGE Queued, Reauest-ID 60, Limit 30

@

6.8.1 Modifying a PRINT Request

To change and / or add one or more switches to a previously issued PRINT
command, give the MODIFY command. After you give the MODIFY command,
type PRINT, followed by the first six letters of the jobname, or the
request ID, then type the switch you want to change or add.

You can modify almost all PRINT command switches. To obtain a list of
switches you can modify, give the MODIFY PRINT command, followed by a
slash (/) and a question mark (?).

6-14

I

•

•

•

•

•

•

•

•

•

USING DISK FILES

The following example shows how to modify
LARGE.DAT by including the /AFTER: switch:

- EXAMPLE -

the PRINT request

@MODIFY <REQUEST TYPE> EB.!fil <ID> LARGE /AFTER:25-0CT-79
[1 Job Modified]
@

for

After you give the command, the system prints a message informing you
that the job was modified. In this case (using the / AFTER: switch)
you can give the INFORMATION (ABOUT) OUTPUT-REQUESTS to see that the
switch was added to your job.

6.8.2 Canceling a PRINT Request

To cancel or remove entries you have previously placed in the line
printer output queue, give the CANCEL command. After you give the
CANCEL command, type PRINT, followed by the first six letters of the
jobname or the request ID of the job you want to remove.

Once the CANCEL command removes the entry from the line printer output
queue, the system prints the message (1 Job Canceled]. If the system
is processing the entry when you give the CANCEL command, it stops the
job and prints the message, (1 Job Canceled (1 was in prog ress)].

The following example shows how to cancel the PRINT request for
TEST.FOR .

- EXAMPLE -

@CANCEL <REQUEST TYPE> PRINT <ID> TEST
[1 Job Canceled]
Ii!

If you have several PRINT jobs in the lineprinter output queue, you
can cancel them all by using an asterisk. Give the CANCEL command
followed by PRINT and an *·

The following example shows how to cancel all your PRINT requests:

- EXAMPLE -

@CANCEL <REQUEST TYPE> PRINT *
[3 Jobs Canceled]
@

6.8.3 Setting Defaults for the PRINT Command

If you want the PRINT command to always contain certain switches, give
the SET DEFAULT PRINT command, followed by the switch or switches.

- EXAMPLE -

@SET DEFAULT <FOR> PRINT /NOTE:FLOOR4
@

6-15

I

I

I

I

I

I

I

USING DISK FILES

To avoid having to type the SET DEFAULT PRINT command and its
arguments every time you log in to the system, put this command in a
COMAND.CMD file. (Refer to Section 1.7 for information about a
COMAND.CMD file.) Whenever you give a PRINT command, the switches you
specified in the SET DEFAULT command are automatically included in the
PRINT command.

To give the / NOTE switch with PRINT commands, place the following
command in COMAND.CMD or LOGIN.CMD:

- EXAMPLE -

SET DEFAULT <FOR> PRINT /NOTE:FLOOR4

Every time you give the PRINT command, the system includes the switch
/ NOTE:FLOOR4 in the command.

To see which defaults you set for the PRINT command, give the
INFORMATION (ABOUT) DEFAULTS (FOR) PRINT command.

6.9

- EXAMPLE -

@INFORMATION <ABOUT) DEFAULTS <FOR> PRINT
SET DEFAULT PRINT /NOTE:FLOOR4

@

DELETING AND RESTORING FILES

When you no longer need to keep a file, you can delete it by giving
the DELETE command. The DELETE command marks the file for automatic
deletion; it does not actually erase the file.

The deleted files in your logged-in or connected directory are erased
when you do one of the following:

• Give the EXPUNGE command.

• You (or another user connected to your directory) log off the
system.

• The operator gives the EXPUNGE command.

The EXPUNGE command erases all files marked for deletion since you
logged in to the system or gave the last EXPUNGE command. Deleting
and erasing files are separate operations. Therefore, once you delete
a file, it does not immediately disappear, and if you change your
mind, you can restore the file or files using the UNDELETE command.

To delete the file TEST.FIL from your directory, give the following
command:

- EXAMPLE -

@DELETE <FILES> TEST.FIL
TEST.FIL.5 COKJ

@

To see that TEST.FIL has been deleted from your directory, give the
following command.

6-16

•

•

•

•

•

•

•

•

•

•

USING DISK FILES

- EXAMPLE -

@DIRECTORY <OF FILES> TEST.FIL.5
@

You can give the DIRECTORY command with the deleted subcommand to list
all the files that have been deleted but not yet expunged.

- EXAMPLE -

@DIRECTORY <OF FILES> TEST.FIL.5,
@@DELETED
@@

PS:<PORADA>
TEST.FIL...'.:;

To restore TEST.FIL, give the UNDELETE command.

- EXAMPLE-

@UNDELETE <FILES> TEST.FIL,5
TEST, FIL. 5 [QI\]

@

If you give the DIRECTORY command again, you will see that the file
has been restored in your directory .

If you delete a file and give the EXPUNGE command, the file is erased
immediately.

- EXAMPLE -

@DELETE <FILES) TEST.FIL
TEST. FIL. 5 [OK]

@EXPUNGE <DELETED FILES>
PS:<PORADA> [3 PAGES FREED]

If you expunge a file by mistake, contact the operator. Most systems
keep backup tapes from which you can obtain an older version of the
file.

CAUTION

Do not delete files and plan to undelete
them at a later time, because deleted
files may be expunged by the system at
any time .

6-17

I

USING DISK FILES

6.10 REGULATING DISK FILE STORAGE

The system manager sets an upper limit on the amount of disk space for
each directory on the system. This disk space, referred to as
directory storage allocation, is allotted as a number of pages.

Each directory receives a specific number of pages. To see the number
of pages allocated to your directory, and the number of pages you are
using, give the INFORMATION (ABOUT) DISK-USAGE command.

- EXAMPLE -

@INFORMATION <ABOUT> DISK- USAGE <OF DIRECTORY> <SARTINI>
PS! <SARTINI >
37 Pases assisned
50 Workins pages. 50 Permanent Pases al lowed
34142 Pages free on PS!

In the example above, user SARTIN! has 37 pages assigned to his
directory, and a working storage allocation and permanent storage
allocation of 50 pages. There are 34142 free pages remaining on this
file structure.

The system automatically checks your working storage allocation
whenever you create a new file page. If you are over that allocation,
it prints a message ?DISK FULL or ?QUOTA EXCEEDED and does not let you
continue writing to your file. You can delete any unimportant or
temporary files and expunge the directory to get under your working
allocation.

Whenever you give a LOGIN or LOGOUT command, the system checks the
permanent disk storage allocation of your connected directory. If it
is exceeded, the system prints a message in the form:

<directory> OVER PERMANENT STORAGE ALLOCATION BY n PAGES

CAUTION

If you exceed your working storage
allocation, the system programs listed
in Table 4-2 expunge any deleted files.
When a system program expunges deleted
files, it prints a message; however,
once you see the message, you cannot
halt the expunging process.

Depending upon the policy at your installation, if you do not regulate
your own disk storage allocation, the operator may regulate it for you
by running a system program to move some of your disk files to
magnetic tape for short-term off-line storage. The operator runs this
program as often as required to bring users' areas under quota. This
forced migration of files from disk to tape is used to keep the system
disk space free.

The system manager determines which type of files the program moves to
tape storage. However, if you want to specify a particular order in
which you want the files moved when the operator runs the program, you
can include a MIGRATION.ORDER file in your logged-in directory. In
the MIGRATION.ORDER file, you can list the files you want moved first,
such as temporary files, or files with the .LST file type.

6-18 April 1982

•

•

•

•

•

•

•

•

•

•

USING DISK FILES

- EXAMPLE -

@CREATE <FILE> MIGRATION.ORDER
lnPut: HIGRATION,ORDER,1
00100
0200

*s

•THF'''LST
!

[MIGRATION,ORDER .1J
(-!"

The SET FILE RESIST (MIGRATION OF FILES) command 1 also gives you some
control over involuntary file removal. It delays migration of the
specified files for as long as possible.

- EXAMPLE -

@SET FILE RESIST <MIG RATION OF FILES> MEM O.IN!
MEMO.INI.1 COKJ

(~

The file MEMO.IN! will be among the last files to be removed from the
disk.

To see the files that will "resist" migration, give the DIRECTORY
command with the RESIST-MIGRATION subcommand 1 :

- EXAMPLE -

@DIRECTORY <OF FILES> ,
@@RESIST-MIGRATION CFiles onl ~)

@@

PS: <TUCK ER .USER >
MEMO, INI .1
USEDOC.DST. 3
USEPLN.!IST. 2

Total of 3 file s

To see the files that were moved to off-line storage by the system
program, give the DIRECTORY command. Next to the names of the files
that were moved, the system prints ;OFFLINE .

This command/subcommand is not available with TOPS-20 monitors
prior to Version 5.

EXEC Verson 5.1 6-19 December 1982

I

USING DISK FILES

@DIRECTORY <OF FILES>

PS: <SARTI NI >
;:~TEST, DAT, 3
ADDTWO.FOR.3
BCHECK.TST.1
CCHECK.TST.1
'CHECK.TST.7
CCJMMANDS.TV.1
DCHECK.TST.1
LARGE.DAT.!
L.CJG IN, CMD. 2
MAIL.TXT.1
NEWACCT.LST.l;OFFLINE
CJUTLINE.LST.24;0FFLINE
OVERVIEW.LST.lO;OFFLINE
SCHJAl'~E, B20, 1
TEST.FIL. .2

Total of 15 file s

- EXAMPLE -

If you need to use the file, give the RETRIEVE command followed by the
name of the file. The RETRIEVE command notifies the system that you
are requesting the restoration of the file from off-line storage. On
the following line, the system prints the filename and [OK],
indicating that it received the request.

- EXAMPLE -

@RETRIEVE <FILES> MYTEST.DAT.1
MYTEST.DAT.1 lOKJ

(~

To see your retrieval request, give the INFORMATION (ABOUT)
RETRIEVAL-REQUESTS command . The system prints a list of requests in
the retrieval queue.

- EXAMPLE -

@INFORMATION <ABOUT> RETRIEVAL - REQUESTS

Rf?trieval l.~•Jeue:

Narrot~ r.;:i;.·c~t

··- ·- ·-· ·-· --·-
ADVENT 6
CHESS 7
OTHELL 8
NV THAI\ r > ... :
NVTHAK "'" _,
NVTHAK 11
MYTEST 68
OTHELL "t
There are B ,jobs
@

Tape 1
·-·- ··--· ··- ····

5845
5845
~if.!4~5

:'.H34~i

5845
5845
5854
::'j641

in the

Tape 2

5641
5ti41
564:L
5641
5641
5641
~)852

8459

User

ENGEL
ENGEL
ENGEL
CRUGNOLA
CRUGNOLA
CRUGNOLA
SARTIN I
ENGEL

Queue <None in Prosress)

6-20

I

•

•

•

•

•

•

•

•

•

USING DISK FILES

You can remove any retrieval requests before the contents of the
off-line file are restored to disk by using the CANCEL command.

- EXAMPLE -

@CANCEL <REQUE ST TYPE > RETRIEVE <ID> MYTE ST
[1 Job Cance l e d]
@

6.11 LONG TERM OFF-LINE FILE STORAGE

If you have disk files that you do not use, but wan t to keep, you can
mark these files for extended off-line storage by using the ARCHIVE
command. The operator periodically runs a program that moves the
files marked for archiving from disk to magnetic tape for off-line
storage. After the program moves the files to tape, it sends a
message through the MAIL program telling you the file has been
archived and its contents deleted from the disk. Your system manager
can tell you which files you should archive, and how long they will be
stored. The system manager can also tell you how often the operator
runs the program to move the files marked for archiving.

You can also use DUMPER for off-line storage. Refer to the DUMPER
description in the TOPS-20 User Utilities Guide for more information .

6.11.1 Archiving Files

To mark a file for archiving, give the ARCHIVE command, followed by
the name of the file you want archived. On the following line, the
system prints the name of the file, and in brackets, the word
"Requested".

- EXAMPLE -

@ARCHIVE <FIL ES > CHECK.T XT
CHECK.TXT.1 [ReBues t e dJ

@

6-21

USING DISK FILES

6.11.2 Getting Information About Archive Status of Files

To see that the file is marked for archiving, give the INFORMATION
(ABOUT) ARCHIVE-STATUS command, followed by the name of the file. The
system prints the filename and a message that archiving has been
requested.

- EXAMPLE -

@INFORMATION <ABOUT> ARCHIVE - STATUS <OF FILES> CHECK.TX!
CHECK.TXT.1 Ar chive reaues ted

You can also give the INFORMATION (ABOUT) ARCHIVE -STATUS command
without any argument. The system prints a list of your files that are
archived, and files for which archiving has been requested.

Once you mark a file for archiving, the name of the file no longer
appears when you give the DIRECTORY command. To see which files are
archived, and which files are marked for archiving, give the
subcommand ARCHIVE to the DIRECTORY command. The files that are
already archived will have the comment ;OFFLINE next to the filename.

@DIRECTORY,
@@ARCHIVE
@@

PS:<SARTINI >

CHAPT 2 1.rcr.1;0FFLINE
CHECK.TXT.1

Total of 2 files
@

- EXAMPLE -

When you mark a file for archiving, you cannot change the contents of
the file nor delete the file . Because you marked the file CHECK.TXT.l
for archiving, CHECK.TXT.l no longer appears in your directory unless
you include the ARCHIVE subcommand in the DIRECTORY command. If you
try to edit that file, the EDIT program finds that the file has been
marked for archiving and cannot be opened for editing. EDIT than
prints a message telling you there is no such file and creates a new
file. The new file has a generation number one higher than that of
the file you marked for archiving.

- EXAMPLE -

@EDIT CHECK,TXT

%No such filename, Creating New file
InPut: CHECK.TXT.2
00100

If you try to delete the file (in this case, CHECK.TXT.l) with the
DELETE command or copy the file with the COPY command, the system
prints a message telling you that there is no such file.

6-22

•

•

•

•

•

•

•

•

•

USING DISK FILES

6.11.3 Canceling an Archive Request

If you decide that you do not want to archive the file, give the
CANCEL command to remove the archival request. You can give the
CANCEL command as long as the file is still in archival request
status, that is, as long as the INFORMATION (ABOUT) ARCHIVE-STATUS
command shows that archive is requested but not completed.

- EXAMPLE -

@CANCEL <REQUEST TYPE > ARCHIVE <FOR FILES> CHECK.TX!
CHECK.TXT.1 COKJ

6.11.4 Retrieving an Archived File

Once a file is archived, it is stored off-line on magnetic tape. I f
you need to use the file again, give the RETRIEVE command. The
RETRIEVE command notifies the system that you are requesting the
restoration of the file from off-line storage. To actually restore
the file, the operator mounts the magnetic tape containing the
archived file, and moves the file to your directory on disk.

- EXAMPLE -

@RETRIEVE <FILES> CHAP21.TCT
CHAP21.TCT.1 COKJ

@

To see your retrieval request, give the INFORMATION (ABOUT)
RETRIEVAL-REQUESTS command. The system prints a list of the requests
in the retrieval queue.

- EXAMPLE -

@INFORMATION <ABOUT) RETRIEVAL- REQUESTS

Retrieval Queue:
Na me Rea* Jape 1 Jape 2 User

CHAP21 48 5520 5543 SARTIN!
There is 1 Job in the Queue <None in Progress>

Once your
contents
the file
after it

archived file is restored to disk, you must copy its
to a new file before you modify it . You must use a copy of

because you cannot alter an archived file in a ny way, e ve n
is restored to disk.

You can cancel any retrieval requests before the archived file
contents are restored to disk, by using t he CANCEL RETRIEVE command.

- EXAMPLE -

@CANCEL <REQUEST TYPE> RETRIEVE CID> CHAP21
[1 Job Canceled]
@.

6-23

USING DISK FILES

6.11.5 Archiving Expired Files Automatically 1

There are several dates associated with each file you create. One of
these dates is the on-line expiration date, which determines when a
file's disk contents may be automatically moved to off-line storage.
The SET DIRECTORY ARCHIVE-ONLINE-EXPIFED-FILES (OF DIRECTORY)
command 1 enables this automatic archiving. This command is discussed
at the end of the section.

On-line expiration dates are displayed with the DIRECTORY command:

- EXAMPLE -

@DIRECTORY <OF FILES> ,
@@DATES (QF) ONLINE-EX""'fIRATION
@@

PS: <TUCKER.USER>
Online e x piration

1~RCHIV.MEM.4

,Q N0.1 5
.RN0,15

COMAND. CMD.5
MEMO.INI.1
USER.RN0.2

Total of 6 file s
@

3 ·- M a~-82

5-Ma·~-82

2 1- Nov-8 2
21 - Nov-82
8-Apr-8 2
8 - Ap r ·- 8 2

The system manager establishes a systemwide on-line
but you can override the system default with
ONLINE-EXPIRATION-DEFAULT (OF DIRECTORY) command 1 :

- EXAMPLE -

expiration date,
the SET DIRECTORY

@SET DIRECTORY ONLINE-EXPIRATION- DEFAULT <OF CIRECTORY l <TUCKFR > !TO> 26- NOV- 8 2
Pass word: __ _

@

You can specify a time interval rather than a specific date!

- EXAMPLE -

@SET DIRECT ORY 'JNLI NE-EXP IRA TI ON-DEFAULT (OF DI RE C TO RY) <. TUct;ER > (TO i ±1.Q
Pas s word:
@ ---

The command above sets the on-line e xpi ration date to 30 days from the
creation date .

This feature/command is not available with TOPS-20 monitors prior
to Version 5.

EXEC Version 5 .1 6-24 December 1982

•

•

•

•

•

•

•

•

•

USING DISK FILES

You can also establish on-line expiration dates for individual
files 1 :

- EXAMPLE -

@SET FILE ONLINE-EXPIRATION <OF FILES> MEMO.IN! <TO> +120
MEMO.INI.1 COKJ
@

If you want a file to be immediately available for archiving, give the
SET FILE EXPIRED (FILES) command 1 :

- EXAMPLE -

@SET FILE EXPIRED <FILES> PENDING,Q
PENDING,Q,11 COKJ
@

The command above sets the expiration date to today's date.

When you are satisfied with the on-line expiration dates for your
files, you can indicate that the system is to mark them for archiving
when the expiration dates are reached 1 :

- EXAMPLE -

@SET DIRECTORY ARCHIVE - ONLINE -EXPIRED- FILES <OF DIR ECTORY> <TU CKER >
@

You also have the choice of leaving expired files in your directory
until a possible forced migration 1 :

- EXAMPLE -

@SET DIRECTORY NO ARCHIVE-ONLINE - EXPIRED -F IL ES <OF DIRE CTOR Y> <TUCKER >
@

This is the default setting for directories.

This command/feature is not available with TOPS-20 monitors prior
to Version 5 .

EXEC Version 5.1 6-25 December 198 2

I

USING DISK FILES

To see if expir e d fil e s in yo ur
archived, gi v e the INFORMATI ON
command:

directory will be automatically
(ABOUT) DIRECTORY (DIRECTORY NAME)

- EXAMPLE -

@INFORMATION <ABOUT > DIRE CTOR Y <DIRE CTO RY NAME > <TUCKER >
Na me F'S : <TU CKER >
Password - no t ava il ab l e
Work i n g d i sk s t o r as e pag e limit 19 5
Permanent d isk s to r ag e pag e limit 2 15
OPERATOR
Archi v e online e xpir e d file s
Num ber of di re cto r ~ 1036
Acco unt defa ul t f o r LO GIN 341
Ma x imum s u bd ir e c tori es a ll o wed 2 9 3
La s t LOG IN 9 - J ul-81 1 1!11! 38
Onl ine e x p i r a t i on def a u l t 26-Nov -82

The line "Archive online expired
archiv ing will take place.

files" indicates
If the SET
is in effect, ARCHIVE-ONLINE-EXPIRED-FILES command 1

not appear in the information display.

that automatic
DIRECTORY NO

this line does

This command is not available with TOPS-20 monitors prior to
Version 5.

EXEC Version 5.1 6-26 December 1982

•

•

•
I

•

•

•

•

•

•

CHAPTER 7

USING MAGNETIC TAPE

This chapter describes:

• Using magnetic tape storage (Section 7.1)

• Using unlabeled tapes (Section 7.2)

• Using labeled tapes (Section 7.3)

TOPS-20 commands and programs mentioned in this chapter are:

ASSIGN
BACKSPACE
CANCEL
DEASSIGN
DISMOUNT
DUMPER

INFORMATION
MOUNT
REWIND
SET
SKIP
UNLOAD

7.1 USING MAGNETIC TAPE STORAGE

Magnetic tape provides off-line storage for data. You put data onto
tape for storage using the DUMPER program or a program of your own.
(For a complete description of the DUMPER program, refer to the
TOPS-20 User Utilities Guide.) Prior to Release 4 of TOPS-20, all
installations used unlabeled tapes. With Release 4, your installation
now has the option of using labeled tapes .

An unlabeled tape is identified only by a gummed label on the outside
of the tape reel.

A labeled tape is identified by the information contained internally
on the tape as well as a gummed label on the outside of the tape reel.
Refer to the TOPS-20 Tape Processing Manual for more information on
labeled and unlabeled tapes.

7.2 USING UNLABELED TAPES

Before you use an unlabeled tape, give the INFORMATION (ABOUT)
SYSTEM-STATUS command to find out if the tape allocation facility of
TOPS-20 is enabled. The process to gain and release access to a tape
differs, depending upon whether this tape allocation facility is in
use. (Refer to the TOPS-20 System Manager's Guide for an explanation
of tape allocation.)

7-1

USING MAGNETIC TAPE

7.2.l Using Unlabeled Tapes With Tape Allocation Enabled

If tape allocation is enabled on your system, you can mount an
unlabeled tape by giving the MOUNT TAPE command followed by the name
of the tape (the name that appears on the gummed label). Before you
give the MOUNT TAPE command, tell the operator the name you selected
for your tape or ask him to get the tape from the tape library. After
you give the MOUNT TAPE command, you must wait until the operator
mounts the tape, and the s y stem prints a mes sage telling y ou that the
tape is mounted.

- EXAMPLE -

@MOUNT TAPE <NAME> fil&.!J
[TaPe set ACEl, volume ACEl mounted]
CACEl: defined as MTO:J

@

You can include the /NOWAIT switch with your MOUNT TAPE command. By
including this switch, y ou do not have to wait for a response from the
operator and y ou can continue working until the tape is mounted. When
you use the /NOWAIT switch, you can also check on your mount request
by giving the INFORMATION (ABOUT) MOUNT-REQUESTS command.

- EXAMPLE-

@MOUNT TAPE (NAME> ACEl:/NOWAIT
@

If you want to remove the request from the queue before the tape is
mounted, type a CTRL/ C to return to command level, then give the
CANCEL MOUNT command. If you included a / NOWAIT switch with the MOUNT
TAPE command, you can simply give the CANCEL MOUNT command.

After the operator
advising you that
your program.

mounts the tape, the system sends a mes sage
the tape is ready for your use . You can now run

When you complete your work, give the DISMOUNT TAPE command, followed
by the name of the tape. The system prints a message telling you that
the tape is dismounted.

- EXAMPLE-

@DISMOUNT TAPE <NAME) ru;;.lli
[TaPe dismounted, losical name ACEl: deleted]
@

7.2 .2 Using Unlabeled Tapes With Tape Allocation Disabled

If tape allocation is not enabled on your system, you must first
assign a tape drive for yo ur job. To find out which tape devices are
available, give the INFORMATION (ABOUT) AVAILABLE-DEVICES command.

- EXAMPLE -

@INFORMATION <ABOUT) AVAILABLE DEVICES
Devices available to this Job :
DSK, F'S, ADMIN, MTAl, MTA2, LPT, CDR, PTYlS, NUL

Devices assisned to/opened b~ this Job: TTY23
@

7-2

I

•

•

•

••

•

•

•

•

•

USING MAGNETIC TAPE

Assign one of the devices beginning with 'MTA'.
assigning drive 2.

@ASSIGN <DEVICE> MTA2:
@

- EXAMPLE -

The example shows

After assigning the drive to your job, you can run the PLEASE program
and ask the operator to mount your tape.

- EXAMPLE -

@PLEASE OPERATOR PLEASE MOUNT TAPE TEST:
[Messase sent at 10:1s:o1 Waitins for Operator ResPons e J

11:20:40 From 0Perator Terminal 4:
=>Your TaPe is mounted.
@

When you complete your work, give the UNLOAD command. This command
unloads the magnetic tape by rewinding it entirely onto the source
reel.

After you give the UNLOAD command, give the DEASSIGN command. The
DEASSIGN command returns the device you had previousl y ASSIGNed back
to the pool of available devices. If you forget to do this, no other
user can use the device until you log out .

7.2.3 Setting Tape Parameters

You must make sure that you read and write the data on the tape with
the proper tape parameters set. Gi v e the INFORMATION (ABOUT)
TAPE-PARAMETERS command.

- EXAMPLE -

@INFORMATION <ABOUT> TAPE - PARAMETERS
SET TAPE DENSITY 1600

@

SET TAPE PARITY ODD
SET TAPE FORMAT CORE - DUMP
SET TAPE RECORD-LENGTH 512

These parameters work for most tape trans fe rs; i f y ou h a ve t o c h ange
any of the parameters, give the SET TA PE c omman d .

- EXAMPLE -

@SET TAP E DENSITY <TO> 800
@

These changed parameters remain in effec t until y ou log of f , or c h a nge
the parameters. If y ou s et a par a meter by g i v ing a DUMPER command,
that parameter affects onl y th e DUMPER ope r a t ions and do es no t change
your job defaults. For a compl e t e d e scri p ti o n of DUMPER, ref er t o the
TOPS-20 User Utilities Guide .

7-3

I

USING MAGNETIC TAPE

7.2.4 Positioning The Tape

There are commands that position a magnetic tape: BACKSPACE, REWIND,
and SKIP. The BACKSPACE command backspaces the tape over a certain
number of records or files on unlabeled tapes, and over a certain
number of files on labeled tapes; the REWIND command rewinds the tape
to the beginning of the tape; the SKIP command advances the magnetic
tape a certain number of records or files on unlabeled tapes, and a
certain number of files on labeled tapes.

- EXAMPLE -

@SKIP <DEVICE> MTA2: 4 FILES
@

7.3 USING LABELED TAPES

The operator creates the
ca l led initialization.
actually writes specific
information is a volume
a unique number assigned

labeled tapes for you through a process
When a tape is initialized, the system

information on the tape. Included in this
identifer, also called a VOLID. The VOLID is
to the tape.

Onc e the operator creates the labeled tape, you can give the MOUNT
TAPE command fo llowed by the tape volid or the setname you selected
for your tape(s). In the following example, the / NEW switch specifies
that you are creating a new tape with the tape setname ABCD:. For a
comp lete list of switches to use with the MOUNT TAPE command, refer to
the TOPS-20 Commands Reference Manual.

- EXAMPLE -

@MOUNT TAPE <NAME> ABCD:/NEW
CTaPe set ABCDr volume 002001 mounted]
[TEST: defined as MT2:J

After the operato r mount s the tape, the system sends a message
advisi ng yo u that the tape i s r ead y f or your use and whi c h drive you
ha ve been assigned. You can now run your program.

If your program requires additional tapes to complete the job, the
operator will automatically mount the additional tapes. The system
does not notify you of the volids of the additional tapes. To find
out the vo lids o f the additional tapes yo u can give the INFORMATION
(ABOUT) VOLUMES (OF TAPE) command, followed by the tape setname to
obta in a list of the vo lume i dentifi e r s for each tape in the tape se t.
In the following example, the tape set name ABCD: contains three
tapes with the volids of 002001, 002002, and 002003:

- EXAMPLE -

@INFORMATION <ABOUT> VOLUMES <OF TAPE) ABCD:
Vol ume s of tape set BCD: 002001r 002002 r002003
@

To read an existing tape set containing severa l volumes, include the
tape se tname and the / VOLIDS: s witch i n the MOUNT TAPE command.

7-4

•

•

•

•

•

•

•

•

•

•

USING MAGNETIC TAPE

tape setname and the / VOLIDS: switch in the MOUNT TAPE command .

- EXAMPLE -

@MOUNT TAPE <NAME> ABCD:/VOLIDS: 002001,002002,002003
[TaPe s et ABCD , volume 002001 mounted]
CABCD: defined as MT2!J
@

You can also mount a specific volume in the tape set by specifying the
/ START switch followed by the volid for that specific volume. For
example, if you want to mount the second volume in the tape set name
ABCD:, give the following command .

- EXAMPLE -

@MOUNT TAPE <NA ME> ABCDl / VOLIDS:oo2001 .002002r002003
/START!VOLUME 002002
CTaPe s et ABCD, vol um e 002002 mounted]
CABCD! defined as MTO! J

The operator mounts the tape, and the system prints a message telling
you that the tape you that requested is mounted.

If you include the / NOWAIT switch in the MOUNT TAPE command you can
che ck on your request to mount the t a pe, by giving the INFORMATION
(ABOUT) MOUNT-REQUESTS command. The system prints a list of mount
requests in the queue, and indicates the status of the request, for
example, waiting.

- EXAMPLE -

@I NFORMATI ON <ABOUT! MOUN T-REQUESTS

Mount Ouc-::' Uf.' :
Voll.ln1e !3tatus

Mc n1:: r ::.' MT t12
MTP1:3
MT AO

EXEC Version 5.1

J"•,1P(·~ D e n ~;

l .3F' E' :I. (~()()
T :J:··'E' .-:.1 £-~ f a
T ::~ r-~ l-:~\ 62~.:;~.>

[,J I' :l t e

En ab l t_•;j

En ~:~b 1 f~ (!

7-5

..

1'(en°H0 Jcb:9· U<; e T'

··r ,., ..) .. ~ . :I. D ::> Fi DD 1 N~:; uN

)'3 3 6 1··;0NEN
74 7 f:.~1~1F~T I N T

December 1982

USING MAGNETIC TAPE

If you want to remove your mount request from the queue, give the
CANCEL MOUNT command, followed by the tape setname. You must first
give a CTRL/ C to get out of the MOUNT command before you can cancel
the mount request. If you included the / NOWAIT switch, you can simply
give the CANCEL MOUNT command. You can give the CANCEL MOUNT command
as long as the request is in waiting status, that is as long as the
operator has not moun ted the tape.

- EXAMPLE -

@CANCEL <REQUEST TYPE> MOUNT ABCD:
ll mount re~uest c a nceled]
@

When you no longer need to access the tape, g i ve the DISMOUNT TAPE
command, followed by the tape setname.

- EXAMPLE -

@DISMOUNT TAPE ABCD:
[TaPe di s mounted• Lo~ical name ABCD: deleted]
@

7-6

•

•

•

•

•

•

•

•

•

•

CHAPTER 8

RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

This chapter describes:

• Running system programs (Section 8.1)

• Giving commands to system programs (Section 8.2)

• Getting information about sy~tem features (Section 8.3)

• Running user programs (Section 8.4)

• Controlling programs (Section 8.5)

• Running programs without destroying memory (Section 8.6)

The TOPS-20 commands and programs mentioned in this chapter are:

BASIC
CONTINUE
CREATE
DIRECTORY
DUMPER

EDIT
EXECUTE
FILCOM
HELP
POP

8.1 RUNNING SYSTEM PROGRAMS

PUSH
RUN
TERMINAL

To run any of the system programs provided with TOPS-20, type the name
of the program, and press RETURN. The following example shows how to
start the DUMPER program:

@DUMPER
DUMPER>

- EXAMPLE -

!T~Pe DUMPER and Press RETURN.
!DUMPER starts
!And waits for a command

8.2 GIVING COMMANDS TO SYSTEM PROGRAMS

Once the system program responds with its prompt, you can give the
program a command. There are two types of prompts from the system
program •

8-1

RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

Some programs respond by printing an asterisk on
can then type a command in the following format:

the terminal. You

destination file specification
/ switch(es)

source file specification(s)

For example, the FILCOM (for FILe COMparison) program works as
follows:

- EXAMPLE -

@FIL COM

*TRACK.SCM=TRACK1.FOR , TRACK2.FOR

Xfiles are d ifferent

* ~ c

f~

Type FILCOM and press RETURN; th e s y stem prints an asterisk. Type
the following FILCOM command: TRACK.SCM=TRACK1.FOR,TRACK2.FOR. This
command compares TRACK2.FOR and TRACKl.FOR, and places a list of the
differences in the file TRACK.SCM. TRACKl.FOR and TRACK2.FOR are
input files; TRACK.SCM is the output file. The .SCM file type stands
for Source CoMparison.

You cannot use recognition on file specifications or switches when you
run any of the programs listed in Table 4-2. (Refer to Section 4.1
for a description of the exact file specification you must type.)

Other system programs respond by printing a prompt that identifies the
program, such as the prompt for the DUMPER program.

@DUMPER
DUMPER>

- EXAMPLE -

You can use recognition on commands and arguments to these programs .

8.3 GETTING INFORMATION ABOUT SYSTEM FEATURES

To get information about a system feature, use the HELP command. Type
HELP, followed by a space and a question mark. The system prints a
list of features for which it has helpful information.

- EXAMPLE -

@HELF' ? one of the followins:
ACCT20 ACCTF'R AF'L AF'LSF BLIS10 CHECKD CHKPNT
COB DDT COBOL CREF DAEMDB DB INFO DBM END [l!RTST
DLUSER DUMPER EDIT FE FIL COM FOR DDT FORD ML
FORTRA HELF' ISAM LI BARY LINK LF'TSF'L MACRO
MAIL MAK LIB MAKRAM MAKVFU OPLEAS PLEASE F'TYCON
QUEUE RDMAIL RERUN RSXFMT RUN INF' RUNOFF SCHEMA
SORT SYSERR SYS JOB TRANSL ULIST WATCH
or "*"
or confirm with carriase return

@HELP

8-2

•

•

•

•

•

•

•

•

•

•

RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

To get help on a specific feature, type HELP, leave a space, type the
name of the feature, and press RETURN. The system prints some helpful
information.

8.4 RUNNING USER PROGRAMS

To run your own executable program in your connected directory, give
the RUN command. In the following example, run the program LESTSQ:

- EXAMPLE -

@RUN <PROGRAM> LESTSQ

You can use recognition in typing the file specification.

Files with the file
executable program
loaded, and saved.

type .EXE contain executable programs. An
is a program that has already been compiled,

(Refer to Section 9.1-Producing a Simple Program.)

To run another user's program, give the file specification with the
RUN command:

- EXAMPLE -

@RUN <PROGRAM> <HOLLAND >TEST

You must have read and / or execute access to the file and access to the
directory. If you do not have file read access, the system prints:

- EXAMPLE -

@RUN <PROGRAM> <HOLLAND >TEST
?Read access rea•Ji red
@

If you do not have access to the directory, the system prints the
message:

- EXAMPLE -

@RUN <PROGRAM> <HOLLAND>TEST
?Director~ access Privileses reauired
@

8.5 CONTROLLING PROGRAMS

You can control programs by using three control characters:
CTRL/ O and CTRL/ T. CTRL/ C halts the execution of a program;
controls output to your terminal; CTRL/ T checks the status
running program .

8-3

CTRL / C,
CTRL/ O

of a

RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

8.5.1 Typing CTRL/C to Halt Execution

If you start a program (or command) and cannot stop
CTRL/Cs. Only one CTRL/C echoes on the terminal.
command) stops and returns you to command level.

it, type two
The program (or

@FILCOM

*TEST.SCM=TEST.1,TEST.2
~c

@

- EXAMPLE -

You can now give any command that does not change the contents of
memory, for example, the TERMINAL command. When you are finished,
give the CONTINUE command and the program resumes where it left off.
(The CONTINUE command will not continue a TOPS-20 command that you
interrupted.) You can also give the PUSH command, do some other work,
give the POP command, and then CONTINUE the program.

@FILCOM

*TEST.SCM=TEST.1,TEST.2
~c

- EXAMPLE -

@TERMINAL <MODE IS> E.frfil:
@CONTINUE

/.files are different

*
Some programs (namely BASIC and EDIT) intercept the CTRL/ C and do not
return you to TOPS-20 command level. In these special cases, refer to
the description of the particular program to return to TOPS-20 command
level.

The system does not respond immediately to a single CTRL/C, but waits
fo r the time whe n you would normally give input to the program .
However, the system processes two CTRL/ Cs immediate ly.

8.5.2 Typing CTRL/O to Stop Output to Your Terminal

To stop terminal output but not execution, type CTRL/ O.
p rint s :

- o •••

The system

and stops all output to the terminal. The program (or command) still
executes, but no output appears on the terminal. When the program (or
command) finishes, the system prints the TOPS-20 prompt.

8-4

•

•

•

•

•

•

•

•

•

RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

- EXAMPLE -

@DIRECTORY COF FILES> ~

PS: <HILLER>
ARDVRK.FOR.1
BASTST.FOR.3
..... 0 •••

@

If you stop output on the terminal and want to resume printing later
during the execution of the same program or command, type another
CTRL/O.

- EXAMPLE -

@DIRECTORY COF FILES> *·CBL

PS: <HILLER>
ANDTST.CBL.6
BEHIND.CBL.2
DEVCHR.CBL.4
~o •••
WOBBLE.CBL.3
XTHF'.CBL.9

TOTAL OF 34 FILES
@

Each successive pair of CTRL/Os stops and resumes terminal output.

8.5.3 Typing CTRL/T to Print the Run Status

To find out if a program is running, type CTRL/ T. The system prints I
the current time, the state of the program, the amount of system time
you used since logging in, and the load average for the system •

- EXAMPLE -

@f\UN (F'FWGRAM) TEST
09:36:35 TEST Runnin g at 404157 Us ed 0:00:35,9 in 0:30:39, Load 4. 041

Typing CTRL/T does
information about it.

not affect your program; it
The information is in the form:

simply prints

time name status Used CPU-time in logged-in-time, Load load average I
The status message tells you the status of the program.
lists some of the common status messages.

Table 8-1

The load average gives a rough indication of current system use, and
thus helps you estimate the length of time your program will take to
run. Higher load averages tend to indicate heavy use and slow system
response. Refer to the TOPS-20 Commands Reference Manual and to the
TOPS-20 WATCH document for further information on load averages .

TOPS-20 Version 5 8-5 April 1982

I

I

RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

Message

RUNNING AT pc
IO WAIT AT pc
HALT AT pc
FORK WAIT AT pc
SLEEP AT pc

Table 8-1
CTRL/ T Status Messages

Means The Process is:

Running
Doing input or output
Stopped
Waiting for a process to terminate
Temporarily suspended

pc is the memory location of the current instruction being
executed. You can cause this location to be displayed as either
a symbol or an octal address by using the SET TYPEOUT MODE
command. Refer to the TOPS-20 Commands Reference Manual for
information on SET TYPEOUT MODE.

If you stop the program by typing a CTRL/C, the system may precede any
of the messages in Table 8-1 with AC FROM.

If a process terminates unexpectedly, the CTRL/T message prints in the
form:

HALT: reason

where reason can be one of the messages listed in Table 8-2.

Table 8-2
Unexpected Process Termination Messages

CHANNEL n INTERRUPT AT pc
There is a software interrupt on channel n when
executing the instruction located at pc.

OVERFLOW AT pc
There is an integer overflow when executing the
instruction at location pc.

FLOATING OVERFLOW AT pc
There is a floating point overflow when performing
a floating point operation at location pc.

PUSHDOWN OVERFLOW AT pc
There is an overflow during a pushdown stack
operation at location pc.

END-OF-FILE AT pc
There is an unexpected end-of-file encountered
while executing the instruction at location pc.

IO DATA ERROR AT pc
There is an input or output data error when
executing the instruction at location pc.

FILE ERROR 3 INTERRUPT AT pc
FILE ERROR 4 INTERRUPT AT pc

There is a file error while
instruction at location pc.

TOPS-20 Version 5 8-6

executing the

April 1982

•

•

•

•

•

•

•

•

•

RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

Table 8-2 (Cont.)
Unexpected Process Termination Messages

ILLEGAL MEMORY READ AT pc
ILLEGAL MEMORY WRITE AT pc
ILLEGAL EXECUTE AT pc

There is an illegal attempt to access memory at
location pc.

FORK TERMINATION INTERRUPT AT pc
There is a software interrupt
another process (fork) while
instruction at location pc.

that terminated
executing the

FILE OR SWAPPING SPACE EXCEEDED AT pc
There is no more room in the
storage while executing
location pc .

system memory or disk
the instruction at

8.6 RUNNING PROGRAMS WITHOUT DESTROYING MEMORY

If for example, you are executing a long-running program and find a
file missing, you can stop the program without destroying the contents
of memory. Run another program (such as EDIT) to create the file and
return to continue your original program. Before running another
program to create the file, type two CTRL/ Cs and give a PUSH command,
which creates a new copy of memory and the TOPS-20 command, language .
You can now run as many programs as you wish. When you finish, give
the POP command to return to the previous memory and command level.
Finally, give the CONTINUE command to resume the execution of your
program.

NOTE

If you run another program without
giving the PUSH command, the new program
will destroy the old program, and you
will not be able to continue the old
program.

The following example illustrates how to run a FORTRAN program. As it
nears completion, the program requires a file you forgot to create.
Stop the program; give the PUSH command; create the file; give the
POP command; and continue the program .

8-7

RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

- EXAMPLE -

@EXECUTE <FROM> RANK.FOR
FORTRAN: RANK
LINK: Loadins
CLNKXCT RANK Execution]

!Execute the Prosram

ZFRSOPN File was not found !The file was not found
Unit=l DSK:NUMBER.DAT/ACCESS=SEQIN/MODE:ASCII

Enter new file specs. End with
$<ALT>
*~C

@E.!:!fili <COMMAND LEVEL>
!type CTRL/C to stop
!Save the Prosram and set UP
a new COPY of memory

TOPS-20 Command Processor 4<2441)
@CREATE <FILE> NUMBER.DAT !Create the missins file
INPUT: NUMBER,DAT,1
00100 ~ !Store rem.Jired date in it.
00200 1
*EU ! Save the f i 1 e and unseauence

the line numbers.

CNUMBER.DAT.lJ
@POP <COMMAND LEVEL>
@CONTINUE
NUMBER.DAT$

!Return to the last command level
!Resume execution

STOP

END OF EXECUTION

!TwPe the name of the file
!The Prosram finishes

CPU TIME: 0.38 ELAPSED TIME: 3,97:49
EXIT
@

When you need to run a program and do not want to destroy the current
contents of memory, give the PUSH command, run the appropriate
program, give the POP command and continue the first program. The POP
command returns you to the preceding level. You can give as many
pairs of the PUSH and POP commands as you need. If the system cannot
execute the command, it cancels the command and prints the message:

?Insufficient resources available

Reissue the command, and if you still get errors, you may have
too many PUSH commands without any intervening POP commands.
POP command.

given
Give a

When you give a PUSH command, the contents of memory are saved in
their exact state and cannot be changed until you give a POP command
to return to that level.

8-8

•

•

•

•

•

•

•

•

•

•

CHAPTER 9

PRODUCING AND RUNNING YOUR OWN PROGRAMS

This chapter describes:

• Producing a simple program (Section 9.1)

• Preparing a multi-module program (Section 9.2)

• Using the LOAD-class command (Section 9.3)

The TOPS-20 commands and programs mentioned in this chapter are:

ALGOL
APL
BASIC
COBOL
COMPILE

CPL
CREATE
CREF
DEBUG
EDIT

EXECUTE
FILCOM
FORTRAN
INFORMATION
LOAD

9.1 PRODUCING A SIMPLE PROGRAM

To produce a simple program:

MACRO
MAKLIB
RUN
SAVE
START

• Write the source program in a programming language.

• Enter the source program into a file.

• Execute (compile, load, and start) the program.

If you find errors after executing the program, change the source
program to eliminate the errors, and re-execute the program.

9.1.l The Source Program

A source program is the program y ou input, in a programming language,
to the system. For convenient operation, the source program should
have the standard file type recognized by the appropriate language
comp i ler. Once a language compiler compiles a source program, it
produces an object program with a .REL file type. To write the source
program, choose one of the programming languages: ALGOL, COBOL,
FORTRAN, or MACRO . The languages BASIC, APL and CPL do not produce
object programs (.RFL files). To write a program in one of these
languages, follow the procedures described in the appropriate language
manual .

9-1

PRODUCING AND RUNNING YOUR OWN PROGRAMS

The following example shows a FORTRAN program that requires you to
type a number; the program then prints two times that number. Enter
this program into a file.

- EXAMPLE -

C THIS IS A SMALL FORTRAN PROGRAM
TYPE 101

101 FORMAT (' TYPE A NUMBER: '$)
ACCEPT 102rX

102 FORMAT CF>
Y=2*X
TYPE 103rXrY

103 FORMAT (' TWO TIMES 'rFr' IS 'rF>
STOP
END

9.1.2 Executing the Program

Once you enter the source program into a file, do the following:

• Compile the source program to produce an object program.

• Load the object program into memory and combine it with any
routines required from the appropriate system library.

• Start the program in memory .

The language compiler or assembler translates the source program,
producing an object program. The LINK program places the object
program in memory, and the START command starts the program. You do
not have to give all these commands to perform the individual
functions. Instead, you can give the EXECUTE command, which performs
the functions collectively. The COMPILE, LOAD, DEBUG, and EX ECUTE
commands are referred to as LOAD-class commands.

- EXAMPLE -

@EXECUTE <FROM> SMALL.FOR
FORTRAN: SMALL
MAIN.
LINK: Loadins
[LNKXCT SMALL Execution]

TYPE A NUMBER: ~

TWO TIMES
STOP

5.0000000 IS

END OF EXECUTION
CPU TIME: 0.07 ELAPSED TIME: 3.00
EXIT
@

9-2

10.0000000

I

•

•

•

•

•

•

•

•

•

PRODUCING AND RUNNING YOUR OWN PROGRAMS

9.1.3 Debugging the Program

If your program does not run correctly the first time, check for:

• Syntax errors

• Execution errors.

To eliminate syntax errors, examine the line or lines for which the
compiler or assembler prints errors. Edit the source program to
correct the errors and re-execute it. Continue until your program is
successfully translated.

If your program does not give the correct answer after it executes,
check for a logic error in the program. To do this, you can carefully
review the source program for any errors or you can use one of the
system debugging programs: COBDDT for COBOL programs; FORDDT for
FORTRAN programs and DDT for most other programs. These debugging
programs allow you to stop at certain points in your program, examine
the contents of the program, make changes, and then continue the
program. (For more information refer to the appropriate TOPS-20
language manual.)

To get a listing of your compiled program, give the COMPILE command
with the /LIST switch; the listing file has the same name as your
last source file and is output directly to the line printer. When you
give the COMPILE command, the system scans the list of files to be
compiled. Only those files that are current (a source program not
changed since the last compilation) are not recompiled. If you have a
current object program, you must include the / COMPILE switch to force
the compiler to recompile your source file. The following example
shows how to recompile the program SMALL and get a listing:

- EXAMPLE -

@COMPILE <FROM> SMALL/LIST/COMPILE
FORTRAN: SMALL
MAIN.
@

To see the location of your program in the line printer output queue,
give the INFORMATION (ABOUT) OUTPUT-REQUESTS command and press RETURN.

- EXAMPLE -

@INFORMATION <ABOUT> OUTPUT-REQUESTS

Line Printer Queue:
Job Na me Reat Limit Us er

* SMALL 3891 52 SARTIN I
Started at 11:02:34, Printed 0 of 52 Pa~es

There is 1 Job in the Queue (1 in Pro~ress)

@

/Unit:l

The SMALL progr am is the only job li sted and the only j ob be ing
printed .

9-3

PRODUCING AND RUNNING YOUR OWN PROGRAMS

If you repeatedly edit your file, then give a LOAD-class command, y ou
can save some typing by using the G command to leave EDIT. The G
command saves your file and gives your last LOAD-class command. The
following example shows how to edit the file to print three times a
number, give the EXECUTE comma nd, edit the file again, and then give
the G command to reissue the previous LOAD-class command:

- EXAMPLE -

@EDIT <FILE> SMALL.FOR
Edit: SMALL.FOR.1
*I800!3

Z=3:X
T'YP'E:104,x,z

00820
00840
00860
00880

104 FORMAT (' THREE TIMES ' rFr' IS 'rF)

*~

[SMALL.FOR.2J
@EXECUTE <FROM) SMALL
FORTRAN: SMALL
00820 Z=3:X
? FTNFWE LINE:00820 FOUND ... • WHEN EXPECTING A STATEMENT END

?FTNFTL MAIN. 1 FATAL ERRORS AND NO WARNINGS
LINK: Load ins
CLNKNSA No s tart a ddress]

EXIT
@EDIT <FILE)
Edit: SMALL.FOR.2
*fill.£2
00820 Z=3*X
1 Lines (00820/1) deleted
*!:?

CSMALL.FOR.3J

FORTRAN: SMALL
MAIN.
LINK: Loadins
[LNKXCT SMALL Execution]

TYPE A NUMBER: §.

TWO TIMES
THREE TIMES
STOP

END OF EXECUTION

5.0000000 IS
5.0000000 IS

10.0000000
15.0000000

CPU TIME: o.oa ELAPSED TIME: 5.77
EXIT
@

9-4

•

•

•

•

•

•

•

•

•

•

PRODUCING AND RUNNING YOUR OWN PROGRAMS

9.1.4 Saving the Program for Future Use

Once you debug the program, load it into
command) and save the loaded program in an
command). Refer to the following example.
executable core image file.

@LOAD <FROM) SMALL
LINK: Load ins

EXIT
@SAVE <ON FILE>

SMALL.EXE.I SAVED
@

- EXAMPLE -

To run the program, give a RUN command .

- EXAMPLE -

@RUN SMALL

TYPE A NUMBER: 25

memory (using the LOAD
.EXE file (using the SAVE

The .EXE file is an

TWO TIMES
THREE TIMES
STOP

25.0000000 IS 50.0000000
25.0000000 IS 75.0000000

END OF EXECUTION
CPU TIME: o.oa ELAPSED TIME: 6.42
EXIT
@

Using the .EXE file and a RUN command saves the system from checking
to see that the object file is current and loading it into memory.
Make an .EXE file only when your program is running correctly. RUN is
not a LOAD-class command. Therefore, if the source program for SMALL
changes, giving the command RUN SMALL will not compile the program
SMALL .

9.2 PREPARING A MULTI-MODULE PROGRAM

To produce a program consisting of a number of modules, do the
following:

• Write the modules in a programming language and enter the
modules into files

• Translate the modules, load them into memory, and then run the
program

Sections 9.2.l through 9.2.7 describe some helpful functions:

• Writing and entering modules into files

• Producing listings with cross-references to labels

• Creating and accessing subroutine libraries

9-5

PRODUCING AND RUNNING YOUR OWN PROGRAMS

• Saving the program for future use

• Saving arguments in indirect files

• Comparing files with the FILCOM program

9.2.1 Writing and Entering Modules into Files

Design the program and write the modules in a programming language.
Using separate files for the modules gives you flexibility in
debugging the program. If there is an error in one module, you do not
have to recompile the other modules. If you do not enter each module
into a separate file and an error occurs in one of the modules, you
must recompile all modules in that file.

The following example illustrates entering each module into a separate
file:

- EXAMPLE -

Create COMP.FOR:

@CREATE <FILE> COMP.FOR
InPut: COMP.FOR.!
00100 TYPE 101
00200 101 FORMAT (' TYPE TWO NUMBERS: '$)
00300 ACCEPT 102,A,B
00400 102 FORMAT C2F>
00500 CALL ADDEMCA,B>
00600 CALL DIFFERCA,B>
00700 §lQE
00800
00900
*g

!

(COMP.FOR.lJ
@

Create ADDEM.FOR:

@CREATE <FILE> ADDEM.FOR
InPut: ADDEM.FOR.1

!Save it

00100 SUBROUTINE ADDEMCA,B>
00200 C = A t B
00300 TYPE 101,c
00400 101 FORMAT (' THE SUM IS: ',F)
00500 RETURN
00600 END
00700 !
*&
(ADDEM.FOR.lJ
@

9-6

•

•

•

•

•

•

•

•

•

•

PRODUCING AND RUNNING YOUR OWN PROGRAMS

Create DIFFER.FOR:

@CREATE <FILE> DIFFER.FDR
InPut: DIFFER.FOR.!
00100 SUBROUTINE DIFFERCA,B>
00200 C = ABSCA - B>
00300 TYPE 101,c
00400 101 FORMAT (' THE DIFFERENCE rs: '•F>
00500
00600
00700 :!
*E
CDIFFER.FOR.1J
@

RETURN
END

9.2.2 Executing the Program

You can run the program by giving the EXECUTE command. The FORTRAN
compiler processes all three source modules and produces the t hree
object programs; then the LINK program loads them into memory and
starts them.

- EXAMPLE -

@EXECUTE <FROM) COMP,ADDEM,DIFFER
FORTRAN: COMP
MAIN •
FORTRAN: ADDEM
AD DEM
FORTRAN: DIFFER
DIFFER
LINK: LOADING
CLNKXCT COMP EXECUTIONJ
TYPE TWO NUMBERS: 34,56
THE SUM rs: 90.0000000
THE DIFFERENCE rs: 22.0000000
STOP

END OF EXECUTION
CPU TIME: 0.16 ELAPSED TIME: 2.00
EXIT
@

9.2.3 Producing a Cross-Reference Listing

Many programs contain numerous modules that are significantly larger
than those shown in the previous examples. If you want to find the
place where a variable is defined or used, you must search each module
line by line. However, the system can help you by creating a
cross-reference listing that you can print on the line printer . The
cross-reference listing shows where each variable is defined and used.

The CREF (for Cross-REFerence) program produces the listing. To use
the CREF program, give the / CREF switch , along with a LOAD-class
command that compiles your source program. After the program is

9-7

PRODUCING AND RUNNING YOUR OWN PROGRAMS

compiled, your directory will contain a .CRF file in addition to your
. REL file. Thus, if you have the file TEST.FOR and give the command:

@COMPILE <FROM> /CREF TEST

your directory will contain the files TEST.FOR, TEST.REL and TEST.CRF.

The .CRF file contains information for the CREF program. When you are
ready to produce the listing, give the CREF command. This command
produces listings for all the .CRF files in your connected directory
that were created since you logged in. The program sends the listings
directly to the line printer. The following example produces a cross
reference listing for the COMP, ADDEM, and DIFFER programs.

- EXAMPLE -

@EXECUTE <FROM> /CREF COMP,ADDEM,DIFFER !Include /CREF
FORTRAN: COMP
MAIN.
FORTRAN: ADDEM
ADDEM
FORTRAN: DIFFER
DIFFER
LINK: Loadiml
CLNKXCT COMP EXECUTIONJ
TYPE TWO NUMBERS: 34,56
THE SUM IS: 90.0000000
THE DIFFERENCE rs: 22.0000000
STOP

END OF EXECUTION
CPU TIME: 0.15 ELAPSED TIME: 1.52
EXIT
@CREF
CREF:
CREF:
CREF:
@

COMP
ADDEM
DIFFER

! Then r•Jn CREF

If you already have object files for the programs, give the COMPILE
command with the /CREF, /NOBINARY, and /COMPILE switches. The system
produces just the .CRF file, without producing an object file.

The following example shows how to produce only cross-reference
listings:

- EXAMPLE -

@COMPILE <FROM> /CREF /NOBINARY /COMPILE COMP,ADDEM,DIFFER
FORTRAN: COMP
MAIN.
FORTRAN: ADDEM
ADDEM
FORTRAN: DIFFER
DIFFER
@CREF
CREF:
CREF:
CREF:
@

COMP
AD DEM
DIFFER

9-8

•

•

•

•

•

•

•

•

•

•

PRODUCING AND RUNNING YOUR OWN PROGRAMS

If you have a COBOL program, the /CREF switch puts
references in the listing file that it normally produces;
need to give the CREF command.

the cross
you do not

Refer to the TOPS-20 User Utilities Guide for a complete description
of CREF.

9.2.4 Using Subroutine Libraries

If you have a set of frequently used subroutines, you can group them
in a single object file called a library file, rather than keep the
object files separate. Then when you give a LOAD-class command, all
you need type is the one library file specification instead of a list
of subroutine file specifications. In addition, it is easier to keep
track of one file, especially if a group of users is sharing the
subroutines .

For example, i f you have the subroutines OPREAD, OPWRIT,
CLWRIT, which may be called by the main program
LOAD-class command is

@LOAD CFROMJ WRITERrOPREADrOPWRITrCLREADrCLWRIT

CLREAD,
WRITER,

and
your

If you place the four subroutines in a library , DOFILE, your command
is shortened to

@LOAD <FROM> WRITERrDOFILE/LIBRARY

The / LIBRARY switch causes the system to load only those subroutines
that are actually called. If you use the library file and the
/LIBRARY switch, after writing a ma i n program that calls the
subroutines, you do not have to remember which subroutines the program
calls to include the proper f ile speci f i cations in the LOAD-class
command.

A library file is produced by compiling the subroutines separately and
then running the MAKLIB program to construct the library fi l e. MAKLIB
is a program that manipulates .REL files. If you need to modify any
one of the library files, edit the source file, recompile, and use
MAKLIB to replace the subroutine in the libr a ry f il e .

Sections 9.2.4.1 through 9. 2 .4. 5 show how t o create a l ibrar y
containing four subroutines , use the libra ry, c ha nge a s ubrou t ine ,
then replace the old subroutine in the library with the new one. Four
subroutines: OPREAD, OPWRIT, CLREAD, and CLWRIT are e ntered into
files, compiled, then stored in the library , DOFILE.

Refer to the TOPS- 20 User Util i ties Guide f or a complete description
of MAKLIB .

9-9

PRODUCING AND RUNNING YOUR OWN PROGRAMS

9.2.4.1 Entering the Subroutines into Files - Enter the subroutines
into separate files.

- EXAMPLE -

@CREATE <FILE> OPREAD.FOR
InPut: OPREAD.FOR.1
00100 C SUBROUTINE OPREAD<NAME>
00200 OPREAD - OPENS A FILE FOR READING
00300 DOUBLE PRECISION NAME
00400 OPENCUNIT=21,ACCESS= 'SEQIN',FILE=NAME>
00500 RETURN
00600 END
00700 £
*E
COPREAD.FOR.1J

@CREATE <FILE> OPWRIT.FOR
InPut: OPWRIT.FOR.1
00100 C SUBROUTINE OPWRITCNAME>
00200 OPWRIT - OPENS A FILE FOR WRITING
00300 DOUBLE PRECISION NAME
00400 OPENCUNIT=21,ACCESS= 'SEQOUT',FILE=NAME>
00500 RETURN
00600 END
00700 $

*s
COPWR IT. FOi:;:. 1 J

@CREATE <FILE> CLREAD . FOR
CL..READ.FOR . 1 InP•.Jt:

00100
00200
00300
00400
00500
00600
00700

C SUBROUTINE CLREADCNAME>
CLREAD - CLOSES A FILE OPENED FOR READING
DOUBLE PRECISION NAME
CLOSE<UNIT=21,FILE=NAME>
RETURN
END

!
*~
CCL.READ.FOR.1J

@CREATE <FILE> CLWRIT.FOR
InPut: CL.WRIT.FOR.!
00100 C SUBROUTINE CLWRIT<NAME>
00200 CLWRIT - CLOSES A FILE OPENED FOR WRITING
00300 DOUBLE PRECISION NAME
00400 CLOSECUNIT =21,FILE=NAME>
00500 RETURN
00600 END
00700 !
*s
CCLWRIT. FOR .1J
@

9-10

•

•

•

•

•

I

•

•

•

•

PRODUCING AND RUNNING YOUR OWN PROGRAMS

9.2.4.2 Compiling the Subroutines - After entering the subroutines
into files, compile them to produce four separate object files.

- EXAMPLE -

@COMPILE <FROM> QPREAD,OPWRIT ,CLREAD,CLWRIT
FOF:TRAN ! OPREAD
OPREt~D

FDF:H:AN! OPWRIT
OPWF~ IT
FORnrnN: CLF:EMI
CLREt~D

FORTl:;;AN: CL.~ff: l T
CLWIUT
@

9.2.4.3 Creating the Library
running the MAKLIB program.
the library file, followed by
each object file, followed by

File - Create the library file
After starting MAKLIB, type the name

an equal sign. Then type the name
the / APPEND switch.

- EXAMPLE -

by
of
of

@MAl\LIB
*DOFILE=OPREAD/APPENU,OPWRIT/ APPEND,CLREAD/APPEND,CLWRIT/ APPEND

*
If you want some switches to be in effect every time you run the
MAKLIB program, you can create a SWITCH.IN! file and include the
switches. (Chapter 5 discusses how to create and edit files .) When
you issue a MAKLIB command line, MAKLIB reads the SWITCH.IN! file in
your connected directory and uses the switches specified in that file.
(Note that the EDIT program, on the other hand, reads the SWITCH.IN!
file in your logged-in directory.)

The format of the line in the SWITCH.IN! file is:

MAKLIB/ switch(es)

Thus, if you always want to give the / LIST switch (which lists the
names of the modules that are contained in the master library) with
MAKLIB, insert in the SWITCH.IN! file the line

MAKLIB/ LIST

Now, instead of typing the command

@MAKLIB
*MASTER=NEW/LIST

- EXAMPLE -

you can type the following command, and the / LIST switch is
automatically included in the command:

@MAKLIB
*HASTER=NEW

- EXAMPLE -

9-11 April 1982

I
PRODUCING AND RUNNING YOUR OWN PROGRAMS

If the switches occupy more than one line, use a hyphen at the end of
the first line and continue on the next line.

Once you create the library file, you can list its contents on your
terminal by giving a MAKLIB command with the /LIST switch in the
command below. The first number following the subroutine name is the
highest relocatable address it occupies, and the second number
indicates its length; both numbers are octal.

- EXAMPLE -

*TTY: =DOFILE / LI ST
Li s tins of Modules

Produced bs MAKLIB Ver s ion 2 AC6 7> on 26-Se P- 79 at 1s:oo:4s

DSK!DOFILE.REL[4 , 164J Cre a ted on 26 - Se P-79 a t 15!00!00

OPREAD
OPWRIT
CLi:;:EAD
CLWRIT

*

400016
400016
400016
400016

000007
000010
00000 7
000 0 :L 0

To end MAKLIB, type a CTRL/ C.

*~C

@

9.2.4.4 Using the Library File - To use the library file, first
create a main program that uses the subroutines. LOAD this main
program and the library file into memory. Notice that the WRITER
program in the example below does not use all the subroutines. When
you give the LOAD command with the / LIBRARY switch, the system loads
only the subroutines, OPWRIT and CLWRIT .

- EXAMPLE -

@CREATE CFILE> WRITER.FOR
Input: WRITER.FOR,!
00100 DOUBLE PRECISION NAME.DAY
00200 CALL DATECDAY>
00300 CALL OPWRITC ' DATE.FIL ')
00400 TYPE 101.DAY
00:'.'iOO
00600
00700
00800
00900
01000
01100 !.
*£

101

102

CWF~ ITER, FOF<, l J
@

FORMAT (' UPDATING AS or : ' •A10)
WRITE C2:L,10 2 > DA Y
FORMAT C' => UPDATED ON ! ' • AlO>
CALL CLWRIT C' DATE.FIL ' l
STOP
END

9-12 April 1982

I

•

•

•

•

I

•

•

•

•

PRODUCING AND RUNNING YOUR OWN PROGRAMS

After entering the main program, load it with the library file and
start it. Remember to include the / LIBRARY switch.

- EXAMPLE -

@LOAD <FROM> WRITERvDOFILE/ LIBRARY
FOF:TRAN ! WRITER
MAIN.

EXIT
(~~

Loadin ~3

UPDATING AS OF! 26-Sep- 79
STOP

END OF EXECUTION
CPU TIME! 0.41 ELAPSED TI ME! 1.33
EXIT
(a,

9.2.4.5 Changing a Subroutine in the Library - To change a subroutine
in the library, edit the source file, recompile the subroutine and use
MAKLIB to update the library file.

@EDIT <FILE> OPWRIT.FOR
EDIT! OPWRIT.FOR.1
*14!'.'iO ! 2

- EXAMPLE -

00450 TYPE 101 , NAME
00470 ~:Lf~)~1~-'-F~D~"~·~~1A~T~· --'-c_' -=-[-' ~'~A~1~0~?-'-"C~ff~· 1~=· N~E=::r~:i :~:I---.')
00490 !
*~

COP WR IT. FOR. 2:1
@

After editing the file, compile a new object file.

- EXAMPLE -

@COMPILE <FROM> OPWRIT.FOR
FOF:TRAN: ClF'~m IT
CJPWRIT
C-1

Now, run the MAKLIB program. First, check the contents of the library
file to be sure you are updating the proper file .

9-13 April 1982

PRODUCING AND RUNNING YOUR OWN PROGRAMS

- EXAMPLE -

@MA K LIB
* TTY : =DOFI LE/ LI ST

Li s ti n ~ of Modul e s
Produce d b~ MA KLIB Version 2A(67) on 26 - Se P-79 a t 15 ! 05 ! 06

DSK!DOFILE. REL[4, 16 4 J Crea t e d on 26-SeP -7 9 a t 15 ! 00! 00

OPR EAD 400016 000 007
OPWRIT 4000U, 0000 10
CLRE AD 400016 000007
Cl WRIT 400016 0000 10
*

Second, update the library file. Type the name of the new library
file follow e d by a n equal sign. Type the name of the library file you
want to update and the / MASTER: switch. After / MASTER: type the
name of the subroutine you are replacing and a comma. Last, type the
name of the file containing the new subroutine followed by the
/ REPLACE switch. Press RETURN. When the s y stem completes the update,
it prints an asterisk.

*DO FIL E=DOFILE / MA STER! OPW RIT,OP WRIT / REP LACE

*
You can now check the new libr a r y to be sure that the new subroutine
is included. As you c a n see, the l e ngth of the OPWRIT subroutine has
changed to includ e the additional statements.

- EXAMPLE -

*TTY! =DOF IL E/ LI ST
L ist in~ of Mo dul e s

Produced b~ MAK LIB Ve rs ion 2AC6 7 > on 26- SeP- 7 9 a t 15!1 0 ! 10

DSK!DOF I LE .REL [4 ,1 64J Created on 26- seP- 79 at 15 ! 09!00

OPREAD 400020
OPWF\ I T 40 00:35
c u;; Er.1D 400020
CL WR IT 400020
*::.£
@

0 0000 7
0000 15
0 00007
0000 :L ()

9-14 April 1982

•

•

•

•

•

•

•

•

PRODUCING AND RUNNING YOUR OWN PROGRAMS

Load the main program with the new library. You do not have to
recompile the main program or any of the other subroutines to change
OPWRIT. After loading the program, save it for future use, then start
the program.

- EXAMPLE -

@LOAD (FROM) Wf~ I TEF:, DOF I LE / I . I f<l'::Al;:y
LINK: l ... nad : i. n ~~

EXIT
l~SAVE

WRITER.EXE.1 SAVED
@START
[DATE, Fii... UPENEIIJ
UPDATING AS OF! 26-Se p - 79
STOP

END OF EXE CUTION
CPU TIME! 0.1 R ELAP SE D IIME: 0. 8 6
EXIT
@

Refer to the TOPS-20 User Utilities Guide for more information on the
MAKLIB program.

9.2.5 Loading and Saving the Program for Future Use

The example below shows how to load the main program and the library
file. Instead of loading all four subroutines in DOFILE, the system
loads only the two that the program actually uses (OPWRIT and CLWRIT) .

- EXAMPLE -

@LOAD <FROM> WRITER , DOFILE/Ll~RARY
LINK: Loadi1v.=.i

EXIT
@

Give the SAVE command to save the program. To use the program later,
give the RUN command.

- EXAMPLE -

@SAVE
WRITER.EXE.1 Saved

To run the program later, give the FUN command. Note that if you I
specified a name in your program by using the PROGRAM statement, the
name of the saved file will reflect that name.

- EXAMPLE -

@RUN (PROGRAM) WRITE I'\

Never save a program after you have started it;
may not get properly cleared during restarting.

9-14.1

some storage areas

April 1982

•

•

•

•

•

•

•

•

•

PRODUCING AND RUNNING YOUR OWN PROGRAMS

9.2.6 Saving Arguments in Indirect Files

If the arguments for a LOAD-class command are complex, you can store
them in a file called an indirect file. Later, when you give the
LOAD-class command, specify the file where the arguments are stored,
rather than typing the entire line. Instead of receiving the
arguments directly from your terminal, the system receives them
indirectly from the file. In this case precede the indirect filename
with an @ sign.

If you give the indirect command file a file type of .CMD, you do not
have to include a file type when giving its file specification. The
following example shows how to create a command file that will compile
the four subroutines:

@CREATE <FILE) ~
InPut: D.CMD.1

- EXAMPLE -

00100 OPREAD,OPWRIT,CLREAD,CLWRIT
00200 i
*E:

[D.CMD.lJ
@

To use the file in a LOAD-class command, precede it with
can use recognition in typing the file specification.
give a file type, the system uses file type .CMD .

- EXAMPLE -

@COMPILE <FROM> @
FORTRAN: OF' READ
OF'READ
FORTRAN: OP WRIT
OF'WRIT
FORTRAN: CLREAD
CL READ
FORTRAN: CLWRIT
CLWRIT
@

an @. You
If you do not

The following example shows an indirect file you can use to create the
program WRITER and to search the library:

- EXAMPLE -

@CREATE <FILE> W.CMD
Input:
00100
00200

W.CMD.1
WRITER.FOR,DOFILE.REL/LIBRARY
i

*s
CW.CMD. lJ
@LOAD <FROM) @W
FORTRAN: WRITER
MAIN •
LINK:

EXIT
@

Loading

9-15

PRODUCING AND RUNNING YOUR OWN PROGRAMS

9.2.7 Comparing Changes in Files

To run the FILCOM program, type FILCOM and press RETURN; the system
prints an asterisk. Type a command to FILCOM in the for m:

destination file specification source file specificationl,
source file specification2, / switches

The destination file is the file that contains the differences. It
can be printed in a file or on your terminal (TTY:). The first file
is the one that will be listed first in the list of differences, and
the second file is the one that will be listed second. The list of
switches specifies any special parameters for properly performing the
comparison.

First, change one line in the file WRITER.FOR and save the new file in
UPDATE.FOR.

- EXAMPLE -

@EDIT <FILE> WRITER.FOR.! <OUTPUT AS> UPDATE.FOR
Edit: WRITER.FOR.!
*E::L!
00700 102 FORMAT (' => UPDATED ON: • , A10)
*SUPDATED$ADDED NEW DATA$.
00700 102 FORMAT (' => ADDED NEW DATA ON: •, A10)

*s
[LJF'DATE.FOR.1J
@

There are now two files: WRITER.FOR, which contains the original
line, and UPDATE.FOR, which contains the modified line. The example
below shows how to compare the two files and output the differences to
your terminal. Type a CTRL/ C to end FILCOM.

- EXAMPLE -

@FILCOM ! Start FILCOM

*TTY: =WRITER.FORrUPDATE.FOR !T~Pe the command
FILE 1> DSK:WRITER.FOR CREATED: 1554 2-JAN-1979
FILE 2) DSK:UPDATE.FOR CREATED: 1556 24-JAN-1979

1) 1
1)

00700
00800

102

2)1 00700 102
2) 00800

Xfiles are different

*~C
@-

FORMAT (' =>UPDATED ON: •, A10)
CALL CLWRIT<'DATE.FIL')

FORMAT <'=> ADDED NEW DATA ON: •, AlO>
CALL CLWRIT<'DATE.FIL')

9-16

!T~Pe a CTRL/C to
!end FILCOM

•

•

•

•

•

•

•

•

•

•

PRODUCING AND RUNNING YOUR OWN PROGRAMS

9.3 USING THE LOAD-CLASS COMMANDS

The LOAD-class (COMPILE, - LOAD, EXECUTE, DEBUG) commands help yo u
produce programs easily and correctly. The four commands perform all
the functions you need to compile (or assemble) and debug a program:

COMPILE The COMPILE command causes the
processor to produce object
programs.

appropriate language
programs from source

LOAD The LOAD command causes the appropriate language
processor to produce an object program and then load it
into memory.

EXECUTE The EXECUTE command causes the appropriate language
processor and LINK to produce an object program, load
it into memory, and then start its execution.

DEBUG The DEBUG command causes t h e appropriate langua ge
processor and LINK to produce an object program, load
it and the appropriate debugging program into memory,
then start execution of the debugging program.

If you repeatedly edit your file and then give a LOAD-class command,
you can save some typing by using the G command to leave EDIT. The G
command saves the file you were editing and gives your last LOAD-class
command. Refer to Section 9.1.3 for an example of using t h e G
command.

In addition to the functions listed above, the LOAD-class commands
perform some helpful and timesaving functions by:

1. Recognizing the programming language in which you write yo u r
program(s) if you use the standard file types

2. Recompiling only out-of-date source programs

3. Remembering arguments of the last LOAD-class command when you
omit the arguments to a current command

4. Taking arguments from an indirect file

5. Concatenating files to produce one source program

6. Passing switches to the LINK program

7. Specifying special actions with switches.

Sections 9.3.l through 9.3.6 describe some useful ways you can use
these features.

Section 9.3.1 describes object programs and their uses. You may skip
this section, but the information is valuable in understanding t h e
flexibility that relocatable programs provide.

9.3.1 Object (Relocatable) and Executable Programs

The main function of any LOAD-class command is to produce an object
program. (Refer to Figure 9-1.) The source program is stored in a
source file with a file type that indicates the programming language.
(Table 9-1 contains file specifications listing the standard file
types.) By compiling the source program with a LOAD-class command,

9-17

PRODUCING AND RUNNING YOUR OWN PROGRAMS

you produce the object program stored in a file having a filename the
same as the source filename. The object program is relocatable, which
means you can load it into memory with subroutines, or as a
subroutine, without recompiling. Hence, the object file has a file
type of .REL (for relocatable) and is often called a .REL file. To
run the program, you must load the object program into memory. At
that time, the various subroutines and main programs are linked. The
loaded program is now executable; it may be saved in a disk file with
the same name as the main source program and the file type .EXE (for
executable).

Source file= name.typ

Source program

Compiling (or assembling)

Object file= name.REL

Object program

Loading

Memory

Executable program

Saving

Executable file= name.EXE

I Executab l e program

Figure 9-1 Source, Object, and Executable Programs

Any program you run must be in executable form. To form an executable
program, you must compile the source program, then load the object
program into memory . After you have the executable program in memory,
you can save it for future use or start its execution.

In creating an executable program, you must go through the process of
compiling and loading. Should you use the same subroutine in more
than one program, you can reuse the object program when loading the
modules into memory. By eliminating the needless compilation, you
save both time and computer charges.

9.3.1.1 Using Relocatable Object Programs - Once you compile a source
program into an object program, you can load that object program into
memory with any combination of cooperating programs and produce an
executable program. (The word program, as it is used here, refers to
both main programs and subroutines.)

The examples below show how to use the FILLER subroutine in three
different programs, without having to recompile it each time.

9-18

•

•

•

•

•

•

•

•

•

•

PRODUCING AND RUNNING YOUR OWN PROGRAMS

In the first example, FILLER ' is used with the main program, TESTER.
To run TESTER, give the command:

- EXAMPLE -

@EXECUTE <FROM> TESTER,FI LLER

The system compiles TESTER and FILLER, loads them into memory, and
then starts the execution of TESTER.

The second program, LAYOUT also has another subroutine, TTYOUT, that
you must include in the EXECUTE command.

- EXAMPLE -

@EXECUTE <FROM> LAYOUT,FILLER,TTYOUT

The third program, GAMMA, has a POLAR subroutine that is included in
the EXECUTE command.

- EXAMPLE -

@EXECUTE <FROM> GAMMA,POLAR,FlLLER

When typing the file specifications, you do not have to place them in
any specific order .

9.3.2 Selecting a File and Recognizing the Programming Language

When you give a filename as an argument to a LOAD-class command, you
do not have to include the period at the end of the filename and file
type. For example, you can give the command:

@COMPILE <FROM> SMALL
FORTRAN: SMALL
MAIN.
@

- EXAMPLE -

The system found the file SMALL.FOR and compiled it using FORTRAN.
The file type .FOR identifies to the system that the file contains
FORTRAN source code and should be compiled using FORTRAN.

When you do not include a file type in a LOAD-class command, the
system searches for a file specification matching the first file
specification in Table 9-1. If there is no matching file
specification, the system searches for a match of the second file
specification. If there is none, the system continues the search in
this manner until it finds a file specification matching one in Table
9-1, or until it reaches the end of Table 9-1. If there is no
matching file, the system prints an error message.

Upon finding a matching file, the system (if necessary) compiles it
using the language specified by the file type. For example, if the
file type is .CBL, the system uses the COBOL compiler. If there is no
file type, or if the file type is not in one of the file

9-19

PRODUCING AND RUNNING YOUR OWN PROGRAMS

specifications in Table 9-1, the system defaults to the FORTRAN
compiler. Note that your installation may modify this list to include
other language processors.

Table 9-1
LOAD-Class Command Standard File Specifications

File Specification

name.
name.FOR
name.MAC
name.CSL
name.ALG
name.REL

Language Compiler

FORTRAN (default)
FORTRAN
MACRO
COBOL
ALGOL
Object program, do not
compile

For example, if you type the file name PAYROL, the system looks for
PAYROL., PAYROL.FOR, PAYROL.MAC, PAYROL.CBL, PAYROL.ALG, and finally
PAYROL.REL. If none of those files exists, the system prints the
message: %SOURCE FILE MISSING - PAYROL. If PAYROL.CBL exists; the
system would compile PAYROL.CBL using COBOL.

If you have the files PAYROL.CBL and PAYROL.MAC and give a LOAD-class
command listing the name PAYROL, the system uses the file PAYROL.MAC.
If you also have the file PAYROL .. l, the system uses it instead of
using PAYROL.MAC. If PAYROL .. l needed compiling, the system would use
the FORTRAN compiler.

9.3.2.1 Using Nonstandard File Types - If you include a file type in
your file specification, the system examines the file type to select
the proper translator. If the f ile type is not one of the standard
file types shown in Table 9-1, the system uses the FORTRAN compiler.

- EXAMPLE -

@COMPILE <FROM> TEST.REF
FORTRAN: TEST
MAIN.
@

If you want to us e a nonstandard file type on a non-FORTRAN program,
include one of the compiler switches after t h e file specification.

- EXAMPLE -

@COMP I LE <FROM> ENABLE.MON/ MACRO
MACRO: ENABLE
@

9.3.2.2 Using the File Type .REL - If you want to use a particular
object file, type the f i lename and the file type .REL. The system
does not attempt to compile this file; it simply loads it into
memory.

9-20

•

•

•

•

•

•

•

•

•

•

PRODUCING AND RUNNING YOUR OWN PROGRAMS

- EXAMPLE -

@LOAD <FROM> START.REL
LINK:

EXIT
@

Loadin9

If you have an object
than .REL (this is
switch after the file
to compile the object

program stored in a file with a
highly discouraged), include

specification. Otherwise, the
program as a source program.

- EXAMPLE -

@LOAD <FROM> MIDDLE.OBJ/RELOCATABLE
LINK:

EXIT
@

Loadin9

9.3.2.3 Examples -

file t ype other
the / RELOCATABLE
system attempts

If you have the file TRYIT.FOR.l and you give t he following command:

@EXECUTE <FROM> TRYIT

the system uses the file TRYIT.FOR.l. If you have t he files
NXTONE.MAC and NXTONE.CBL, and give the following command:

@EXECUTE <FROM> NXTONE

the system searches Table 9-1 and finds .MAC before .CBL.
the system uses the file NXTONE.MAC.

The refore,

If you have the files TABLE and TABLE.FOR, and g i ve the command:

@EXECUTE <FROM> TABLE

the system uses the file TABLE as the source p rogram and compiles i t
with FORTRAN (as the default) .

9.3.3 Compiling Only Out-of-Date Object Programs

Whenever you give a LOAD-class command that requ i res a .REL f ile, the
system compiles an object program only if one or more of the f ollowing
occurs:

1. There is no existing .REL file with t he same f i lename .

2. The .REL file is out of date (which means that t he .REL file
is older than the corresponding sour c e file).

3. You give a / COMPILE switch to the LOAD-class command .

9-21

PRODUCING AND RUNNING YOUR OWN PROGRAMS

9.3.4 Remembering Arguments to LOAD-Class Commands

If you omit the arguments to a LOAD-class command, the system supplies
the arguments you specified in the last LOAD-class command containing
a file specification or LINK switch. For example, if you give the
following sequence of commands:

@COMPILE <FROM> TEST.FOR,SUB1.FOR

@EXECUTE <FROM)

the COMPILE command stores its arguments; then, when you omit the
arguments to the EXECUTE command, the system uses the arguments you
gave to the COMPILE command.

Whenever you give a LOAD-class command, the system saves its arguments
only if it contains a source or object file specification or a LINK
switch. Otherwise, the system appends the saved arguments from a
previous command to your current command. The system does not change
the saved arguments to include the contents of your current command.
Suppose you give the command

@COMPILE <FROM> / CREF/COBOL MANCOB,TTYIN,TTYOUT,LPOUT

then the command:

@LOAD CFROM> /MAP

The arguments from the COMPILE command
switch you gave in the LOAD command.
command:

are appended to the single
The system really executes the

@LOAD CFROM> /MAP/CREF/COBOL MANCOB,TTYIN,TTYOUT,LPOUT

If your next command is:

@COMPILE <FROM> /COMPILE

the system executes the command:

@COMPILE <FROM> /COMPILE/CREF/COBOL MANCOB,TTYIN,TTYOUT,LPOUT

Notice this command does not include the /MAP switch. The command:

@EXECUTE <FROM> LINER.MAC

would change the saved arguments to just the file specification
LINER.MAC.

If you give a command without a source file specification and there
are no saved arguments to LOAD-class commands, the system prints "?No
saved arguments" and cancels the command.

@EXECUTE
?No saved arsuments
@

- EXAMPLE -

9-22

•

•

•

•

•

•

•

•

•

•

PRODUCING AND RUNNING YOUR OWN PROGRAMS

9.3.5 Concatenating Files to Produce One Source Program

Frequently it is useful to combine a parameter definition file or a
small subroutine library with a main program. The + sign appends the
file following it to the file before it to produce one source program.
The example below shows how you might use a + to produce a MACRO
program. The DEFS file contains the parameter definitions and some
storage and the PROMPT file contains the main logic of the program.

- EXAMPLE -

@CREATE
InP•Jt:
00100
00200
00300
00400
00500
*S.

<FILE> DEFS.MAC !Create the Parameter file
DEFS.MAC.1

SEARCH MONSYM,MACSYM
PRMTXT: ASCIZ/NEXT COMMAND>/

J1==::::1
T2====2

[[IEFS.MAC.lJ
@CREATE <FILE> PROMPT.MAC
InPut: PROMPT.MAC.!
00100 T-....=.I~T=L=E~P~R_O~M_P_T

!Create the main file

00200 PROMPT: HRROI Tl,PRMTXT !Get address of strins
00300 E§.!llil ! Print it
00400 HAL TF ! Stop
00500 ENDF'ROMPT
00600 $

[PROMPT.MAC.lJ
@COMPILE <FROM> DEFStPROMPT
MACRO: PROMPT
@

9.3.6 Specifying Special Actions with Switches

You can supply various switches with the LOAD-class commands. Refer
to the TOPS-20 Commands Reference Manual for a complete description of
the LOAD-class commands.

Many switches have a global effect if you type them before any file
specifications. For instance, the command:

@COMPILE <FROM> /CREF TAB,SIFT,WOB

produces a cross-reference listing for each file and
significantly less typing than if you had to type:

requires

@COMPILE <FROM> TAB/CREF,SIFT/CREF,WOB/CREF

It may be easier to set some global switches and turn
particular file. If you have a list of source files
file types that you want to compile with FORTRAN, you
command:

@COMPILE <FROM> /FORTRAN SCHED.R1,ENA.R1,DIS.R1

9-23

them off for a
with nonstandard
might use the

PRODUCING AND RUNNING YOUR OWN PROGRAMS

Now suppose you add the routine MONINT.Rl, which is a COBOL file; you
could modify your command as follows:

- EXAMPLE -

@bQ@ <FROM) /FORTRAN SCHED. R 1 , ENA. fU. 'MON I NT• R 1 /COBOL' [I IS• R 1

As a result of this command, all the files are compiled with FORTRAN
except MONINT.Rl, which is compiled with COBOL. The /COBOL switch
located after the file affects only the file it follows.

However, if you add two COBOL programs, MONl and MON2, your command
is:

@LOAD <FROM) /FORTRAN SCHED.R1,ENA.R1,DIS.Rl,/COBOL MON1.R1,MON2.R1

In that case, you have changed the global / FORTRAN switch to /COBOL,
and each succeeding file is compiled using COBOL.

9-24

•

•

•

•

•

•

•

•

•

•

CHAPTER 10

USING BATCH

This chapter describes:

• Submitting a Batch job (Section 10.1)

• Creating a control file (Section 10.1.1)

• Submitting a control file to Batch (Section 10.1.2)

• Checking a batch job (Section 10.1.3)

• Examining the output from a batch job (Section 10.1.4)

• Modifying a batch job (Section 10.2)

• Canceling a batch job (Section 10.3)

The TOPS-20 commands and system programs mentioned in this chapter
are:

CANCEL
CREATE
DIRECTORY
FILCOM
INFORMATION

MAIL
MODIFY
PRINT
SUBMIT
TERMINAL

10.l SUBMITTING A BATCH JOB

If you have a procedure that you execute frequently, you can submit it
as a batch job rather than repeatedly executing it from your terminal.

To submit a batch job, enter the commands you would normally type on a
terminal into a file called a batch control file. You can submit a
control file to the batch system via a punched card deck or your
terminal. Submitting this file creates a request for the system to
run your job. The batch system executes the commands stored in the
batch control file, and after executing the last command in the file,
ends the job by logging it off. The batch system records the input
and output of the job in a log file.

When you create a control file, use any filename and a file type of
.CTL. Type each command and argument in full into the control file
instead of using recognition or abbreviated input. You must precede
each TOPS-20 command and subcommand with an @. You must precede each
program command with an *

10-1

USING BATCH

NOTE

If you are including subcommands in a
control file:

• type only
subcommand.

one @ before a

• type a @ for an extra line for the
RETURN that terminates the
subcommand.

You can also create a BATCH.CMD file that is read by the system every
time you submit a batch job. This file contains any TOPS-20 system
commands you want executed every time you run the batch program. The
BATCH.CMD file is similar to the LOGIN.CMD file the system reads every
time you log in. Like the LOGIN.CMD file, a BATCH.CMD file usually
contains commands such as the DEFINE command (to define logical
names). Once the batch job is logged in, the system reads the
BATCH.CMD file and executes the commands contained in it.

NOTE

Do not include TERMINAL commands in a
BATCH.CMD file.

The batch program does not recognize the TOPS-20 commands listed in
Table 10-1. If you include them, the system issues a fatal error
message. Be certain you do not include these commands in your control
file, BATCH.CMD file, or COMAND.CMD file.

Table 10-1
Illegal Commands

In Batch Jobs

ATTACH
SET CONTROL-C-CAPABILITY

SET TIME-LIMIT
TALK

10.1.1 Creating a Control File

To create a control file, give the CREATE command, followed by a file
name, and a .CTL file type. Place all the commands you usually type
on your terminal into the file. The following example shows how to
create a control file that runs the FILCOM program to compare two
files and prints a file containing the comparisons:

10-2

•

•

•

•

•

•

•

•

•

•

USING BATCH

- EXAMPLE -

@CREATE <FILE> TEST.CTL
Input: TEST.CTL.l
00100 @FILCOM
00200
00300
00400

*SAMPLE.SCM=DATA.OLD,DATA.NEW
@PRINT SAMPLE.SCH
!

*~

[TEST.CTL.lJ
@

10.1.2

NOTE

You can include the command to run the
MAIL program in your batch control file.
You can use the MAIL program to send a
message informing you when the batch job
is done. (Refer to the TOPS-20 User
Utilities Guide for more information on
the MAIL program.)

Submitting a Control File to Batch

To submit a control file to batch, give the SUBMIT command followed by
the name of the control file. The SUBMIT command places the job in a
waiting line called the batch input queue. When batch can accommodate
another job, it selects one from the input queue.

The example below shows how to submit the TEST.CTL control file.
Because the control file has the file type .CTL, you do not need to
include the file type in the command.

- EXAMPLE -

@SUBMIT <BATCH JOB> TEST
[Job TEST Queued, Reouest- ID 105, Limi t o:o5:00J
@

You can submit more than one control file to batch with the same
SUBMIT command. The following example shows how to submit TEST.CTL
and DATA.CTL:

- EXAMPLE -

@SUBMIT <BATCH JOB> TEST DATA
[Job TEST Queued' Reoues t - ID 106, Limit o:os:OOJ
[Job DATA Queued, Reoues t - ID 107, Limit o:os:OOJ
@

To submit a simple batch job, it is not necessary to include switches.
However, you can include switches with the SUBMIT command. To obtain
a list of valid switches, type SUBMIT followed by a ?. The system
prints a list of switches, and reprints SUBMIT. Type / AFTER: and a
?; the system prints the valid arguments to type following / AFTER:
switch.

10-3

I

I

I

I

USING BATCH

- EXAMPLE -

@SUBMIT <BATCH JOB) L1 Switch' one of
/ACCOUNT: /AFTER:
/BATCH-LOG: /BEGIN:
/CONNECTED-DIRECTORY:
/DESTINATION-NODE:
/LOGDISPOSITION:
/OUTPUT:
/PROCESSING - NODE :
/TAG:

/DELETE
/ FEET:
/ LOGNAME:
/PAGES:
/F~EADER
/TIME:
/USER:

the followins:
/ASSISTANCE:
/CARDS:
/DEPENDENCY-COUNT:
/JOBNAME:

/UNIQUE:
@SUBMIT <BATCH JOB> I

/NOTIFY:
/PRIORITY:
/RESTAFnABLE:
/TF'LOT:

Where you place switches in a SUBMIT command line determines the files
affected by the switch.

If you place a switch after the command but before you give the
filenames, all the files are affected by the switch. A switch that
affects all files is called a global switch. In the following example
submit TEST.CTL and DATA.CTL using a global switch /AFTER:.

- EXAMPLE -

@SUBMIT <BATCH JOB)/AFTER:B- AUG-79 TEST DATA
(Job TEST Queued' Reuuest-I D 108, Limit o:o5:00J
(Job DATA Queued, Reuuest-I D 109, Limit o:o5:00J
@

another
A switch

following
switch and

If you type a command followed by a filename, a switch, and
filename, only the file preceding the switch is affected.
that affects only one file is called a local switch. The
example shows how to submit TEST.CTL using a local /AFTER:
DATA.CTL:

- EXAMPLE -

@SUBMIT <BATCH JOB> TEST/AFTER:lO- Aus - 79 DATA
(Job TEST Queued, Reuuest- ID 110, Limit o:o5:00J
(Job DATA Queued, Reuuest -ID 111, Limit o:o5:00J
@

10.1.2.1 Setting Defaults for the SUBMIT Command - If you want the
SUBMIT command to always contain certain switches, give the SET
DEFAULT SUBMIT command, followed by the switch or switches.

- EXAMPLE -

@SET DEFAULT <FOR> SUBMIT /OUTPUT:NOLOG
@

To avoid having to type the SET DEFAULT SUBMIT and its arguments every
time you log in to the system, put this command in a COMAND.CMD file.
{Refer to Section 1.7 for information about a COMAND.CMD
file.) Whenever you give a SUBMIT command, the switches you specify
in the SET DEFAULT command are automatically included in the SUBMIT
command.

10-4

•

•

•

•

•

•

•

•

•

•

USING BATCH

To give the / OUTPUT: switch with SUBMIT c ommands, place the f ollowing
command in COMAND.CMD:

- EXAMPLE -

@SET DEFAULT CFOR> SUBMI T /OUTPUT:NO LOG

To see the defaults you have set for the SUBMIT command, give the I
INFORMATION (ABOUT) DEFAULTS (FOR) SUBMIT command.

- EXAMPLE -

@INFORMATION <ABOUT> DE FAULTS CFOR > SUBMI T
SET DEFAULT SUBMIT /OUTPUT:NO LOG

@

Every time you give the SUBMIT command, t h e s y stem includes the switch
/ OUTPUT:NOLOG in the command.

To see the defaults you have set for the SUBMIT command, give the
INFORMATION (ABOUT) DEFAULTS (FOR) SUBMIT command.

10.1.3 Checking a Batch Job

To check the progress of the batch job, give the INFORMATION (ABOUT)
BATCH-REQUESTS command. The system prints a list of all the jobs in
the batch queue and their status. Certain switches specified in the
SUBMIT command appear in the queue listing. The s y stem lists these
switches if their value is not the default.

To print only the status of your job, use the / USER switch wi th the
INFORMATION (ABOUT) BATCH-REQUESTS command. To print the status of
another user's job, use the / USER: switch, followed by the user's
name.

- EXAMPLE -

@I NFORMATIO N CABO UTl BATCH - REQUESTS

Batch Queue:
J ob Name Reot Run Ti me Us e r

* VN P20 102 00!0 7 !00 SROBINSON
J obt 32 Running EXEC Runtime 0:00:00 * CRO SS 103 00!05!00 SROBI NSON

Sta r ted at 08!31 ! 09
FOO 3 00 ! 05 ! 00 RETI
DAT A 1 11 00!05:00 SARTIN !
GAL AX Y 10 4 00: 10 :00 SAMBE RG
SYSER R 7 00 !05 ! 00 BLOU NT
TEST 110 00 : 05:00 SARTIN!

Ther e are 7 Jobs i n the Queue (2 i n Pro9ress)

@

10-5

In Stream!!

In Stream:2

/ Proc ! CALL 37

/Aft e r: 6-Au9-79 23 : 59
/After:1 0- Au g - 79 oo:oo

I

USING BATCH

10.1.4 Examining the Output from a Batch Job

The system places the output from a batch job into a log file. A log
file has a filename that is the same as the job name, and a file type
of .LOG . Unless you specify otherwise, the system automatically sends
the log file to the line printer, but also leaves a copy of it in your
directory.

Give the DIRECTORY command to see that the log file is in your
directory with the control file.

- EXAMPLE -

CHI I RECTORY <OF FILES) :wrr
SNARK: <SARTIN I>

TEST.CTL.1
.LOG.:L

TOTAL OF 2 FILES
@

The following example contains the log file from the batch job,
TEST. CTL. 1.

- EXAMPLE -

14:25:09
14:25:09

BA JOB
BAFIL

BATCON version 103(3000) runnins TEST seauence 6000 in stream 1
InPut from SNARK: <SARTINI >TEST,CTL.1

14:25:09 BAFIL
14:25:09 BA SUM

14:25:09 MON TR
14:25:09 MON TR
14:25:09 MON TR
14l25:13 MON TR
14:2s:14 MON TR
14:25l14 MON TR
14;25:14 MON TR
14l25:14 MON TR
14:25:15 MON TR
14: 25l18 USER
14:25l18 USER
14l25l19 USER
14:25l19 USER
14:25: 2 0 USER
14:25:20 USER
14:2s:21 MON TR
14: 25:22 MON TR
14:2s:22 MON TR
14:2s:22 MON TR
14:25:23 MON TR
14l25:23 MON TR

Output to SNARK: <SARTINI >TEST. LOG
Job Parameters
Time:oo:os:oo Un i c~ue: YES F~esta rt:NO OutPut:NOLDG

SYSTEM 2102 DEVELOPMENT SYSTEM• TOPS- 20 Monitor 4(2621)
@LOGIN SARTIN! 341

@

Job 30 on TTY225 25-Aus- 79 14l25l13
End of COMAND.CMD.1

[CONNECTED TO SNARKl <SARTINI > J
@SET TIME-LIMIT 300
@@F ILCOM

**SAMPLE.DIF=DATA.OLD,DATA,NEW

Zfiles are different

re
@@PRINT SAMPLE.DIF
[LPTlSAMPLE=/Sea:6001/Li111it:s2, 1 File]
@~c

@LOGOUT
Killed Job 30, Use r SARTIN!, Acc ount 341, TTY 2 25,

at 25-Aus- 79 14: 25 : 23, Used 0:0:1 in 0:0:10

The system begins each line in the log file with the exact time the
line was processed . The system prints a code following the time that
indicates the job state: at TOPS-20 command level (MONTR) or at
program command level (USER). The remainder of the line contains
system output and the lines in the control file.

10-6

•

•

•

•

•

•

•

•

•

•

USING BATCH

The first command in the control file is FILCOM, preceded by an @. In
the log file the system prints an @ before it prints the line from the
control file @FILCOM. Therefore, you see an @@ before FILCOM when you
read the log file.

The system checks that the job is at TOPS-20 command level before it
processes a TOPS-20 command in the control file. Since the first
command in the control file is FILCOM, the job enters FILCOM command
level. The next TOPS-20 command in the control file is PRINT.
Because the job is at FILCOM command level, the system must give a
CTRL/C to return to TOPS-20 command level before it processes the
PRINT command.

For a detailed description of batch, refer to the TOPS-10/TOPS-20
Batch Reference Manual.

10.2 MODIFYING A BATCH JOB

To change and/or add one or more switches to a previously issued
SUBMIT command, give the MODIFY command. After you give the MODIFY
command, type BATCH, followed by the first six letters of the jobname,
or the request ID; then type the switch you want to change or add.

You can modify almost all SUBMIT command switches. To obtain a list
of switches you can modify, give the MODIFY BATCH command, followed by
a slash (/) and a question mark (?). The system prints a list of
switches you can modify, and reprints the command line.

- EXAMPLE -

@MODIFY <REQUEST TYPE> BATCH/? Switch, or Parameter to modif~, one
of the following:

/AFTER:
/DEPENDENCY- COUNT:
/JOBNAME:
/PRESERVE
/RESTARTABLE:
/TPLOT:

/BEGIN:
/DESTINATION- NODE:
/OUTPUT:
/PRIORITY:
/SEQUENCE:
/UNHWE:

@MODIFY <REQUEST TYPE> BATCH/

/CAFWS:
/FEET:
/PAGES:
/PROCESSING- NODE:
/TIME:
/USER:

In the following example, modify the batch job TEST.CTL by adding the
/AFTER: switch and the date August 15, 1979:

- EXAMPLE -

@MODIFY <REQUEST TYPE> MIQ:! <ID> TEST /AFTEF:: 15-AUG-79
(1 Job Modified]
@

10.3 CANCELING A BATCH JOB

To remove entries you have previously placed in the batch input queue,
give the CANCEL command. After you give the CANCEL command, type
BATCH, followed by the first six letters of the jobname or the request
ID of the job you want to remove .

10-7

I

USING BATCH

Once the CANCEL command removes the entry you specify from the batch
queue, the system notifies you of the removal by printing the message
(1 Job CANCELED). If the system is processing the entry in the queue
when you give the CANCEL command, it stops the job and prints the
message, (1 Job Canceled, (1 was in progress)].

In the following example, remove the batch job TEST.CTL.

- EXAMPLE -

@CANCEL <REQUEST TYPE> BATCH CID> TEST
[1 Job Canceled]
@

If you have several batch jobs running, you can cancel them all by
using an asterisk. Give the CANCEL command, followed by the request
type you want to cancel; then type an * instead of a job name. The
following example shows how to remove all of your batch jobs:

- EXAMPLE -

@CANCEL <REQUEST TYPE> BATCH *
[2 Jobs Canceled]
@

10-8

I

•

•

•

•

I

•

•

•

•

APPENDIX A

TOPS-20 COMMANDS

This appendix contains a brief explanation of the commands in the
TOPS-20 Command Language. The commands are grouped in categories of
similar use. Although some of these commands are not described in
this manual, the purpose of this list is to make you aware of the full
extent and capability of the TOPS-20 Command Language. For a complete
description of all TOPS-20 commands, refer to the TOPS-20 Commands
Reference Manual.

SYSTEM ACCESS COMMANDS

These commands allow you to gain and relinquish access to the system,
to change your job's account, and to release and connect terminals to
your job.

ATTACH

DETACH

DISABLE

ENABLE

LOGIN

LOGOUT

UNATTACH

FILE SYSTEM COMMANDS

Connects your terminal to a designated job.

Disconnects your terminal from the current job
without affecting the job.

Returns a privileged user to normal status.

Permits privileged users to access and change
confidential system information.

Gains access to the TOPS-20 system.

Relinquishes access to the TOPS-20 system .

Disconnects a terminal from a job; it does not
have to be the terminal you are using.

The file system commands allow you to create and delete files, to
specify where they are to be stored, to copy them, and to output them
on any device.

ACCESS

APPEND

ARCHIVE

BUILD

Grants ownership and group rights to a specified
directory.

Adds information from one or more source files to
a new or existing disk file.

Marks a file for long-term off-line storage. I

Allows you to
subdirectories.

A-1

create, change, and delete

CANCEL

CLOSE

CONNECT

COPY

CREATE

DELETE

DEFINE

DIRECTORY

I DISMOUNT

EDIT

EXPUNGE

END-ACCESS

FD I RECTORY

MODIFY

I MOUNT

PRINT

RENAME

I RETRIEVE

TD I RECTORY

TYPE

UNDELETE

VD I RECTORY

TOPS-20 COMMANDS

Removes files from any of several system queues.

Closes a file or files left open by a program. I
Removes you from your current directory and
connects you to a specified directory.

Duplicates a file in a destination file.

Starts the system editor, to make a new file.

Marks the specified file(s) for eventual deletion
(disk files only) .

Associates a logical name with one or more file,
directory, or structure names.

Lists the names of files residing in the specified
directory and information relating to those files.

Notifies the system that the given structure or
magnetic tape is no longer needed.

Starts the system editor to change an existing
file.

Permanently removes any deleted files from the
disk.

Relinquishes ownership and group rights to a
specified directory.

Lists all the information about a file or files.

Changes and/or adds switches to a previously
issued PRINT or SUBMIT command.

Requests that a structure or a magnetic tape be
made available to the user.

Enters one or more files in the line printer
queue.

Changes one or more descriptors of an existing
file specification.

Requests restoration of a file stored off-line.

Lists the names of all files in the order of the
date and time they were last written.

Types the specified files on your terminal.

Restores one or more disk files marked
deletion.

for

Lists the names of all files, as well as their
protection, size, and date and time they were last
written.

A-2

•

•

•

•

•

•

•

•

•

TOPS-20 COMMANDS

DEVICE HANDLING COMMANDS

These commands allow you to reserve a device prior to using it, to
manipulate the device, and to release it once it is no longer needed.

ASSIGN

BACKSPACE

DEASSIGN

EOF

REWIND

SKIP

UNLOAD

Reserves a device for use by your job.

Moves a magnetic tape drive back any number of
records or files.

Releases a previously assigned device.

Writes an end-of-file mark on a magnetic tape.

Positions a magnetic tape backward to its load
point.

Advances a magnetic tape one or more records or
files .

Rewinds a magnetic tape until the tape is wound
completely on the source reel.

PROGRAM CONTROL COMMANDS

The following commands help you create, run, edit, and debug your own
programs.

COMPILE

CONTINUE

CREF

CSA VE

DDT

DEBUG

DEPOSIT

EXAMINE

EXECUTE

FORK

GET

LOAD

Translates a source module using the appropriate
compiler .

Resumes execution of a program interrupted by a
CTRL/ C.

Runs the CREF program which produces a
cross-reference listing and automatically sends it
to the line printer.

Saves the program currently in memor y so that it
may be used by giving a RUN command. The program
is saved in a compressed format .

Merges the debugging program, DDT, with the
current program and then starts DDT.

Takes a source program, compiles it, loads it with
the appropriate debugger and starts t he debugger.

Places a value in an address in memor y.

Allows you to examine an address in memo ry.

Translates, loads, and begins execution of a
program.

Makes the TOPS-20 language work for a particular
address space .

Loads an executable program from the specified
file into memory, but does not start it .

Translates a program (if necessary) and loads it
into memory.

A-3

I
I

MERGE

POP

PUSH

R

REENTER

RESET

RUN

SAVE

SET

START

TRANSLATE

INFORMATION COMMANDS

TOPS-20 COMMANDS

Merges an executable program with the current
contents of memory.

Stops the current active copy of the
Command Language and returns control
previous copy of the Command Language.

TOPS-20
to the

Preserves the contents of memory at the current
command level and creates a new TOPS-20 command
level.

Runs a system program.

Starts the program currently in memory at an
alternate entry point specified by the program.

Clears the current job.

Loads an executable program from a file and starts
it at the location specified in the program.

Copies the contents of
executable format. If
you may now execute the
command with the proper

memory into a file in
memory contains a program,
program by giving the RUN
file specification.

Sets the value of various job parameters.

Begins execution of a program previously loaded
into memory.

Translates a project-programmer number
directory name or a directory name
project-programmer number.

to
to

a
a

These commands return information about TOPS-20 commands, your job,
and the system as a whole.

DAYTIME

HELP

INFORMATION

SYS TAT

TERMINAL COMMANDS

Prints the current date and time of day.

Prints information about system features.

Provides information about your job, files,
memory, errors, system status, queue requests, and
other parameters.

Outputs a summary of system users and available
computing resources.

The terminal commands allow you to clear your video terminal screen,
to declare the characteristics of your terminal, and to control
linking to another user's terminal.

ADVISE

BLANK

TOPS-20 Version 5

Sends whatever you type on your terminal as input
to a job connected to another terminal.

Clears the video terminal screen and moves the
cursor to the first line.

A-4 April 1982

•

•

•

•

t

•

•

•

•

BREAK

RECEIVE

REFUSE

REMARK

TAKE

TALK

TERMINAL

BATCH COMMAND

TOPS-20 COMMANDS

Clears terminal links and advising links.

Allows your terminal to receive links and advice
from other users.

Denies links and advice to your terminal.

Allows you to type many lines of text when using
the TALK command.

Accepts TOPS-20 commands from a file, just as if
you had typed them on your terminal.

Links two terminals so that each user can observe
what the other user is doing, yet does not affect
the either user's job.

Declares the type of terminal you have, and lets
you inform TOPS-20 of any special characteristics
of the terminal .

The TOPS-20 operating system also has a Batch System to which you may
submit jobs for later execution.

SUBMIT Enters a file into the Batch waiting queue. When
it is your job's turn, the commands contained in
the file are executed .

A-5 April 1982

•

•

•

•

•

•

•

•

•

APPENDIX B

STANDARD FILE TYPES

Table B-1 lists the file types that have a specific meaning to the
system. When you create a file for use with a particular program, you
should assign the correct file type. If you do, the system has more
information about the file and can attempt to perform the correct
function after you type a minimum set of commands or switches.
Normally, no penalty arises from assigning an undefined file type, but
if you assign an incorrect file type, the system may incorrectly
interpret the file, especially when you use the LOAD-class commands.

File Type

AlO

All

ABS

AID

ALG

ALP

ATO

ATR

AWT

BlO

Bll

BAK

Table B-1
Standard File Types

Kind of File Meaning

ASCII ASCII version of a
DECSYSTEM-20 program loaded
by the PDP-11

ASCII ASCII version of a PDP-11
program loaded by the PDP-11

Object Absolute (nonrelocatable)
program

Source Source file in AID language

Source Source file in ALGOL
language

ASCII Printer forms alignment

ASCII PTYCON automatic command
file

Binary Attribute file in SIMULA
language

Binary Data for automatic wire
tester

Source Source file in BLISS

Source Source f ile in BLISS-11

Source Backup f ile from TECO

B-1

File Type

BAS

BCM

BCP

BFR

BIN

BLB

BLI

BOX

BUG

BWR

CAL

CBL

CDP

CED

CFL

CKP

CHN

CMD

COB

COR

CPY

CRF

STANDARD FILE TYPES

Table B-1 (Cont.)
Standard File Types

Kind of File

Source

ASCII

Source

ASCII

Binary

ASCII

Source

ASCII

Object

ASCII

Object

Source

ASCII, Binary

ASCII

ASCII

Binary

Object

ASCII

ASCII

ASCII

Binary

ASCII

B-2

Meaning

Source file
language

in BASIC

Listing file created
FILCOM (binary compare)

by

Source file in BCPL language

Copy of VTECO buffer

Binary file

Blurb file

Source file
language

in BLISS

Output of box program
picture for use in
specifications and manuals

Saved to show a
error

program

Beware file listing warnings
about a file or program

CAL data and program files

Source file in COBOL
language

Spooled output for card
punch

Input to COPYED

RUNFIL command file

Checkpoint core image file
created by COBOL operating
system

CHAIN file

Command file

COBOL Source File

Correction file for SOUP

Copy of a crash written by
SETS PD

CREF (cross-reference) input
file

•

•

•

•

•

• File Type

CTL

DAT

OCT

DIR

DMP

DOC • DRW

ERR

EXE

FA!

• FCL

FLO

FOR

FRM

• FTP

GND

HGH

HLP

IDA

!DX

!NI

• LAP

STANDARD FILE TYPES

Table B-1 (Cont.)
Standard File Types

Kind of File

ASCII

ASCII, Binary

ASCII

ASCII

ASCII

ASCII

Binary

ASCII

Object

Source

Source

ASCII

Source

ASCII

Source

ASCII

Object

ASCII

ASCII, Binary

ASCII ,SIXBIT

ASCII, Binary

ASCII

B-3

Meaning

Batch control file

Data (FORTRAN) file

Dictionary of words

Directory
command

from DIRECTORY

COBOL compiler dump file

Listing of modifications to
the most recent version of
the software

Drawing for VBlOC drawing
system

Error message file

Executable program

Source file in FAIL language

Source file
language

in FOCAL

English language flowchart

Source file
language

in FORTRAN

Blank form for handwritten
records

FORTRAN test programs

List of ground pins
automatic wirewrap

for

Nonsharable high segment of
a TOPS-10 two-segment
program

Help text files

COBOL ISAM data file

Index file of a COBOL ISAM
file

Initialization file

Output from
compiler

the LISP

File Type

LIB

LOG

LOW

LPT

LSP

LSQ

LST

MAC

MAN

MAP

MEM

MID

MIM

MSB

MUS

N

NEW

OBJ

OLD

OPR

OVR

Pll

STANDARD FILE TYPES

Table B-1 (Cont.)
Standard File Types

Kind of File

ASCII

ASCII

Object

ASCII

Source

ASCII

ASCII

Source

ASCII

ASCII

ASCII

Source

Binary

Object

Source

Source

All

Object

Source, Object

ASCII

Object

Source

B-4

Meaning

COBOL source library

Batch, PTYCON or LINK log
file

Low segment of a TOPS-10
two-segment program

Spooled output
printer

for line

Source file in LISP language

Queue listing created by
QUEUE program

Listing data created by
assemblers and compilers

Source file
language

in MACRO

Manual (documentation) file

LINK map file

Memorandum file

Source file in MIDAS (MIT
Assembler) language

Snapshot of MIMIC simulator

Music compiler binary output

Music compiler input

Source file in
language

NELIAC

New version of a program or
file

PDP-11 relocatable
file

binary

Backup source program

Installation and
instructions

COBOL overlay file

Source program in
language

assembly

MACXll

•

•

•

•

•

• File Type

PAL

PCO

PLl

PLM

PLO

PLT

• PPL

PTP

Qxx

RAM

REL

• RIM

RNB

RNC

RND

• RNE

RNH

RNL

RNM

RNO

RNP

• RNS

STANDARD FILE TYPES

Table B-1 (Cont.)
Standard File Types

Kind of File

Source

ASCII

Source

ASCII

Binary

ASCII

Source

ASCII, Binary

ASCII

ASCII

Object

Object

ASCII

ASCII

ASCII

ASCII

ASCII

ASCII

ASCII

ASCII

ASCII

ASCII

B-5

Meaning

Source file in PAL 10 (PDP-8
assembler)

Program change order

Source file in PLl language

Program logic manual

Compressed plot output

Spooled output for plotter

Source file in PPL language

Spooled output for
paper-tape punch

Edit backup file

DECSYSTEM-20 microcode

Relocatable binary file

RIM loader file

RUNOFF input for producing a
.BLB file

RUNOFF input for producing a
.cco file

RUNOFF input for producing a
.DOC file

RUNOFF input for producing
error message text

RUNOFF input for producing a
. HLP file

RUNOFF input for a program
logic manual

RUNOFF input for producing a
.MAN file

Programming specifications
in RUNOFF input

RUNOFF input for producing a
.OPR file

RUNOFF input for a text file
of standards

File Type

RSP

RSX

RUN

SAI

SAV

SCD

SCM

SCP

SEQ

SHR

SIM

SMP

SNO

SPC

SPD

SPM

SPT

SPU

SPX

SRC

STB

STD

SYM

STANDARD FILE TYPES

Table B-1 (Cont.)
Standard File Types

Kind of File

ASCII

All

ASCII

Source

Object

ASCII

ASCII

ASCII

ASCII, SIXBIT

Object

ASCII

Sou r ce

Source

ASCII

ASCII

ASCII

ASCII

ASCII

ASC I I

ASCI I

ASCII

Binary

B- 6

Meaning

Script response time
file

Files for RSX-11

Command file for SYSJOB

log

Source file in SAIL language

Low segment from a
one-segment TOPS-10 program

Diff erences in directory

Listing file created by
FILCOM (source compare)

SCRIPT control file

Sequential COBOL data file,
inpu t to ISAM program

A TOPS-10 sharable program

Sourc e file
language

in SIMULA

Source file in SIMPLE
language

Source file in SNOBOL
language

Corrected file f or SPELL
prog ram

Di ctiona r y f o r SPELL progr am

File o f mispelled words for
SPELL program

SPRINT - crea ted f iles

Fil e o f uppe r case word s f or
SPELL p rog r am

File o f excepti on (e r ror)
lines f or SPELL program

Source f iles

Symbo l tab l e fi l e

Standards

LINK s ymbol fil e

•

•

•

•

•

• File Type

SYS

TEC

TEM

TMP

TPB

TPC

• TPD

TPE

TPH

TPL

• TPM

TPO

TPP

• TST

TV

TXT

UPD

WCH

WRL

XOR

XPN

Zxx

•

STANDARD FILE TYPES

Table B-1 (Cont.)
Standard File Types

Kind of File

Binary

ASCII

ASCII, Binary

ASCII, Binary

ASCII

ASCII

ASCII

ASCII

ASCII

ASCII

ASCII

ASCII

ASCII

All

ASCII

ASCII

ASCII

ASCII

ASCII

Binary

Object

ASCII

B-7

Meaning

Special system files

TECO macro

Temporary files

Temporary files

Typeset input for producing
a . BLB file

Typeset input for producing
a . CCO file

Typeset input for producing
a • DOC file

Typeset input for producing
error message text

Typeset input for producing
a .HLP file

Typeset input for producing
a logic manual

Typeset input for producing
a .MAN file

Typeset input for producing
a programming specification

Typeset input for producing
an . OPR file

Test data

Command file for TV

Text file

Updates flagged in margin
(FILCOM)

SCRIPT monitor (WATCH) file

Wirelist

Module data for XOR tester

Expanded save file (FILEX
and LINK)

EDIT original file (all xx)

•

•

•

•

•

•
APPENDIX C

THE BAUD-RATE SWITCHES FOR VTSO AND VT52 TERMINALS

DESIRED Sl-S2
BAUD RATE SWITCH POSITIONS

ENVIRONMENT Trans . Receiv. VT52 VT50(H)

• OFF-LINE 9600 9600 1-G 1-G
4800 4800 n.a. 1-F
2400 2400 1-F 1-E
1200 1200 1-E 1-D

600 600 1-D 1-C
llO llO 1-B 1-B

FULL DUPLEX 9600 9600 2-G 2-G
WITH LOCAL 4800 4800 7-A 2-F

• COPY 2400 2400 2-F 2-E
1200 1200 2-E 2-D

600 600 2-D 2-C
300 300 4-A n.a.
150 150 5-A n.a.
llO llO 2-B 2-B

FULL DUPLEX 9600 9600 3-G 3-G
4800 4800 7-C 3-F
2400 2400 3-F 3-E
1200 1200 3-E 3-D

600 600 3-D 3-C • 300 300 4-C 4-A
150 150 5-C 5-A
llO llO 3-B 3-8

75 75 6-C 6-A

4800 9600 7-G n.a.
4800 2400 7-F n.a.
4800 1200 7-E n.a.
4800 600 7-D n.a.
4800 llO 7-B n.a.

300 9600 4-G 4-G
300 4800 n.a . 4-F
300 2400 4-F 4-E
300 1200 4-E 4-D
300 600 4-D 4-C
300 llO 4-B n.a .

•
C-1

THE BAUD-RATE SWITCHES FOR VT50 AND VT52 TERMINALS

DESIRED Sl-S2
BAUD RATE SWITCH POSITIONS

ENVIRONMENT Trans. Receiv. VT52 VT50(H)

FULL DUPLEX 150 9600 5-G 5-G
(Cont.) 150 4800 n.a. 5-F

150 2400 5-F 5-E
150 1200 5-E 5-D
150 600 5-D 5-C
150 llO 5-B n.a.

75 9600 6-G 6-G
75 4800 n.a. 6-F
75 2400 6-F 6-E
75 1200 6-E 6-D
75 600 6-D 6-C
75 llO 6-B n.a.

n.a. - This combination of transmitting and receiving Baud rates
is not available on this terminal.

The Positions of Switch Sl

Switch 1 genera l ly dictates
positions, the transmitting
speed, which must be indicated
1 is the most counterclockwise

transmitting speed. In the "match"
speed will be the same as the receiving
by the setting of switch S2. Position
position.

1 - Off-Line
2 - Full Duplex with Local Copy
3 - Full Duplex
4 - 300 Baud
5 - 150 Baud
6 - 75 Baud
7 - 4800 Baud (VT52 only)

The Positions of Switch S2

Switch S2 generally dictates rece1v1ng speed. In the "match"
positions, the receiving speed will be the same as the transmitting
speed, which must be indicated by the setting of Switch Sl. Position
A is the most counterclockwise position.

VT52

A - Match (Bell 103) - Local Copy
B - llO Baud
C - Match (Bell 103)
D - 600 Baud
E - 1200 Baud
F - 2400 Baud
G - 9600 Baud

C-2

VTSO(H)

A - Match (Bell 103)
B - llO Baud
C - 600 Baud
d - 1200 Baud
E - 2400 Baud
F - 4800 Baud
G - 9600 Baud

•

•

•

•

•

•

•

•

•

•

THE BAUD-RATE SWITCHES FOR VT50 AND VT52 TERMINALS

If both switches are in a
function - the key-click
transmitted and received.
on the VT52:

"match" position, the terminal will not
will cease, and characters will cease to be
The following switch positions are illegal

1-A 1-C 2-A 2-C 3-A 3-C

The following switch positions will cause the VTSO and VTSOH to fail:

1-A 2-A 3-A 7-A 7-B 7-C 7-E 7-F 7-G

Transmission and reception will resume if the switches are reset to a
valid position .

C-3

I

•

•

•

•

•

•

•

•

(exclamation mark)
character, 2-11, 3-2

$ (escape} character, 1-2,
2-7

% (percent sign) character,
4-6.1, 4-8

* (asterisk) character, 4-6,
4-7, 10-1, 10-8

+ (plus sign) character,
9-23

- (hyphen) character, 2-10,
5-9

(colon) character, 4-2

? (question mark) character,
2-4

@ (at sign) character, 1-8,
10-1, 10-7

INDEX

\ (backslash) character, 2-11

Abbreviated input,
recognition and, 2-10

Abbreviated terminal input,
2-8

ACCESS command, 6-9
Accessing directories, 6-9
ACCOUNT command,

SET, 4-6
Account descriptor, 4-6
Accounts,

user, 1-9

Index-1

/ AFTER: switch, 6-13
ALGOL, 9-1
Allocation,

directory storage, 6-16
permanent disk storage,

6-17
tape, 7-1
working disk storage,

6-16
APL, 9-1
APPEND command, 6-11
Appending files, 6-11
ARCHIVE command, 6-20
Archive requests,

cancelling, 6-23
ARCHIVE subcommand, 6-21
ARCHIVE-STATUS command,

INFORMATION, 6-19
Archived files,

retrieving, 6-23
Arguments,

command, 2-2
CREATE command, 5-9
EDIT command, 5-9
LOAD-class command, 9-15,

9-22
Assembler, 9-2
Assigning devices, 7-2
Attributes,

file, 4-6
AVAILABLE-DEVICES command,

INFORMATION, 7-2

B EDIT command, 5-5
Backup file, 5-5
Backup tapes,

system, 2-15
BASIC, 9-1
Batch commands, 10-1
Batch control file, 10-1
Batch input queue, 10-3
Batch job, 10-1

cancelling, 10-7
checking a, 10-5
modifying, 10-7

Batch job output, 10-6
Batch job state, 10-6
Batch log file, 10-6
Batch output,

interpreting, 10-6
Batch subcommand, 10-1
BATCH-REQUESTS command,

INFORMATION, 10-5
BATCH.CMD file, 10-2

April 1982

Baud rate, 1-9
switches, C-1

C EDIT command, 5-14
CANCEL command, 6-13, 6-18

6-20, 10-7
CANCEL MOUNT command, 7-2,

7-5
CANCEL PRINT command, 6-13
Cancelling archive requests,

6-20
Cancelling batch job, 10-7
Cancelling print reques ts,

6-13
Cancelling retrieval

requests, 6-21, 6-23
Changing a subroutine

library, 9-12
Character,

(exclamation ma rk),
2-11, 3-2

$ (escape), 1-2, 2-7
% (percent sign), 4-6

4-8
* (asterisk), 4-6, 4-7,

10-1, 10-8
+ (plus sign), 9-23
- (hyphe n), 2-10, 5-9

(colon), 4-2
? (question mark) , 2-4
@ (at sign), 1-8 , 10-1 ,

10-7
\ (backslash), 2-11
CTRL (control), 1-2
CTRL/C, 1-3, 1-11, 8-4
CTRL/F I 4-9
CTRL/H, 2-14
CTRL/L, 1-14
CTRL/O, 1-12.1, 8-4
CTRL/Q, 1-9
CTRL/R , 2-12
CTRL/S, 1-9
CTRL/T I 8-5
CTRL/U, 2-12
CTRL/V I 4-8
CTRL/W, 2-13
ESC (escape) , 2-7, 4-9
escape, 1-2
linefeed, 1-14
special, 4-8
wildcard, 4-6, 4-9, 6-2
\ (backslash) , 2-11

Checking a batch job , 10-5
. CMD fil e , 9-15
COBDDT program, 9- 3
COBOL I 9-1
/COBOL switch, 9-23

INDEX (CONT.)

Code,
file protection, 4-6

COMAND.CMD, 1-12.3
Command,

Index-2

ACCESS, 6-9
APPEND, 6-11
ARCHIVE, 6-19
CANCEL, 6-13, 6-18, 6-20,

10-7
CANCEL MOUNT, 7-2, 7~5
CANCEL PRINT, 6-13
COMPILE, 9-3
CONNECT I 6-8
CONTINUE, 8-7
COPY, 4-11, 6-10
CREATE, 5-2
DAYTIME, 2-2
DEBUG, 9-2
DEFINE, 4-10, 4-12
DELETE, 6-16
DIRECTORY, 2-10, 4-7
DISMOUNT STRUCTURE, 6-2
DISMOUNT TAPE, 7-2, 7-6
EDIT, 5-7
EXECUTE, 9-2
EXPUNGE, 6-16
guideword, 2-2, 2-7
HELP, 8-2
INFORMATION, 2-9
INFORMATION,

ARCHIVE-STATUS, 6-22
INFORMATION

AVAILABLE-DEVICES, 7-2
INFORMATION

BATCH-REQUESTS, 10-5
INFORMATION DEFAULTS,

6-14
INFORMATION DISK-USAGE,

6-8, 6-18
INFORMATION JOB-STATUS,

1-1 0 I 6-9
INFORMATION LOGICAL NAME,

4-13
INFORMATION

MOUNT-REQUESTS, 7-2,
7-5

INFORMATION
OUTPUT-REQUESTS, 6-12

INFORMATION
RETRIEVAL-REQUEST, 6-20,
6-23

INFORMATION STRUCTURE,
6-2

INFORMATION
TAPE-PARAMETERS, 7-3

INFORMATION TERMINAL, 1- 4
I NFORMATION VOLUMES, 7-4
level, 1-4
LOAD, 9-2

April 1982

t

•

•

•

•

•

•

•

•

INDEX (CONT.)

Command (Cont.)
LOAD-class, 9-2
LOGIN I 1-10
LOGOUT, 1-13
MODIFY, 6-13, 10-7
MODIFY PRINT, 6-13
MOUNT STRUCTURE, 6-2
MOUNT TAPE, 7-2, 7-4
name, 2-2
POP, 8-7
PRINT I 6-11
FUSH, 8-7
RECEIVE LINKS, 3-5
RECEIVE SYSTEM-MESSAGES,

3-6
REFUSE LINKS, 3-5
REFUSE SYSTEM-MESSAGES,

3-6
reissuing LOAD-class, 9-4
REMARK I 3-3
RENAME, 6-10
RETRIEVE, 6-19, 6-23
RUN I 8-3 I 9-5
SAVE, 9-14
SET ACCOUNT, 1-11, 4-6
SET ALERT, 1-12.2
SET DEFAULT, 6-14
SET DEFAULT PRINT, 6-14
SET DEFAULT SUBMIT, 10-4
SET DIRECTORY

ARCHIVE-ONLINE-EXPIRED-FILES,
6-24, 6-26

SET FILE EXPIRED, 6-25
SET FILE ONLINE-EXPIRATION,

6-25
SET FILE PROTECTION, 6-7
SET FILE RESIST, 6-19
SET SESSION-REMARK, 1-10
SET TYPEOUT MODE, 8-6
START I 9-2
subcommands, 2-3
SUBMIT I 10-3
switches, 2-2, 2-6
SYSTAT I 3-1
TALK I 3-2
TERMINAL, 1-5
TERMINAL FLAG, 1-16
TERMINAL LENGTH, 1-14
TERMINAL LOWERCASE, 1-15
TERMINAL NO FORMFEED,

1-14
TERMINAL NO INDICATE,

1-14
TERMINAL NO LOWERCASE,

1-16
TERMINAL NO PAUSE, 1-7
TERMINAL NO RAISE, 1 - 15
TERMINAL NO TABS, 1-15
TERMINAL PAUSE, 1-6

Index-3

Command (Cont.)
TERMINAL RAISE, 1-16
TERMINAL SPEED, 1-7
TERMINAL WIDTH, 1-14
TOPS-20, 2-1
TRANSLATE, 4-3
UNDELETE, 6-17
UNLOAD, 7-3
using LOAD-class, 9-17
VDIRECTORY, 6-6

Command arguments, 2-2
Command arguments,

LOAD-c lass , 9-15, 9-22
Command switches,

EDIT I 5-8
LOAD-c lass , 9-23
PRINT, 6-12
SUBMIT, 10-4

Command terminator, 2-3
Commands,

batch, 10-1
device handling, A-3
information, A-4
program control, A-3
system program, 8-1
terminal, A-4

Comparing files, 8-2, 9-16
Compil e, 9-1, 9-18
COMPILE command, 9-3
/ COMPILE switch, 9-3
Compiler, 9-1, 9-2
Compiler defaults, 9-20
Compiler switches, 9-20
Concatenating fil es , 9-17,

9-23
CONNECT command, 6-8
Connecting to directories,

6-7
Contents of memory, 8-7,

8-8
CONTINUE command, 8-7
Control file,

batch, 10-1
creating a, 10-2

Controlling programs, 8-3
COPY command, 4-11, 6-10
Copying files, 6-10
Core image,

executab l e , 9-5
CPL I 9-1
CREATE command, 5-2
CREATE command arguments,

5-9
Creating a control file,

10-2
Creating a libr ary file,

9-11
/ CREF switch, 9-8
.CRF fil e , 9-8

April 1982

.CRF file, 9-8
Cross-reference listing,

9-7
.CTL file, 10-1
CTRL (control) character,

1-2
CTRL key , 1-2
CTRL/ C character, 1-3, 1-11,

8-4
CTRL/ F character, 4-9
CTRL/ H characte r, 2-14
CTRL/ L character, 1-14
CTRL/ O characte r, 1-12.1, 8-4
CTRL/ Q characte r, 1-9
CTRL/ R characte r, 2-12
CTRL/ S characte r, 1-9
CTRL/ T characte r, 8-5
CTRL/ U character, 2-12
CTRL/ V character, 4-8
CTRL/ W character, 2-13

D EDIT command, 5-13
DAYTIME command, 2-2
DDT program, 9-3
DEBUG command, 9-2
Debugging a program, 9-3
Debugging program, 9-3
DECnet file attributes, 4-6
DEFAULT comma nd,

SET, 6-14
Default directory, 4-2
DEFAULT PRINT command,

SET, 6-14
Defaults,

compiler, 9-20
DEFAULTS command,

INFORMATION, 6-14
DEFINE command, 4-10, 4-12
DELETE command, 6-15
DELETE key, 1-2, 2-11
Deleting files, 6-15
Descriptor,

account, 4-6
Destination file, 9-16
Device names, 4-2
Devices,

assigning, 7-2
Directories,

accessing, 6-9
connecting to, 6-7

Directory,
default, 4-2
logged-in, 4-2, 6-2
names, 4-2
protection numbe r, 6-4
storage allocation, 6-18

INDEX (CONT.)

DIRECTORY command, 2-10,
4-7, 6-5

DIRECTORY subcommands, 2-3,
2-10, 6-24

Disk storage allocation,
permanent, 6-17
working, 6-16

DISK-USAGE command,
INFORMATION, 6-16

DISMOUNT STRUCTURE command,
6-2

DISMOUNT TAPE command, 7-2,
7-6

OSK: I 4-2 I 4-13
DUMPE R program, 4-5, 6-21,

7-1, 7-3

E EDIT command, 5-5
EDIT command, 5-7

BI 5-5
C, 5-14
D, 5-13
EI 5-5
EQ, 5-4, 5-5
ESC I 5..:.3
EU, 5-10
G, 9-4, 9-17
I, 5-6, 5-8, 5-14
N, 5-15
P, 5-11
R, 5-12
RETURN, 5-4
S, 5-12
T, 5-15

EDIT command arguments, 5-9
EDIT command switches, 5-8
EDIT program, 5-1, 5-2
Editing files, 5-2
Editor, 5-1
EQ EDIT command, 5-4, 5-5
Erasing files, 6-15
ESC (escape) character, 2-7,

4-9
ESC EDIT command, 5-3
ESC key, 1-2
Escape character, 1-2
EU EDIT command, 5-10
.EXE file, 8-3, 9-5
Executable core i mage, 9-5

file, 9-5
program, 8-3, 9-18

EXECUTE command, 9-2
Executing a program, 9-2,

9-7
Expired files,

archiving automatically, 6-24

Index-4 April 1982

•

•

•

•

•

•

•

•

•

EXPUNGE command, 6-16

FILCOM program, 8-2, 9-16
File,

archiving, 6-21
attributes, 4-6
backup, 5-5
batch control, 10-1
batch log, 10-6
BATCH.CMD, 10-2
.CMD, 9-15
creating a control, 10-2
creating a library, 9-11
.CRF, 9-8
.CTL, 10-1
destination, 9-16
.EXE, 8-3, 9-5
executable, 9-5
generation number, 4-4

4-5 I 4-9
indirect, 9-15
library, 9-9
. LOG I 10-6
LOGIN.CMD, 1-12, 4-11
MIGRATION.ORDER, 6-18
migration, 6-17
module, 9-6
name, 4-4
protection code, 4-6
protection number, 6-4,

6-5
.REL, 9-1
specification, 4-1
structure, 6-1
structure name, 6-1
SWITCH.IN!, 5-8
temporary, 6-7
type, 4-4, 5-3, B-1
using a library, 9-11

FILE PROTECTION command,
SET, 6-7

Files,
appending, 6-11
archiving, 6-21
comparing, 8-2, 9-16
concatenating, 9-17, 9-23
copying, 6-10
deleting, 6-16
editing, 5-2
erasing, 6-15
migration of, 6-18
printing, 6-11
restoring, 6-16
retrieving archived, 6-23

FORDDT program, 9-3
FORTRAN, 9-1
/FORTRAN switch, 9-23

INDEX (CONT.)

Index-5

Full terminal input, 2-6,
4-8

G EDIT command, 9-4, 9-17
Generation number,

file, 4-4, 4-5, 4-9
Getting information, 8-2
Global switches, 10-4
Group, 6-4
Guideword,

command, 2-2, 2-7

HELP command, 8-2
Hyphen in command lines,

9-12

I EDIT command, 5-6, 5-8,
5-14

Identifier,
tape volume, 7-4

Image,
executable core, 9-5

Indirect file, 9-15
Information,

getting, 8-2
INFORMATION command, 2-9
INFORMATION commands,

ARCHIVE-STATUS, 6-22
AVAILABLE-DEVICES, 7-2
BATCH-REQUESTS, 10-5
DEFAULTS, 6-14
DISK-USAGE, 6-18
JOB-STATUS, 1-10, 6-9
LOGICAL NAME, 4-13
MOUNT-REQUESTS, 7-2, 7-5
OUTPUT-REQUESTS, 6-12
RETRIEVAL-REQUEST, 6-20
STRUCTURE, 6-2
TAPE-PARAMETERS, 7-3
TERMINAL, 1-4
VOLUMES, 7-4

Input,
full, 4-8
recognition, 4-8, 4-9
recognition and

abbreviated, 2-10
terminal, 1-7

Input queue,
batch, 10-3

Interpreting batch output,
10-6

/ !SAVE switch, 5-8

April 1982

Job,
batch, 10-1
cancelling batch, 10-7
checking a batch, 10-5
modifying batch, 10-7

Job output,
batch, 10-6

Job state,
batch, 10-6

JOB-STATUS command,
INFORMATION, 6-9

Key,
CTRL, 1-2
DELETE, 1-2, 2-11
ESC, 1-2
RETURN, 1-3
TAB, 1-3

Labeled tapes, 7-1
using, 7-4

Letters,
lowercase, 1-15
uppercase, 1-15

Library,
changing a subroutine,

9-13
subroutine, 9-9

Library file, 9-9
creating a, 9-11
using a, 9-12

/ LIBRARY switch, 9-9, 9-11
Line number, 5-4, 5-10,

5-15
Line width,

terminal, 1-14
Linefeed character, 1-14
LINK program, 9-2
Links,

terminal, 3-2
LINKS command,

RECEIVE, 3-5
REFUSE, 3-5

/ LIST switch, 9-3
Listing,

cross-reference, 9-7
Load, 9-18
Load averages, 8-5
LOAD command, 9-2
LOAD-class command, 9-2

reissuing, 9-4
using, 9-17

LOAD-class command
arguments, 9-15, 9-22

INDEX (CONT.)

LOAD-class command switches,
9-23

Local switches, 10-4
. LOG f i 1 e , 1 0- 6
Log file,

batch, 10-6
Logged-in directory, 4-2,

5-9' 6-2
Logical name, 4-10, 4-13
LOGICAL NAME command,

INFORMATION, 4-13
LOGIN command, 1-8
LOGIN.CMD file, 1-12.2, 4-11
LOGOUT command, 1-13
Lowercase letters, 1-15

Index-6

MACRO, 9-1
Magnetic tape, 7-1
MAIL program, 3-4, 10-3
MAKLIB program, 9-9, 9-11
/ MASTER switch, 9-13
Memory,

contents of, 8-7, 8-8
Messages, 1-10

process termination, 8-6
status, 8-5
system identification, 1-4

Migration,
file, 6-18

Migration of files, 6-18
MIGRATION.ORDER file, 6-18
MODIFY command, 6-13, 10-7
MODIFY BATCH command, 10-2
MODIFY PRINT command, 6-14
Modifying batch job, 10-7
Module file, 9-6
MOUNT command,

CANCEL, 7-2, 7-5
Mount count, 6-2
MOUNT STRUCTURE command,

6-2
MOUNT TAPE command, 7-2,

7-4
MOUNT-REQUESTS command,

INFORMATION, 7-2, 7-5
Multi-module program, 9-5

N EDIT command, 5-15
Name,

command, 2-2
device, 4-2
directory, 4-2
file, 4-4
file structure, 6-1

April 1982

I

•

•

•

•

•

•

•

INDEX (CONT.)

Name (Cont.)
logical, 4-10
user, 1-9

/ NOBINARY switch, 9-8
/ NOTE switch, 6-14
/ NOWAIT switch, 7-2, 7-5
NUL: device name, 4-2
Number,

file generation, 4-9
line, 5-4, 5-10, 5-15
project-programmer, 4-3

Object program, 9-1
Off-line storage, 6-19
On-line expiration date, 6-25
Output,

batch job, 10-6
interpreting batch, 10-6
terminal, 1-6

OUTPUT-REQUESTS command,
INFORMATION, 6-12

P EDIT command, 5-11
Page length,

terminal, 1-14
Parameters,

setting tape, 7-3
terminal, 1-13

Passwords,
user, 1-9

Permanent disk storage
allocation, 6-17

PLEASE program, 3-5, 7-3
POP command, 8-7
PRINT command, 6-11

CANCEL, 6-13
MODIFY, 6-13
SET DEFAULT, 6-14

PRINT command switches,
6-12

Print queue, 6-13
Print requests,

cancelling, 6-13
Printing files, 6-11
Process termination

messages, 8-6
Program,

COBDDT, 9-3
DDT, 9-3
debugging, 9-3
debugging a, 9-3
DUMPER, 4-5, 7-1, 7-3
EDIT, 5-1, 5-2
executable, 8-3, 9-18
executing a, 9-2, 9-7

Index-7

Program (Cont.)
FILCOM, 8-2, 9-16
FORDDT, 9-3
LINK, 9-2
MA IL, 3- 4 , 10- 3
MAKLIB, 9-9
multi-module, 9-5
object, 9-1
PLEASE, 3-5, 7-3
RDMAIL, 1-10
relocatable, 9-17
saving a, 9-14
source, 9-1, 9-18
TV, 5-1, 5-2
using relocatable, 9-18

Program commands,
system, 8-1

Programs,
controlling, 8-3
running, 8-3
system, 8-1

Proj e ct-programmer number,
4-3

Protection code,
file, 4-6

Protection number,
directory, 6-4
file, 6-4, 6-5

Protection system, 6-6
PS:, 6-1
Public structure, 6-1
PUSH command, 8-7

Queue,
batch input, 10-3
print, 6-13

R EDIT comm a nd, 5-12
RDMAIL program, 1-12
RECEIVE LINKS command, 3-5
RECEIVE SYSTEM-MESSAGES

command, 3-6
Recognition and a bbreviated

input, 2-10
Recognition terminal input,

2-7, 4-8, 4-9
REFUSE LINKS command, 3-5
REFUSE SYSTEM-MESSAGES

command, 3-6
Reissuing LOAD-class

command, 9-4
.REL file, 9-1
Relocatable program, 9-17

using, 9-18
/ RELOCATABLE switch, 9-21

April 1982

REMARK command, 3-3
RENAME command, 6-12
/R EPLACE switch, 9-13
Restarts,

system, 2-15
Res toring file s , 6-15
Retriev al requests,

c ancelling, 6-21, 6-23
RETRIEVAL-REQUEST command,

INFORMATION, 6-20, 6-23
RETRIEVE command, 6-18,

6-20
Retrieving archived files,

6-20 I 6-23
RETURN EDIT command, 5-4
RETURN key , 1-3
RUN command, 8-3, 9-5
Running programs, 8-3

S EDIT command, 5-12
SAVE command, 9-14
Sa v ing 2 program, 9-14
Session-remark, 1-12
Se t,

tape , 7-5
SET ACCOUNT command, 4-6
SET ALERT command, 1-12.2
SET DEFAULT comma nd, 6-15
SET DEFAULT PRINT command,

6-15
SET DEFAULT SUBMIT command,

10-4
SET DIRECTORY

ARCHIVE-ONLINE-EXPIRED­
FILES command, 6-24,
6-26

SET FILE EXPIRED command,
6-25

SET FILE ONLINE-EXPIRATION
command, 6-25

SET FILE RESIST (migration),
6-19

SET FILE PROTECTION command,
6-7

SET SESSION-REMARK command,
1-10

SET TYPEOUT MODE, 8-6
Setname,

tape, 7-5
Setting parameters, 1-13
Setting terminal speed, 1-9
Setting tape parameters,

7-3
Source program, 9-1, 9-18
Special character, 4-8
Specification,

file, 4-1

INDEX (CONT.)

Standard file types, B-1
START command, 9-2
/ START switch, 7-5
State,

batch job, 10-6
Status messages, 8-5
Stoppage,

system, 2-15
Storage allocation,

directory, 6-16
off-line, 6-19
permanent disk, 6-17
working disk, 6-16

Structure,
file I 6-1
public, 6-1

STRUCTURE command,
DISMOUNT I 6-2
INFORMATION, 6-2
MOUNT, 6-2

Structure name,
file, 6-1

Subcommand,
ARCHIVE, 6-19
batch, 10-1

Subcommands,
command, 2-3
DIRECTORY, 2-3, 2-10

SUBMIT command, 10-3
SET DEFAULT, 10-4

SUBMIT command switches,
10-4

Subroutine library, 9-9
changing a, 9-12

Subroutines, 9-9
Switch,

Index-8

/ AFTER:, 6-13
/ COBOL, 9-23
/ COMPILE I 9-3
/ CREF, 9-8
/ FORTRAN, 9-23
/ !SAVE, 5-8
/ LIBRARY, 9-9, 9-11
/ LIST I 9-3
/ MASTER, 9-13
/ NOBINARY I 9-8
/ NOTE I 6-14
/ NOWAIT, 7-2, 7-5
/ RELOCATABLE, 9-21
/ REPLACE, 9-13
/ START, 7-5
/ USER, 6-12, 10-5
/ VOLIDS, 7-4

SWITCH.IN! file, 5-8
Switches,

baud rate, C-1
command, 2-2, 2-6
compiler, 9-20
EDIT command, 5-8

April 1982

I

•

•

•

•

•

•

•

•

Switches (Cont.)
global, 10-4
LOAD-class command, 9-23
local, 10-4
PRINT command, 6-12
SUBMIT command, 10-4

SYSTAT command, 3-1
System,

device names, 4-2
protection, 6-6
backup tapes, 2-15
program commands, 8-1
programs, 8-1
restarts, 2-15
stoppage, 2-15

SYSTEM-MESSAGES command,
RECEIVE, 3-6
REFUSE, 3-6

T EDIT command, 5-15
TAB key, 1-3
Tab stops, 1-15
TALK command, 3-2
Tape,

allocation, 7-1
labeled, 7-1
magnetic, 7-1
parameters, setting, 7-3
set, 7-5
setname, 7-5
system backup, 2-15
unlabeled, 7-1
using labeled, 7-4
volume identifier, 7-4
writing to, 7-1

TAPE command,
DISMOUNT, 7-2, 7-6
MOUNT, 7-2, 7-4

TAPE-PARAMETERS command,
INFORMATION, 7-3

Temporary file, 6-7
Terminal characteristics,

1-4, 1-8
TERMINAL command, 1-5
TERMINAL FLAG command, 1-16
Terminal input, 1-7

abbreviated, 2-8
full, 2-6
recognition, 2-7

TERMINAL LENGTH command,
1-14

Terminal line width, 1-14
Terminal links, 3-2
TERMINAL LOWERCASE command,

1-15
TERMINAL NO FORMFEED

command, 1-14

INDEX (CONT.)

Index-9

TERMINAL NO INDICATE
command, 1-14

TERMINAL NO LOWERCASE
command, 1-16

TERMINAL NO PAUSE command,
1-7

TERMINAL NO RAISE command,
1-15

TERMINAL NO TABS command,
1-15

Terminal output, 1-6
Terminal page l e ngth, 1-14
Terminal parameters, 1-13
TERMINAL PAUSE command, 1-7
TERMINAL RAISE command,

1-16
Terminal speed, 1-4, 1-7,

1-9
TERMINAL SPEED command, 1-7
Terminal type, 1-5, 1-9
TERMINAL WIDTH command,

1-14
Termination messages,

process, 8-6
Terminator,

command, 2-3
TOPS-20 command, 2-1
TRANSLATE command, 4-3
TV program, 5-1
Type,

file, 4-4, 5-3

UNDELETE command, 6-15
Unlabeled tapes, 7-1
UNLOAD command, 7-3
Uppercase letters, 1-15
User accounts, 1-9
User names, 1-9
User passwords, 1-9
/ USER switch, 6-12, 10-5
Using a library file, 9-11
Using labeled tapes, 7-4
Using LOAD-class command,

9-17
Using relocatable program,

9-18

VOL ID, 7-4
/ VOLIDS switch, 7-4
Volume identifier,

tape, 7-4
VOLUMES command,

INFORMATION, 7-4
VTlOO terminal, 1-9
VT125 terminal, 1-9

April 1982

Wildcard character, 4-6.1,
4-9

Working disk storage
allocation, 6-16

INDEX (CONT.)

Writing to tape, 7-1

Index-10

•

•

•

•
April 1982

