TOPS-20
LINK Reference Manual

AA-4183C-TM, AD-4183C-T1

March 1983

This document describes LINK=20, the linking loader for
TOPS-20.

This document supersedes the document of the same name,
Order No. AA=4183C-TM, publishied April 1982,

OPERATING SYSTEM: TOPS-20 V5
SOFTWARE: LINKE=20 V5.1

Coftwdrd nd manuall should Be Sidensd By 108 Ghd oroes sl I P Unded Siales 6
&0 Ty maanesl degiribiilon oenle Dubsioe the Unsbed Siades. orders should be deecied o the noanesi
DIGITAL Fusld Saldd DHTSm o Faprasaniiing

HorikeEs! Mig-Allamic Regicn Caniral Region WesbiF Fagion

Dugrial Equepment Corporaion Osgital Equpment Comporaton Dupal Equipment Corporaton
0 Box CS2008 Arcessords and Suppbes Conler Acoessores and Suppbes Cantoer
Bankug bew HampiFens 00061 1050 E it Rameotcs Road X Canbbaan Dereg

Tohponoa | GO EEL - GEED Schaumburg, Wecss 500194 Sunmywale, Cablormag S40845

Tarhapaceras | 31 2pE4 0= 56127 Tk (408 T34-4305

First printing, January 1976
Revised, January 1978
Revised, April 1582
Updated, March 1583

& Dagital Eqguipmant Corporation 19576, 1978, 1582, 1983, Al Rights Resenned

The irlcermation in this document is subgect i change wihout nolice and should
nod be construed as a commitment by Degital Equipment Conporation. Dwgilal
Equipmeanl Corporalion assumes no responsdility ior any errors thal may
appeas in this documr|

The softwans descrided in this document 5 furnshed under & hcense and may
only b used of copeid in acconrdande wilh the terms of Such hoanse.

Mo responsibiity i3 assumed lof the use of rehability of S0Mwase On BouIpMeM
that is mot supplied by DIGITAL or its affiliated companies

Thee lolovwing are irademarks of Digital Equpment Corporation:

£020020"

DEC MASZBEUS UNIBUS
DECmate PDP VAX
DEE:rBt&m—m FOs VMS
DECSYSTEM-20 Profgssicnal VT

DECUS Rainbow Work Procassor
DECwriter RSTS

CHBOL RSX

The posiage-prepaid READER'S COMMENTS form an the lasi page of this
document requests the user's crilical evaluabion b0 assist us in prepanng fubure
OCUMmeniation.

COMTENTS

FREFACE

CHAPTER 1 INTRODUCTION TO LINK
1.1 INPUT TO LINE . . . &« & &« & « = o = = s 2 s =« s =« 1=1
1.1.1 Object Modules & & &« = 2 = = = &« 1-1
1.1.2 Commands to Link . e
]-1-3‘ L braE[ES ® = ® % ® ® & & ® & & & & & & & & & @ 1=2
1.2 OUTPUT FROM LIME . . s & a2 @ = = @ = 1-2
1.3 LINK'S OVERLAY ?ACIL[TY e
1.4 O5ING LINE . . & « « & & & & s &« # & # s » ¢ « s » 1=3

CHAPTER 2 USING LINE AUTOMATICALLY
2.1 COMMAND FORMATS . . & .« &« & « = &« = = 2 = =« = =« » 2=1
P COMMAND SWITCHES . . . s & 8 s % 8 =8
2.3 EXAMPLE OF USIHNG LIHEK AUTDHATTCALL? s s s = & s « £2=3

CHAPTER 3 USING LINE DIRECTLY
3.1 COMMAND STRING FORMAT . . + & &« 2 2 o = 2 2 s = = 3=2
3.2 SWITCHES TO LIMKE . . . s = 2 = = = = =2 s = = = 3=13
3.2.1 Command Scanner 5w1tchea e L
1.2.2 Link Switches . . e 1
3.1 ACCESSING ANOTHER UEEH 3 FILE .o e # ¢ o5 & 3=T78
3.3.1 Using Logical Hames « « « + & . 3=79
3:3.2 Giving the DEFINE Command . . . - - : = 3=-79
3.2.3 Using the Logical WHame . . . =« = = 3=73
3.3.4 Using Project-Programmer Humbtrs N s o+ s+ s ¢ 3=BD
3.3.4.1 Using the TRAHMSLATE Command « = = = J3=BO
3.3.4.2 Using the Project-Programmer Number . . . - . 3=B0O
3.4 LIBRARIES AND SEARCHES . . . « = = = « « 1-HD
1.5 USING EXTENDED ADDRESSING HITH LIHF e oo+ o+ o 3=Bl
1.6 EXAMPLES USIHG LIMK DIRECTLY . . + « o« &« = a 2 & 1=-pg2

CHAPTER 4 OUTFUT FROM LINK
4.1 THE EXECUTABLE FROGRAM . « + « &« + « s 5 + s s = + 4=1
4.2 OUTPUT FILES 5 & = & 2 s = = 2 s = = « #@=1
4.2.1 Executable Files e &
4.2.1.1 Format of Sharable Eave F1]EE e
4.2.1.2 Program Data Veckdr . & & ¢ & = = & =« = = o = « 4=5
4.2.2 LOG Files . « & & « o & & o 4 s & s 5 & &« s s » #=86
4l2i3 H-’P files ¥ * L} L] * L L] * L, L] * * L L] * * L} L L] ._ﬁ‘
4.2.4 Symbol Files . . . &+ & ¢ & & & & & & = 5 s s =« + d=8
4.3 MESBRGES . . . +« & & &« o & # o« 2 4 & « 4 =« &« &« &« » 4-8

iii

CHAPTER

B & a

L] # &

" &

[T T T R T N G T N RN T N N RN T R RN N R R R (]
s = @ ® m @ W 5 = o® @ m om

B S O 00 00 wd = =l] ol O AT s B B B Lak Lal LaF B Pl Pl o
o o@ om & a Eow o owm a = P

APPENDIX A

APPENDIX B

B.1
B.2
APPENDIX C
IMDEX
FIGURE 5=1
TRBELE 2=1
B=-1
B=2

& ow

L

*

Fudl =2 Bk = =2

Ll ok =

i Eab Pud =

e L B =

CONTENTS (Cont.}

OVERLAYS

OVERLAY STRUCTURES . . . & « & = s & 2 s s &=
Defining Owverlay Struckures . . « « « + =
An Overlay Example . . o « + o & & + & &

WRITABLE OVERLAYS 5 % B B % % B @ ® % ® # ®
Writable Owerlay Syntax . .

Writable Owerlay Error Hessaqes ‘& 6 W

RELOCATABLE OVERLAYS « & « & + & & &
Felocatable Overlay Syntax . . o « « « o«
Relocatable Overlay MesSSsages . . « + « « =«

RESTRICTIONS ON OVERLAYS e s
Restrictions on Absolute ﬂverlays Poe s
Restrictions on Relocatable Overlays . .
Restrictions on FORTRAM Overlays .

SIZE OF OVERLAY PROGRAMS+ + & &« &

DEBUGGING OVERLAYED PROGEAMS« .

THE OVERLAY HANDLER . . s % % o= @ =
Calls to the Overlay Handler -

Overlay Handler Subroutines
Overlay Handler Messages . . . « « « « « =
The FUNCT. Subroutine « « « .« « «

THE OVERLAY (OVL) FILE . e e
The Directory Block . . . « &« &« « & & & &
The Link Humber Table « + &« « &
The Link Mame Table . . s -
The Overlay Link

REL BLOCKS
LTME MESSAGES
DESCRIPTION OF MESSAGES

LIST OF MESSAGES = = « « & =

JOB DATA AREA LOCATIONS SET BY LINK

FIGURES
Example of an Overlay Structure
TABLES

Switches for System Commands s 8 o4 oo
Severity Codes . s o B F o4 @ m B om @ m m
Epecial Message EEgments 2 s R B B & & &

iv

* & # % ¥ @

I WA eh

Pt b el e et ed e e bf er i e]

LI U I T |
die e Lol Lab Bl Bl Bl B R Bl Bl

-
(W N T RN N NP R RF RN Vo T R
I I
—
W e

5=16

» 5=25
5=-30.1
.5=30.2
£=11
5-31
5=12

T
(5]
4

Index-1

PREFACE

This manual is the reference document for LIKE, the TOF5-20 linking

loader. The manual is aimed at the intermediate to highly-experienced
applications programmer, and contains complete documentation of LIMNK.

Chapter 1 provides a general introduction to LINK.

Chapter 2 describes automatic use of LINKE through one of the system

cogmands DEBUG, EXECUTE, or LOAD. This chapter iz sufficient for most
loading tasks.

Chapter 3 describes direct use of LINE. This discussion is useful for
large or complicated loads. This chapter also discusses libraries and
library searches,

Chapter 4 describes output from LINE: executable programs, most

output files, and LINK messages. Included are descriptions of the
internal format of sharable save ([(EXE) files.

Chapter 5§ discusses overlays, including overlay structures,
overlay=-related output £files, the overlay handler amd its messages,
and the FURCT. subroutine. This chapter has an extensive example of
an overlay load. Many of the elements of thisz example are of interest
outside the context of owverlays.

hppendix A gives & technical description of the output from the
languaage tramslators, which is in the fore of REL Blocks.

Appendix B lists all LINKE messages,
Appendix C describes the job dats ares.
The following TOPS=20 documents are also useful:

Document Order Musber

TOPS=20 User's Guide AA=4175C=-TM

TOPS=20 Commands Reference Manual AA=-5115B-TM

MACRD Assembler Reference Manual AA=4159C=TH

FORTEAN Language Manual AR-4158B-TH
COBOL-68 Lanauage Manual AR=53057B-TK
COBOL-74 Lanauage Manual AR=5059B-TK
TOPS=10,/TOFS5=-20 SPEAR Manual AR=JE833A-TH

DECS?Sttm—lﬂfDECETETEH—ED
Processor Reference Manual AR=HIGL1A-TE

CHAFTER 1
INTRODUCTION TO LINE

LINE is the TOP5-20's linking Iloader. It merges independently
compiled or assembled modules into & single executable pEogEam.

This merging process reguires LINK to perform the following functions:

1. Perform the relocation calculations by converting relocatable
addresses to wvirtwal addresses, and by binding segments and
PSECTs to addresses.

2. PResolve global symbol references by global chain fixups,
Polish fixups, and library searches.

3. Produce an executable program by providing some JOBDAT
information and a DDT runtime symbol table.

The virtual address space used Ffor loading your program is not

hardware memory. During leading and execution, the system simulaktes
this virtual space by swapping code between disk and hardware memorcy
as reguirted. For simplicity, we will refer to the virtual address

Epace as memory.

1.1 IWPUT TO LIBK

The primary input to LINK is the output from the language translators;
it is a binary file containing machine language code corresponding to
your program, called object modules. ©Other input may include Yaour
commands to LINE, and libreries containing object modules.

1.1.1 Object Modules

An object module is output from a language translator; it is part of
a binary file {REL file) containing machine language code
corresponding to your program. This file is foermatted inte blocks,
called REL Blocks, that LIMK recognizes and can handle appropriately.
The format of each REL Block Type is described in Appendiz A.

MHost object modules contain relocatable code. This means that the
addresses in the module are relative to the zero address. LINKE loads
the relacatable code at an arbitrary memary addeess, but adds a
constant to each address referenced in the program. This resolves
relative addresses to absolute addresses.

1-1

INTRODUCTION TO LIME

Using relocatable code simplifies your programming task and helps the

system operate more efficiently. Your programming task is simpler
because you need not worry about the loading addresses of your
PrOGLams. System operation 15 more efficient becsuse LIME can load

your program at any convenient place in memory.

Besides relocating and leading your object modules, LINE resolves
values for global symbols: those that are defined in one module and
used in others. LIMNE also resolves references to entry name sSymbols
when modules contaiming these symbols are loaded.

Using symbols in your programs makes your programming simplee. 1IE you
neged ko revise a program, it is much easier to change the value of a

symbal tham to change e2ch occurrence of the wvalue. This is
egpecially importanmt for global symbols. You need only change the
value im the defining module; the other modules do not need

retranslation.

l1.1.2 Commands to Link

LINK is controlled during loadimg by the command strings vyou give.
These strings consist of file specifications and switches. LINK
command steings are discussed in Chapter 3.

1.1.3 Libraries

M librarcy 15 & file containing object modules that may be neoeded Lo
resolve references in your program. For example; the FORTRAN libracy
FORLIB contains subroutipnes that may he referenced by the output from
the FORTRAM compiler. When loading FORTRAM-compiled code, LIHE
usually searches this library to satisfy any unresolved subroutine
calls. Most language kranslators have their own libraries.

You can construckt your own libraries, and have LINE search them for
necessary subroutines. Libraries amd searching are discussed in
Section 1.4,

1.2 OUTPUT FROM LINE

The primary output from LINK is the executable program, called the
core image. In the core image, all addresses are resolved to absolute
memory locations, and all symbols (including subroutine calls) are
resolved to abSolute wvalues or addresses.

Thiz core image may be oxecuted immediately or Saved a5 a sherable
gsave (EXE) file. The EXE file may be created automatically by LINK.
This occurs if you specify /SAVE when you run LINE; or if the program
is too complex to be left in core with LIBK.

You can also execute the core image under the control of a debugging
program.

During its processing, LINK generates messages, which are output Eo
your tegminal or a log file. Some of these give information about
LINE"s opeceation; some warn yYou about possible problems; some
identify errors. LIHNKE messages are described in Appendix B.

1-2

INTRODOCTION TO LIMK

At your option, LIMK can generate three special files: the map file,
the log file, and the symbol file. The map file contains information
about symbols in your program modules. The log file records LINK's
messages 0 that you can save them. The symbol file contains a symbol
table for the load and has a file extension of .5YM. LINKE's output
files are described in Chapter 4.

1.3 LINE'S OVERLAY FACILITY

1f your program is larger than your available memory, you can use
LINE's owverlay facility to make it fit in memory. To do thig, you
define a tree structure for the program's modules. Then at execution
time, only part of the tree iz in memory at one time. This reduces
the amount of memory needed for execution. See Chapter 5 for a
discussion on overlays.

1.4 USING LIME
You have two ways to use LINK:

1. ¥ou can uwse LIWNK automatically by means of the LOAD, EXECUTE,
or DEBUG system commands. This is the easiest and best way
to load many programs. Chapter 2 describes automatic use of
LINK.

2. You can use LINE directly by means of the LINE system
command . This is necessary only for wery large or
complicated loads, such as those invelving overlays. Chapter
3 discusses direct use of LINE.

1-3 March 1983

CHAPTER 2
USING LINE AUTOMATICALLY

The system commands LOAD, EXECUTE, and DEBUG invoke LINK
automatically. Each of these commands uwuses a simple command string;
the system converts the string into more complicated LINE commands.

Thigs discussion of the LOAD, EXECUTE, and DEBUG commands does not
attempt to describe them completely. Only those switches applying
directly to loading will be discussed here. For a full discussion,
see the TOP5-20 Commands EReference Manual.

These system commands invoke LINK:

The LOAD command uses LINE to load your object modules into
memory, but does pot execute the program. Before loading,
your sSource files are compiled, if necessary; this
compilation will occur if there are no object modules for the
specified source files, or if the object files are oclder tham
their source files.

The EXECUTE command uses LINK to load your program, amd then
executes the loaded program. Before loading, your source
files are compiled, if necessary.

The DEBUG command works like the EXECUTE command, except that
your program 15 executed wunder the contrel of a debugging
program. The debugging program that is loaded depends on the
type of program being loaded. For a COBQL program, COBDDT is
loaded. For a FORTRAN program, FORDDT is loaded. Far an
ALGOL program, ALGDDT is loaded. For any other language, DOT
is leaded. The system uses the file type to determine the
language in which the program is written. Therefore, it is
highly recommended that you wuse standard file types when
naming the files of your programs. Standard file types are
listed in the appropriate Cosmands Manual for the operating
aystem.

2.1 COMMAMD FORMATS

The formats for the LOAD, EXECUTE, and DEBUG commands are the same.
Each can accept a list of input file specifications and switches. The
format for these commands is:

Bcommand/Sswitches 1nput-spec/switches, input-spec/switches,...
Where the command is one of the three systes commands (LOAD, EXECUTE,
or DEBUG), input-spec i5 the File specification of the program you

want to load, and the switches are any of the walid switches for the
command.

LINK Version 5 2-1 April 1982

USING LINE AUTOMATICALLY

If you separate the input file specifications with commas, each source
file will be compiled into a separate object file. If you separate
the input file specifications with plug sign®, they will be compiled
into a single object file.

Section 2.3 shows examples of using LINK automatically.

2.2 COMMAMD SWITCHES

You can use switches with the LOAD, EXECUTE, and DEBUG commands to
contral LIHE's loading. Table 2-1 bBriefly describes some of the
command switches that spply to LIMNE. Refer to the TOPS-20 Commands
Feference Manual for complete descriptions of the switches for these
commands .

Table 2-1
Switches for System Commands

Switch Heaning

SCOMPILE Forces compilation of source files evem if a
sufficiently recent REL file exists.

SODT Loads DDT. This supersedes the default debugger
selection, which i% wususlly based on the file
type of the First File im the command string.

FHAP Produces » map file at the end of loading. This
file shows all global symbals loaded.

SHOCOMPILE Compiles source files only if their REL files
are older tham the source files. JHOCOMPILE is
the default.

FHOSEARCH Suspends the effect of an earlier global /SEARCH
switch. This is the default actien.

JSHOSYMBOLS Prevents loading of symbol tables with thele
modules.

FBEARCH Leads only the modules from the specified

library file that satisfy global references iIn
the program.

You can use any LINE program switches with the system commands LOAD,
EXECUTE, or DEBUG by using & special switch format. This format
requires that you use a percent sigm (%) instead of the wsuwal =slash
{51, and that the entire switch specification be enclosed in double
guotation marks (™). For example, you can pass the JLOG switch ¢to

LIME by using the command:
BEXECUTE MYPROG R"LOG"
Used directly with LINK, the command strings would include:

*MYPROG/LOG

USIHG LINE AUTOMATICALLY

If you give more than one switch in this format, sSucceeding switches

within the cuotation marks must have the wusual slashesg:

HEXECUTE MYPROGR™LOG/MAP"

LINE program switches are described in Section 3.2.

Z.3 EXAMPLE OF USING LINE AUTOMATICALLY

For this example; the following program; named MYPROG.FOR, is5 used:

TYPE 10

10 FORMAT (' This is written by MYPROG')
STOF
END

The following example shows an interactive execukbion of the
using the EXECUTE command:

BEXECUTE MYPROG. FOR &
FORTRAN : MY PROG

MAIN.

LINK: Loading

[LHNEXCT MYPROG Execution]

This 15 written by MYPROG.

END OF EXECUTION

CPU TIME: 0.02 ELAPSED TIME: 0.05
EXIT

=

The following example shows how to load a program for debugging
the DEBUG command:

ADEBUG MYPROG.FOR B
FORTRAN: MYPRDG

LINKE: Loading

|LNEDEB FORDDT Execution]
STARTING FORTEAN DDT

»>START

Thiz iz written by MYPROG.

EMD OF EXECUTION

CPU TIME: ©0.01 ELAPSED TIME: 0.03
EXIT

8

2-3

program

UELng

CHAFTER 3
USING LIMNE DIRECTLY

I1f you have a loading task that cannot be handled conveniently by the
EXECUTE, LOAD, or DEBUG system commands (such as loading overlays or
PEECTs) , you can load your program by using LINE directly. Toe do
this, vou must already have compiled or assembled all required object
modules.

To use LINK directly, type LINE to the system. LINK will respond with
an asterisk:

ELINKE®ET
*

Continue typing command strings, ending each one with a carrliage
return. For example,

ELINE &
* /OVERLAY @0
*TEST/LINE:TEET &1

& SHODE:TEST SPEXP/LINK:SPEXP &N
*

A command string consists of file specifications and switches. You
can continue a command string to the next line by typing a hyphen
immediately before pressing carriage return; LINE continues the line
by responding with a number sign (#). For example,

@LINK &

*MYPROG , MYMAF /MAP/CONTENTS : ALL- &T
§/ERRORLEVEL: 0/LOG/LOGLEVEL: 5 @&

&

The use of continuation lines is more efficient as the command scanner
must be invoked for every distinct command string.

¥ou can include a comment on a command line by beginning the comment
with a semicolon; the remaining text on the line is not processed by
LIRK.

When LINK sees the end of the command strimg (a carriage rceturn), it
processes the entire string, then prints an asterisk to begin the next
line. This processing continues until one of the following occcurs:

1. LIMK finds a /GO switch in a command string. It then
completes loading and exits to system command level (if you
did not specify execution), or passes control to the loaded
program for execution.

i=1 March 1983

USING LINE DIRECTLY

2. A fatal error occurs. LINK prints am error message and exits
to system command level.

3. A SEUN switch is encountered.

4. Either /JEXIT or "2 iz encountered.

3.1 COMMAND STRING FORMAT

A LINE command string can contalin file specifications, LINKE switches,
and command scanner sSwiktches. Command Scanner switches are described
in Section 3.2.1. LIME switches are described in Section 3.2.2.

Some LINK switches take output file specifications as arguments; some
switches are suffixed to output Ffile specifications. Other file
specifications specify input files. For example, the following
command string tells LINE to use an input file called MYREL.REL to
generate a saved output file called MYEXE.EXE:

*MYREL,MYEXE/SAVE/SGO

LINK supplies the missing parts of the file specifications from its
defaults.

DEFAULTS
For output files, the defaults are:
device logical name (DS5K:z)
filename name of last module with start address or, if none,

then nnnlHE where nan is your job number, with
leading zeros 1f necessary.

type log Eile LOG
map Eile HAP
overlay file OVL
plotter file PLT
executable file EXE
symbol file 5YM

directory a PPN corresponding to a directory. BRefer to Section
j.3.

For input files, the defaults are:

device logical name [(DSE:)

type REL

directory a PPN corresponding to a directory. Refer
to Section 3.3.

¥You can change these defaults by using the DEFAULT switch (see
Section 3.2.2).

¥You can have LINK read command strings from an indirect command file.
To do this, prefix an at-zign (B) to the command file specification.
For example, the following commands tell LINE to read all cosmand

steings from the file LENEPRG.CCL. (.CCL is the default file type for
indirect command files):

ELINK &L
"@LNKPRG
March 1983 -2

USING LINE DIRECTLY

3.2 SWITCHES TO LINE

LINK's handling of files depends on your use of LINK switches. There
are two sets of switches to LINE. The first set of switches (command
scanner switches) are optional switches that define your rceguest to

the system command sScanner. These are described in Sectionm 3.2.1.
The second set of switches are switches to LIMK that you can use Eo
control and modify the limking and loading process. These are

described in Section 3.2.2.

3.2.1 Command Scanner Switches

The system SCAN module Scans command lines for wvarious System
programs, ont of which is LINE. Therefore the module LHESCH is
included with LINK source files. You cam include SCAN switches in
vour command strings for LINE, but none of these switches is reguired
in order to run LIMK.

The following SCAMN switches are meaningful te LIBK. The remaining
SCAH switches, which are listed in LIMNK's HELP file, are ignored by
LINE.

Like LIME switches, SCAN switches are preceded by a slash (/), and can
be abbreviated up to their first unigue characters.

BCAN Switches Meaningful to LIME

Switeh Meaning

FEXIT Exits after loading, but leave LINK's core image
in place. This switch is igmored if you have
gspecified program executionm or reguested that
the contents of memory be included with the
lpaded program.

FHELP:arg Displays the LINE.BHLP file. The arguments are
SWITCHES, to See a list of LIME switches, and
TEXT, to see the default HELP text for LINK.

SMESSAGE: keyword Displays messages in the format specified by
keyword. The keywords and their meanings are:

FREFIX I}ispla?s only the messaqge code
from SCAM, which is of the
form SCHxxx.

FIRST Displays the prefix and a
short message.

CONTINUATION Display=s the prefix and a
longer message.

JRUM:file Funs the specified program after loading is
Finished. This switch is ignored Lf you have
specified program execution or recuested that
the contents of memory be included with the

loaded proaram.

LINE Version 5 3=1 April 1%82

USING LINE DIRECTLY

3.2.2 Link Switches

This sectionm lists the switches that may be used to instruct LINE to
take special action while leoading yvour programs. The switches are
described in thiz section in alphabetical order, and for each switch
the following information is shown, if appropriate:

FORMAT

FUNCTION

EXAMPLES

OPTIONAL MOTATIONS
RELATED SWITCHES

Swiktches can be abbreviated b0 save typing. However, in most cases,
the switch must include enough charackters to make it unigue from other
gwitches. For example, the switch SHOSYMBOL cannot be abbreviated to
JHOSY, because this result in & conflict with the switch /NOSYSLIB.
However, /HOSYM i% a unigue set of characters, and thus is is a legal
abbreviation For /HOSYMBOL.

Certaln aswitches can be abbreviated to a8 single letter; they aped

/D for SDEBUG

fE for FEXECUTE
/G for G0

fH for HELP

fL for FLOCALS
M for SMAP

SN for SHOLOCAL

f8 for SSEARCH
/R for ATEST

f for SUNDEFINE
A for SYERSION

Meny sWwitches accept a value that may he specified in decimal (which
is the default) or octal. If the value can be specified in octal,
this is noted im the OPTIONAL MHOTATIONS section of the switch
degcription. Toe specify an octal value; type a pound sign (#) before
the octal number. For example, FARSIZE:39% can be specified in octal
an SARSIZE:E47.

Some swiktches cam be used cither locally or globally (in particular,
SALOCALS, /NOLOCAL, /SSEARRCH, and /HOSEARCH). This means that if the
gwitch 1% suffixed to a file specification, it applies only to that
file; if it is not suffixed to a file specification, it applies to
the files that follow. For example, in the following command skrings
FBEARCH i3 used both locally and globally:

I. *FILE}l,FILE2/SEARCH,FILEZ

2. *FILE4, /SEARCH FILES,FILEG
In the first line, /SEARCH i= suffixed to the file specification
FILE2: only that file iz loaded in search mode. In the second line,

FEERRCH iz not suffixed to a file specification; all the remaining
files named in the command string are to be searched.

USING LINE DIRECTLY

In general, a switch used globally is disabled at the end of its
compand string, uvnless it is overridden by another switch. The second
switch, if used locally, will override the first only for the local
file. If the second switch iz wsed globally, it will persist for the
following files. For example;, in the following command sering, a
globally-used switch [(FSEARCH) iz overcidden by a8 locally used switch:

* /SEARCH FILE],FILE2/NOSEARCH,FILE3
In this command string, FILEl and FILE] will be loaded in scarch mode,
but FILEZ will be loaded normally.
HOTE
The effects of & global switch on the
game line a3 a /G0 switch persist beyond

the /G0 Switch and apply to any modules
loaded during library sesrches.

The follewing pages contain the switches and their descriptions,
listed in alphabetical order.

3-5 April 1982

FORMAT

FUHCTION

EXAMPLES

OPTIOMAL
NOTATIONS

USIKG LINE DIRECTLY

SARSIZE

SARSIZE:n
Where n is a positive decimal integer.

Sets the size of the overlay handler's table of
pultiply=-defined global symbols. Use this switch if you
have received LMEARL, LMHETHA, #nd LMNEABT messages in a
previous attempt to load your program. These messages

will give instructions for the argument to the /ARSIZE
switch.

* /ARSIZE : 39 &R
*

Allocates 39 words for the multiply-defined global symbol
table in each link of an overlay structure.

You can specify the table size in octal.

USING LINE DIRECTLY

SBACESPACE

FORMAT SBACKSPACE:n
Where n is a positive decimal integer.

FUNCTION Backspaces over n files on the current tape device. {The
switch is ignored for non-tape devices.)

EXAMPLES *WTAhD: /BACESPACE : 3 &
L]

Backspaces magtape MTAD: by three files.

OPTIOMAL If you omit n, it defaults to 1.
HOTATIONS
RELATED SHMTAPE, /REWIND, /SKIP, /SUNLOAD
EWITCHES

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
MOTATIONS

USING LINE DIRECTLY

SCOMMON

SCOMMOM s name:n

wWhere name iz up to six SIXBIT=-compatible ASCII
characters.

n o= & poasitive decimal integer.

Allocates n words of labeled COMMON storage for FORTRAN
and FORTRAM=compatible programs. The COMMOM label 15 a

name; which becomes defined as an internal sysbol, and is
available to other programs as an external symbol.

For unlabeled COMMON storage, use COMM. as the mname, or
gimply omit the pame.

You cannot expand a given COMMON area during loading. 1E
your program modules define a given COMMON area to have
different sizes, the module giving the largest definition
must be loaded first. If the fCOMMON switch gives the
largest definition, it must precede the loading of the
modules.,

* JCOMMOM: A2 1000 T

Crepikes a labeled COMMON area of 1000 words.

*SCOMMON : COMM . = 1000 =T

Ceeates an unlabeled COMMON area of 1000 words.

®COMMOMN : = 1000 RN

L

Creates an unlabeled COMMON area of 1000 words.

You can specify the number of words in octal.

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
HOTATIONS

RELATED
SWITCHES

USING LINE DIRECTLY

SCONTENTS

SCONTENTS : (keyword, ... keyword)

Each keyword gives a symbol type to be included in the map
file if the file is generated. To generate the map file,
use the /MAP switch.

The keywords ALL, MNOME, and DEFAULT reset all symbol
types. Otherwise, using the SCONTENTS aswitch resets only
those sSymbol types specified by keywords. In the

following list of keywoards, the defaults are in boldface:

ABSOLUTE Include absolute symbols.

ALL Include all symbols.

COMMON Include COMMON symbols.

DEFAULT Beset to LIMNK's defaults.

EHTRY Include entry-name symbols.

GLOBAL Include global symbols.

LOCALS Include local symbels. The local
symbals cannot be fncluded in the map
file unless the SLOCALS switch 15 also
given.

NOABSOLUTE Exclude abzolute symbols.

ROCOMMON Exclude COMMON symbols.

HOENTRY Exclude enkry-name symbols.

HOGLOBAL Exclude global symbols,

NOLOCAL Exclude local symbols.

HONE Exclude all sysbols.

WORELOCATABLE Exclude relocatable symbols.

HOUNDEFINED Exclude undefined symbols.

HOZERO Exclude symbols in zero-length
Programs. ia zero=-length program
containg no code or data; it contains
only symbol definitions.)

RELOCATABLE Include relocatable symbols.

UMDEFIMNED Tnclude unde Fined symbols.

IERD Include aymbols in zero=length
PEOQEAMS . ia zero=lengeh program

contains no code or data; 1t contains

only symbol definitions.]
The settings for the SCONTENTS switch operate by
exclusion, not inclusiaon. For example, 1f beth Gthe
HOGLOBAL and BELOCATARLE settinas are in force, all aslobal
syrbols are excluded regardless of their relocatability.

SCONTENTS : (NOCOMMON , MOEKTRY) &I
*

Excludes COMMON and entry-name Symbals.

® SCONTENTS : (ALL) &Y

-

Includes all svymbols.

You can emit parentheses if you aive only one keyword.

SMAP

3-1

FORMAT

FURCTION

EXAMPLE

RELATED
SWITCHES

USING LINKE DIRECTLY

JCOUNTER

SCOUNTER

Fequests terminal typeout of information about the
relocation Ccounters. The information that 18 printed
gives the name, initial walue, current walue, and limit
value of each counter.

JSCOUNTER may be used to determine the size of overlays
when loading large programs that might be too large for
the allocated memory space. Refer to Section 5.4 for more
informakion.

BLINE
1N 1. L8,
IMET: HEICH 4
COUNTER ®

SHEWPAGE, /SET

3=10 April 1982

OSING LINE DIRECTLY

/CPU

FORMAT SCPUzkeyward
Keyword: KALD
KIlO
EL10D
ES10

FURCTION This switch is used to override LINK's handling of the
processor information found in the .REL files being
loaded. (S5ee the description of the type & block 1in
Appendix A). Ordinarily LIME prints a warning if all .REL
files being loaded together do mnot have identical CPU
types. This switch can be used either to make LINE flag
certain modules built for a specific CPU type by
specifying all but that CPU type as keywords to /CPU) or
to suppress LINE's warning message (by specifyimg all the
CPU types associated with the .REL flles being loaded).

EXAMPLE */CPU:EIL1OED
*

Will cause LINE to issue the JLNECCD message Iif any
modules with the EL10 CPU type are encountered.

OPTIONAL SCPU: (keyword, keyword)
NOTATIONS

LINK Version 5.1 3-11 March 1981

FORMAT

FUOMCTION

EXAMPLES

RELATED
SWITCHES

LINE Version 5.1

OSING LINE

DIRECTLY

/DDERUG

SDDEBUG: keyward

Specifies a default debuggling program to be loaded if the
SDEBUG or STEST switch appears without an argument.

The permitted keywords and the
are listed below.

specify

debugging programs they
Only those printed in boldface

are supported by DIGITAL.

ALGDDT Specifies ALGDDT as the default.

ALGOL Specifies ALGDDT as the default.

COBDDT Specifies COBDDT as the default.

COBOL Specifies COBDDT as the default.

DoT Specifies DDT as the default.

FAIL Specifies SDDT as the default.

FORDDT Specifies FORDDT as the default.

FORTREAN Specifies PORDDT as the default.

MACRO Specifies DDT as the default.

PASCAL Specifies PASDDT as the default.

PASDDT Specifies PASDDT as the default.

SAIL Specifies the 5AIL debugger as the default.
5DoT specifies the SAIL debugger as the default.
SIMDDT Specifies SIMDDT as the default.

SIMULA Specifies SIMDDT as the default.

* /DDEBUG: FORTRAN =T
*

Specifies FORDDT as the default debugging program for the
/DEBUG or /TEST switch.

FDEBUG, /TEST

3=-12 March 1983

OSING LINE DIRECTLY

/DEBDG

FORMAT JODEBUG: keyword

FURCTION Requests loading of a debugging program and sets the start
address for execution as the normal start address of the
debugging program. The /DEBUG switch also sets the
JEXECUTE switch because it iz assumed that the program ls
to be executed. The /G0 switch is still reguired to end
loading and begin execution.

The /DEBUG switch turns en the fLOCALS switch for the
remainder of the load. You can override this by using the
JNOLOCAL awiteh, buot the override lastz only during
processing of the current command string.

Local symbols for the debugging program itself are never
loaded.

If debugging overlaid programs, you must specify JDEBUG
when loading the root node. (Refer to Section 5.4 for
more Information.)

The permitted keywords amd the programs they load arce
listed below. Only those printed in boldface are
supported by DIGITAL.

ALGDDT Loads ALGDDT.

ARLGOL Loads ALGDDT.
COBDDT Loads COBDDT.
COBOL Loads COBDDT.
ooT Loads DDT.
FAIL Loads SDDT.

FORDDT Loads FORDDT.
FORTRAM Loads FORDDT.

MACRD Loads DDT.

PASCAL Loads PASDDT.

PASDDT Loads PASDDT.

SAIL Loads the SAIL debugger.
sSDDT Loads the SAIL debugger.
SIMDDT Loads SIMDDT.

SIMULA Loads SIMDDT.

If vou glve no keyword with /DEBUG, the default is either
DDT or the debugging program specified by the /DDEBUG
switch.

EXAMPLES * /DEBUG : DDT ED
L]

Loads DDT, sets the JEXECUTE switch, and specifies that
the execution will be controlled by DDT.

OPFTIOMAL Abbreviate SDEBUG to /D.
HOTATIONS

RELATED /DDEBUG, /TEST
SWITCHES

LINE Version 5.1 i-13 March 1983

USING LINKE DIRECTLY

JDEFAULT

FORMAT JDEFAULT :keyword filespec
filespec/DEFAULT :keyword

FUHCTION Changes default specifications for input or output files.
The defaults specified remain in effect until changed by
another /DEFAULT switch.

The keywords allowed are:

IHPUT Specifies the defaults for input file
specifications.
QUTPUT Specifies the defaults for output file

specifications.

For input files, the ifnitial defaults are:

device DSK:
file type REL
directory User's conpected directory

For output files, the initial defaults are:

device DSK:
filename Hame of main program
directory User's connected directory

EXAMPLES * 'DEFAULT : INPUT .BINED
w

Besets input file default extension ko BIN.

*/DEFAULT: OUTPUT MTAD: &
-

Fesets output file default device to MTRD:.

OPTIOHAL If you omit the keyword, INPUT is assumed.
HOTATIONS

1=-14 March 18983

FORMAT
FUMCTION

EXAMPLES

OPFTIOMAL
MOTATIONS

RELATED
SWITCHES

OSING LINE DIRECTLY

/DEFINE

SDEFINE: (symbol:value,... ,symbol:value)

Assigns each symbol the decimal value following it. This
causes them to be global symbols. You can use the
FJUNDEFINED switch to get a list of any undefined symbols,
and then define them with /DEFINE.

Defining an already defined symbol with /DEFINE generates
an error message.

* /UNDEFINED &0

[LNEUGS 2 UNDEFINED GLOBAL SYMBOLS)
A 400123
IGOR 402017

*/DEFINE: (A:591,IGOR:1) &ED

L

Gives the decimal wvalues 5%1 and 1 to A and IGOR,
respectively.

You can give the wvalue in octal by typing # before the
value.

You can omit Ehe parentheses if you define only one
symbol. Specifyving /DEFINE:FOQ:BAR will define FOO to
have the value of BAR 1f BAR iz already defined.

JUNDEFINMED, /SVALUE

3-15 March 1981

FORMAT
FUMCTION

EXAMPLES

RELATED
SWITCHES

USING LINE DIRECTLY

JENTRY

JENTRY

Reguests terminal typeout (inm octal) of all enktcy name
symbols loaded so far. Each entry name symbol will have
been defined by an ENTRY statement (MACRO, FORTRAN, or
BLISS), a FUHCTION statement (FORTRAM), & SUBROUTIHE
statement (FORTRAN; or COBOL), or a PROCEDURE declaration
[(ALGOL) .

If vyou are using the owverlay facility, JEHTRY reguests
only the entry name symbols for the current link.

* /ENTRY L

[LMELSE LIBRARY SEARCH SYMBOLS (EMTRY POIMTS))
SQRT. 1456

*

SHOENTRY

i=1% March 1983

FORMAT
FURCTION

EXAMPLES

RELATED
SWITCHES

USIHNG LINE DIRECTLY

JERRORLEVEL

SERRORLEVEL:n

Suppresses terminal typeout of LINKE messages with message
level n and less, where n is a decimal number between 0
and 30 inclusive. You cannot suppress level 31 messages.
LIMKE's default is JERRORLEVEL:10.

See Appendix B for the levyel of sach LINK message.

* /ERRORLEVEL: 10 ED

L3

Suppresses all messages of level 10 and less.
* /ERRORLEVEL: 0 ET

Ll

Permits typeout of all messages.

SVERBOSE

FORMAT
FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCHES

USING LINE DIRECTLY

JEXCLUDE

JEXCLUDE: (subroutine,...;subroutine)

Prevents loading of the specified modules from the current
file ewven if they are reguired to resolve global symbhol
references. You canm use the FEXCLUDE switch for any of
the following purposes:

If & libracy has several modules with the same search
symboels, you can select the module vyou want by
excluding the others.

You can prevent modules from giving multiple
definitions of a symbol by selectively excluding one
or more of them.

In defining an overlay structure, you can delay
loading of & module unkil a later link by excluding
it.

* /SEARCH LIBFIL.REL/JEXCLUDE: (MOD1,MOD2) &R
"

Searches LIBFIL #s a library but prevents leoading of MHODI
and MODZ2 even if they are referenced.

You can omit the parentheses if vyou specify only one
module.

JINCLUDE

3i-18

FORMAT

FUNCTION

EXAHPLES

OPTIONAL
HOTATIONS

RELATED
SWITCHES

USIKG LINE DIRECTLY

SEXECUTE

JEXECUTE

Tells LINE that the loaded program i3 to be executed
beginning at its normal start address. Loading continues
until a /G0 switch is found.

The /EXECUTE and /DEBUG switches are mutuslly exclusive.

* FEXECUTE HT
&
¥You can sbbreviate /JEXECUTE to JE.

JDEBUG, /SGO, STEST

I FORMAT

FUNCTION

EXAMPLES

OPFTIOMAL
HMOTATIONS

USING LINK DIRECTLY

SPRECOR

FFRECOR : nK

Where n i5 a positiwve decimal integer.

Reguires LINK to meintain a minimum amount of free memocy
after any expansions. LIMNK's default free memory is 4K.
If you use the /FRECOR:nK switch, LINE computes n times
1024 words and maintaina the resulting number of words of
free memory, if possible.

If the modules to be loaded are guite large, & larger
amount of free memory svolds some moving of areas.

LINE has nine areas that may be expanded during loading:

1. ALGOL symbol informatiom [AS).

2. Bound global symbols (BG).

i. Dynamic arca (DY).

4. Fixup arera [(FX).

5. Glehal symbol tables [G5).

6. User's high segment code (HC).

T. User's low Segment code [(LE).

8. Local symbol tables (LS).

9. PFelocation tables (RT).
Each aof these areas has a lower bound, an actual upper
bound, and a maximum upper bound. LINKE normally mainmtains
space betwoen the actual and maximum upper bounds for each
area. The total of these nine spaces is at least the
space given by the /FRECOR switch, if possible.
LINE recovers free core by concatenating these nine free
areas. When all this recovered space 15 used, one of more
of the nirne areas overflows to disk, and free core i85 no

longer maintained.

* /FRECOR: T BT

i

Mazintains TK of free core, if possible.

You caéan Speclfy the free core in octal.

LIHE Version 5 3-20 April 1982

FORMAT

FUMCTION

EXAMPLES

OPFTIOMAL
MOTATIONS

RELATED
SWITCHES

USING LINE DIRECTLY

S0

SGO

Ends loading after the curcent module. LINK then performs
any rteguired library searches; generates any reguired
output files, and does one of the following:

Begins execution at the normal start address of Ethe
loaded program {(1f you uwsed SEXECUTE}).

Begins execution at the start address of the debugging
program (if you wused JDEBUG, or both JTEST and
SERECUTE) .

¢ Exits to the moniter ([(If wyou wsed npno execubion
switch) .

*MYPROG/EXECUTE /GO ED

[LMEXCT MYPROG EXECUTION]

Begins execution of the loaded program at its normal start
address.

*MY PROG /DEBUG GO RED
|LNKDEB DDT EXECUTION]

Begins execution of the loaded program at the normal startk
aiddress of DODT.
Abbreviate /GO to /G.

JDEBUG, FEXECUTE, STEST

3=21

FORMAT

FUNCTION

EXAMPLES

USING LINE DIRECTLY

SHRSHSIZE

SHASHSTIZE:tn
Where n is » positive decimal integer.

Gives a minimum for the initial size of the global symbol

table. LINE selects a prime number larger thamr n fer the
inicial size.

If vyou know that you will npeed & large global symbol
table, you can sawve time and space by allocating space for
it with /HASHSIZE. You should give a hash size 10 percent
larger than the number of global symbols in the table.

If LINE gives the message [LMNERGS Rehashing Global Symbol
Table] during a load, you should use the /HMASHSIZE switch
for future loads of the sowme program. The minimum hash

gize for loading » program appears in the header lines of
the map file.

The default hash size 1is a LINE assembly parameter
{initially 25) Aecimal).

* HASHSIZE: 1000 @&F

Sets the hash size o the prime number 1021,

1=22

FORMAT

FUNCTION

EXAMPLES

OPTIOMAL
NOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

SIMCLUDE

SINCLUDE : (module, ... module]

gpecifies modules to be loaded regardless of any global
requests for them.

In libracy search w®sode, an SINCLUDE switch reguests
loading of the specified modules. If the switch is
associated with a file, the reguest is cleared after that
file 13 searched. If not, the reguest pecrsists until the
modules are found.

When LINE iz not in libracy search mode, the FINCLUDE
swiktch associated with a file reguests that only the
sgpecified modules be loaded, and the reguest {5 cleared
afeer that file iz processed. An JINCLUDE switch not
agsociated with a file reguests loading of the specified
modules, and the regquest persists until the modules are
found.

You can use SINCLUDE in an overlay load to force a module
to be loaded in an ancestor link common to successor links
that reference that module. This makes the sodule
avallable to all links that are successors to lts linmk.

*/SEARCH LIBL1/INCLUDE: (MOD1,MOD2) ET
L]

Searches LIBl and loads MOD1 and HODZ2 even if they are not
referenced.

You can omit the parentheses 1f vyou specify only one
module.

JEXCLUDE, /HOINCLUDE, /MISSING

LIME Version 5.1 3-23 March 1983

USING LINE DIRECTLY

THIS PAGE INTENTIOMALLY LEFT BLAME

FORMAT

FUNCTION

EXAMPLE

LINK Wersion 3

USING LINE DIRECTLY

SLIMIT

'LIMIT:psectiaddress

Al lows you to specify an uvpper bound for a specific PSECT.
In the format description, psect shouwld be the PSECT mame,
which has been defined with either the /SET switch or in
one of the modules already loaded. Address should be the
upper bound address of the specified PSECT, expressed in
either numeric or symbolic form. This address should be
one greater than the highest location which may be loaded
in the PSECT. The address can be & thirty=-bit guantity,
and nesd not be in the same section as the PSECT origin.

If the PSECT grows bevond the address specified in the
SLIMIT switch, LIMK will send a warning to your termimal,
but will continue to process input files and to load code.
The warning message will take the followina form:

LALMKEPEL PSECT <psect: excecded limit of <address>

Wo chained references will be resolved, and LINE will
suppress program execution, producing the following fatal
Brror:

FLNECFS Chained [ixups have been suppressed

Thizs action prevents unmintended PSECT overlays. FSECT
overlays can cause loops and other unpredictable behavior,
because LINK uses address relocation chains in the user
image that i5 being built,.

EE -] N . . i w .
JLOW,
!
1
" ALTRET oz 4
PTEST
LEEFTL ECT W FED - F o
ErTEETH = HAES P K
g uTHF
LHEELT FEI TE. mITIAL Ak LUE i L !
« LT, =
] 1
' i
rEdT i

In thiz examole, a program named TEST1, which containd two
PSECTs, is loaded, The PSECTz are named ¢ and B. After
TEST] is loaded, the SCOUMTERS switch shows that the upper
bound of BSECT ¢ 13 4000,

=25 April 1982

USING LINKE DIRECTLY

The FLIMIT swiktch is used to limit PSECT ©Q to 4000.

A second program, TEST2, also reguires storage for PSECT

Q. Therefore, when TEST2 is loaded, LINK produces a
warning to the effect that the limit that was set has been
excended. The SCOUNMTERS switch shows that PSECT O now

requices an upper bound of 5000.

When the programs are started (with JG0), LIHNE produces
the POV warning message and the CFS fatal error message.

LINK Version S5 1=26 April 1982

USING LINE DIRECTLY

SLINE

FORMAT FLINK:name

Where name is up to 6 RADIX=-50 compatible characters.

FUNCTION Directs LINK to give the specified name to the current
core image and outputs the core image to the overlay file.
SLINK is used to close anm overlay link. LINME first

pecforms any reguired library searches and assigns a
number to the link.

For a discussion of overlay structures, se¢ Chapter 5.

The current core image has all modules loaded since the
heginning of the load or since the last /LINKE switch.

EXAMPLES *SPEXP/LINK: ALPHA BT
L
Loads module SPEXP and outputs the core image ko the
overlay file as a link called ALFHA.

OPTIONAL If vou omit the link name, LINE uses only its assigned
HOTATIONS number .

RELATED SHODE
SWITCH

LINE Version 5.1 3=27 March 1983

FORMAT

FURCTION

EXAMPLES

OPTIONAL
HOTATIOMNS

RELATED
SWITCHES

USING LINE DIRECTLY

SLOCALS

SLOCALS

Includes local symbols from a module in the symbol table.
LINE does not need these tables, but you may want them for
debugging.

The SLOCALS and /NOLOCAL switches may be used either
lacally or globally. If the switch is suffixed to a file
specification, it applies only to that file; {if it is not
suffixed to a file specification, 1t applies to all
following files in the same command line.

* /LOCALS A,B/HOLOCAL,C, /NOLOCAL DED

[

Loads A with local symbols, B without local symbols, C
with local symbels, and D without local symbols.

You can abbreviate JfLOCALS to /L.

JHOLOCAL, /S5YMSEG

i-18

FORMAT
FUNCTION

EXAMPLES

OPTIONAL
HOTATIONS

. RELATED
SWITCHES

USING LINE DIRECTLY

JLOG

logfilespec/LOG

Specifies a file specification for the log file (see
Section 4.2.2). Any LINKE messages output hefore the JLOG
switch is found 2re not entered in the log file.

*LOGETL/LOG 8
L

Specifies the file DSE:LOGFIL.LOG in the user's dicectory.
*TTY : FLOG B

Directs log messages to the user's termingl.

You can omit all ar pert of the logfilespec.
The defaults are:

device DSK:

filename name of main progeram
file type LOG

directary your coanccked directory

You can change the defaules using the SDEFAULT switch.

SLOGLEVEL

3-29

USING LINE DIRECTLY

SLOGLEVEL

FORMAT FLOGLEVEL: R

FUNCTION Suppresses logging of LINK messages with lewel n and less,
where n is a decimal number between 0 and 30 inclusive.
You cannot suppress level 31 messages.
See Appendix B for the level of each LINK message.
The default is JLOGLEVEL:10.

EXAMPLES * SLOGLEVEL: 0 &F
&

Logs all messages.

RELATED £ LOG
SWITCHES

3-10

FORMAT
FURCTION

EXAMPLES

OFTIONAL

NOTATIONS

RELATED
SWITCHES

USING LINE DIRECTLY

JMAP

mapfilespec /MAP: keyword

Specifies a file specification for the map output file
(see Sectlion §.2). The contents of the file are
determined by the FCONTENTS switch or its defaults.

Permitted keywords and their meaninags are:

END Produces a map file at the end of the
load. This is the default if you omit the
keyword.

ERROR Froduces a map file if a fatal erccor
OCCUES. Any modules loaded after this
switch will not appear in the log. To

ensure that a L.MAP file i3 generated,
specify this switch before the loading of
-REL files.

HOW Produces a map flle immediately. Libracy
searches will nmnot have been performed
unless forced.

*HAPFIL/HAP: END ED
&
Generates a map in the file DSE:MAPFIL.MAP in vour disk

area at the end of loading.

¥You can omit all or part of the mapfilespec.
The defaults are:

device DSE:

filename name of main program

file type MAP

directory user's connected directory

You can change the defauvlts using the DEFAULT switch.
You can abbreviate /MAP to /M.

SCONTENTS

i-11 March 1983

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINE DIRECTLY

JMAXNODE

FHMAXRODE : iy
Where n 1% a positive decimal integer.

Specifies the number of links to be defined when the
overlayed program reguires more than 256 links., LIME will
allocate extra space in the OVL file for cectain

fixed-length tables based on the number of links specified
with this switch.

Hote that this switch must be placed after the JOVERLAY
switch and it must precede the first /NODE switch in the
get of commands to LINK,

*TEST/OVERLAY /MAXNODE : 500 &M

&

Reserves space for 500 defined links. See Chapter 5 for a
discussion on overlays,

SOVERLAY

3=32

FORMAT
FUMCTION

EXAMPLES

RELATED
SWITCHES

USING LINE DIRECTLY

FMISSING

FMISSTING

Regquests terminal typeout of modules reguested with the
SINCLUDE switch that have not yet been loaded.

* MY PROG /D

® /SEARCH/INCLUDE: (MOD1,MOD2) LIB1ER
* /HMIS5INGE

[LHKIMM 1 INCLUDED MODULE MISSING|
*LIB2/INCLUDE: (MOD2) &1

/MISSING T

[LHKIMM MO INCLUDED MODULES MISSING)
L

This example shows the use of /MISSING to see if all the
regquired modules have been loaded. The module MOD2 was
not yet loaded, and it was in LIB2.

In response to the first use of the switch, LIMK indicated
that one necessacy module was missing. After the missing
module was included [(module named LIB2), the switch is
used again. LIMK responded to the second use of the
gwiteh by indicating that all necessary modules were
present.

SINCLUDE

=23

FORMAT

FURCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

SMTAPE

SMTAPE tkeyword

Specifies tape operations to be performed on the current

device. (A tape device remains current only wntil
end-of-1ine or wntil another device is specified,
whichever is earlier.) The switch iz ignored if the

current device is not a tape.

The operation is performed immediately if /MTAPE is given
with an input file or with an already initialized output
file. Otherwise, the operation is performed when the
output file iz initialized.

The wvalid keywords and the operations they specify are:

MTBLK Writes 31 inches of blank tape.

MTBEF Backspaces one file.

HTBSR Backspaces one record.

MTDEC Initializes DIGITAL-compatible -channel
tape.

MTEQF Writes an end-of=-file mark.

HTEOT Spaces to logical end-of-tape.

MTIND Initializes industry-compatible Y=channel
tape.

MTREW Rewinds tape to the leoad point [(BOT).

MTSKF Skips one file.

MTSKR Skips one record.

MTUHL PRewinds and unloads tape.

MTWAT Waits for tape I/0 to finish.

*MTAl : /MTAPE : MTEOT &1
"MTAD : /MAP : NOW =D

Spaces to logical end-of-tape on MTAD: and writes & map
file.

SBACESPACE, /REWIND, /SKIP, JUNLOAD

3-34

FORMAT
FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINE DIRECTLY

SHEWPAGE

SHEWPAGE theyword

Sets the relocation counter to the first word of the next
page. If the counter is already at 3 new page, this
switch is ignored.

The permitted Keywords and their relocation counters age:

LOW Resets the low-segmenkt counter to new page.
If vou omit the keyword, this i3 the defaulk,

HIGH Resets the high=segment counter to new page.

* /HEWPAGE : HIGH FT
*SUBR] BT
* /HEWPAGE : LOW BT
*SUBR2ETE

w

Sets the high-segment counter to a new paae, loads SUBRIL,
gets the low-gegment counter to & new page, and loads
SUBRZ. MHote that SUBRl and SUBRZ are not necessarily
loaded inte the high and low segments respectively; the
FHEWPAGE switch sets a counter, but does not force the
next loaded module into the specified segment.

FSET

31-15%

FORMAT

FUMCTION

EXAMPLES

RELATED
SWITCHES

USING LINE DIRECTLY

/RODE

SHODE :argument

Opens an overlay link. JHODE places LINE's relocation
counter at the end of a previously defined link im an
overlay structure, which becomes the immediate ancestor to
the next link defined. {For a discussion of overlay
strucktures, see Chapter 5.)

The /MODE switch must precede any modules to be placed in
the new link.

Theree kinds of argqusents ace permibted:

& A name given with a previous SLINK switch, LINE will
place the relocation counter at the end of the
specified link.

* A negative number [(-n). LINE backs upn 1links along
the current path.

A positive number n or 0. LINK begins further loading
st the end of link pumber n. You can use 0 to begin
loading at the root link.

NOTE

It {2 recommended that yvou use a link name (or O
for the root link) rather than & nonzero number.
This is because a change in commands defining an
cverlay may chanae some of the link numbers.

For examples defining overlay structures, see Chapter 5.

SLINK, SOVERLAY, /SPLOT

SROENTRY

FORMAT SHOENTRY : (symbol,symbol,...)

FUNCTION Deletes enkcy name symbols from LIME's overhead tables
when loading overlays, thereby saving space at run time.
If you know that execution of the current load will not
reference certain enkry points, you cam use MOENTRY to
delete them.

SHOENTRY differs from HOREQUEST 1imn that SHOREQUEST
deletes reguests Ffor symbols, while /HOENTRY deletes
symbols that might be reguested.

EXAMPLES * /ENTRY HT
[LNELSS LIBRARY SEARCH SYMBOLS (ENTRY POINTS)]
SQRT. 1456
* /MOENTRY : (SQRT.) &0
* /ENTRY &0
*

Deletes SQRT. so that it cannot be upsed ko fulfill a
symbol reguest.

OPTIONAL You can omit the parentheses if only one symbol is given.
HOTATIONS

RELATED FENTRY ; JERCLUDE, /NOEXCLUDE, SINCLUDE, /NWOINCLUDE,
EWITCHES SMISSING, /REQUEST, /NOREQUEST

LINE Version 5.1 3=-37 March 1983

OSING LINE DIRECTLY

/ROINRCLUDE
FORMAT SJHOINCLUDE
FURCTION Clears reguests for modules that were specified in a
previous SINCLUDE.
EXAMPLE *LIBlSINCLUDE: (MOD1 ,MOD3) &1

® /MOINCLUDE &
L]

Loads MOD1 and MOD3 froem LIBl. However, 1f the modoles
are not found immediately, stop searching.

RELATED JINCLUDE, JEXCLUDE, /MISSIMNG
SWITCHES

3-18 March 1983

FORMAT
FURCTIOM

EXAMPLES

USING LINE DIRECTLY

JHOINITIAL

SROINITIAL

Prevents loading of LINK's initial global symbol table
(JOBDAT) . The /HOINITIAL switch cannot operate after the
first file specification because JOBDAT will be already
loaded. The initial global symbol table contains the
JBxxx symbols described in Appendix C.

The /MOINITIAL switch iz commonly used for:

o loadimg LINK itself (to get the latest copy of
JOBDAT) .

o Loading 2 private copy of JOBDAT (to alter if
necessary) .

@ Building am EXE file that will eventually run in
executive mode (for example, a monitor or bootstrap
loader) .

@ Building a TOP5=-20 native program which does not use a

JOBDAT area.

®/MOINITIALSD
&

3=-28 April 1982

FORMAT

FUMCTION

EXARMPLES

OPTIONAL
HOTATIONS

RELATED
SWITCHES

USING LINE DIRECTLY

SHOLOCAL

SHOLOCAL

Suspends the effect of a preceding /LOCALS switch so that
local symbol tables will not be loaded with their modules.

The /LOCALS and /NOLOCAL switches may be used either
locally or globally. IF the switch iz suffixed to a file
specification, it applies only to that file; if it is not
suffixed to a file specification, it applies ko all
following files in the same command string.

This switch is wseful if wvou peed Lo CORSECVE @DEMOCY
space, becavse local symbols are loaded into the low
seament by default.

* LOCALS A, B/NOLOCAL,C, /NOLOCAL DER

-

Loads A with local symbols, B without local symbols, C©
with local symsbola, and D without local symbols.

Abbreviate SNOLOCAL to /.

SLOCALS

FORMAT
FUNCTION

EXAMPLES

OPTIONAL
HOTATIONS

RELATED
SWITCH

USING LINEK DIRECTLY

/HOREQUEST

SHOREQUEST: (symbol ,symbol, ...}

Deletes references to links from LIME's overhead tables
when loading overlay programs. If you kpnow that the
execution of the current load will not reguire cerctain
links, vyou can use /NOREQUEST to delete references to
them.

FJHOREQUEST differs from /HOENTRY in that /NOENTRY deletes
symbols that might be reguested, while /HOREQUEST deletes
the reguests for them.

* /REQUEST &1
[LHERER REQUEST EXTERMAL REFEREWCES)
ROUTH.
SORT.
* NOREQUEST : (ROUTNH. ,SQRT.) ED
&
Deletes references to ROUTN. and SQRT.

You cam omit the parentheses if only one symbol iz given.

JHOENTRY

FORMAT

FURCTION

EXAMPLES

RELATED
SWITCHES

USING LINE DIRECTLY

SROSEARCH

SHNOSEARCH

Suspends the effect of a previous /SEARCH switch. Files
named between & SSERRCH and the next HOSEARCH are
searched as libraries, so that modules are loaded only to
resolve global references.

The /SEARCH and /HOSEARCH switches may be used elther
loecally or globally. If the switch is suffixed to a file
gpecification, it applies only to that file; if it is mot
suffizxed to a file specification, it applies to all
following files in the same command string.

*FILE]&EE
* /SEARCH A,B/MOSEARCH,C, /MOSEARCH D&E
L]

Searches A, loads B, searchesz C, and loads D.

SSEARCH

1-42

FORMAT
FUMCTION

EXARMPLES

RELATED
SWITCHES

USING LINE DIRECTLY

SHOSTART

SHOSTART

Directs LINK to disregard any start addresses found after
the /HOSTART switch. Hormally LIMK keeps the most recent
start address found, overwriting any previously found.
The /MOSTART switch prevents this replacement.

*MAINL, /HOSTART MAINZ ,MAINI @M

-

Directs LINK to save the start address from MAIMI instead
of replacing it with other start addresses from HAINZ and
MAINI.

JSTART

FORMAT

FURCTION

EXAMPLES

USING LINKE DIRECTLY

JHOSYMBOL

FHOSYMBOL

Prevents construction of user symbol tables. Symbols are
then not available for the map file, but the header for
the file can still be generated by the /HAP switch.

The /HOSYMBOL switch prevents writing anm ALGOL SYM file if
it would otherwise have been written.

If you do not need the map file or symbols, you can speed
loading by using the /MHOSYMBOL switch.

* /HNOSYMBOL 80
L]

I=-44

FORMAT

FUNCTION

EXAMPLES

OPTIOMAL
HOTATIONS

USING LINE DIRECTLY

SHOSYSLIB

SJHOSYSLIB: (keyword, .. . keyword)

Frevents automatic search of the system libraries named as
keywords. LINKE wusually searches system libraries at the
end of loading to satisfy unresolved global references.
The /HOSYSLIB switch prevents this search.

The HOSYSLIB switch can also be used to terminate
searching of libraries that were specified in a previous
FSBYSLIB switch. When vou specify searching of a library
with /5¥5LIB, that library will continue to be searched
for every module you load. You can use SHOSYSLIB to
specify libraries that should not be searched. PRefer to
SSYSLIB for more information.

The permitted keywords and the libraries they specify are
ligsted below. only those printed in boldface specify
libraries supported by DIGITAL.

ANY Prevents all library searches.
ALGOL Prevents search of ALGLIEB.

BCFL Prevents search of BCPLIB.

COBOL Prevents search of LIBOL or CT4LIB.
F40 Prevents search of LIB4O0.

FORTRAHN Frevents search of FORLIB.
NELIAL Prevents search of LIBMEL.
PASCAL Prevents search of PASLIEB.
SAIL Prevents search of SAILIB.
STMULA Prevents search of SIMLIE,

* /MOSYSLIB: (ALGOL, COBOL) RED
L
Prevents search of the system libraries ALGLIE amd LIBOL.

If you omit keyword it defaults to ANY.
You can omit parentheses if only one keyword 15 given.

1=45

FORMAT

FUNCTION

EXARMPLES

OPTIOMAL
HOTATIONS

RELATED
SWITCHES

USIKRG LINE DIRECTLY

/HOUSERLIB

filespec/NOUSERLIB

Discontinues automatic searching of the specified file at
each /LIME or /GO switch. If vou need a file searched for
someé links but pnot others, you can wse the JSUSERLIB and
FSHOUSERLIB switches to enable and disable automatic search
of the file.

* SOVERLAY B
*MYFORL/USERLIB : FORTRAN @D
*MOD1 /L INK : MOD] 2D

* /MODE:MODL MODZ/LINK:MOD2 FED
*MYFORL/HOUSERLIE @D

L]

Loads the overlay handler; reguests search of MYFORL as a
FORTRAM library; 1oads MOD1 and MODZ as links:
discontinues search of MYFORL.

If you omit the filespec, LINE discontinues search of
all user libraries.

SUSERLIB

I=46

USING LINE DIRECTLY

JONLY

FORMAT SONLY s keyword

FUNCTION Directs LINE to load only the specified segment of
two-gegment modules. The permitted keywords are:

HIGH Loads only high segments.
LOW Loads only low Segments.
BOTH Loads both segments.

The /OMLY switch 15 ignored for one-segment modules and
for PSECTed modules.

EXAMPLES * OMLY:HIGH MOD],MODZ @&
*MOD I AONLY : BOTH &
&

Loadzs high segment for MOD] and MODZ2; loads both segments
for MOD3.

LINK Version 5 1=-47 April 1982

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINE DIRECTLY

JOTSEGHMENT

SOTSEGMENT :keyword

Specifies the time and manner of loading

syskem.

The permitted keywords are:

the object-time

of a previous

SOTSEGMENT : MONSHAR

sysktem into the

syskem into the

sysktem into user
time. The wuser
in both segments.

The object=time system may have code in

DEFAULT Suspends the effect
SOTSEGMENT : SHAR ar
switch.

HIGH Loads the objeck=time
high segment.

LOw Loads the objeck=time
low segment.

NONSHARABLE
Loads the object=time
core lmage at load
program may have code
both segments.

SHARABLE

Binds the aobject=time system at

execubtion time. The

the low segment and

gystem iz in the high

user program is in
the oabject-time
seqment .

LINE's default action i% to bind the object-time system at
execution time. This normal action occurs if none of the

following are true.

& You specify SOTSEGMEHT:HONSHARABLE.

You have loaded any code into the high segment.

¢ You have specified /SEGMEMT:HIGH for some modules.

You have gpecified /SYMSEG:HIGH.

® Your low segment is too big for sharable object-time

systems to fit.

If any of these is true, a non-sharable object=-time system

is loaded as part of your program.

*MYPROG/SYSLIB/OTSEGMENT : RONSHAR BT
L]

Loads a non-sharable copy of the object-time system as

parkt of your program.

SSEGMENT

April 1982

FORMAT

FUNCTION

EXAMPLES

OFTIOMAL
MOTATIONS

USING LINE DIRECTLY

JOVERLAY

filespec OVERLAY: (keyword, ... keyword)

Initiates construction of an overlay structure. For &
discussion of overlay structures, see Chapter 5.

The permitted Kkeywords

and their meanings are listed

below, The default settings are printed in boldface.

ABSOLUTE

LOGFILE

HOLOGFILE

HONWRITABLE

HOWARNING

PATH

RELOCATABLE

TREE

WARNING

WRITABLE

See Chapter 5.

Specifies that links are absolute.
Thiz is the defauwlt situation when

overlays are loaded. The inverse
situation iz to TS
SOVERLAY : RELOCATABLE. Relocatable

overlays are described in Chapter
S

Outputs runtime overlay messages Lo
your terminal.

Suppresses output of runtime
overlay messages.

Specifies that links ET 4.3
nonwr itable.

Suppresses overlay warning
mesSSages.

Specifies that each link path will
be loaded with its link.

Specifies thak links are
relocatable.

Specifies that the overlay will
have a kree structure.

Outputs overlay warning mesSages to
user terminal.

Specifies that the links are
writable. Eefer to Chapter 5 for
mare information.

You can omit the parentheses if only one keyword is given.

1=49

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
HOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

JPATCHSIZE

JPATCHSIZE:n

Where n is & positive decimal integer.

Allocates n words of storage to precede the symbol table.
The allocated storaqge iz in the same segment (high or low)
as the symbol table. The default is /PATCHSIZE:64.

The storage allocated is available for patching or for
defining new symbols with DDT, and iz identified by the
global symbol "PBAT.."

* /SYMSEG:HIGH/PATCHSIZE: 200 &0

i

Loads the symbol table in the high segment afrer
allocating 200 words between the last loaded module and
the symbol table.

Tou can specify the patchsize in octal.

SEYMEEG

3-50

FORMAT
FURCTION

EXAMPLES

OPTIOMAL
MOTATIONS

RELATED
SWITCHES

OSING LINE DIRECTLY

SRLOT

filespec/PLOT

Directs LIME to output a tree diagram of your overlay
structure. You can have the diagram formatted for a
plotter (by default) or for a line printer (by giving the
device as LPFT:).

Each box in the diagram shows a link number, its name (if
you gave one with the /LINE switch), and its relationship
to other links (as defined by your commands).

The /PLOT switch cannot precede the SOVERLAY switch.

See Chapter 5.

LINE has default settings for the size of the overlay

diagram and the increment for drawing lines. ¥You can
override these by giving the /PLOT awikch inm the form:

filespec/PLOT: (LEAVES:value,INCHES :value ,STEPSivalue)
Where the values for each parameter define:

INCHES Width of diagram im inches. The defaults are
INCHES:29 for plotter and INCHES:12 for line

printer.

LEAVES Humber of links without successors that cam
appear Jim one £OW ., The defaults are
LEAVES:16 for plotter and LEAVES:8 for line
printer.

STEFS Increments per imch for drawing lines. The

defaults are STEPS:100 for plotter and
STEPS:20 for line printer.

For line printer diagrams, vyou cannot give INCHES or
LEAVES different from the defaults. The STEPS parameter
should be between 10 and 25,

For plotter diagrams, you should give IHNCHES and LEAVES in
a ratio of about 2 to 1. For example, INCHES:40 and
LEAVES:20.

If LINE cannot design the diagram on one page, it will
automatically design subtrees for diagrams on more pages.

/LINK, /HODE, /OVERLAY

3-51

OUSIRG LINE DIRECTLY

JPLTTYP

FORMAT SPLTTYP: keyword

FUNCTION Allows & uwser to specify the type of ploe file to be
genecated by the SPLOT awitch.

KEYWORDS DEFAULT Generate output for a printer only if the device
is a printer or terminal.

FLOTTER Generate output for a plotter.

PRINTER Generate output for a printer.

EXAMPLES .
B LINK®ED
*TEST/OVERLAY [T
*DSK: TEST/PLOT /PLTTYP: PRINTER ET
*OVLO ,OVL] /LINE : TEST &0
* /RODE: TEST OVL2 SLINK:LEFTEL
* HODE: LEFT OVLS ,-'LIHH:LE.‘I-‘TIE_"'
* /NODE : LEFT OVL& /LIMNK:LEFT2ET
* /NODE : TEST OVL3,0VL4 /LINK:RIGHT &Y
*TEST /SAVE /SGOEN
EXIT
Causes all output from the /PLOT s=awitch to be in line
printer format.
RELATED SRLOT
SWITCHES

LINKE version 5.1 3-52 March 19483

FORMAT
FUMCTION

EXAMPLE

USING LINE DIRECTLY

SPVBLOCE

SEVBLOCK : keyword

Fequests a program data vector from LINK and gives the
user control over where the wvector goes. The vector
specified with this switch is the primary data wvector, and
it therefore supercedes any vectors specified in Type
1100=1107 blocks. Refer to Sectiom 4.2.1.

MOTE

This switch fumctions only under LINE wversion 5
and TOPS-20 wersion 5. Refer to Section 3.5 for
more information about the use aof extended
addressing.

Keywords and their meanings are:

DEFAULT disables the previous PVBLOCK:HIGH
or /PVBLOCK:LOW, restoring LINK's
default action. The default for
one=-segment programs is to positien
the program data wvector after the
the program, before the patch area
and the symbol table. The default
for two-segment programs 1s to
position the program data vector at
the end of the high segment.

HIGH places the program data wector at
the end of the high segment.

LOW places the program data wector at
the end of the low segment.

NONE prevents the loading of the program
data wvector.

PSECT :name places the program data vector for
the mnamed PSECT at the end of the
PSECT (after allocating any space
regquired by the /PATCHSIZE switch).

*#TEST]1 /PVBLOCK:DEFAULTEN

*TEST]1 /SAVE /COED

EGET TESTI &

AINFORMATION VERSIONED

2102 TOP5-20 DEVELOPMENT SYSTEM, TOPS-20 MONITOR 5(4451)
TOPS-20 COMMAND PROCESSOR 5(706)

PROGRAM IS5 TEST1

POVS: PROGRAM MNAME TEST1, VERSION

)

3-52.1

OSING LINE DIRECTLY

THIS PAGE INTENTIONALLY LEFT BLANK

3-52.2

USING LINE DIRECTLY

This example loads a program (TEST1l) that allocates memocy
words. The /PVBLOCK sSwitch is uwsed when the program 1S
loaded, to reguest & program data wvector. After the
PEGOE &M iz saved oand loaded (using the GET system
command) , the INFORMATION VERSION command shows that a FDV
has indeed been allocated to the program.

OPTIOHAL If you specify /PVBLOCKE with no keyword, DEFAULT is the
HOTATION default.

LINE Version 5§ 3-53 April 1982

USING LINE DIRECTLY

/PVDATA
FORMAT SPVDATA:keyword:value
FUNCTION changes the contents of a program data wector block

gspecified with the /PVBLOCK switch. The /PVDATA awitch
also allocates storage for the program data wvector. IE
the storage to be allocated conflicts with any PSECT, LIHE
issues a message with the severity level of 16, and does
not write the program data vecter information into the
image or EXE file. Refer to Section 4.2.1.

NOTE

This switech functions only under LINE wersion 5
and TOPS-20 wersion 5. Refer to Section 3.5 for
more information about extended addressing.

Eeywords and thelr intended values ape:

HAME Program name
VERSIOH a global symbel or numeric value.
HEMORY address (absolute or symbolic) of a user

supplied memory map, suppressing the map
generated by LINK

PROGRAM address (absolute or symbolic) of a
program=specific data block
CBLOCK addeess (absolute or symbolic) of a
customer-defined block
START start address (absoclute or symbolic)
EXAMPLE *TEST]1 /PVDATA:HAME :STORAG ED

*TEST] /SSAVE /GO &N
BGET TEST1@Eh
RINFORMATION VERSION ET
2102 TOPS-20 DEVELOPMENT SYSTEM, TOPS-20 MOMITOR S({4451)
TOPS=20 COMMAMD PROCESSOR S5(706)
FPROGRAM IS5 TESTI
FDVS: PROCRAM MAME STORAG, VERSION

This example shows a program (TES5T1) being loaded. Using
the PVDATA switch, ¢the progream i3 named STORAG. After
the program is saved snd pagain loaded, the INFORMATION
VERSION command shows that TEST]1 has a program data vector
named STORAG.

LINKE Version 5 3=-54 April 1982

FORMAT
FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINE DIRECTLY

JSREQUEST

SREQUEST

Reguests terminal typeout of all external references to
other links. (LINKE recognizes only those that use the
standard calling seguence.)

If you wuse JREQUEST to get the names of external
references, you can then either delete the references with
the /MOREQUEST switch, or load the referenced modules.

* /REQUEST BT

[LNERER REQUEST EXTERNAL REFEREMCES)
ROUTHM.
SQRT.

* /MOREQUEST : ROUTH. BT

* /SEARCH LIB1 SN

Cbtains the external references ROUTH. and SQRT.;
deletes the reguest for ROUTH.; searches the file LIBL
for a2 module comtaining the entry poinkt SQRT.

SHOREQUEST

3-55

FORMAT

FUNCTION

EXAMPLES

OPTIOMAL
MOTATIONS

USING LINFE DIRECTLY

FREQUIRE

SREQUIRE: (symbol,...,symbol)

Generates global reguests for the specified symbols. LINK
uses these symbols as library search symbols (enkrcy
points) .

FJREQUIRE differs from SINCLUDE in that /INCLUDE reguests a
module by name, while /REQUIRE regueskts an enkry name
symbol. Thus you canm use SREQUIRE to specify a function

{Eor example, SQRT.} even 1if you do not Know the module
name .

You can use SREQUIRE to load a module inmnto a link common
to all links that reference the module.

Hote that the global reguests generated by the FREQUIRE
switch do not use the standard calling seguence, and are
therefore not visible to the /REQUEST switch.

* UNDEFINED &3
[LMEUGS HO UNDEFINED GLOBAL SYMBOLS]
* REQUIRE: (ROUTH. ,SQRT.) E
* /UNDEFINED &
[LHEUGS 2 UNDEFIMNED GLOBAL SYMBOLS)
ROUTH,
SQRT.

¥You can omit the parentheses if only one symbol is given.

FORMAT

FUHCTION

EXRMPLES

USING LINK DIRECTLY
SREWIND

JREWIND

Rewinds the current input or output device if the
i5 & tape. If mot, the switch is ignmored.

*MTAD: /REWINDED
L

Rewinds tape on MTAD:.

device

USIMNG LINK DIRECTLY

JRUNAME

FORMAT SRUHAME : name

FUNCTION Assigns a job name for execution of your program. This
name is used only by the SYSTAT and INFORMATION modules of
the system monitor.

EXARMPLES * /RUNAME : LNEDEV &)
L

Assigns the name LHEDEY for job execution.

3-58

FORMAT

FUNCTION

EXAMPLES

OSING LINE DIRECTLY

/SAVE

filespec /5AVE

Directs LIME to create an EXE file with the specified
filespec. Unless you have specified otherwise, the file
type will be EXE.

Hote that if vyou want to run the saved file with the
system command, the file extension must be .EXE.

*MYPROG &N
*DSKZ :G00DIE.EXE/SAVE GO HT
*

Directs LIMK to save the linked wversion of MYPROG as
GOODIE.EXE on DSKEZ:.

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

OSING LINE DIRECTLY

SSEARCH

JSEARCH

Directs LINE to load selectively from all following E£iles
up to the next SHOSEARCH or /G0. These files are searched
a8 libracries;, and only modules whose entry point name
resalves a global reguest are loaded.

Using /HOSEARCH discontinues the library search mode, but
for each limk the system libraries are still searched
{unless you used the MNOSYSLIB switch), and uvser libraries
are 5till searched (if you used the FUSERLIB switch).

The /SEARCH and /MNOSEARCH switches may be wsed either
lacally or globally.

*/SEMRRCH A,B/HNOSERRCH,C, /NOSEARCH D @&
L]

Searches A, loads B, searches C, and loads D.

SHOSEARCH

3-60 March 1983

FORMAT

FUMCTION

EXAMPLES

RELATED
SWITCHES

USING LINE DIRECTLY

SSEGMENT

FEEGMENT : keyward
Specifies which segment 15 to be used for loading
following modules. FORTRAN object code is an exception:

both segments are loaded into the low segment unless one
or more of the following is true:

¢ You used the SOTSEGHMENT:NOMSHARABLE switch.

You used the SSEGMENT:HIGH switch to load code into
the high segment.

& You used the /SEGMENT:DEFAULT switch to load code into
both segments.

Some code is already loaded into the high segment.

The keywords for the /SEGMENT switch are:

DEFAULT Suspends effeck af SEEGMENT : LOW (3 4
SSEGMEMT:HIGH.
HIGH Load into high segment, even iIf ispure code.
LOwW Loads into low segment.

HONE Same as DEFAULT.

If the switch is suffixed to a file specification, it
applies only to that file; if it is not suffixed to a
file specification, it applies to all following files im
the same command String.

* /SEGMENT:LOW MOD1 ,MOD2, /SEGMENT:HIGH MOD3 &1

*

Loads MOD1 and MODZ into the low segment; loads MODE inte
the high segment even if its code iz impure.

SOTSEGMENT

LINKE Version 5.1 3-61 March 1983

FORMAT

FUMCTION

EXAMPLES

RELATED
SWITCHES

USIKNG LIWNE DIRECTLY

FSET

FfESET:name:address

Where name is HIGH., .LOW., or a PSECT name, and address
i5 an octal address or a defined symbol.

Sets the loading position of & PSECT, or sets the .HIGH.
of LOW. relocation counter.

For setting the loading position of a PSECT, name is the
name of the PSECT, and address is a wvirtval memocy
address. The /SET switch must precede the modules that
will make wup the specified PSECT. The /SET switch is not

negded if the REL. files already contain originm
information.

NOTE

If you load PSECTs =0 that the resulting core
image contains gaps, you must generate an EXE file
and execute that File (rather tham executing the

loaded core image). It is good practice to
generate an .EXE file for all PSECTed programs.

If you do not ask for am EXE file and you need one, LINK
will generate one for you.

*/SET:A:200000 &9

L

Specifies that the P5ECT named A is to be loaded with its
origin at address Z200000.

*/ESET: .HIGH. : 4 00000&D

#*

S5ets the high segment relocation coumter .HIGH. to the

address 400000, Hote that saying /SET:.HIGH. causes &

high segment to appear and a vestigial JOBDAT area to be
built.

JCOUNTER, /LIMIT

LIME Version 5.1 i-62 March 1983

FORMAT
FUNCTION

EXAMPLES

USING LINE DIRECTLY

JSEVERITY

SEEVERITY:n

Specifies that messages of severity level greater tham n
will terminate the dJob, where n i3 & decimal number
between 0 and 30 inclusive. Level 31 messages always
terminate the job.

The defaults are SSEVERITY:24 for timesharing jobs, and
JSEVERITY:1€ for batch jobs.

* /EEVERITY: 30 ED

L

Specifies that only level 31 messages are fatal.

3-613

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

DSING LINK DIRECTLY

SEEIP

SSKIP:n
Where n is a positive decimal integer.

Skips forward over n files on the current tape device. (A
tape device remains current only until end-of-line or
until another device is specified, whichever oCCuUrs
first.) If the device 1is not a tape, the switch is
ignored.

*MTAD: /SEIP: 4 E0
-

Skips forward over 4 files on MTAD:.

FBACESPACE, /HTAPE, /REWIND, /UNLOAD

FORMAT

FUMCTION

EXAMPLES

OPTIONAL
HOTATIONS

USING LINE DIRECTLY

/SPACE

SEPACE:n
Where m iz a positive decimal integer.

Specifies that n words of memory will follow the curcent
link at execution time. This memory allocation will not
increase the size of the overlay file, but it will
increase the size of the program at rum time.

The SSPACE switch is used to allocate space for use by the
object time systems. The OTS uses this space for I/0
buffers, and as scratch space in FORTRAM and heap space in
ALGOL.

You should place the /SPACE switch before the first SLINK
gwitch, to ensure allocatiom for the root link. It is
possible to allocate space after one or more owverlays are
linked. This might be useful if an overlay has unusual
storage reguirements: buffers for a file which is open
only while that owerlay is resident, or & large local
matrizx. To allocate space between overlays, use SSPACE
when loading the overlay that will be using this file or
matrix. LINK allows one /SPACE switch for the root node,
and one for each overlay.

The default amount of memory allocated, if you do not
specify FSPACE,; is 2000 for the root link and 0 (zero) for
other links.

If the space allocated for a relocatable link i3 too
small, the overlay handler cam relocate it. If the space
allocated for am absolute link i% too small, a Fatal ercor
OCCUrs.

* /OVERLAY T
*TEST/SPACE:90/LINE: MATHER
* JHODE :MATIN SUBL/LIMNE:SUBLER

E JHODE:MAIN SUBZ/LINK:SUB2ED
.

Allocates 90 words of memory to follow the root 1link for
the program. See Chapter 5 for a discussion on overlay.

You can specify the number of words in octal.

1-65 March 19813

FORMAT

FUONCTION

EXAMPLES

OPTIONMAL
MOTATIONS

RELATED
SWITCHES

UOSING LINE DIRECTLY

FSETART

FETART:gymbol
SETART:address
SETART

Where symbol is a defined global symbol.

Specifies the start address for the loaded program, and
prevents replacement by any start addeesses found later.
You can use the /START switch with no argument to disable
a previously given /HOSTART switch.

*MAIN] /START:ENTRY1 , MAINZ ,MATHI ET
&

Defines the start address as EWNTRY] in MAIN]l, and prevents
replacement of this start address by any others found in
MAINZ or MAINI.

You can specify the start address in octal.

JHOSTART

i-66 March 1983

FORMAT

FUNCTION

EXAMPLES

USING LINE DIRECTLY

SSUFPRESS

JSUPPRESS taymbol
Where symbol is a previously defined global symbol.

Used to suppress a previously defined global symbol. If
the &ymbol is unknown, this switch has no effect. You
should use this switch when two modules define a global
symbol and vwou wish to suppress the unwanted definition.
The symbol is removed from LINK's integnal tables; it
will mnot appear in map and 5¥M files; nor in the symbol
table supplied to DDT.

This switch is used to EUpPPress BECOCS from
multiply=-defined symbols. When LIMNE encounters a new
definition for a previocusly defined symbol, the new
definition will supersede the old definition.

* /SUPPRESS:ENTPTRET

&

This switch would suppress any definition attached to
ENTPTRE.

LINE Vversion 5 3I-67 April 1982

FORMAT

FUNCTION

EXAMPLES

OPTIOMAL
NOTATIONS

USING LINE DIRECTLY

SEYFILE

filespec/SYFILE: keyward

Feguests LINE to output a symbol file to the given
filespec, and sets the FSYMSEG:DEFAULT switch. IE wou

previously specified /HOSYM, the /SYFILE switch hazs no
effect.

The symbol Eile contains global symbols sorted for DDT.
If you wused the FLOCALS swiktch, it also contains local
symbols, module mames, and module lengths.

The permitted keywords and their meanings are:

ALGOL Reguests symbols in ALGOL's formakt. The
first word of the table is 1044, ,count.
The remaining words are copied out of Type
1044 BREL blocks. If an ALGOL main program
has been loaded, then /SYFILE:ALGOL becomes
the defaultk.

RADIX=50 FReguests symbols in Badix=50 format. The
first word of the table is negative. Each
symbol reguires two words in the table:
the first is the symbol name in Radix-50
format; the second i5 the symbol walue.

TRIPLET FReguests symbols in triplet format. The
first word of the table is zero. Each
gymbol reguires three words in the table:
the first word contains flags; the sSecond
is the symbol name in SIXBIT; the third is
the symbol value.

*SYMBOL/SYFPILE B
&
Creates a symbol file called SYMBOL with the symbols in

Radix-50 format.

If you omit the keyword, BADIX-50 iz assumed.

3-68 April 1982

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINE DIRECTLY

SEYMSEG:keyword

/SYMSEG

Places the symbol table S50 that it will not be overwritten
during execution or debugging.

BEeywords and their meanings are:

DEFAULT

HIGH

LW
NOME

PSECT :name

* /SYMSEG : LOW BT
L

Flaces the symbol table in the low segment,
except for overlayed programs, imn which
case symbols are not loaded by default.

PFlaces the symbol table in the high
segment.

Places the symbol table in the low segment.
Prevents loading of the symbol table.

Places the symbol table for the named PSECT
at the end of the PSECT (after allocating
any space reguired by the SPATCHSIZE
switch).

Flaces the symbol table in the program low segment.

JLOCALS, /NOLOCALS

1=-69 April 1982

FORMAT
FUNCTION

EXAMPLES

OPTIOMAL
HOTATIONS

RELATED
SWITCHES

USING LINE DIRECTLY

SSYSLIRB

SEYSLIB:keyword

Forces sSearching of one or more system libraries,
immediately after vyou end the command line. LINE will
also automatically search a system library if code from
the corresponding compiler has been loaded. By default,
LINK searches the system libraries that are appropriate
for the language compiler, after all the modules of the
program are leoaded. JSS5YSLIB forces the search to take
place immediately.

Afcer you specify a librargy with /SYSLIB, the library you
gspecified will be searched every time you load a module,
until you use /NOSYSLIB to end searching of that library.

The permitted keywords and the libraries they specify are
listed below. Thosze printed in boldface specify libraries
supported by DIGITAL.

AHY Forces search of all system libraries.
ALGOL Forces search of ALGLIB.

BCP Forces search of BCPLIB.

COBOL Forces search of LIBOL or CTALIB.

F40 Forces search of LIB40.

FORTRAN Forces search of FORLIB.
HELIAC Forces search of LIBREL.
EASCAL Forces search of PASLIB.
SAIL Forces search of SAILIB,
SIMDLA Frevents search of SIMLIB.

*TEST] /SYSLIB:ALGOL ®T
*TEST2/NOS¥SLIB: ALGOL T

L.d

Where TEST] is a FORTRAN module, LINE will search both
FORLIB and ALGLIE for TEST1. Where TESTZ2 is a FORTRAN
madule, LINKE will search only FORLIB when TESTZ is loaded.

You can omit the keyword. LINK will search all libraries
for which corresponding code has been loaded.

SHOSYSLIA

3=-70

OSING LINE DIRECTLY

/TEST

FORMAT STEST:keyword

FURCTION Loads the debugging program indicated by keyword. Unlike
the /DEBUG switch, /STEST causes execution to begin in the
loaded program (not in the debugging module). This switch
iz wuwseful if you expect the program to run successfully,
but want the debugger available in case the program has
erfors.

The /TEST switch turns on the SLOCALS aswitch for the
remainder of the lead. You can overcide this by using the
JHOLOCAL switch, but the override lasts only during
processing of the current command string.

Local symbols for the debugging module itself are never
loaded.

The permitted keywords amd the programs they load arce
listed below. Only those printed in boldface are
supported by DIGITAL.

ALGDDT Loads ALGDDT.

ALGOL Loads ALGDDT.
COBDDT Loads COBDDT.
COROL Loads CORDDT.
DoDT Loads DDT.
FAIL Loads SDDT.

FORDDT Loads FORDDT.

FORTRAR Loads FORDDT.

MACRO Loads DDT.

PRSCAL Loads PASDDT.

PASDDT Loads PASDDT

SAIL Loads the SAIL debugger.
SDDT Loads the SAIL debugger.
SIMDDT Loads SIMDDT.

STHULA Loads SIMDDT.

EXAMPLES *MYPROG,/TEST: FORTRAN &
W

Loads MYPROG and FORDDT.
OPTIONAL If you give mo keyword with STEST, the default s either
HOTATIONS ODT or the debugging program specified by the SDDEBUG
switch.

RELATED SDDEBUG, /DEBUG
SWITCHES

LINE version 5.1 1=-71 March 1983

FORMAT

FUNCTION

EXAMPLES

OPTIOMAL
HOTATIONS

RELATED
SWITCHES

OSING LINE DIRECTLY

SJUOMDEFIHED

JUHDEFINED

Bequests terminal typeout [(in octal) of undefined global
symbols. You can use SUNDEFINED to get a lise of
undefined symbols, and then define them with the JDEFINE
switch.

* /UNDEFIMED D
[LNEUGS 2 UNDEFINED GLOBAL SYMBOLS]
L] 400123

IGOR 402017
*/DEFINE: (A:591,IGOR:1) &M
L]

Gives the decimal wvalues 591 and 1 to A amnd IGOR,
respectively.

You cam abbreviate JUNDEFINE to 0.

/DEFINE, /VALUE

LINK Version 5.1 3-72 March 1983

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

JUNLOAD

device /UHNLOAD

Bewinds and unloads the Specified tape dewvice. (This
switch is lanored {f the current device is not a tape
device.] The JUHLOAD iz not performed wuntil the curcent
file processing is completed.

*MTAQD : SUNLOAD T

E 3

Eewinds and unloads MTRO.

JBACKSPACE, /MTAPE, /REWIND, /SKIP

USING LINE DIRECTLY

JUPTO

FORMAT SUPTOtaddr

Where addr is the upper limit to which the symbol table
can grow. The addr walue can be replaced by a symbol.

FUNCTION Sets an upper limit to which the symbol table can expand.
EXAMPLE ® UPTO: 550000 &
o

Included in a FORTRAN load, this switch would override the
default upper bound for the symbol table. This might be
used if FOROTE begins above 400000.

RELATED SEYMEEG
SWITCH

3-74 April lasg2

FORMAT
FUNCTION

EXAMPLES

OPTIONAL
HOTATIOMNS

RELATED
SWITCHES

USING LINE DIRECTLY

SUSERLIB

filespec/USERLIB: (keyword, ... keyword)

Directs LINK to search the user library given by filespec
before :earchin? system libraries. The keyword indicates
that the given library is to be searched only if code from
the corresponding compiler was loaded.

Eeywords and their meanings are given below. only those
printed in boldface indicate compilers and libraries
supported by DIGITAL.

ALGOL Bearch as an ALGOL library.
ANY Always search this library.
BCPL Search as a BCPL library.
COBOL Search as a COBOL librarcy.

a

FORTRAN Search as a FORTRAN libracy.

WELIAC Search as a NELIAC library.

PASCAL Search as a PASCAL library.

SAIL Search as a 5AIL library.

SIHULA Search as a SIMULA library.
*MYFORL/USERLIB : FORTRAN BT
w
Directs LIMEKE to search the wser library MYFORL (before
searching FORLIB) if any FORTEAM-compiled code is loaded.

You can omit the parentheses Iif only one keyword is glven.

JHOUSERLIBE

3-7%

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
HOTATIONS

USING LINE DIRECTLY

SVALUE

SVALUE: (symbol ,symbol, .. .)

Requests terminal typeocut of the values of each specified
global symbol. LINE will type out its LNEVAL message,
giving the symbol, its currenkt value, and its status. The
status is one of the following:

defined The symbol and its value are known.
undefined The symbol is known, but has no value.
COmMon The symbol is known and is defined as COMMOM.
unknown The symbol 15 not in the symbol table.
+*TEST HD

*SPEXPED

*SPEX2 ED

* /VALUE: (SPEX2,DPEXP,X2,X) &

[LMEVAL SPEX2 460 DEFIMED]

[LMEVAL DPEXP 221 UMDEFIMED]

[LHEVAL X2 124 COMMON, LEMGTH 1 (DECIMAL)]
[LHEVAL X UHENOWH]

i

For DPEXP, 221 is the last locatiom at which the symbol
was referenced, and marks the beginning of a fixup chain.

You can omit the parentheses if only one symbol iz given.

USING LINE DIRECTLY

SVERBOSITY

FORMAT JVYERBOSITY :keyword
FURCTION Specifies the length of LINK messages,
The permitted keywords and their meanings are:
SHORT Qutput only the &=letter code.

MEDIUHM Output the 6-letter code and the
Tedium-lfnqlh message (usually one line or
es3) .

LONG OQutput the 6=-letter code, the medium-length
MmesSsage , and the long message (usuwally
geveral lines).

For a few messages no long message exista; in these cases
the LONG specification is ignored.

EXAMPLES ALIHKED
O VERBOE T TY | SHORT &7
VLNEFLE

PLEASE FETYPE THE INOORFECT PARTE OF THE FILE SPECIFICATION)

SFOlYERROE [TV e MED LM MY
VANEFLE LOOEUF ERFDF (0§ FILE RAS NOT POUND DSE:FOO.REL

| PLEASE RETYFME THE INCORRECT PARTE OF THE FILE SPECIFLCATION]

SO0 VERBOE]TY = LONS i3
VEMEFLE LOOELF ERFOR (0) FILE WAS NOT FOUND DSK: FOO.REL

THE KANED FILE WASE NOT FODND. SPLCIFY AN EEKISTING FILE.
| FLEASE FETYFE THT TRCORBICT FARTS OF THE FILE SPFCIFICATION]

RELATED SMESSAGE
SWITCHES

FORMAT

FUNCTION

EXAMPLES

USING LINE DIRECTLY

SVERSION

SYERSIOH:ic(ii=k
Where:
i = an octal number between 0 and 777 inclusive.
¢ = one of two alphabetic characters.
i = an octal number between 0 and 777777 inclusive.
k = an octal number between 0 and 7 inclusive.

Changes the value of JBVER (location 137 in JOBDAT) and
JBHVR in the westigial job data area.

If the switch is associated with an input specification,
or with no specification, the version number is entered in
.JBYER and .JBHV¥E (location 4 in the westigial job data
acea).

There are four parts to the version arguments, glven as i,
2y 3, and k above. The first number (i} gives the major
version number. The character (¢} gives the minor
VEESLON. The second number (j) gives the edit number.
The last number (k), which must be preceded by a hyphen
{=1: Bhows which group last modified the file (0 = DIGITAL
development, 1 = other DIGITAL personnel, 2-7 = customer
use) .

*/VERSTOMN: 3A(461) =0 R
&
Sets the version so that the major version iz 3, the minor

vergion is A, the edit number iz 461, and the last group
to modify the file was DIGITAL development.

USING LINE DIRECTLY

. 3.3 ACCESSING ANOTHER USER'S FILE
LINE allows ¥ou to access another user's file in two ways. The first
iz to give a logical name in place of the device name; the second is
to give a project-programmer number instead of a directory name. You
can give either of these in a LINE command strimg.

For more information about referencing other users' files, refer to
the TOP5=20 User's Guide.

3.3.1 Using Logical Hames
To use a logical name in accessing another user's File, you must:

1. Give the DEFINE command to define a logical name (of ne more
than six characters) as the other user's directory name.

. 2. Use the logical name as the device name whenever giving the
file specification.

3.3.2 Giwving the DEFINE Command
To give the DEFINE command:
1. Type DEF and press the ES5CAPE key; the system prints INE
. (LOGICAL HWAME) .
EDEFINE [(LOGICAL MAME)

2. Type the logical name, ending it with a colon; then type the
directory name in angle brackets and RETURN:

HDEFINE (LOGICAL MAME)} BAE: <BAKER:> ET

B
Ta check the logical name, give the IHFORMATION (ABOUT)
. LOGICAL-NAMES command.

BINFORMATION (ABOUT) LOGICAL-MAMES (OF) JOB ED
BAK: =} <{BAKER»
2

3.3.3 Using the Logical Hame

You canm include the logical name in a command strimg as part of a file
specification. To do this, type the logical name in place of a device
name .

The following example shows how to load the Ffile <BAKER>SPEC.REL. You
must have already defined the logical name BAK: as <BAEER>.

ALIME #T
. *BAK:SPEC.REL

3-79

USING LINE DIRECTLY

3.3.4 Using Project-Programmer Humbers

To use a project-programmer number in accessing another wser's file,
You must:

1. Use the TRANSLATE command to find the corresponding
project=programmer number for the given directory name.

2. Include the project-programmer number after the filename.

You do pot have to define a leogical name if you uga .
project-programmer number . However , project-programmer numbers
sometimes change; therefore it i3 better to use logical names
wherever possible.

1.3.4.1 Using the TRAMSLATE Command - To use the TRANSLATE command,
you must:

1. Type TRAMSLATE and press B . The system prints
{DIRECTORY) .

BTRANSLATE (DIRECTORY)

2. Type the appropriate dicectory name and press BN . The
gystem prints the appropriate project=programmer number.

TRANSLATE (DIRECTORY) <BARER> HE
<BAKER» IS [4,204]

You cam alsc use the TRANSL program to make sure a project-programmer
number 15 correck. Simply replace the directory mname with the
project-programmer number.

BTRANSLATE &

TRANSLATE (DIRECTORY) [4.204) &7
[4,204] IS5 <BAKER>

3.3.4.2 Using the Project-Programmer MHumber - Because
project=-programmer numbers cam change; you should use a logical name.
¥You may include the project-programmer number in & LINK command
string. To do this, type the project=-programmer number after the file
specification.

The following example shows how to load the file <BAKER>SPEC.REL by
using a project=programmer number.

BLINE ED
*SPEC,REL(4,204]

1.4 LIBRARIES AND SEARCHES

A libracgy iz a file having one or more object modules; when a libracy
i5 searched, a module is loaded from the file only if it satisfies anm
unresolved global reference.

USING LINE DIRECTLY

System libraries are available to all wusers for searching. Mosk
language translators alse hawve libraries associated with them. The
translators generate calls for subroutines or functions in their
corresponding libraries, amd library searches find and load the
necessary modules.

LINE normally searches system libraries before completing its leoading.
The kinds of programs you load determine which libraries are searched.
An object module wusually has data telling LINE which translator
generated the module. When LINE finds a /50 or FLIMNE switch im a
command string, it searches a system library if a module from the
corresponding translator was loaded.

For example, if you load a FORTRAN-compiled module, LINE will search
the system FORTRAN library 5YS5:FORLIB.REL when a /G0 or SLINK switch
iz processed. This sesrch will resalve reguests for PORTRAMN-defined
subroutines and functions.

You can change this normal search procedure by using LINE switches.
The /SYSLIB switch reguires LINK to search specified system libraries
nog matter what kind of modules were loaded. The HOSYSLIB switch
forbids search of specified system libraries. Using these two
swiktches; you cam select the time for searching system libraries.

The JSUSERLIB switch specifies that, for modules from a specified
translator, a wuser library must be searched before the corresponding
system library. For example, using the awitch MYFORL/sUSERLIB:FORTRAN
reguires LINK to search MYFORL.REL before searching FORLIB. The
SHOUSERLIB swiktch can suspend the effect of a /USERLIB switch.

The /S5EARCH and /WOSEARCH switches, respectively turn on and off
LINK's library search mode. When the library search mode is off (the
initial default), LINK loads all modules from each input file you
gpecify. When the library search mode i3 on [(between a global /SEARCH
gawitch amd the next global /MOSEARCH switch at the end of the command
line), LINKE searches each specified input file as a librarcy.

Using combinations of these search-related switches gives you precise
control of library searches.

1.% USING EXTEMDED ADDRESSING WITH LINK

TOPS=20 wersion 5 provides the extended addressing festure for
programs that use more than 512 pages of address space. This section
of the LINKE Manuwal refers to MACRO programming only. Before
attempting to use extended addressing with another langusge, consult
the documentation for that language.

When vou load a program into a8 nonzeros sSection, You must use Ethe
SPVDATA switch to set the start address. The start address must be a
global {30-bit} address. The /PVDATA switch i% described in Section
3.2.

If your program is using extended addressing, you must be sure to pay
particular attention to vyour use of local and global symbols. LINK
flags local (halfword) references to global (30-bit] sSymbols, and
truncates the global symbols. When this truncation occcurs, LINK
notifies you by producing the ILNEFTH message. Refer to Appendix B
for more informatlion about the LLNEFTH message.

LINE Version 5 3-81 April 1982

USING LINE DIRECTLY

While you are writing programs that use extended addressing, vwou
should keep the following restrictions in mind.

&« Overlay programs cannot use nonzero seckions.
¢ Only PSECTed programs can use nonzero sections.

LINE cannot load the code or data of a single program into
hoth section O and a nonzero section.

LINKE will not set up JOBDAT for & program loaded entirely in
a2 nonzero section. Therefore, programs loaded into non-Zero
sections should use program data vectors. JOBDAT areas are
described in Appendix C.

LINK uses the SSAVERY JSYS to produce nonzero-section EXE

files, LINE writes the EXE file itself to produce zero
gection EXE files.

Programs should not put code into locations 0-20 of nonzero
sections.

1.6 EXAMPLES USIMG LINE DIRECTLY

For the following examples, the loaded program is & FORTRAN program
called MWY¥PROG that writes the following:

This is written by MYPROG.

The following example shows an interactive execution of the program
using a LINE command string. After running LINE, the command string
calls for MYPROG to be loaded. Then the string MYLIB/AUSERLIB reguests
searching of the library DSK:MYLIB.REL at the ¢nd of loading. The
SHOSYSLIB switch prevents searching the default system librarcy
{5Y5:FORLIB.REL for FORTRAN programs). Finally the /JEXECUTE switch
directs LINK to execute the loaded program, and the /G0 switch tells
LINE that there ape no more command strings.

ALIMK &R
*MYPROG, MYLIB/USERLIB/NOSYSLIB/EXECUTE /GO EED
[LMEXCT MYPROG Execution)

This is written by MYPROG.
END OF EXECUTION

CPU TIME: 0.02 ELAPSED TIME: 0.05
EXIT

8

LINK Version 5 I-82 April 1982

USING LINE DIRECTLY

. The example below shows how to use LINK to load the program exactly as
above, except that the program will be executed under the control of a
debugging program (FORDDT for FORTRAN programs):

gLINE BT

* /DEBUG: FORDDT MYPROG,MYLIB/USERLIB/NOSYSLIB/GO @D
[LNEDEE FORDDT Execution]

STARTING FORTRAN DDT

53START

This is written by MYPROG.
EMD EXECUTION
CPU TIME: 0.02 ELAPSED TIME: 0.08

EXIT
B

i-83

CHAPTER 4

QUTPUT FROM LINE

The primary ocutput from LINK is the executable program formed from
your input modules and switches. During its processing, LINK gives
errocs, warnings,; and informational messages. At your option, LINE
can generate any of several files.

4.1 THE EXECUTABLE PROGRAM

The executable program that LINE generates (called the core image)
congists mostly of date and machine instructions from your objeckt
modules. Im the core image, all rcelocatable addresses have been
resolved to absolute addresses, and the wvalues of all global
references have been resoclwved.

¥ou have several options for loading the program, depending on the
purpose of the load. Those options are:

Execute the program. To do this, include the fEXECUTE switch
any place before the /G0 switch., LINE will pass control to
yvour program for execution.

Execute the program under the comtrol of DDT. To do this,
use the /DEBUG switch before the first input file
specification.

Execute the program and debug it after execution. To do
this, uwse the JSTEST and JEXECUTE switches before the first
input file specification. After execution, type DOT ko the
system to enter the debugging program.

Save the core image as an EXE file. Te do this, use the
SSAVE switch., See Section 4.2.

4.2 OUTPUT FILES

At your option, LINE can produce any of the following output Efiles:
Saved [executable) file.
Log file.

map file.

QUTPUT FROM LINE

Symbol file.
Plotter file {(see Section 5.1).

Overlay File [(see Section 5.1).

4.2.1 Ezxecutable Files

The executable file, sometimes called the saved or EXE file, iz a copy
of the completed core image generated by LINK. You can create an
executable file by supplying the /SAVE switch before the G0 switch
when you are loading the program with direct commands toe LINKE. The
executable file will retain the same file name as the source program,
with a file bype EXE.

Alternatively, you can type the file specification, followed by /SAVE,
and the executable file will be writtem to the file you specified. IE
you load the program with the system LOAD command, you may then save
the executable file by typing the system SAVE command.

Tou can run the executable file later, without runming LINK, by using
the system command RUMN, or the two system commanmds GET and START. The

following section describes the internal format of the executable
file.

4.2.1.1 Format of Sharable Save Files - A sharable save file is
divided inte two main areas: the directory area, which contains
information about the structure of the file, #nd the data area, which
containg the data of the File.

The following diagram illustrates the general format of a sharable
save file:

[]j.f{-.ctgr:,r DI e

hrea: ! Directory Section '

! Program Data Vector !
i Section !

T

| Terminating Section !

EZDDZZZEEsEZsESSEEEEEEEEE

Data Area: ! Data Section !

1 1
1 1
i !
i |
n !
1 1
] 1
*

] 1
H

= =

TSNS ESSTESSESSSSEZ=Z=EZ==

LINE Version 5 4=-2 hpril 1982

OUTPUT FROM LIME

HOTE

The Program Dats Vecter area is useful
only with TOPS-20 wersion 5 and later
moniters. Earlier monitors ignore this
ALEd.

The directory area of the sharable save file has four distinct
sections: the directory section, the enktry vector sectlon, the
program data wvector section, and the terminating section. The size of
the directory area depends on the access characteristics of the pages
in the data area of the save file. The directory area of the save
file has three distinct sections: the directory section, the
terminating section, and the data section.

Each of the sections in the directory area begins with a header word
containing its identifier code in the left half and its length in the
right half. Each section i3 described in the following paragraphs.

The directory section is the first of the three sections and describes
groups of contiguous pages that have identical access. The length of
this section waries according to the number of groups that can be
generated from the data portion of the save file. The more data pages
that can be combined into a single group, the fewer groups reguired,
and the smaller the directory section.

The format of the directory section iz as follows:

0 g 9 17 18 35
'-------.'--l----.-----I'l-llIllIl-IIIIIIIIII-I--I--I-I-II!
! Identifier code I Humber of words !
! 17786 I {including this word) !
1 ! in directory Section I
!--l--l--.--.----l-----..-l--l--.--.-.--l--.-ﬂ-- === --l---!
! hocoess ! Page number in file, or 0 if group !
! bits ! of pages is all zero !
!l-ll-l--l-l--l--l-Il.-l--l-l.-l-II-II-I-II-IIIIIII-IIII!
I Repeat I Page number in the process I
! count I !

!II'IIIIIiIiliili'liiliiﬂi'li.l'llI.!‘I.-I-'l--ﬂ-l--l---]
-
*

-

| Access bits | Page number in the file !
!:.:-:t::--:-::-:-:I--:--:----.--'--'-iiiiiiiiIIII-lIIllj
! Repeat count ! Page number in the process 1

]IIl--l-l-Il-ll-llIIIIIIII.IIII--I--I-II-'-I--I--'---.iil

PSECT attributes are used to set the access bits. Refer to the
description of Block Type 24 in Appendix A. The bits currently
defined in the directory section are:

Bl The process pages in this group are sharable

B2 The process pages in this group are writable

The remaining access bits in the directory section are Zero.

LINE Version 5 4-3 April 1982

QUTPUT FROM LIME

The repeat count is the number (minus 1) of consecutive pages in the
group described by the word pair. Pages are considered to be in a
group when the following three conditions are met:

1. The pages are contiguous.

2. The pages have the same access.

3. The pages are allocated but not loaded.
A group of all zero pages is indicated by a file page number of 0.

The word pairs are repeated for each group of pages in the address
space.

The entey vector section follows the directory section and points to
the first word of the entry wector and gives the length of the vector.

i] 17 18 15
!:::t::-::::-::-::::::It-::::-::-::::-:--:----:iiill'!l-!
! Identifier code ! Humber of words !
! 1775 ! {including this word) !

i ! im entry wector section |

]::::I:-:--:--:-::-::::--:::l::l::-::-:-::-::-:--:-:-.:-!
! 254000 !
e s i ES S FEF ST S S FESSEEEE e |

! Starting Address !

This format iz the default. However, if you make special provisions
in wyour program, the format becomes the following. (Befer o the
description of Block Type 7 in Appendix A and the description of the
SFREV J5¥5 in the Monitor Calls Mapusl for further information.)

0 17 18 15
!IIII-II-I--I----- AEEEEE ST e e - ---.-----.-----.--.-l--.!
i Identifier code 1 Humber of words I
! 1775 i fincluding this word) I

! ! in entery vector section !

! Humber of words in entey vector !

I Address of enkry vector I

The data for this section is the address of the entry vector.

LINK version 5 4-4 April 1982

OUTFUT FROM LINE

The program data vector section may follow the entry vector section
and <contains the addresses at which the program data wvectors begin
(POVAB). The format of the program data vector section s as follows:

i 17 18 as
!-'.-i‘----Il-l-Il.ll.'l-Il-ll-l.-l-ll-l--l----l----l--l--t
! Identifier code ! Mumber of words !
! 1774 I (including this word) [
I ! in data vector seckion 1
[IIIIIIl-ll--.---------II--I.I---H-II!III.II'-I.II EEEEeSEEEEE l,
! Address of data vector 1 !

H
e sSE S SSE s FEsFEsFE S S SEEFEsFEsSEEsE TS sSEEE S EE = |r

[Address of data wvector 2 !

! Address of data vector n !

The terminating sSection, called the end section, always immediately
precedes the datas section. The format of the terminating section is
the following:

!-III-I I T I T I S T S I T S T S T IS T S T S T ST S S TS T EEEEETESSESESEEE=E [
! Identifier code ! !
! 1777 ! 1 I

The data area follows the terminating section, beginning at the next
page boundary.

4.2.1.2 Program Data Vector - A program data vector (PDV) is a block
of data that LINE can write into memory when leading and linking a
program. HRefer to the /PVYBLOCK and SPVDATA switches in Section 3.2.

The POV resides in memory as a part of the progras, and starts atk a
program dats vector address (PDVA). User programs can use this data.
Although TOPS=20 currently does not use the data in the PDV, words 13
and 14 of the PDV are provided for possible future system use.

The format of the program data wector is as follows:

Word Symbol Meaning

[l « PFVCHT Length of the POV (including this word).

1 « FVEAM Address of an ASCIZ string which 15 the
program name.

2 +PWSTR Frogram starting addeess.

i . FVREE Program reenkter address.

4 . PYVER Program wersion number.

5 « FVMEM Pointer to a bloeck describing the memory
layout of the program. The first word of
thiz block specifies the block length.

i +BVEYM Addresas of the program symbol table.

7 - BVCTH Time at which the user program was compiled.

LINK Version § 4=5 April 1982

OUTPUT FROM LINE

Word Symbol Meaning

10 « PVCVER version number of the compiler of main
program.

11 . PYLTH Time at which the program was loaded.

12 . PVLVR Version number of LIMNK. (See SVERSION in
Section 3.2.})

13 - BVHON hddress of a monitor data bBlock. (Hot
currently used.)

14 - BVFPRG Address of a program data block. {Hat
curcently used.)

15 « PVCET Address of & customer-defined data block.

For mare information about PDVs, refer to the PDVOPR JSY¥S in the
Monitor Calls Manual.

4.2.2 LOG Files

A LOG file is generated if you wse the JLOG switch., LINE then writes
most of its messages into the specified file. You can control the
kinds of messages entered in the LOG f£ile by using the JLOGLEVEL
switch. For am example of a LOG file, see Section S5.1.

4.2.1 Hap files

The map file is generated if you use the /MAP switch. LINE constructs
a symbol map in this file. The kinds of symbols included depends on
your wuse of the CONTENTS, /FLOCALS, /NOLOCALS, and SHOTNITIAL
switches. For an example of & map file, see Section 5.1. For a list
of JHAP ocptions, refer to Sectiom 3.2.2.

4.2.4 5Symbol Files

The symbol file {(or 5YM file) is generated if vyou wse the FSYFILE
switch. This file containg all glebal symbols, module names, and
module lengths, and, if vyou wused the JLOCALS switch, all local
symbols.

4.1 MESSAGES

During its processing, LIME issues messages about what (it is deling,
and about errors or possible errors it finds. LIMKE also responds to

query switches such as JCOUNTER, /JEWNTRY, /MISSING, /REQUEST, and
JSUNDEFINED,

Each LINE message has an assigned level and an assigned severity.
(See Appendix B for the level and severity of sach message.)

The level of a message determines whether it will be output to your
terminal, the log file, or both. You can control this ocutput by using
the JERRORLEVEL switch for the terminal and the SLOGLEVEL swiktch for
the log file. LINK's defaults are /ERRORLEVEL:10 and /LOGLEVEL:10.

LINE Version 5 4= April 1982

QUTFUT FROM LINK

Responses to guery sSwitches and messages that reguire vyou Eo do

something immediately are never output to the LOG file. For example,

if you use the JUNDEFINE switch, LINE responds with the LHNEUGS

?gssaqe: thiz message 1s output to the terminal but not to the log
le.

The severity of a message determines whether LINE considers the
message fatal (that is, whether the job is terminated). You camn set
the fatal severity with the /SEVERITY switch. The default severities
ape 24 for interactive jobs and 16 for batch jobs.

For both terminal messages and log file entries, LINE can issue short,
medium, or long messages, depending on your use of the SVERBOSITY
switch. Por /VERBOSITY:SHORT, LINE gives only a 6-letter code; for
JVERBOSITY:MEDIUM, LINE gives the code and a medium-length message;
for /VERBOSITY:LONG, LINK gives the code, & medium-length message, and
& long message.

Appendix B gives each 6-letter meSsage code, 1its medium=length and
long messages, and its level and severity.

4=7 March 1983

CHAPTER 3
OVERLAYS

1f your loaded program is too large to execute in one piece, you may
be able to define an overlay structure for it. This permits the
system to execute the progras with only some parts at a time im your
virtual address space. The overlay handler removes and reads in parts
of the program, according to the overlay structure.

NOTE

You only need an overlay structure if
your program is too large for your
virtual address space. If the program
can fit im vyour wirtual space, you
should not define an overlay structure
for 1ik; the monitor's page swapping
facility is faster than averlay
execution.

5.1 OVERLAY STRUCTURES

An overlay program has a tree structure. (The ¢tree is usuvally
pictured upside down.) The tree is made wp of links, esach containing
oneé of mope program modules. These links are connected by paths.
Using LINK switches, you define each link and each path.

At the top of the (upside down) tree is the root link, which must
contain the main program. First=level links are below the root link;
each first=level link is connected to the root link by one path.

Second=level links are below the first-level links; anmnd each 1is
connected by a path to exactly one first=level link. A link at level
n is connected by & path to exactly one link at level n-l.

Motice that a link can have more than one downward path (to successor
links), but only one upward path (to predecessor links).

Figure 5=1 shows a diagram of an overlay structure with 5 links. The
root link is TEST; the First-level links are LEFT and RIGHT; the
second-level links are LEFT1 and LEFTZ.

OVERLAYS

TEST
|
| |
LEFT RIGHT
|
| |
LEFT1 LEFT2
a0 e &

Figure 5=1 Example of an Overlay Structure

Defining an overlay structure allows your program to execute in a
smaller space. This is because the code inm a given link is allowed to
make reference to memory only im links alomg a direct upward or
downward path.

In the structure in Figure 5-1; the link LEFT can reference memory in
itself, in the root link (TEST), or in its successor links LEFT1 and
LEFT2. More generally, a link can reference memory im amy link that
is vertically connected to it.

Feferencing memory in any other link is not allowed. For example, a
path from LEFT1 to LEFTZ is not a direct upward or downward path.

Because of this restriction on memory references; only one complete

vertical path (at most) {8 required in the virtual address space at
any one time. The remaining links can be stored on disk while they
are not needed.

5.1.1 Defining Overlay Structures

LINE has a family of overlay-related switches. These switches are
described in detail in Section 3.2.2. The following example shows
command strings for defining the overlay diagrammed in Figure 5=1.
{Some of the command lines inm this example are indented for clarity.)

*TEST/LOG/LOGLEVEL: 2 jDefine TEST.LOG

* /ERRORLEVEL:5 iImportant messages
*TEET/OVERLAY :Define TEST.OVL
*"TEST/MAF jDefine TEST.MAP
*LPT:TEST/PLOT jRequest diagram
*OVL0,OVL] /LINK: TEST tRoot link

" JRODE:TEST OVLZ/LINE:LEFT ileft branch

L JHODE: LEFT OVLS/LINE:LEFT]1 ;Left-left branch
" JHODE:LEFT OVLE/LINK:LEFTZ jLeft-right branch
* SNODE:TEST OVL3,OVL4A/LINK:RIGHT jRight branch
*TEST/SAVE jDefine TEST.EXE

* JEXECUTE/GO

LINKE Version 5.1 g3 March 1983

OVERLAYS

The first command string above defines the log file for the overlay.
TEST/LOG specifies that the file is named TEST.LOG. The /LOGLEVEL:2
switch directs that messages of level 2 and above be entered in the
log file.

In the second command string, the FERRORLEVEL:S5 switch directs that
messages of level 5 and above be typed out on the terminal. The third
command string, TEST/OVERLAY, tells LINE that an overlay structure is
to be defined, and that the file for the overlay is to be TESTOVL.

The fourth command string, TEST/MAF, defines the file TEST.MAP, which
will contain symbol maps for each link.

The next command string, LPT:TEST/PLOT, directs that a tree diagram of
the overlay links be printed on the line printer.

The next command string, OVLO,OVL1/LINE:TEST,; loads the files OVLO.REL
and OVL1.REL imto the root link. The /LINE:TEST switch tells LINK

that no more modules are to be in the root link, and that the 1ink
name is TEST.

Each of the next four lines defines one link with a string of the
orm:

JHODE:linkname filename/LINK:linkname

The /HODE:linkname switch specifies the previously defined link to
which the present link is an immediake BUCCE8S0T . The
filenames/LINE:linkname part of the line namesz the files containing
modules to be included in the current link and specifies the name of
the link.

The first of these four lines beging with /NODE:TEST, which tells LINME
that the link being defined is toc be an immediate successor to TEST,
the rookt link. Then {on the same line), the string OVLI/LINE:LEFT
loads the file OVLI.REL, ends the link, and names it LEFT.

The next line, /NODE:LEFT OVLS/LINK:LEFTl, defines a link named LEFTI]
containing ¢the file OVLS.REL, and this link is an immediate successor
to the link LEFT.

The next line, SNODE:LEFT OVLE/LINK:LEPTZ, defines ancther immediate

EHEEEEEQI to LEFT, this time containing the file OVLE.REL and called
LEFT2.

The last link is defined in the next line; FHODE: TEST
OVL3,0VL4/LINE:RIGHT. This string defines the link RIGHT, which is an
immediate successor to TEST and contains the files OVLI.REL and
OVL4 .REL.

The next-to=last line, TEST/SSAVE, directs LINK to create the saved
file TEST.EXE. The last line, /EXECUTE/GO, specifies that the loaded
progeam is to be executed, and that all commands to LINE are
completed.

The process also produced an executable file TEST.EXE, which can be
run using the RUN system command. However, to rum the program, the
file TEST.OVL must be present, because it provides the c¢ode for the
links.

LINE Version 5.1 £-13 March 1983

OVERLAYS

5.1.2 An Overlay Example

The following pages show terminal listings of the files associated
with the example above. These pages are:

1.

2.

3.

Terminal copy of the FORTRAN source files wused in the
overlay.

Terminal copy of the compilation of the source files.

Terminal copy of the interactive use of LINE to define and
execute the overlay.

The file TEST.LOG generated by LIHBE, which shows the log
messages issued during the load.

The file TEST.MAP generated by LIKK, which shows symbol maps
for the overlay.

The tree diagram reguested by the LPT:/PLOT switch.

OVERLAYS

Firwen awlda.for
IYFL 1
] FOFRATI“E" v"Enwgatien Beming in S&in srapras OULG0
TPFE 31
i FOESETI N DULD sl e DULTR D
ClLL CRALTH
TorE T
2 FORMATI A 18, ‘Retufa 1a OVLGD
oL 21
21 FOERATI1N: "OLD cal ln OVLE"D
C8LL CniLa
ToFE T
TvFE 3
a FORMATI A8 "Exddul (8% @84 ih mgi® FEpdFas DULO /7D
L 3-14
[4. =)

Fremn awlidar
FUBRDUT ENE 2.1
TYFE §

I FOERATI/ B * G aalls DULDTH
C&LL DVL]
IvRE &

2 FOERAT LR, Watmin o OAL1 ")
B TUEN
EMD

Wrern awll dar
FUBRDUT FNE S A
T¥PE i

] FORRAT LA IE " LTl palla OVLER
C&LL OVLE
YR 2

3 FOFRATIAIE ' Wawin io OVLIA b
EYFE 3

] FOERATI LN " OWLTA cwlle OVLE"F
ChLL DULE
TVPE 3
BETUBN
Enb
SUBRDUT [NE WL TR
IYFL 1

] FOERATIANE ' OULEE dasani call aaribind "}
BETURN
[L]

Firrer awldafor
SUBEDUT [N O3
TYPE 1
] FOEHATI/EE " OVLY dasss 'k call anribkand "k
EETURN
L4]

Feerw peld.Tar
FURRQLITINE DULA
TYPE 1

] FORMBT D/ GK=" ovLd galls OvLL-D
EELL OvLe
TVPL 2

& FOERATI/DE " Fpiurn Ao OVLA"F
EETURK
Le 1]

Fivew awl3for
SLEFDUTINE OUL3
TYPE §
1 FOREATI A |H." VLT dedan L gall aRvimEag]
R Tk
En

Frved gulB-For
BUBEDUTIHE OVLE
TolL §

1 FOR™&ETd Fjd." DVALE sallin CALIE" I
CaLL STl
FelE 2

2 FOSmMETY A 18" ReLwids vp DVLE"1
HL TUFY
(4. =]

OVERLAYS

BCORPEILE St -OuL b o8l 2 « BV 3 o DVLE VLT VL 1. 4
FOETHESM OALD
]

FORTEAN VL]
[SN]

Ld="] U
=]

AT
FORTEAN | OUL]
oLl

FORTE&N) Duid
fvLe

FoETRAN: OULS
ouL3

FORTEAN: OuLE
DULE

[D

sFERT/LDEALOGREVEL 1T

o/ ERRDRLEVEL p3/MDIH T ERY

sTlEY rOVERLAY

sTLETARaR

sLPFTa TESTAPLGE

BOVLD OUL | AL DN TEST

[LMELHN Lgsding sadule MAIN, Tram Tible GE8aDVLO REL]
CLMELAN Lgad sy sadule OVLL Tram Tobe Odna0vil (FEL]D
ELMELAN Loigdisy medule OVELAY Fros Fale Sy 0vRLAY . SEL)
ELHELPMN Leadiny mpdule JOBOSET s Fale SvSiJ08047.8EL])
ELNELPN Laadind mpdule FORENE P Fale SYSaFOALES.SELY
ELHELPN Laadind mgdule FORPEE Pops fole BYSIFOALIS.WELY
CLWKELE End af Lind aywber O sgme TERT]

e /ROOE e TEET OVL /L I aLEFT

[LENLEN Losdany sedule OWL3E Frem Fale DEE VLD -SELF
(LN Lppding spdule DVL DS Prom File DSk ol ®ELD
fLnEELs g §f ek musb#r | nase LEFT]

a/MSSELEFT DYLS /L INe jLEFTR

LALLM Loadind madale 0008 frem file DER QAT BELD
[LASELS frd of Dank numbar £ naws LEFTR]

P NDDEILEFT OULGAL INE (LEFTS

[LASLHE Leading sadale OVLE #rom File DEe adnni. REL]D
[LMEELN End of 1ink nusbad 3 same LEFTT)

S MODE I TEST DWL D cOVLArL Enm gl [EHE

[LHELHAN Lgsdisg seduls OUVLY Tram Tile G498 gL, REL]D
[LHELAN Lgsdiey spduls OULA Tros Tile D8 gfvia, REL]
ELHEELN End & |8k aasber 4 smase FIGHT]

STEST/SavE

s/EMECWEE A ED

FLEEECT DS sascutian]

Emgeuliss FEdins in s&1n srasras OWLE
ovLd ealbs BT

ovL2s ealils B
LS dewdn 'y dall asrekang

Feywirn 5@ DUVLIA
G Tk galle OULE

VLB ealls DULIE

A TE demani call aariBiEy
Beiars ia OVLE
Bgvarm o OWLIH

Eafuin L OVLD
oRLs calle BvLd

ooLE el s OULI
ovLL eallis B3
OWLY dEEiA L Gl anviRise
Fegwrn ap OUL]
LEIT TN Ty - R
Feiurh 18 DVLO
Esweutias gads b sain rrodras OVLE
STOF
END OF CXECUT EoN

CPU TIRE® O.d EL&FEED TIWE) .4
EXZ[T

OVERLAYS

Fivew wutlanw

LILTHL] B i LHE L AlEN. from Fille G98a0vLG, BEL

LIT-T-T0-1: .] 1 LN L By Fram Fule D8 o, REL

Bid%i00 B 1 LMM Leadand meduls OVALAT from Fube STSsOVELAY.RIL

wialiol L 3 1 LEN Leidind medula JOBDAT From Fule SV JOBDAT.REL
L 3 1 L= La il mpdule FORIND Trom Foule S¥ScFOELIH.HEL
L 3 1 L=y Leadaind medula FORPSE Fros Tole SPRoFDEL I . BEL

[FTL PR R ¥ 1 [I8} End af link nasber O same TOET

LI LR = I,] i LEN Lapdann sedule OVLTE Fras Fole DEn sl . REL

LEETE T .] i (L] File Dl . REL
T4 ERM Esd of LisE ausker § sems LEFY

Bieliia L 3 1 L Laidind medule OVLE fram File OSK 0L SR 0L

[FTLFRT | ¥ 1 [{0} End af lind pusber 3 name LEFTY

Wa@¥al? & 1 LFN Lasdiey sedule OVLE Treas ©ole DX DVLE.SEL

LI ED =] T o1 ELA End of Link ausher J sams LEFFT

Wl 22 [] i (A Loadiad mpdule DVLD Fram ¢ile DER i OVL Y.ML

L TP Tt] 1 (] Loadied mpdule OVLE From #ile DB OVLEWIL

L TE T] ¥ 1 ELm Efd af 1iAR fushai 4 nams BIGHET

BLrdd Laalamar
LINE darmbis] mir of FEST /Rl FEL/KS Il
Fraduced br LINSE wpraian SCLEET1 on S0-Oct-81 &1 B18%139

Degrlar sg-] LILT) TEST
L S@Amast §UEFLE @1 & andi @i 149 lamikk saE e GF
ConLeal BUGER addimis i S108s lendil 32 fmcawll e SB. ddwgimalb

Q10 woFdd Tree Ls Law wedmeni
138 Glebal wrmbeln Joaded: therefore min: ek sige 1% 154
Stari addrenn U8 203, Jocaied | Pragees BATM.

LR L LT R R

RATN, Fogs Bfs DULO-FEL EreanEd br FORTRAN SEQ/RL/NE 88 0@-Fap-B2 41 0427028
Lo REPEEAL SLARNE 8% RITEED #ade an 283277 lemaLe JUIEIE rgEnEl) 104342, (decimals
LUTLE 202 Esirr Welecatable

LLLLLLLLLER R L,

ouLe from DSK cdeL] BREL croated br FORTREN /] aL e on 19-Feb-02 ot 4102722}
Ltw s dwied abaris a4t 127992 waida a4l A4 0T Lendik JUPED] dewiald 008348, ldecimali
L] 307 Eatrr Falecaranle FOROTE aood1d Slebal Absaluiw

LR R R R RN

QUBLAY Feras SUEBIDUVRLAY.EBEL creaned by MACED gn 10-Febk-87 41 1020030

Liw Addmenl dLaFLE a8 DITER] #nds an ER181Z T#nmrl FAIEAT dwgnal i ATTORR. idEdamal)

&duts LiGhao00031 Glebal MAbialuls CLOBFT 1046000004022 Clebkal Abieluie

| L N1 IO TOOG000E Glebal Abieluld ERSTRT 1880000004011 Slebkal Abicluie

TOVELA AGLODODS0 Clabal &bsalule SuFeredaidd FHIOB TITFTR Gletal Asscluie Susenpnawd
SFHEELF ddedadDd Clabal &Ebuoluie Bummresued JEHOF L Global Absclule Busepenawd
<ML l0 JTTITT Ciabal dEbaplure Superreseed SOVELA J303 Eunrw Felopanamle

-0 b Clanal Eelsgsrabls JOVELY 3T Engry Aelngatanle

SEVEET 10a0be000ddE Clekal Akasluave CETDU. TRy LT Balaearanle

GApbLh L0dEbOGd0dE Clebal Abielutd Buerrdiadd GQTJFAEE (0380000000 GCleral dpseiete

WAl TR L0GEbOGadL e Glebal &Abielulé FL R LU i Ewnir Falecaranls

JANHEL LD O0003e Glebal Abkisluils JETDLR Gt Giebal Abseluie

JELMAH FOOSDOD000 Clobal &bkssluie Surereanad JEIPAF Glsbkal Asaeluie

LOGoV. 3337 Enirv Erlocaiakle OFIBsSS TreDDOOOO000 Glebsl Afsslule Furepsni#d
QFIED it Clekal &bvsluie Surmresued OFLEE [L= s atali] Glebkal Afspluis Busrrpdaiid
QFEWRFE [oAS0000007E Clebkal &bkaslute FRLEH SOED DD DD OG0 Glebkal AfRsglurs BusFpaaied
FhIFEY IOEDhO000 Clenal &Heaslure Furrrsssed PFROUTE POdODOO0007d Glebe]l &fFselute

FEDUTT 1SSS000000TE Cleval LLIEIT] EpAQU. BTTD e T L Relpnaranle

EmEPT 1Eae0o000081 Clemal adluLd EFACET PSAB0000003T Clebal dpsislvie
wusby, 216 Entirr Felocatabis BUNMTAT 108B00000018 Ciekal Aisluie
SFPTRL L0SO0OGG002T Glebal &bieluls EF LTS e BHG000082 Glekal Abieluie
SOUTL VDD G0033Y Glabal &bkssluis TimE LBHo000H1d Slebal Abscluie
<TVEHA 30T Cletal Frplopcatiabkls

JOBOAT Fiem BYE)JOBEAT.REL
Low seiment starts &t 127357 seds an

OVERLAYS

gr#ated v HACHD aon 1B-Fak-87 sy GTz3B2ld
EBTOITE Iendih

SEOHST 1aavald AR0TFR. TdRcasal}

EJOBGT @31000008ET Glekal Amsslene Farerenned L JEE1 Al
~JRRFE 133 Enkrw Anigieti JEELT 49
SJECEN 131 Enirs Abueluie - JBLM] 26 dnusliuie
- A00E 133 [180 Abncluie -J0LET J& Avneluie
LIE grsbal sam af TEET /uireLiRS
SO%0aT
« JBDA L% Ertrr Ebselule . JBOOT TE Envrr Epnplure
=JEEDV pR2 Entrr dpadlute JOERR &2 Entpr dbawlure
< JBFF 21 Ernirr BEaslulé T T Clemal Apswluve
+JBHCE Glotal #bssluve Buerppuand o JOHDE 30 Ertrr Bbigluls
L JEHGA T Glatal #Absaluve Buerpsuand o JOHGHE &0000O Erirr Abialuls
I TLLI EnLrv Abnolute Susepanned L JOMEL 11% Entirr Absalule
, JEHER 3 Glatal Abrvalsis Suesggnind JANER O Glagal MAbsalaubs
,JEREE & Eagee Absalwte Suewipiied JAEE & Enter Abraluiw
SJEINT 138 Esy Apsalane JESRE 130 Enver Absalsutw
+JOCFE 139 Eater Abaglwie JBL 131 Eaver dbaalune
LJEFFE 122 Enkre anualuie T] Entnr Apadluin
JENEL 84 [£ Abseluin ~JREEH]34 Estuor dbneluin
» JEEE i2 [E1Y T Abupluiw ~JBEYH |16 Emguwr Abseluiw
SLHETRE 37 [T10 0 Abpplute «JBUBY LY Eugrs Abueluie
T T [T80 Apaplute «JVER 13T Esnibr dpanlune
LR L L LR R
FORIM] Feas SORIFOEL IS SIL croaled Br MACHD on 18-Feb B2 ax GEa305]

Lew iRfmdént 31EFLE 4L 127300 #ndy at

GLEHN, &¥FF Emver Exlosatatlis
CLOSE. &¥%E EavLer Belosavabls
DEC. &6 Enter Eelatasable
DECO®- &176 Emter Eelataiable
ESOUTE 108000000313 Glebal Absalwie
Fln. a371 [1T Hals

FoRER. 47354 Emers

FumelY, 44863 Eugry Felegcaiable
BEREET 104008500208 Chebal Absslute
GALEWT 1000090 Siekal AvsRiute
I FELT Erafr Eelecarable
183, aa0a Ertfr Eelecarable
ATOF., 4372 Ertrr Geleoaranbe
LD 4% T Erirr Welosatabls
ouT: FRr] Enirv Fplocatabie
FHEIRD POGODOOOOOOD Glasal HAbwalute
PHTHE SELDOOOO03E Claksl Absalaie
PORTAL TRe0a(0fdl GClawesl Abralste
BESET® &307 EaLer Belacanabls
BFILWG SO00G00080600 Glaval Abhdalsce
ATE: 362 s

SHAFE 1040000B0TET Glebal

NTE- 8363 Eairr Heblecatable
JREEFL 8 Glekal ABaslule
FQRPEE fee= SYEIFORLER-BEL

LEw iRfmdnt 3LEFNE &% 127908 &84 av

BEZTEE lemiym

ALECOR.
pars.
DECHS .
ERLC =
[ALT.
FIRG.
FOEDF.
GENY
GILPHY
SN0y
1T,
10LET.
WL1.
OFEK .
PHLICHT
FHAIRW
PHARE
RELES.
RESE® .
LLE L 7]
SEVICL
TRALK -
T

Bummrewued

Bueepdaaed
Susepaniid

Surrppnnwd

Surrreiied

(R LT LLE L]

EEI7EG lenprh

BIITIE decial b ITTROE. Idecimil)

&37H

aand

aan

4364

a37a

4373

FTTL]

1 O R2EED0 00
LRt

ET)

4343

AT

Fi]

agms
ADDOO0HH000
SROOD000M0NND
10ADHH003NE
357

&g
16000031 5B
(CELTE ST
aagt
29a2800D0000

grésied by HACAD an J10-Fel -8 st GLo3E03]
FIXIZIE dpcuml b

Envew Erlazatabkle
EnvLer Eelaganabls
Eaver Belananabls
Eavir Belatanable
EaLir Belatatable
Entar
Enikor
Glewal
Glieral
Ciebal Absslune
Eanrr Aelepatable
Esnir Felisnarakie
Eniir Feledarabie
Enirr Felecatablie
Clobkal Abkdeluls
Clobal &bknoluis
Clakal &Evolats
EnLreF Exlacacable
Enter Eelacatable
Abidlune

alTTHDE: ddecimall

Clebal Absslule
Ennry Felegatabkls
Clabal &bsslure
Fade 3
raie &
Mamw LT
OUELAT 1
rade 3

g2 = 1P

ALY, SE01 EatLir Eeloaanabie BFAORT FORDOODOO LY
EFnobT roeOOoG00dL00 Glaval Apidleve BTOR. AR0E
TTIOEF SOOOG0000600 Glabel Abdidalwus Bueepgaaad LPRIOW 0883
ArEEREEREEARE
LIkE grafigl sam af TEST FRIFEL/RS
[edes fp LIME grmbal mg® §F TERT Ful/EL/NE
LTS Fais Hama Fads Hus# Fauw
FQR]H] i JoBoaf] ovLi i
FORESE - HA[N- [
LINE §rmba]l maE oY TEST /EQ/EL /R =1
Duwrl] LT] LEFT
L wedmgnt siartn ot LNDGE sedi &t 11325 Ienark
Campinld Bleok sddraus pn VUZEE . Dondih o racualo s T8, tgwreimgl b
Fall i L]
298 wardi Fied IR Ly ARPEEAL
G Glabal srmbold laaded vearedsred sin. hash 3178 18 T
sEsssssEsREEE
BvLZa Fiew SO OVLE.REL preaied by FORTRAN /KE/RL/NE g6 LO-Fep-B7 a1 43027137

Low wedmeni dSafris 4L 127382 §eds @

OULZRA (N

AAFEDE Ienpih
EavLEr F#lacate

LIEEE R R Rl ll]

5-8

bl

HEBEIT deanal ba LADET. (decimil)

Gurrrevued
Sarrresued
SarrresuEd

Surrraiiid
Surrreiind

Burrrgnaed
Surmpennwed

Garrieiind
Sarrieiind

Barrresesd

*ram DEEsSVLE. REL (AL R
andmEnd dlafis B D2TIET gAdd @t

ovLls
Law

ouLze (T2 H

LINE gvabpl spr af

Beddlir R, z
Law nawdmanl #laris ai
Castrel Bloch adddnid 4
Faik bn Os 1

232 wardn Frew in Low

L1

OVERLAYS

aadand lemaLe

[LR

LIFETTTY

LERR L]

TERT sE[L /ing

LEFT]

LEXDE dsda an
11394 Lasdue

FI&0D lendib

2 laetali

FJClawal wrebple loaded, thprefare sin: Aol sioe 1u @

oL

Law

fram D88 s0VLY . AEL
apiEeni svimpin o IZTTEII Fnde 8t

puLe HEE L

o be FORTREN /6] FuL/KE o8 (8<Fab-BT a0 20827433

J1IEFY raeniald) «10834Y. (deeimall
able

L Eaae B

a8 & 1P

L L LLLLLEE RS

BEJELT JHmpLe

E&y s

cranied by FORTRAN /i SELAKE an [@-Fabp-BT gy 54 ITi 38

JEIEAE CaEned 1 108393, (depimals

Bplgcatable

(R R RN R T]

LINE srmbol mam of LS /RO/EL RS &3 a7
dewrlar nas 3 LETE] LEFTZ
Lo WEFEERY ATEPLE &L JIDTE ndy s 11820 J#npLn T w HL
Contral Bhank gadress 0% BEITE« J@npk 20 tagnalle 36 ddegisall
Falk a4 @
238 wFdd Trdd LA Liw dd dimind
& Glebal avebals Dedded: LReraFais mid, BaAR SEER 60 3
W
GuLE frem BEE i OvLE.BEL grihled br FORTHAMN /R E/BL /o8 gn §8-Fibk-B2 41 d10 27548
Low wedmenk sfaris ail 127952 ands at 443818 lendik IIIEED deetal F o i0RFEE, Jdedimid)
(=5 11344 Enirpv Belocaiable
FEEEEEEEEARAS
LIME GrmBol mae af FEST smlsmLrEg L] maie B
Ouwrlar nas 4 LEEE] Ld-L-_ b
Lo AFPSEFSE BEATLE &% LUEAE amdin B 1370 lenwik 133 = 1
Contral BEech gddrens 12 HEJI7. lEmwil s lecamlie 10 ddegi=mall
Fark 14 L
ST wpdg Tras b Liw gddmin
S iebal dvabals DRaded LRErEfare mifh. BEAk S2F i §
EEEEEERAAEEEE
oL 3 frgs OFK oL D BEL cosated by FORTHAN FEL/EL/RE o 18-Fab-B2 @1 21427133
Ly wePm#nL $1EPEN B8 EXTEED #nde @1 SdJ408 lennik JLIEFE Tachwl i 104348, Tdrcimall
ovLd H ¥ Ems Eelpcatable
EESSIIIFHEEEE
ovLd Fr (=3 LR LU prealed By FONTREN /B0 L RS on 19-Fel-00 at dlelTad7
Low wepment snarie i 129330 snda il A4 3610 DenEih JIE]? docialh IDEINL . dIdecymn] b
DL d 11 Entrv E#lacansils

Indes 1@ aserlar nuskers alf TEEF

ET XTI Fame Dwrrlav
Wi] LI
] -

Indes ia aeerlar named of TESF

Him# Fare LT
LEFT E LEFTT
LEFTL E

EEnd of LINK mam of BLET 2

FEIL

Y]

Furw

Faurw

LLILIEEEERR Y]

Juwrlar

L]

LT

EIGHT

5=-9

wadie 9

Fgip Beerlar Fade
Ej % B

Fain Miyma Fain
i TLET &

OVERLAYS

The listing file TEST.OVL will look similar to the following:

LENEEREREER ¥

- - w e

E LEFT1

L
L
L]
L]
L}
EEREEREAREAN

EERRERTRRRNE
L] L]
E L
® 1 L
L] L
¥ LEFT L
LESEREREE NN

(SENEREERER Y

L]

-

® TEGT

L]
®
L
®
L
FPEREERENARED

(AEREENER L]

L

® LEFTX}
AREEEER R R

L
L}
L
®
L]
L3

 ERSEE RN
L]

& RIGHT

"
L]
E] L
L]
L]
EERERREENENDY

The process also produced am executable file TEST.EXE, which

run using

the BRUN system command.

file TEST.OVL must be present, because it provides the code

links.

can

Howewer, to run the program,

for

be
the
the

OVERLAYS

5.2 WRITABLE OVERLAYS

Ordinarily each overlay link built by LINE is copied by the overlay
handler from ¢the OVL file to the address space at runtime. The
contents of any locations that have been modified will be lost each
time the overlay link is copied from the OVL file. This can be
prevented by the use of writable overlays.

If a link is specified as writable, the overlay handler copies that
link to a temporary file on disk before oyerwriting it. Later, when
the copied link is needed, the overlay handler retrieves the link from
the temporary file rather than the OVL file. In this way, any
modified values are preserved. Because writable overlays involve more
file 1I/0; they are slower than the default (nonwritable) overlays and
should only be wused when the program structure and storage
regquirements demand dynamic storage in overlay links.

5.2.1 Writable Overlay Syntax

To build a writable overlay, specify the keyword WRITABLE with the
JOVERLAY switch in the LINK command line:

filespec/OVERLAY :WRITABLE

5.2.2 Writable Overlay Error Messages

The overlay handler must write and uvpdate a temporary file. In
addition to the error messages associated with all overlayg, there are
two additional error messages for writable overlays:

7 OVLCWF Cannot write file [filename]: [reason]

¥ OVLCUF Cannot update file [filename]: [reason]

1f either of these messages appears, you should check for disk guota
violations or other conditions that could prevent the overlay handler
from writing a temporary file.

5.3 RELOCATABLE OVERLAYS

LINK ordinarily allocates 2000 extra words at the end of the root link
and no extra space at the end of each subseguent linmk. This is
adeguate for programs with static storage reguirements. If a link
regquires extra storage at run=time, you canm use the SSPACE switch to
make the necessary allowances for the program's reguirements. The
/BPACE switch allows you to specify the number of words to be
allocated after the current link ls loaded.

However, there are programs whose dynamic run-time storage
regquirements are unpredictable. For example, a program's run-time
storage reguirements may vary according to the program's input. For
this class of programs, relocatable overlays can be useful.

5-11

OVERLAYS

For relocatable overlays LINE places extra relocation information im
the OVL file, permitting overlay links to be relocated at runtime.
The overlay handler, using the FUNCT. subroutine, can determine where
the link will fit in the address space and resclve relocatable
addresses within the link. This extra processing causes relocatable
overlays to runm slower than nonrelocatable overlays. Relocatable
overlays should only be used when you cannot determine the dynamic
storage reguirements of a program.

5.3.1 Eelocatable Overlay Syntax

To build a relocatable overlay, specify the RELOCATABLE keyword to the
JOVERLAY switch in the LINK command lime:

filespec /OVERLAY: RELOCATABLE

5.3.2 Relocatable Overlay Messages

If SOVERLAY: (LOGFILE,RELOCATABLE) is specified during the loading of a
program; informational messages of the following form are sent to the
user's terminal:

SOVLRLL Relocating link [linkname] at [address]

5.4 RESTRICTIONS ON OVERLAYS

The following restrictions apply to all overlayed programs:
@ Overlayed programs cannot be rum execute-only.
¢ PSECTed programs cannot be overlayed.

¢ Overlayed programs with large buffer reguirements must use
the FS5PACE switch. If am W%OVLMAN [Memory not available)

ercor iz encountered, the program should be reloaded using
the /SPACE switch with each link.

If the program uses more than 256 links, use the /MAXNODE
switch to specify the number of links necessary for the
program. LINK will allocate extra space in the the OVL file
for tables that reguire it, based on the number of links you
specify.

5.4.1 Restrictions on Absclute Overlays
The following restrictions apply to absclute overlaid programs:
1. Any intermediate results stored in non-root links are lost as
soon as the links are overlaid. Do not expect to retainm a

value stored in a non-root link unless JSOVERLAY:WRITABLE has
been specified.

5=12 March 1983

5.4.2

OVERLAYS

Certain forms of global, inter-overlay references are not
recommended, because you cannot be sure that the necessary
modules will be in memory at the right time. Some of these
references are:

Additive fixups, in the form FOORE+BAR where FOO iz in
another overlay.

Left-hand fixups, in the form XWD FOO#E ,BAR, where FOO is
in another ocverlay.

Fullword fixups, in the form EXP FOORE, where FOO i3 in
another overlay.

Similarly, MOVEI 1,FO04#, where FOO is in a different
averlay, should not be used, because the necessary module
may not be in memory.

In fact, the only predictable inter-overlay global reference
iz one that brings the necessary module into memory, such as
PUSHI P,FO08E,

Restrictions on Relocatable Overlays

The following restriction applies to relocatable overlays:

5.4.13

Complex expressions invelving relocatable symboels are not
relocated properly in & relocatable overlay. Wo standard DEC
compiler produces such expressions. MACRD programmers should
avoid using them in subroutines that are to be loaded as part
of an overlayed program. Any expression that causes MACRO to
generate & Polish fizup block will not be properly relocated
at run-time. The following is an example of such a complex
eXpression:

MOVEL 1R + BE#g + Cég

Festrictions on PORTRAM Overlays

The following restriction applies to FORTRAN programs that are written
with associate wvariables and using the overlay facility.

If the associate variable is declared in a subroutine, that
subroutine must be loaded in the root link of the overlay
structure. Aocessing a file opened with an associate
variable changes the wvalue of the specified variable. If
this variable is in a nonresident owverlay link whem the
access is made, program execution will produce unpredictable
results. Moreover; the walue of the wariable will be reset
te zero each time its overlay link iz removed from mMemory.
Only wvariables declared im routines that are loaded into the
root link will always he resident. However, wvariables
declared in COMMOM and in the main program will always be
resident, and may be safely uwused as associate variables.

If you place COMMON in & writable overlay, be sure that all

references to the wvariables in that COMMON are in the same
overlay.

5=13 April 1982

OVERLAYS

A FORTRAN ASSIGN statement may be used in a relocatable
overlay. If the ASSIGH is made in a subroutine, the value of
the assigned variable may be preserved from one call of that
subroutine to the pext. Howewver, the overlay containing that
subroutine could then be replaced in memory by a different
averlay. If the overlay containimg the subroutine is
telocated differently when brought back into memory, any
subseguent GOTO may fail.

5.% SIZE OF OVERLAY PROGRAMS

Although most programs have a consistent size, the size of an overlay
program depends on which overlays are in memory. Thiz can be
ascecrtained by using the FCOUNTER switch when linking the program. To
da this, place JSCOUNTER after the JLINE switch for the overlay you
want to know the size of, but before the next /HODE switch. This will
give wyou the size of the program when the overlay is actually loaded
intoe memory. The display will include all routines loaded from the
rurntime libraries. This allows you to determine which overlay iz the
largest, and whether the program can be loaded without restructuring.

2.6 DEBUGGING OVERLAYED PROGRAMS

COBDDT and ALGDDT can be used to debug owverlay programs, but FORDDT
cannot . To use DOT with an overlayed progeam, the program should be
loaded using /SYMSEG:LOW, with local symbols for the desired modules.

To set breaskpoints in an overlay, put & subroutine in the root node,
and call the subroutine from the overlay. Such a subroutine need
consist only of & SUBROUTIME statement, a RETURN, and an EHND. The

breakpoint can be set at this subroutine before the program starts
running .

When a FORTRAN program starts running, it calls RESET. in FOROTS,
which removes the symbol table. The symbol table will return after
the first overlay i3 called. If you peed the sysbols for debugging
the root link, insert & CALL INIOVL at the beginning of the main
program (cefer to Section 5.7.1 for more information). This call will
reinstall the symbol table. LINE builds a separate symbol table for
each overlay, so that all the symbols known to DODT are for modules
that are currently in m®memory. Hote that it is not possible to
gingle-step through RESET. (5% and $5X will not work). set a
breakpoint after RESET. if you are debugging & root link, and use 35G.

5.7 THE OVERLAY HANDLER

LINE's overlay handler is the program that supervises execution of
aoverlay structures defined by LIME switches.

The overlay handler is inm the file S5Y5:0VRLAY.REL. Some installations
will install LIMNE WVersiom 5 without the overlay handler that was

shipped with it. To find the wversion of the overlay handler; t¥pe the
following:

ALINK ED

*S¥5:OVRLAY D

* /VALUE : ROVRLA &0

[LNKVAL Symbol %OVRLA 402000056 defined]
*z

LINE Version 5 5=14 April 1982

OVERLAYS

The left halfword of JFOVRLA contains the version number of the overlay
handler, and should be 402, corresponding to Version 5 of LINK. The
right halfword is the edit number, and should be 000056 if field
image, or greater if edits have been installed.

When you load an overlay structure, the overlay handler is loaded into
the root link of the structure. From there it can supervise
overlaying operations, because the root link is always im your wirtual
address space during execution. During execution, when a link not in
memory is called, the overlay handler brings im the link, possibly
overlaying one or more links already in memory. The overlay handler
consists of self-modifying code and data, and two 128-word buffers.
One of these buffers, IDXBFR, contains a l28-word section of the link
number index table. This allows 256 links to be directly referenced
at any one time. The second buffer, INBFR, contains the preambles and
relocation tables, if required, of the individual links.

There are two ways of overlaying links during execution:

1. A call to a link not in memory implicitly calls the owverlay
handler to overlay one or more links with the reguired links.
This action of the overlay handler is transparent to the
USEr .

2. An explicit call te one of sSeveral entry points in the
overlay handler can cause one or more links to be overlaid.
These entcry points and calls to them are discussed in the
sections below.

5:.7.1 Calls to the Overlay Bandler

Overlays can be used transparently, or they can be explicitly called
from the preogram. Such calls are made to one of the entry points in
the overlay handler.

The overlay handler has five entry points that are available for calls
from user programs. To call the overlay handler from a MACROD program,
you must use the standard calling seguence, which isz:

HOVEI l6,arglst
PUSHI 17 ,entry=-name

wWhere arglst is the address of the first argument im the argument
list, and entey-name is the entry=-point name.

The argument list must be of the form:

=0 i i number of arguments
arglsk: 2 code;addrl sFor flrst argument
Z code,adden jFor nth argument

Where addr... 18 the address of the argument.

The legal values of "code™ are 2 (for a link numbec), 17 (for an ASCIZ
string), and 15 (for a character string descriptor).

5-15% March 1983

OVERLAYS

For each word of the argument list, the code indicates the type of
argument. The code occupies the AC field, bits 9 through 12. The
address gives the location of the argument; it canm be indirect and
indexed.

To call the overlay handler from a FORTRAN program, the call must be
of the form:

CALL subroutine {(arglst)

Where subroutine is the name of the desired subroutineg, and arglst is
a list of arguments separated by commas.

5.7.2 Owerlay Bandler Subroutines

Each of the seven callable subroutines in the overlay handler has an

entcy name symbol for uwuse with MACRD, and a subroutine mame for use
with FORTRAM, as follows:

MACRO Entrf FORTRAN Subroutine
Hame Symbo Subroutine Function

CLROV . CLEOVL Specifies a non-writable overlay.

GETOV. GETOVL Brings specified links into memory.

INIOV . INIOVL Specifies the file from which the owverlay
progeam will be read, 1f the load time
specification is to be overcidden.

LOGOV . LOGOVL Specifies or closes the Ffile in which
runktime messages from the overlay handler
will be written,

REMOWV . REMOVL Removes specified links from memory.

RURDV . RUROVL Moves into memory a specified link and
beging execution at its start address.

SAVOV, SAVOVL Specifies a writable overlay.

Declaring a Non-Writable Link (CLROV.)

You can declare an overlay link to be non-writable, uging the CLROV.
entry point. This does not immediately affect the program, but waits

until the link is about to be overlaid or read in. If the 1link is
already non=-writable, this entry point has no effect.

5=16

OVERLAYS

Example

MOVEI l6,8arglst

PUSHJ 17,CLROV.

-n,,0 in is number of arguments
arglst: i 17,addrl ifor first ASCIEZ linkmame

z l?,aéﬂrn ifor mth ASCIZ linkname

OR

=T, o0 i is number of arguments
arglst: i Z,addrl ifor first link number

I E,adérn ifor nth link number

Where addr... 15 the address of the argument.

Getting a Specific Path (GETOV.)
The subroutine to bring a specific path Into core can be used to make
sure that a particular path is used when otherwise the overlay handler
might have a choice of paths. It is illegal to specify a path that
overlays the calling link.
To call the subroutine from a FORTRAN program, use:

CALL GETOVL (linkname,...,linkname})
where each linkname is the ASCIZ name of a link in the desired path.

To call the subroutine from & MACROD program, use the standard FORTRAMN
calling sequence:

MOVEI l16,arglst
PUSHJ 17,GETOV .

The argument list has one word for esach link reguired to be in the
path.

Example

=M 0 i i number of arguments
arglsks 2 17,addrl

z 1?,uédrn
OR
=n, .0 in is number of arguments
arglsat: Z 2,addrl
z E,adérn
Where addr... is the address of the argument.

5-17 March 1983

OVERLAYS

Initializing an Overlay (INIOV.)

The overlay initializing subroutine specifies a file from which the
overlay program will be read. This subroutine is used to override the
file specified at load time. The file specified to INIOV. camn have
any wvalid specification, but it must be im the correct format for an
overlay [OVL) file.

To call the subroutine from a FORTRAN progranl, uSe:
CALL IMIOVL ("filespec')

where filespec' is a literal constant that can give a device, a
filename, a file type, and a project-programmer number (PPN).

To call the subroutine from a MACRD programi, use the standard FORTRAN
calling seguence:

HOVEI l6,apglst
PUSHJ 17, INIOV.

The argument list is of the form:

=1,.,0
arglst: Z 17,address of ASCIZ filespec

where filespec is an ASCIZ strimg (ASCII ending with nulls) that camn
give a device, a filename, a file type, and a PFH

HOTE

If yvou call INIOW. with no arguments, it
initiates the overlay handler and reads
in the symbols for the root link, using
the overlay file specified at load time.
This can be wuseful for debugging the
root link before any successor links
have been read in, because symbols are
not normally available until the First
link comes into memory.

Specifying an Overlay Log File (LOGOV.)
You can specify an output file for runtime messages from the overlay
handler. These messages are listed in Sectionm 5.5. The log file
antcy includes the elapsed run time since the Ffirst call te the
overlay handler.
To call this subroutine from & FORTRAN program, use:

CALL LOGOVL ("filespec')

where "filespec" is a literal constant that can give a device, a
filename, a file type, and a PPN,

To close the file, use

CALL LOGOVL (0)

=18

OVERLAYS
Te call the subroutine from a MACRO program, use the standard FORTRAN
calling seguence:

HOVEI lé,arglst
FUSHJ 17, LOGOV.

The argument list is of the form:

_li ;U
arglst: £ 17,address of ASCIZ filespec

Where filespec is an ASCIZ string that can give a device, a filename,
a file type, and a PPFH.

To close the log file, the argument list is:
_.1; pﬂ

arglst: T 17,address of word containing zero
Removing Specific Links from Memory (REMOV.)
The subroutine to remove specific links from memory, once they are no
longer regquired, can be used to reduce core image size for faster
execution. Specifying removal of the calling link causes an error.
To call the subroutine from a FORTRAN program, wses:

CALL REMOVL (linkname,;...,linkname)

Where each linkname is the ASCIZ name of a link to be removed from
MeOLY .

To call the subroutine from a MACRQ program, use the standard FORTRAN
calling sequence:

HOVEI 16,acglst
PUSHJI 17, REMOV.

The argument list has one word for each link to be removed.
Example
=N, .0 jn is number of arguments
arglst: £ 17,addrl
A lT.aéd:n
OR

=N 0 in iz number of arguments
arglst: Z 2,addl

& 2,addrn

Where addr... is the address of the argument.

5-19 March 1983

OVERLAYS

Running a Specific Link (ROUNOW.)

The subroutine for running a specific link allows vyou to transfer
program eXecutionm to the stark address of a particular link. (An
areor occurs 1f the link has no start address.) 1f the link is not
already in memory, it and its path are brought in.

You can use this subroutine to overlay the calling link, because the
next imstruction executed is the start address of the named link;
therefore, there iz no avtomatic return to the calling limk.

HMOTE

The FORTRAN compiler does not generate

stark addresses for subroutines.
FORTRAM main programs cannot be loaded

into non=-root links. Therefore, to use
RUMOVL to transfer control to a FORTRANM
subroutine in a non-root link, you must
uge the FSTART switch at load time to
define a start address for the link.

To call the subroutine RUNOVL from a FORTRAN program,; use:
CALL RUNOVL (limkname]

Where linkname is the ASCIEZ name of the link to be rum.

To call the subroutine from a MACRO program, use the standard FORTRAN
calling seguence:

MOVEI 16,arglst
PUSHJ 17, RUNCV.

The argument list is of the form:

_li ;U
arglst: 2 17,address of ASCIZ linkname

OR
=1,,0
arglst: I 2,address of link number
Declaring A Writable Link (SAVOV.)
You can dynamically declare an overlay link to be writable by calling
SANVOV, This does not affect the current state of the code

immediately, but waits until the link is about to be overlaid. If the
link already writable, this symbol has no effeck.

5=20

OVERLAYS

Example
HOVEI lé,arglst
FUSHJ 17,8AVOV.
=T, o0 i iz number of arguments
arglst: Z 17;addrl ifor first ASCIZ linkname
z l?faédrn jfor nth ASCIZ linkname
OR
=fiy 0 i iz number of arguments
arglist: Z 2,addrl jfor first link number
E 2, aédrn jfor nth link number

Where addr... 1is the address of the argument.

If called with no arguments, SAVOV. only initializes the temporacy
file.

5.7.3 Overlay Handler Messages

This section lists all of the owverlay handler's messages. (The
méssages from LINE, which have the LNE prefix, are given in Appendix
Br]

For each overlay handler message, the last three letters of the
six-letter code, the severity, and the text of the message are given
in boldface. Then, in lightface type, comes an explanation of the

message.

When a message is issued, the three letters are suffixed to the
letters OVL, forming & 6-=letter code of the form OVLxxx. The
explanation of the message will be printed only if you uwse the
SOVERLAY: LOG switch.

The severity of a message determines whether the job will be
terminated when the message is issued. Lewvel 3] messages terminate
program execution. Level £ messages are warnings: they do not
terminate execution, but the error may affect the execution of the
program. Level 1 messages are informational and are printed on the
terminal only if you specified SOVERLAY:LOGFILE.

5=21 March 1983

Code
RRC

ARL

CDL

CGM

CRF

CSM

cuoF

CWF

Sav

il

il

31

il

3l

31

il

OVERLAYS

Message and Explanation
Attempt to remove caller from link [name or number)

The named link attempted to remove the link that called
it. This error occurs when the call to the REMOV,
subroutine reguests removal of the calling link.

Ambiguous reguest in link number [number] for [symboll.
uging link nusber [number]

More than one successor link satisfies a call from a
predecessor link, and none of these successors s in
memory. Since all their paths are of egqual length, the
overlay handler has selected an arbitracy link.

Cannot delete link [name or number], FOMCT. return sStatus
[number |

This is an internal LINE error, and is not expected Eo
OCCUr . 1f it does, please notify your Software

Specialist, or send a Software Performance Report (S5PR) to
DIGITAL.

Berturn status is one of the following:

1 Core already deallocated
3 Illegal argument passed to FUNCT. module

Cannot get memory from OTS, FUNCT. return status [octal]
The system does not have encugh free memory to load the
link. The status 3 (illegal argument) is returned from
the object-time system.

Cannot read file [fille] [reason)

An error occurred when reading the overlay file. The file
was closed after the last successful read operation.

Cannot shrink memory,; FUONCT. return status [octal]

A reguest to the object-time system to reduce memory, if
possible, failed. This error is not expected to occur.
If it does, please notify your S5oftware Specialist or send
a Software Performance Report (5FPR) to DIGITAL.

Cannot update file [file] [reason]

An ercor occurced when updating the THP file intoe which
non=resident writable overlay links are writtemn.

Cannot write file [file] [reascn]

An error occurced when creating the THP file used to store
non-resident weitable overlay links.

Deleting link [name or nomber] after [hHimmiss)

The named link has been removed from memory as a result of
a4 call to the REMOV. subroutine. The time given is
elapsed time since the first call to the overlay handler.
This message 1is output only to the overlay log file, if
any.

5=22

Code

IAT

IEF

ILH

IMP

IPE

IVH

LHM

MAN

MEF

HMS

Sev

il

31

il

il

il

il

il

il

OVERLAYS

Message and Explanation
Illegal argument type on call to ([subroutine)

A user call to the named owerlay handler subroutine gave
an illegal type of argument.

Input error for file [file] [reason]
An error occurred while reading the OVL or THP file.
Illegal link number [number]

A user call to one of the overlay handler subroutines gawve
an illegal link number as an argument.

Impossible error condition at PC=[address]

This is an internal error caused by moniter call error
cekturnsd that shouwld not occur. This message 15 18Sued
instead of the HALT message. This error i5 not expected
to occur. If it does, please notify your Software
Specialist or send a Software Performance Report (SPR) to
DIGITAL.

Input positioning error for file [file] [reason]
An error occurred while reading the OVL or THP file.
Inconsistent wersion numbers

The OVL and EXE files found were not created at the =ame
time, and may not be compatible.

Link number [decimal] not in memocy

A call to the REMOV. subroutine has removed the named
link from memory. It must be restored by a call to GETOV.
or RUNOV.

Memory not available for absoclute [link], FUNHCT. return
status [octal]

There is not enough room for the overlay handler to load
the specified 1link into the part of memory the link was
built for. Two options are available: a) Use the JSSPACE
switch at load time to reserve more space for the link, or
bl Build a relocatable overlay using the RELOCATABLE
option to the JOVERLAY switch at load time.

Memory expansion failed, FUHCT. return status [octal]

The overlay handler was unable to get free space from the
mEMGCY manager. Bestruckurse vyour overlay 8o that the
minimum number of links are in memory at any time.

Hot enough memory to load symbols, FUNCT. return status
[octal]

There was not enough free space available to load symbols
into memoEy.

5=213 April 1982

Code
HES

HEA

HSD

QEF

OPE

OFP

RLL

RLH

RPA

Sey

il

il

31

31

3l

ER

il

il

OVERLAYS

Message and Explanation

Ho relocation table for symbols

A relocation table was not included for the symbol table.
It is possible that LINE failed to load the relocation
table because there wasn't enough room in memory.

Mo start address for link [name or number]

A user call to the RUNOV. subroutine reguests execution to
continue at the start address of the named link, but that
link has no start address.

Mo such device for [file]
An invalid device was specified.
Output error for file [file] [reason]

An error occurred when writing the overlay file. The file
was closed after the last successful wrikte operation.

OQutput positioning error for file [file] ([reason]

An erfoer occurred while writing the TMP file used to hold
non=resident writable overlay links.

Overlay handler in private page

The overlay handler has been loaded into a non-sharable
page of the program. Your program should not write into
the pages occcupied by the overlay handler. Ask LIME for a
map of your program if there iz doubt. If the program is
not writing into these pages,; this error may reflect an
internal LIME error. This error is not expected to occur.
If it does, please notify your Software Specialist or send
& Software Performance Report (SPR] to DIGITAL.

Relocating link [name or number] at [address)
The named relocatable link has been loaded at the given

address, This message is ocutput only to the overlay log
file.

Reading in link [name or number] after [time]

The named link has been loaded. The time given is elapsed
time since the first call to the overlay handler. This
message is output only to the overlay log file.

RMAF JSYS5 failed

This 1% an internal error and is not expected to occur.
If it does; please notify your Software Specialist or send
a Software Performance Report (SPR) to DIGITAL.

RPACS J5Y5 failed
Thiz iz an internal error and is not expected to occur.

If it does, please notify vour Software Specialist or send
a Software Performance Report (SPR) to DIGITAL.

E=24 April 1982

OVERLAYS

Code Sevw Message and Explanation
5T &8 OTE reserved space too small

The object-time system does not have space for its minimum
number of buffers. Feload, using the /SPACE switch for
the root link with anm argument greater than 2000 ({octal).

ULH 3l Unknown link name [name]

A call to one of the overlay handler subroutines gave an
invalid link name as an argument. Correct the call.

usc] OUndefined subroutine [name] called from [address]

A required subroutine was not loaded. The instruction at
the given program counter address calls for an undefined
subroutine. Correct the call or load the reguired
subroutine.

WLH 1 Writing [link] after [time]

The owverlay handler is writimg out a writable owverlay
link.

5.7.4 The FUMCT. Subroutine

Each DIGITAL-supplied object-time system has & subroutine that the
overlay handler uses for memory management, I,/0, and message handling.
This subroutine has a single entry point, FUNCT., and iz called by the
BEQUEnCE :

MOVETL 16,arglst
PUSHJ 17, FUNCT.

The format of the argument list is:

=Cn+3s, 0

arglst: Z 2,address of integer function code
2 2,addreszs for ereor code an return
t Z2,address for status code on return
I code,address of first argument

L,

2 code,address of nth argument

Where function code is one of the function codes described below;
error code is a 3=-letter ASCII mnemonic output by the cbject-time
system (after 7, %, or [}; and status (on return) contains one of the
following values:

=1 Function not implemented
0 Buccessful return
n Humber of the error message

Most object-time systems allocate separate space for their own wse and
for the use of the overlay handler. This minimizes the possibility
that the overlay handler will regquest space that the object-time
system 15 already using.

5-25

OVERLAYS

The permitted functionm code arguments, their names, and their meanings

are:

Code Hame Function
il ILL Illegal fumctiony rceturns =1 status.
1 GAD Get a specific segment of memory.
2 COR Get a given amount of memory from anywhere in

apace allocated to the overlay handler.

3 RAD Returnm a specific segment of memory.
4 GCH Gek an I/0 channel.

5 RCH Beturn an I/50 channel.

& GOT Get memory from the space
object-time system.

allocated

) ROT Return memory to the object=-time system.

10 ENT Get the inicvial runtime, in milliseconds,

object=time system.

to

from

11 IFS Get the initial runtime File aspecification of

program being rumn.

12 CBC Cut back core [if possible) to reduce job size.

13 F.RRS Read retain status (DBMS)
14 F.WRS Write retain status (DBMS)
15 F.GPG Get pages

16 F.RPG Beturn pages

17 F.GPSI Get TOP5-20 PSI channel

20 F.RPSI Return TOPS-20 PSI channel

All PUMCT. codes are reserved to DEC.

The
FPUNCT.

following subsections describe each
subroutine (except the reserved functions).

ILL (0) Punction

This function is illegal. The argument 1list is
status retuerned is -1.

5=26

function

ilgnored,

af

and

March

the

the

the

the

the

the

1983

OVERLAYS

GAD (1) Punction

The GAD function gets memory from a specific address in the space
allocated to the overlay handler. The argument list points to:

arg 1 Address of reguested memory
arg 2 5Size of reguested allocation {(im words)

A call to GAD with arg 2 egual to -1 reguests all available memory.
On return, the status is one of the following:

0 Successful allocation

1 HNot enough memory available

2 Memory not available at specified address

1 Illegal arguments {(address + size > 256K)
COR (2) Function

The COR function gets memory from any available space allocated to the
overlay handler. The arguments are:

arg 1 Undefined {address of allocated memory on return)
arg 2 Size of reguested allecation

On return, the status is:
0 Core allocated
1 Hot enough memory avallable
3 Illegal argument (size > 25&K)

RAD (3) Function

The RAD functionm returns the memory starting at the specified address
ko the overlay handler. The arguments are:

arg 1 Address of memory to be returned
arg 2 5Size of memory to be returned (in words)

On return, the status is one of the following:
D Successful return of memory

1 HMemory cannot be returned
3 Illegal argument {address or size > 256K)

GCH (4) Function

Eeturns a status of 1. The channel is not available.

ECH (5) Function

Feturns a status of 1. The channel is not available.

5=27

OVERLAYS

GCH (4) Function

The GCH function gets an input/output channel. The arguments are:

arg 1 Undefined (channel number allecated on return)

arg 2 Ignored
On return, the status is one of the following:

0 Successful channel allocation
1 Mo channels available

RCH (5) Function

The RCH fumction returns an input/output channel. Its argquments are:

arg 1 HMHumber of channel to be returned
arg 2 Ignored

On return, the status iz one of the following:

0 <Channel released
1 <Channel number invalid for user

GOT (6) Function

The GOT function gets memory from the space allocated

object-time system. Its arguments arce:

arg 1 Undefined {(address of allocated memory on returmn)

arg 2 Bize of memory reguested
On return, the status iz one of the following:
0 Successful allocation
1 Hot encugh memory available
3 Tllegal argument (size » 256K)
ROT (7) Function

The ROT function returns memory to the object=-time
arguments arei

apg 1 Address of memory to be returned
arg 2 Size of memory to be returned (in words)

On returm, the status is one of the following:
0 Successful return of memory

1 HMemory cannot be returned
3 Illegal srgument (address or size > 256K)

5-28

Eystem.

ko

the

Its

OVERLAYS

ENT (10) Function

The BRNT function returns the initial runtime, in milliseconds, from

the object=time system. (At the beginning of the program, the
abject-time system will have executed a RUNTIM UUO; the result is the
time peturned by BHNT.) Its arguments are:

arg 1 Undefined (contains initial runtime on return)
arg 2 Ignored

On return, the runtime is in arg 1, and the status is 0. The status
is 0.
IFS (11} Punction

Always returns a value of -1. This function is not implemented.

CBC (12) PFunction

The CBC function cuts back memory if possible, which reduces the size
of the job. It uses no arguments, and the returned status is 0.

ER5S (13) Function {(Beserved for DBMS)

Eeturms ARGl = 0. On return, the status is always 0.

WERS (l4) Function [Reserved for DBMS)

Returns ARGL = 0. On return, the status is always 0.

GPG (15) Function
The GPG function is used to fetch a page. The arguments are:
arg2: size to be allocated, in words

On return,
argl = address of allocated memory, on page boundarcy

and the status iz one of the following:
0 if allocated OK

1l if not enough memory
3 if argqument error

RPG (1&6) Punction

The RPG functionm is used to return pages. The arguments are:

argl: address {a word)
arg2: size (in words)

On return, the status is:
0 if deallocated OF
1l if wasn't allocated
31 if argument error

5-29 March 1983

OVERLAYS

GPSI (17)

The GPSI function can be uvsed to get a P3I channel Ffor programs
tunning im a TOPS-20 environment. This entry point provides only
conkrolled access to the PSI tables. It will arrange that the tables
exist and that SIFE and EIE have been done but does not do AIC or any
ather J5¥5 necessary ko set up the channel (ATI or MTOPR, for
example) .

The arguments are:

argl: channel number,

or =1 to allocate any user=-assignable channel
arg2: level number
argl: address of interrupt routine

On retuen, argl contains the channel number allecated (if -1 was
originally specified). On return, the status is:

0 if O

1 if channel was already assigned
2 if no free channels

1 if argqument erroc

HOTE

This functionm 15 used by TOPS-20
programs. It is a reserved functiom im
the TOPE-10 environment.

RESI (20) Function

This entry point provides only controlled access to the PSI tables.
It does not do DIC or any other JS5Y¥S necessary to release a channel.
It just clears the level and interrupt adderess fields in CHNTAB.

This function accepts the following argument:
argl: channel number

On return the status is one of the following:
0 if O
1 if channel wasn't imn use
1 if argument error

HOTE
This function is used by TOPS=-20

programs. It is a reserved function inm
the TOFS=-10 environment.

=310 March 1983

OVERLAYS

5.8 THE OVERLAY (OVL) FILE

Thizs section contains diagrams of the contentsz of the overlay
by LIMK as a result of the /OVERLAY switch. The following
diagram shows the overall scheme of the file:

output

Scheme of the Overlay (OVL) File

Directory Block

Link Mumber Table

Writable Link Flags Table

|

| |
| |
| |
| |
| |
| I
I |
| |
I |
| Link Mame Table |
| |
| I
| I
I I
[I
| |
| I
| Link |
| |

T« e N A L T —
.

—

S S T S T T N O N TN N PO N T S O S T T S S - A S O S O

Limk

i s F: ro— m—

|
I
I
I

5=30.1

file

OVERLAYS

5.8.1 The Directory Block

The following disgram shows the contents of the Directery Block:

Directory Block

.DIHDR: | 0 (Reserved) I Length of Dicectory Block |
S —— |
oIveRs | vecrsion Nusber of Corresponding EXE £ils 1.
.DILPTs | —fBlse oF LInk Bow Toblel 1LLnh Sumber Teble Blech Mool

LDINPT: |=(5ize of Link MName Table] | Link Hame Table Block He. |
+DIWPT: |=i(Size of Writable Flg Thbl) | Writable Flg Thbl Block Ho |
DIFLG: | Flags |

| 0 (Reserved) |

In the fourth word above, the size of the Link Number Table (in words)
15 half the number of links (rounded upward)l; the Link HNumber Table
Block Mo. is the number of the 128=-word disk block containing the Link
Number Table. (There are four disk blocks per disk page.)

In the fifth word above, the size of the Link Mame Table (in words) is
twice the number of links: the Link Mame Table Block Mo, is the
number of the 128-word disk block containing the Link Name Table.

The table defined by the .DIWPT word above consists of a string of
two-bit bytes. The firse bie, OW.WRET, indicates whether the
corresponding overlay link is writable. This bit is set under the
control of a REL block of type 1045 (writable links). The second bit,
OW.PAG, indicates whether the corresponding overlay link is currently
paged inte the runtime overlay temporary file. This iz strictly a
run=time flag and should be zero inm the overlay file. This flag is
defined in the overlay file to allow the overlay handler to set up lts
flag table with & single read operation.

The .DIFLG word in the directory block contains a single bit flag (bit

0) If this bit is set the overlay file contains at least one
writable overlay. This information is alse contained in the Writable
Link Table. However, by having the information available in the

directory block the overlay handler can determine if any links are
writable without scanning the Writable Link Table. All other bits in
the .DIFLG word are reserved and must be zero.

HOTE

If a user reguests both writable and
relocatable averlays; only halfwords
known to be relocatable at load time
will be correctly relocated when the
link is refetched.

E=30.2

OVERLAYS

5.8.2 The Link Humber Table

The following diagram shows the contents of the Link Number Table:

Link Mumber Table

| Polnter te Link O I Fointer to Link 1 |
B e e e e e T T T -1
I Pointer to Link 2 | Polnter to Link 2 I

___ l
| == s s e e e I
[Pointer to Link n-1 I Polnter to Link n I

I CEREL LR L LR b ilfll‘lliilill

Each pointer is a disk block number. AnyY unused words in the
disk block of the Link Humber Table are zeros.

5.8.31 The Link Mame Tabhle

The following diagram shows the contents of the Link Name Table:

Link Wame Table

I Link Mumber i
| = e - e —m— ————— — e —— |
I SIXBIT Link Mame 1

I SIS SIS S S S SSS s EE s EEEEEE |

I ISR ESEEEEEEE |

| Link Wumber |

| SIXBIT Link MName |

Any unused words in the last disk block of the Link MHName Table
Zeros.

5-31

last

are

OVERLAYS

5.8.4 The Overlay Link

The following diagram shows the overall scheme of each overlay link in
the overlay file:

Scheme of an Overlay Link

I

| Freamble
|

1l-l--l-.l--l-ll-l--l!-l-ll-ll-- IS TS EEESESEETEEEEE

Code for Link

Link Contrel Section

EXTTAR

Belacation Table

|
|
|
I
I
|
I
I
|
I
I
|
|
|
|
EEEETEEEEE . IIIIIIIlli'll--'--i"--i'-ii-li--:-.--:--:----ii-.-!
|
|
|
|
1
|
|
|
|
Other Relocation Tables |
|
I

|
|
I
I
|
I
I
I
I
|
|
I
I
| INTTAB
|
I
|
|
|
|
I
|
|
I

5=12

OVERLAYS

The Preamble

The following diagram shows the contents of the preamble for an
overlay link:

Preamble
I.il-iil------.--.------:-.-----.-----------------------|
I 0 (Reserved) I Length of Preamble I
II """" 0 (Reserved) | 0 (Reserved) |
| 0 (Reserved) I Link Humber :
R SIXBIT Link Name |

| Hext Free Memory Location for Mext Link |

[:::I:::::::I:::::T::r::t::::::-It-:r-It-It---'l-dii-rllI

5=-113 April 1982

OVERLAYS

Code for the Link

The code for each link consists of a core image that was constructed
from the REL files placed inm the link. This core image contains the
code and data for the link.

The Control Section

The following diagram shows the contents of the Control Sectiom:

Control Section

| 0 [Reserwved) | Length of Header I
T tReservedy 1 o (mesecveds "
" theeeved) 1 Link Buaber |
T SIXBIT Link Mame |
| Btr to Ancestor in Core 1 Ptc to Successor in Core |
| -(Length of Sysbol Table) | Address of Symbol Table |
|0 (Reseevedr 1 stact Adaress for Link |

IMemary Heeded to Load Link | First Address in Link |

| ={Length of INTTAB) | Pointer to IWNTTAB |
b g d Address of Symbols on Disk N
o it i B Relocation Address |
. Copy of Block Number for Code |
|~ (Length of Radix-30 SynTab) IB1k No. of Radix-50 SymTabl

5=14 April 1982

OVERLAYS

The EXTTAB Table

The follewing diagram shows the contents of the EXTTABR table:

EXTTAB

I JEF 1,.0VRLA I

I Flags |address of Callee's INTTAB |
|== e s e e e e e e e e e - ——— |
| Callee's Link MNumber |Ptr to Callee's Control Sec|
L e et et [
1 Backward Pointer | Forward Pointer |

a2
l.l'l"ll.ll'.'ll.ll AT S IS SFET T SSTESS S I

| JEP 1,.0VRLA I

| Flags |Address of Callee's INTTAB |
fmmmm e [
| Callee's Link Mumber |Ptr to Callees's Control Sec|
e T et e L e e e e |
1 Backward Pointer | Forward Polinter |

The flags in the left half of the second word have the following
meanings:

Bit Meaning (if bit iz on)
Module is in core.

Module is inm more than one link.
Relocatable link is already relocated.

Pl b=f O

5=35

OVERLAYS

The INTTABR Table

The following diagram shows the contents of the INTTAR table:

INTTAB
l'.----l--'-..-.... T TrrIrrrry r ey Ty i st A TP AT R PR AR AR I
I 0 (Reserved) | Address of Entry Point 1
o e = |
| 0 (Reserwved) I Forward Polnter I

1l----l-.-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII--II.---"-.'-. I

-

I--l-'--l--l-ll-ll-l--l-ll-ll-ll--l-ll-l--l--l-l--l-l--lI
| 0 [(Reserwved) | Address of Entey Poeint

| I
| 0 [(Reserved) | Porward Pointer I

5-136

OVERLAYS

The Relocation Table

The following diagram shows the contents of the Relocation Table:

Belocation Table

II-I-II-Il-Il.I-IIl.Il.I.II-.-----I-.Flﬂll-l---------.--r
| Eelocation Word |

| Relocation Word I
Il.ll.lIIIIII'Illﬂiiliil'IIIIIlllIIIIIIIIIIIIIIIIIIIlII'I

The Relocation Table contains one bit for each halfword of the link.
If the bit i& on, the halfword is relocatable: if it iz off, the
halfword is not relocatable.

The first word contains the relocation bits for the first 22 (octal)
words of the link; the second word conmtains the relocation bits for
the next 22 (octal) words: and so forth for all words in the link.

This table exists only when relocatable overlays are reguested with
the (OVERLAY:RELOCATABLE swiktch.

=37

OVERLAYS

The Other BRelocation Tables

The following diagram shows the contents of the Other Relocation

Tables:

This table exists only when relocatable overlays have been reguested
with the OVERLAY 'RELOCATABLE switch.

Other Relocation Tables

| Humber of Words Following for This Link I

| Felocation Halfword | Ftr to Words of Code |

I IIII"IIil-i-----'--.--.--------:’-----:-.--i-ii-iill'li'lﬂI

I Humber of Words Following for This Link |

| Link Humber | Flanned Load Address |

| e e e o o o o |
| Relocation Halfword | Petr to Words of Code |

| Belocation Halfword | Ptr to Words of Code |

used to hold internal LIME references.

3-38

The Other Relocation Tables are

APPENDIX A
REL BLOCEKS

The object modules that LINE loads are output from the language
translators. These object modules are formatted inte REL Blocks, each
of which contains information for LINKE.

This appendix describes each type of REL Block and gives its format.
Terms used throughout this discussion are defined as Follows:

Header Word: a fullwoerd giving the REL Block Type in its left half
and a short count or long count in its right half.

Short Count: a halfword giving the length of the REL Block, excluding
relocation words (which appear before each group of 18
{decimal) , or 22 (octal) words) amd excluding the header word.

Long Count: a halfword giving the length of the REL Block, including
all words in the block except the header word itself.

Relocation Word: a fullword containimng the relocation bits for up to
18 ({decimal} following words. Each relecation bit 15 either
1, indicating & relocatable halfword, or 0, indicating a
nencelocatable halfword.

The first two relocation bits give the relocatability of the
left and right halves, respectively, of the next following
word; the next two bits give the relocatability of the two
halves of the second f{ollowing word; and so forth for all
bits in the word, except any unused bits, which will be zego.

If a REL Block has relocation words, the first one follows the
header word. If more than 18 (decimal) data words follow this
relocation word, the next word (after the 18 words) is another
relocation word. Thus, a REL Block that has relocation words
will have one for each 18 words of data that it contains. If
the REL Block does not contain an integral multiple of 1B
words, the last relocation word will have upused bits.

HOTE

A block with a zero short coumt does not include a
relocation woard.

Data Word: Any word other than a header word or a relocation word.

MBZ: Must Be Iero.

REL BLOCES

NOTE

All numbers in this appendix are octal
unless specifically noted as decimal.

The diagram below shows a REL Block having a short count of 7,
relocation word.

I -l-ll-l--l--l--l-----l--l--l--'--l--l-'---l-l--l-.l-.---t

| Block Type [7 I

| Cata Word 7 |
rlIIIIIlii------.--.--:'--'--- SESSSSSEsEsSEssEsEssEsEsEEenEnm |

and

REL BLOCES

The diagram below shows a REL Block havimg a short count of
{octal), and two relocation words.

[Block Type [31 I

|———————————————————————————: ——————————————————————————— [
| Data Word 31 [

ER|

REL Block Types must be numbered in the range 0 ta 777777 (octal).

The feollowing list shows which numbers are reserved for DIGITAL,
which for customers:

Type Humbers Use
0 = 37 Eeserwved for DIGITAL

40 = TT Eeserved for customers

100 - 401 Reserved for DIGITAL

402 - 577 Reserved for customers

&00 = 677 Reserwved for customer files
TO0 - 177 Eeserved for DIGITAL files
1000 = 1777 Reserved for DIGITAL
2000 - 37177 Reserved for customers
4000 = TFTITITTT Reserved for ASCIT text

A=-1

and

REL BLOCES

Block Type 0 (Ignored)

Illl'llii'--- SIEESESEENESEEEE S .. --i-iil

1 0 | Short Count |
i —— =]
1 Relocation Word |
| e s nmas |
| Data wWord I
| = e e s s e s e e e —— |
e it TR |
| Data Word 1

I"-'I'--'I'-- !--'!--'--l:-'I=:':Il!-l:ll-t::::::-ll-llll-l!ll-l!]

Block Type 0 is ignored by LIMNK.

If the gshort count s 0, then no relocation word follows, and the
block consists of only one word., This is how LIMNE bypasses zero words
in a REL file.

REL BLOCES

Block Type 1 (Code)

| 1 | Short Count |

| Data Word I

Block Type 1 contains data amd code. The first data word gives the
address at which the data is to be loaded. This address can be
relocatable or absolute, depending on the wvalue of bit 1 of the
relocation word. The remaining data words are loaded beginning at
that address.

If the start address is given in sysbolic, the following format of
Block Type 1 is used:

I AT TS ST SsS TS ili.l'.'l-l-l

| 1 | Short Count |

In this alternate format, the first four bits of the first data word
(Symbol) are 1100 (binacy)l, and the word is assumed to be a Radix=350
symbol of eype 60. The load address is calculated by addimg the value
of the global symboal to the offset given in the following word. The
third and folleowing data words are loaded beginning at the resulting
address. The global symbol must be defined when the Type 1 Block is
found.

REL BLOCES

Block Type 2 (Symbols)

Iiiili-----:--:-.:--:--:-.:-.--I----.--.----iii.illlll.lI
| 2 I Short Count I
] o B B B B B B B B B B B B B |

| Belocation Word [

I———————————————————————————l ——————————————————————————— |
ICode | Radix-50 Symbol |
o e |
| Second Word of Pair |

1--l.-l.-l-----l-- --------F----.---l----l-----------.---]

The first word of each pair has a code in bits 0 to 3 and a Radix=-50
gymbel in bits 4 to 35 (decimal). The contents of the second word of
a palr depends on the given code. The octal codes and their meanings
are:

Code Heaning
oo This code is illegal inm 2 symbol block.

04 The given symbol 1% a glebal definition. Its value;, contained
in the second word of the pair, is available to other programs.

10 The given symbol i3 a local definition, and its walue is
contained in the second word of the paicr. IE the symbol is
followed by one of the special pairs or by & Polish REL Block
{as explained below, under code 24), the symbol is considered a

partially defined local symbol. Otherwise, it is considered
fully defined.

14 The given symbol iz a block name (from a translator that uses
bBlock structure). The second word of the pair contains the
block level. The symbol iz considered local; 1f local symbols
are loaded, the wvalue of the block name is entered inm the
s¥mbal table as its block level.

24 The given symbol iz & global definition. However, it iz only
partially defined at this time, and LINE cannoct yet use its
value., If the symbol is defined in terms of another symbol,

then the next entry in the REL file must be a word pair inm a
Block Type 2 as follows:

1l-II-l--l--l--l-ll-Il-ll-ll-ll-l--l--------'-.--'--.---I

I 60 | Other Symbol I

1 50 | This Symbol |

In this format, code 50 indicates that the right half of the
word depends on the other symbol.

LIHE Version 5 A= 6 April 1982

REL BLOCES

Code Meanimg

If the partially defined symbol is defined im terms of a Polish
expression, then the next entery in the REL file must be Block
Type 11 (Polish), whose store operator gives this symbol as the
symbol to be fixed up. The store operator must be -4 or -6

30 The given symbol iz a global definition. However, it iz only
partially defined at this time, and LINE cannot yet use its
value. If the symbol is defined in terms of another symbol,
then the next enktry In the REL file must be a word pair inm a
Block Type 2 as follows:

| &0 | Other Symbol [

|
1 70 | This Symbol |

In this format, code 70 indicates that the left half aof the
word depends on the other symbol.

If the partially defined symbol is defined in terms of a Polish
expression, them the next entry in the REL file must be Block
Type 11 (POLIBH), whose store operator gives this symbol as the
symbol to be fixed up. The store operator must be -5.

34 The given symbol is a global definition. MHowever, it iz only
partially defined at this time, and LINE cannot yet use its
value. If the symbol is defined inm terms of another symbol,
then the npext entry in the REL file must be a word pair in a
Block Type 2 as follows:

I &0 | Other Symbol I
s 1T This Symbol |
e 1T Other Symbol 7|
N This Symbol |

I E@oEssoEEmosaEm !-l!-l!-l--':ll=l:n='====-=!'l!l"-l!'l-ll-lr

This format indicates that both halves of the word depend on
the other symbol.

44 The given symbol is a global definition exactly as in code 04,
except that it is not output by DDT.

50 The given symbol is a local symbol exactly as in code 10,
except that it is not output by DDT.

&0 The given symbol is » global reguest. LINK's handling of the
symbol depends on the value of the code in the first four bits
of the second word of the pair. These codes and thelr meanings
BEE:

ili] The right half of the word gives the address of the
first word in a chain of regquests for the global memacy
address. In each reguest, the right half of the word
gives the address of the next reguest. The addresses in
the chain must be strictly descending; the chain ends
when the address is 0.

LINE Version 5 f=T April 1982

Code

40

50

60

70

LT The giv

except

T The giw

REL BLOCES

Heaning
The right half of the word contains an address. The
right half of the value of the reguested symbol iz added
to the right half of this word.

The rest of the word contains a Radix=-50 symbol whose

value depends on the reguested global symbol. (If the
given Radix-50 symbol is not the one defined in the
previous word pair, then this word is ignored.) When

the value of the regquested symbol is resolved, it is
added to the right half of the walue of the Radix-50
symbol.

The right half of the word contains an address. The
right half of the value of the regquested symbol 15 added
to the left half of this word.

The rest of the word contains & BRadix-3%0 symbol whose
value depends on the reguested global symbol. (If the
given Radix-50 symbol is not the one defined in the
previous word pair, then this word is ignored.) When
the value of the reguested global symbol iz resolved, it
iz added to the left half of the value of the Radix-50
symbol.

en S5¥ymbol is a global definition exactly as in code 24,
that it is not output by DODT.

en symbol iz partially defined, where the left half is

deferred, as in code 30, except that it is not ocutput by DODT.

74 The given symbol is partially defined,; where the right half is
deferred, as in code 34, except that it iz not output by DOT.

Symbols are pl
them. Howewver

aced in the symbol table in the order that LINE Ffinds
r DOT expects to find the symbols in a specific order.

Far a non-block=-structured program, that order ls:

Program Mame

Symbols £

For a block=st
Begin Blo

Begi

End
Begi

End
End Block

LIME Version S5

or Program
ructured program whose structure is:

ck 1 (same 3% program nmame)
n Block 2
Block 2
n Block 3
Begin Block 4
End Block 4
Block 3
1

A=H April 1982

REL BLOCES

the order is:

Program Mame (Block 1)
Block Hame 2

Symbols for Block 2
Block Hame 4

Symbols for Block 4
Block MHame 3

Symbols for Block 3
Block Hame 1

Symbols for Block 1

This ordering follows the rule that the name and symbols for each
bBlock must occur in the symbol table in the order of the block endings
in the program.

HOTES

1. Only one fixup by a Type 2, 10, 11,
1070, or 1072 Block is allowed for a
given field. (There can be separate
fizxups for the left and right halves
of the same word.})

2. Fizups are not necessarily performed
in the order LINKE finds them.

A-9 April 1982

REL BLOCES

Block Type 3 (HISEG)

I 3 | 1l o 2 I
T T Belocation Word :
|Bigh-Seqment Progeam Break | Hlgh-Segment Orlsin |
| (iow-Gagment Frogram Dreaky] (Low-Segment Origim |

Block Type 3 tells LIMNE that code is to be loaded inte the high
segment.

If the left half of the first data word is 0, subsegquent Type 1 blocks
found are assumed to have been produced by the MACRD pseudo-op HISEG.
This usage is not recommended. It means that the addresses in the
bBlocks are relative to 0, but are to be placed inm the program high
gegment. The right half of the first data word is the beginning of
the high segment [usually 400000} .

If the left half of the first data word is nonzero (the preferred

usage} , subsegquent Type 1 blocks found are assumed to have been
produced by the MACRD pseudo-op TWOSEG.

The right half is interpreted as the beginmning of the high segment,
and the left half iz the high-segment break; the high-segment length
is the difference of the left and right halves.

(One-pass translators that cannot calculate the high-segment break
gshould set the left half egual to the right half.)

If the second word appears im the HISEG block, its left half shows the

low=segment progeam break, and its right half shows the low-segment
origim (usuwally 0).

A=10

REL BLOCES

Block Type 4 (Entry)

I 4 | Short Count |

I Radix-50 Symbol I

Block Type 4 lists the entry name symbols for a program module. If a
Type 4 block appears in a module, it must be the first block inm the
module. A library file contains a Type 4 bleck for each of its
modul es.

When LINK is in library search mode, the symbols in the block are
compared to the current list of global reguests for the lead. If one
or more matches occur, the module is loaded and the name of the module
iz marked &% an entry point in map files; ete. IE no maktch occurs,
the module is not loaded.

If LINE is mot in librarcy search mode, no comparisom of rpeguests and

entry names 15 made, and the module i5 always loaded. Refer to Block
Type 17 for more information about libraries.

A-11

REL BLOCES

Block Type 5 (End)

]l’l.:l--l-- !-l--l--l--l-l!-l!-l--l-l!-l--l-lt-'--l!-l-'I
| 5 I 2 |
S ——— -]

| Belocation Word |

| First Data Word |

T S ESS———

| Second Data Word |

Block Type 5 ends & program module, A Block Type & must be
encountered earlier in the module tham the Type 5 block.

If the module contains a two-segment program, the first data word is
the high-segment break and the second data word is the low-segment
break. If the module contains » one-segment program, the Ffirst data
word is the program break and the second dats word is the absolute
break.

Each PRGEND pseudo-op in a MACRD program generates a Type 5 REL block.
Therefore a REL file may contain more than one Type 5 block.

A library REL file has a Type 5 black at the end of each of its
modules.

REL BLOCES

Block Type & (Mame)

r.'----l'--l'--l----.l----ll-l--l--l-'l-'l-l--l--l-'!-l!-l- I

|] | 1 ar 2 |

Block Type & contains the program name, and pust precede any Type 2
blocks. (A module should begin with a8 Type & block and end with a
Type 5 block.)

The first data word is the program name in Radix=50 formak; this name
cannot be blanks. The second data word iz optional; if it appears,
it contains CPU codes in bits 0 to 5, a compiler code in bits & ta 17
{decimal), and the length of the program's blank COMMON in the right
halfword.

The CPU codes specify processors for program execution as:

Bit 2 K510
Bit 3 EL1D
Bit 4 EIlQ
Bit 5 EAlD

If all these bits are off, then any of the processors can be used for
execution.

The compiler code specifies the compiler that produced the REL file.
The defined codes are:

i Unknown T SAIL 16 COBROL=T4
1 Mot used 10 FORTRAN 17 {Reserved)
2 COBOL=-68 11 MACEOD 20 BL15S=36
3 ALGOL 12 FAIL 21 BASTIC
4 HELIAC 13 BCPL 22 5 ITGO
5 PL/I 14 HIDAS 23 G-floating FORTRAN
6 BLISS 15 STIMULA 24 PASCAL
25 JOVIAL

LINE Version 5 A=13 April 1982

REL BLOCES

Block Type 7 (Start)

| 7 | 1 ar 2 |

| (60) | {Radix-50 Symbol) |

Block Type 7 contains the start addeess for program execution. LIHE
uses the start address inm the last such block processed by the load,
unless SSTART or /HOSTART switches specify otherwise. However, 1f the
left halfword of the start address s nonzero, the halfword is
interpreted as the length of the entry vector, which is located at the
address specified in the right halfword. ERefer to Section 4.2.1 for
further information.

If the second (optional) word is present, it must be a Radix=-50 symbol
with the code 60; LINE forms the start address by adding the value of
the symbol to the value in the right half of the preceding word (S5tart
Address) .

A=14

REL BLOCES

Block Type 10 (Internal Reguest)

| 10 [Short Count [

| Pointer bo Last Reguest | Value I
= e . —— — ——m— s S Ssss s sssssssssassaa I

Block Type 10 is generated by one-pass compilers to resoclwve reguests
cauged by forward references to internal symbols. The MACED assembler
also generates Type 10 blocks to resolve reguests for labels defined
in literals; & seporate chain is reguired for each PSECT in & PSECTed
program.

Each data word containg one reguest for an internal symbol. The left
half is the address of the last reguest for a given symbol. The right
half is the wvalue of the symbol. The right half of the last reguest
contains the address of the next-to=-1ast reguest, and =o on, until a
zero right half is found. (This is exactly analogous to Radix-50 code
60 with second=-word code 00 in a Block Type 2.}

If & data word contains =1, then the following word contains a reguest
for the left (rather tham right}) half of the specified word. In this
case, the left half of the word being fixed up contains the address of
the next-to-last left half reguest, and 50 on,; until a zero left half
iz found. (This i3 & left half chein oanalogous to the right half
chain described above.)

NOTES

1. ©Only one fixup by a Type 2, 10, 11,
10%0, or 1072 Block is a2llowed for a
given field. (There can be separate
fFixups for the left and right halves
of the same word.)

2. Fixups are not necessarily performed
in the order LINE finds them.

A-15 April 1982

REL BLOCES

Block Type 11 (Polish)

IF--IF- EEEEEET ST ST ST E I--F-l--l--l-ll

1 11 | Short Count |
| == e e e s e e e e e - ——— =
| Relocation Word |
| e s s s s s s s s s s s s s s s s s s s |
| Data Halfword | Data Halfword |
| = e e e e - =|
[e e e e e e s mm s mes =
| Data Halfword Data Halfword |

III T TS TS T T TS TSSO ST SEsszsszm== !-ll-l!-l--l-l!-ll

Block Type 11 defines Polish fixups for operations on relocatable

values or external symbols. Only one store operator code can appear
in a Block Type 11; this store operator code can be either a symbol

fixup code or a chained fixup code. The store operator code appears
at the end of the block.

HOTES

1. Only one fizup by a Type 2, 10, 11,
1070, or 1072 Block is allowed for a
given field. ([There can be separate
fizups for the left and right halves
of the same word.)

2. Fixups are not necessarily performed
in the order LINE finds them.

The data words of & Type 11 block form one Polish string of halfwords.
Each halfword contains one of the following:

1. A symbol fixup store operator code.

A gymbol fixup defines the value to be stored in the wvalue
field of the symbol table for the given symboel. A symbol
fixup store operator code is followed by four data halfwords.

2. A chained fixup store operator code.

A chained fixup takes a relocatable address whose corrected
virtual address iz the location for storing or chaining. A

chained fixup store operator code is followed by one data
halfward.

3. A data type code. Data type code 0 is followed by a data

halfword; a data type code 1 or 2 is followed by two data
halfwords.

4. An arithmetic or logical operator code.

A-16 April 1982

REL BLOCES

A PSECT index code. This code defines a PSECT index to be
used for caleuwlating the relocated addresses that appear in
this bBlock. PSECT ndexes are needed only for PEECTed
pPrograms.

A global PSECT index is associated with a Block Type 11.
This index appears as the first halfword after the relocation
word, and it defines the PSECT for the store address or store
symbol. Any addresses for a different PSECT must be preceded
by a different PSECT index.

Thus, a relocatable data halfword in a different PSECT must
appear in one of the following formats:

} 400nnR I joperator code) I
___ |
I (operands) I
T i ———— |
QR
i ———— -
| i & | A00nnn |
Rttt e |
| (operator code) | {operands) I

S LS ——

where the different PSECT index i85 nnn+l.

Any relocatable address that does not have an explicit
preceding PSECT index code preceding its date type code is
assumed to be in the same PSECT as the store address for the
block. The current PSECT may be set by a previous REL Block
type.

A halfword of data (preceded by a data type 0 halfword) ot
two halfwords of data (preceded by a data type | or 2
hal fwoed) .

A geguence of halfwords contaiming a data type code 0 and a
data halfword cam begin in either half of a word.

The codes and their meanings are:

Symbol Fixup Store Operator Codes:

-7

=6

Fullword replacement. Mo chaining is done.

Fullword symbol fixup. The following one or two words
contain the Radix=5%0 symbol{s) (with their 4-bit codes).
The first is the symbol to be fixed up, #nd the second is
the block name for & block-structured program (0 orf
nonexistent for other programs).

A-17 April 1982

REL BLOCKS

-3 Left half symbol fixup. The following one or two words
contain the Radix-50 symbols. The first is the symbol to be
fixed wp, and the second iz the block name for a
block=structured program {0 or nonexistent for other
programs) .

-4 Right half symbol fixup. The following one or two words
contain the Radix-50 symbols. The first iz the symbol to be
fixed wp, and the second is the block name for a
bBlock-structured pPEOgEam i0 or nonexistent for other
programs] .

Chained Fixup Store Operator Codes:

=3 Fullword chained fixup. The halfword following points to
the Ffirst element in the chain. The entire word pointed to
is replaced, and the old right half points to the next
fullword.

=2 Left half chained fixup. The halfword following points to
the first element im the chain.

=1 Right half chained fixup. The halfword following polints to
the first element im the chain.

Data Type Codes:
1] The next halfword is an operand.

1 The next two halfwords form a fullword operand.

2 The next two halfwords form & ERadix-50 symbol that s a
global reguest. The operand ls the value of the symbol.

Arithmetic and Logical Operator Codes:

MOTE
Operands are read in the order that they are
encountered.
3 Add.
4 Subtract.
5 HMultiply.
[Divide.

7 Logical AND.
10 Logical OR.

11 Logical shift. (A positive second operand causes a shift to
the left. A negative operand causes a shift to the right.)

12 Logical XOR.

13 Logical HOT (one's complement).

A=18

REL BLOCKS

14 Arithmetic negation (two's complement).

15 Count leading zeros (like JFFO instrucktion). Refer to the
MACRD Assembler Reference Manual for information about the
"L operand; which this code implements.

16 Remainder .

17 Magnitude.

20 Maximum.

21 Minimum.

22 Comparison. Returns 0 if the two operands are different;
=1 if they are egual.

23 Used to resolve the links im a chaim. Refer to Block Type
1z.

24 Symbol definition test. Feturns 0 if the operand (a
Radix-50 symbol) is unknown; 1 if it is known but
undefined; =1 if it is known and defined.

25 Skip W words of Polish.

26 Skip H words of Polish on some condition.

27 Feturn contents of location N.

PSECT Index Codes:
400nnn PSECT index mnn, where nnn is a 3=digit octal integer.

For an example of a Type 11 block, the MACRD statements

EXTERN B
Acs EXP <A®B+A>

Generate (assuming that A has a relocatable value of zero):

j----l--l-l--"I-ll-ll-l'-.l----l-l--l-.l-ll-l--l-ll-ll-l--I

I 11 I & |
PP T T Ty T R . |
= T TR T s muitiply) |
|70 thaltword Operand Hext) | 0 (Relocatable) |
3 (iSiinocd Badle-50 Hezt] | st BalZ of Redlz-tt 3 |
| " 2md Balf of Badix-30 B 1 0 (Halfword Operand Next) |
1" """0 iBalocatable) 23 (Rh Chained Fixup Next) |

| 0 (Chain S5tarts at 0") | i om wm |

The first word contaims the block type (11} and the short coumt (6).
The second word is the relocation word; it shows that the following
halfwords are to be relocated: right half of second following word,
left half of fifth following word, left half of sixth following word.

A=19 March 1983

REL BLOCES

The next word shows that the two operations to be performed are
addition and multiplication; because this is in Polish prefix format,
the multiplication is to be performed on the first two operands first,
then addition is performed on the product and the third operand,

The next two halfwords define the first operand. The first halfword
iz a data type code 0, showing that the operand is a single halfword;
the next halfword is the operand (relocatable 0).

The next three halfwords define the second operand. The first of
these halfwords contains a data type code 2, showing that the operand
is two halfwords containing a Radix-50 symbol with code &0. The next
two halfwords give the symbol (E).

The next two halfwords defime the third operand. The first of these
halfwords <contains a data type code 0, showing that the operand is a

single halfwerd; the next halfword gives the wvalue of the operand
[relocatable 0).

The next two halfwords give the store operator for the block. The
first of these halfwords contains the chained fixup store operator
code =3, showing that a fullword chained fixup is reguired; the next
halfword contains the operand (relocatable 0), showing that the chain
starts at relocatable zero.

The last halfword is irrelevant, and should be zeroc. If it is not,
LINKE issues the LHEJPFE error message.

A=20

REL BLOCKS

Block Type 12 (Chain)

I--l--l-------.------l----l.-l-------l--l-.l----l--l----lr

| 12 | Shart Count I

I Chain Humber |
| == e |
| Chain Address | Store Address |

I SIS IS ST ST TSI I

Block Type 12 chains together data structures from separately compiled
modules. {The MACRD pseudo-ops .LINE and .LNWEEND genecate Type 12
blocks.) Block Type 12 allows linked 1lists that have enkries in
separately compiled modules to be constructed so that new entries canm
bedaﬂd&d to one module without editing or recompiling any other
module.

The data words in a Type 12 block are paired. The first word of each
pair contains a chain number between 1 and 100 {octal). (The chain
number 18 negative if the pair was generated by a .LNKEND pseudo-op.)
The second word containe a store address in the right half, and a
chain address in the left half. The store address points to the
location where LINE will place the chain address of the last entry
encountered for the current chain. The first entey in a chain has a
zero in the word pointed to by the store address.

A MACRO statement of the form:
LINKE chain-number ,store-address,chain-adderess

gqenerates a word pair in a Type 12 block as shown above. A MACRD
statement of the form:

LINKE chain-number ,store-address

genecrates a word pair in a Type 12 bleck with a @ for the chain
address field in the REL block. A MACRO statement of the form:

- LHEKEND chain-number , store-address

genecates a word pair in a Type 12 Block with a © for the chain
address and a negative chain number.

As LIME processes a load, it performs a separate chaining for each
different chain number found; thus a word pair in a Type 12 block is
related to all other word pairs having the same chain number (even in
other loaded modules). Type 12 pairs having diffecent chain numbers
{even in the same module), are not related.

REL BLOCES

To show how the chains are formed, we will take some pairs from
different programs having the same chain number (1 in the example).
The following four programs containm LINE or LMEEND pseudo-ops for .

the chain numbered 1. After esch program, the word pair generated in
the Type 12 block appears.

NOTE

When LINKE stores an address resulting
from a Type 12 REL Block, only the right
half of the receiving location is
written. You can safely store another
value im the left half; it will not be
overwritten.

A-21

REL BLOCES

Example

TITLE WOOD

TADS: BLOCE 1

(LNEEND 1,TMO0

sD

I T T T T T
L} =1 I
[o o o o o o o e o o e e o o |

|] | Value of TLGO |

TITLE Wbl

Tagl: BLOCE 1

'
JLINE 1.,TRIL
'
END
e T TR T T PP R T T T |
1] |

| a Walue of TAG] |

TITLE mOD2

LLINE 1,Tag?

ERD

] O O OO O O OO O OO |
I 1 I
1 o o o O O

| o I Valus af TAGD

TITLE mOO3

TAGl: BLOCE 1

TAGII: BLOCK]

JLINE 1, THRGI] . TAGY

EMD

O |
| 1 |
] O D e e e |

| valus of TAGY Walue of TRGIY |
|esssmssa s RSN EE SN EEEEA R R |

REL BLOCEKS

Suppose we load MODO first. The .LNEEND statement for MODD generates
a negative chain number. LINKE sees the npegative chain number (=1) and
pecognizes this as the result of 3 .LHEEND statement for chein number
1. LINE remembers the store address (value of TAGO) as the base of
the chain.

Hext we load MODL. The .LINK statement for MOD1 does not use the
third argument, so the chain address is 0. LINE sees that this is the
first entry for chain number 1. Because it is the first entry, LIKK
places a 0 in the store address [(value of TAGL). LINK then remembers
the value of TAGl for use in the next chain entrcy. (If the chain
address is 0, as it is in MODl, LINK remembers the store address; if
the chain address iz nonzero, LINK remembers the chain address.)

Hext we load MOD3. The .LIMEK statement in MOD3I uses a third argument
(TAG3) ;, therefore, the wvalue of TAGY is used as the chain address.
LINK places its remembered address (value of TAGL) in the store
address (value aof TAGIY). Because the chaln address (value of TAGI)
i85 nonzero,; LINK remembers it for the next entry.

Finally we load MOD2Z. Like MOD1, the .LIHE statememt for MODZ does
net take a third argument, and thus the chain address is 0. LIKHK
places the remembered address (wvalue of TAGI) in the sStore address

{value of TAGZ). Becsuse the chain address is 0, LINK remembers the
store address (value of TAGZ).

At the end of loading, LIMNKE places the last resembered address (value
of TAGZ) at the address (value of TAGO) given by the .LHKEND statement
in MODO.

The results of the chaining can be seen in the Ffollowing diagram of
the loaded core image:

S N T G S - e e e v

e

G O S R e s

T - . - =

Hote that the order of loading for modules with .LINE statements is
critical. (A module containing a .LMEEHD statement cam be loaded any
time; its treatment iz not sffected by the order of leading.)

REL BLOCEKS

For example, if we load the four programs in the order MODZ, MOD3I,
HODOD, MODYl, we get a different resulting core image:

MODGO MOD1
| | | [
| | | |
TAGD : |VYalue of TAGL | TAGl:|Value of TAGI |
	1	
MOD3 MOD2		
TAG3:		TaG2:
	1	
TAG33:	value of TAGZ	

A=-25

REL BLOCES

Block Type 14 (Index)

I-'--l'--l-l--l--l--l--l--l-ll-ll-l--l-ll-l-ll-------l----1

I 14 | 177 1
[mmmm e ss s m s - ————— |
| Sub=Block |
| |
i |
| === s . -——— |
| |
| Sub=Block |
| I
T I
| =1 | Ptr To KHxt Rel Blk Typ 14 |

Each sub-block iz of the form:

r---l--l--'.'-.'.....---i--"--.--‘----.i-------‘--.--...‘.. I

| Index=Version WNumber I Count of Symbols |

| Pointer to Module Contaiming Entry Symbols |

Block Type 14 contains a list of all entry poinks in & librarcy
produced by MAEKLIB. The block contains 177 (octal) data words (with
no relocation words); if the index reguires more entries, additional
Type 14 blocks are uszed.

The Type 14 block consists of & header word, & number of sub-blocks,
and & trailer word containing the disk block address of the next Type
14 block, if any. Each disk block is 128 words.

Each sub-block is like a Type 4 block, with three differences:

1. The sub-block has no relocation words.

2. The last word of the sub-block points to the module that
contains the entery points listed in the sub-block. The right
half of the pointer has the disk block number of the msodule
within the Ffile; the left half has the number of words (in
that block) that precede the module. If there 15 no next
block, then the word after the last sub-block is 0.

1. The lndex-version number is used so that old blocks can still
be loaded, even if the format changes in the future.

=
1

26

REL BLOCES

Block Type 15 (ALGOL)

| 1% | Short Count |

[Relocation Word |

I S ——— —————— A PR PR |

I Load Address | Length I
e e e e e e e e e I
[Chalin Address | Offget |
e I
| == s e s s s s s s s s sssssss s s s s mas |
| Chain Address Offset 1

Block Type 15 is used to build the special ALGOL OWN block.

The first data word contains the length of the module's OWN block in
the right half, and the desired load address for the curcrent OWH block
in the left half. Each following word contains an offset for the
start of the OWN block in the right half, and the address of a
standard righthalf chain of reguests for that word of the OWN block inm
the left half.

When LINE sees a REL Block Type 15, it allocates a block of the
regquested size at the reguested addeess. The length of the block is
then placed in the left half of the first word, and the address of the
last OWN block seen is placed in the right half. If this is the first
OWH block seen, 0 is stored in the right half of the first word.

The remaining dats words are then processed by adding the address of
the first word of the OWH block to ecach offset, and then storing the
resulting value in all the locations chained together, starting with
the chain address.

At the end of loading, LINE checks to see (f the symbol I0WN is
undefined., If it is undefined, then it is defined to be the address
of the last OWM block seen. Im addition, if LINK is creating an ALGOL
symbol file, the file specification of the symbol file is stored in
the first OWN block loaded. This file specification must be sStandard
TOPS-10 format and can include {in order): device, file name, file
type, and project-programmer number.

A=27

REL BLOCES

Block Type 16 [Reguest Load)

I I I IS TS . IIIFII--I-I--I-II
| 16 | Shert Count I
| mmmmmm———e— s —m— s e s - -
I Felocation Word (Zero) |

| SIXBIT Device 1

I-‘.-‘.'..l."’l!’l’ll.:!-ll- !!:n-:::::::-l!-l-ltﬂll-l-l!]

Block Type 16 contains a list of files to be loaded. The dakta words
are arranged in triplets; each triplet contains information for one
file: file mame, project-programmer number, and device. The file
type 1is assumed to be REL, umless you have specified otherwise with
SDEFAULT.

LINKE saves the specifications for the files to be loaded, discarding
duplicates. At the end of loading, LINE loads all specified files
immediately before beginning library searches.

The MACRD pseudo-op .REQUIRE generates a Type 16 REL Block.

A=-28

REL BLOCKS

Block Type 17 (Reguest Librarcy)

1--:-:--:-.:-:--:--:’-------i--iilillillill EEEEEEEE F-!-I-lr

1 17 | Short Count I

| Relocation Word (Zero) [

| Project=Frogrammer Humber |

| SIXBIT Device |

| SI1XBIT Device |

Block Type 17 is identical to Block Type 16 except that the specified
files are loaded in library search mode. The specified files are

gearched after loadinmg files given im Type 16 blocks, but before
gsearching system or user libraries.

The MACRD pseudo=-op .REQUEST generates a Type 17 REL Block.

REL BLOCES

Block Type 20 (Common)

I ---iiiii-.--:--:-i:iiiiiiIlillIﬂIIIIIIIII------II-I--I---Ir

| 20 | Short Count [

|———————————————————————————l ——————————————————————————— I
| Badix=5%0 Symbol I
= ———————— —————————————— I
| Length of Labeled Common Block I

I S EEEAST TS II'II'II‘III.IIiIIl--F----.----------r

Block Type 20 allocates labeled COMMOM areas. The label for unlabeled
COMMON iz ".COMM.". If a Block Type 20 pppears in a REL file, it must
appear before any other block that causes code to be loaded or storage
to be allocated inm the core image.

The data words are arranged in paies. The figpst word of each pairc
contains a COMMON name in Radix-50 format (the four-bit code field

must contaim &60). The second contains the lemgth of the area to be
allocated.

For each COMMON entry found, LINKE first determines whether the COMMON
area is already allocated. If not, LINE allocates it. If the area
has been allocated, the allocated area must be at least as large as
the current regquested allocation.

COMMON blocks can be referenced from other block types as standard
globally defined symbols. However, a COMMON block must be initially
allocated by a REL Block Type 20; by a REL Block Type 6 (for blank
COMMON) , or by the /COMMON switch to LINE. Any attempt to imitially
define a COMMON block with a standard global symbol definition causes
the LHKSHC error when the redefining Block Type 20 is later seen.

A=30

REL BLOCES

Block Type 21 (Sparse Data)

I -------'--l----l'---.--'--l-.l----.--l-.--.l----l-.l----l-1

| 21 | Short Count |

| Relocation Word (Zero) |

i
]
i
1
]
]
]
i
]
]
i
]
]
]
]
]
[]
(]
i
[]
]
]
[]
]
[]
[]
]
[]
[]
]
[]
[]
]
[]
[]
]
i
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

|
| Sub-Block
I
|

Each sub=block is of the form:

]l-l.ll-II-l--l-ll-ll-ll-ll-l--l--l-l--l--l-ll-l-.l----lI

| Long Count | Address I

| Data Word 1

Il--’---’-- S EEEEE S EEEEEEEEEES ---.--.-----.-IE-I-II-IIII-II1

Block Type 21 contains dats to be loaded sparsely im a large area.
The first word of each sub-block contains the lomg count for the
sub=block in the left half, and the address for loading the data words
in the right half.

If the first four bits of the first data word of each sub-block are
1100 ({binary) then the word is sssumed to be a Radix=50 symbol of type
60; in this caszse the left half of the second word is the Sub-block
count, and the right half plus the value of the symbol is the load
address.

REL BLOCEKS

Block Type 22 (PSECT Origin)

I EZEENENEENEE S EEEEE EE ... -".-F---I
| 22 [Short Count I
[o = |
| Relocation Word]

B -1
I (SIXBIT PSECT Mame) or (PSECT Index) |

| PSECT Origin |

Block Type 22 contains the PSECT origin (base address).

Block Type 22 tells LINE to set the value of the relocation counter to
the walue of the counter associated with the given PSECT name. All
following REL blocks are relocated with respect to this PSECT umtil
the next Block Type 22 or 23 is found.

When data or code is being loaded imko this PSECT, all relocatable
addresses are relocated for the PSECT coumter.

MACRO genecrates a Block Type 22 for each .PS5ECT and .ENDPS pseudo-op
it Pprocesses. These Type 22 blocks are interleaved with the other
bBlocks to indicate PSECT changes. A& Type 22 block iz also generated

at the beginning of each symbol table to show which PSECT the table
belongs in.

LINK Version 5 A-32 April 1982

REL BLOCES

Block Type 23 (PSECT End Block)

| 213 | Short Count |
| PSECT Index

I FSECT Break I

I'-.'--.-.---"--l--l--l--l-ll-'--l--l----'tﬂl!-l-- T T T T T T 0|

Block Type 23 contains information about a PSECT.

The PSECT index uniguely identifies the PSECT withinm the module being
loaded. The Type 24 block assigns the index.

The PSECT break gives the length of the PSECT. This break is relative
to the zero address of the current module, not to the PSECT origin.

13 April 1942

=
1

LINE Yersion 5

REL BLOCES

Block Type 24 (PSECT Header Block)

| 24 | Count |

I PSECT Origin |

|z S SEESEESSEEESEEEEE |

Block Type 24 contains information concerning & specified PSECT. The
first word contains the block type number and the number of words
associated with the block. The second word contains the relocation
information. The third word contains the PSECT name in SIXBIT. The
fourth word is the PSECT origin specified for this module.

Bit Interpretation HACRD PSECT Eeyword
11 FSECT is all within section
one. This is the default.
12 PFSECT is in a nonzero
section.
Bl3 PSECT iz page-aligned. PALIGHED
Bl4 Concatenate parts of COMCATEMATE
PESECTs seen in distinct modules.
BlS Overlay parts of PSECTs OVERLAY
seen in distinet modules.
Blé Read-only ROMLY
B17 Read and write RWRITE

LINE must find a Type 24 block for a FS5ECT before it finds the index
for that P5ECT. (MACRD generates a complete set of Type 24 blocks for
all PSECTS in a module before generating Type 2 (Symbol Table) Blocks
and Type 11 (POLISH) Blocks.)

LINK Version 5 A-34 April 15982

REL BLOCES

Block Type 37 (COBOL Symbols)

| 17 I Short Count |

| Data Word |

I--------.----.-l-----.-l.-l--l--l--.-l.-l-l--l--l--.-l-1

Block Type 37 contains & debugging symbol table for COBDDT, the COBOL
debugging program. If local symbols are being loaded, the table is
loaded.

If a REL file contains a Block Type 37, it must appear after all other
blocks that cause code to be loaded or storage to be allocated in the
core image.

This block iz in the same format as the Type 1 REL Block.

A=15

REL BLOCKS

Block Type 100 ([.ASSIGN)

li‘i.‘ilill--i'---'--.'--l SRS III-IIIII--‘--I-----.-I--I--I

| 100 | Shart Count |
T Relocation Word |
Coae 1T Radix-50 Symbol 1 R
\Coge 1T Radix-50 Symbol 2 |
T offset :

1l-l!-l-ll-l.-l-l.-l--ll-l-ll-l-IIIII-IIII--I--I-I--I-.-I

Block Type 100 defines Symbol 1 (in the diagram above) as a new global
symbol with the current wvalue of Symbol 2, and then increases the
value of Symbol 2 by the wvalue of the given offset.

HOTE

Symbol 2 must be completely defined when
the Block Type 100 is found.

A-36

REL BLOCES

Block Type 776 (Symbol File)

I 776 I Long Count I

| Data Word |

Block Type 776 must begin in the first word of the file, if it
at all. This block type shows that the file is a Radix=-5%0

file.

The data words form a Radix-50 symbol table for DDT in the same

as the
FDEBDG,

table loaded for the switches JLOCALS/SYMSEG or the

A-37

e Tedad 1]
symbol

format
switch

REL BLOCES

Block Type 777 (Universal File)

| T | Long Count |

| === s s s s s s s e e e e e ———————— |
| Data Word |

r.--i‘-----r--'-- SIS NS SSSSSESSESEEEES IIIIII-----IIII'I

Block Type 777 is included in a wniversal (UNV) file that is produced
by MACED &0 that LINE will recognize when a UNV file is being loaded
incoercrectly. When a Block Type 777 is found, LIME produces a ?LHEURS
error.

A-38 April 1982

REL BLOCES

Block Type 1000 (Ignored)

| 1000 | Leng Count |

| Data Word |

Block Type 1000 is ignored by LIMK.

REL BLOCEKS

Block Type 1001 (Entry)

I R d EE SRR RSP RS SRIENS RN ER PR LR -ll--1

| 1001 [Count

e e

| Symbol

I'I-l--'---'!-l--t--’--l--l--l-'t--t-- EEEEEEEEENEESNNERN --i‘-i"

Block type 1001 is used to declare symbolic entry points.
contains one SIXBIT symbol.

LINK Version 5 A=40

Each word

April 1982

REL BLOCES

Block Type 1002 (Long Entry)

1..-..--.-.'..-...'-..-F---.--..--'-------l.-l--l-l--l-'l-ll1

| 1002 I Count

I Eymbol Hame

Block type 1002 is used to declare a2 symbolic entey point with a long
name in S5IXBIT. The count reflects the symbol length in words.

LINKE Version % A-41 April 1982

REL BLOCES

Block Type 1003 (Long Title)

I il i iR Rl Rl Ry PSRt R RSP PR G RY YD PP I
| 1003 | Count |
[|
| 640000 | a I
| o -
| Program Title |

et -
| = e e e e |
| 042000 | 0 |
I LR Comnller Mmoo |
Fa—— ore S0 g
— g, - - . :

LIMKE Version 5 A-42 April 1982

REL BLOCES

| UFD |
[o e e e |
| 040200 | 0 |
| = I
| File Mame |
e e —— |
[File Ext I |
R et [
| 040100 I 0 I
[|
| SFDI I
[e =]
| SFD2 |
R et T I
SR N —— -1
| o40040 I 1

| Source Version Number |
[o e e e e e e e e e e i e I
| Date I Time |

I EEEEEEE S S S S SIS IS EE S EEEEEE !-l!-l--l-ll-l-'l-ll'

Block type 1003 is used to declare long Title symbols in SIXBIT and to
furnish other information about the source module. This Block Type is
printed inm the map file that is produced by LINKE.

For TOP5-20, the UFD and S5FD words are 0, and the file extension 18
replaced by the file type.

HOTE

For the compiler code and the CPU code,
refer to the explanation of Block Type
&6, where these codes are listed.

LINK Version 5 A=41 April 1%82

REL BLOCES

Block Type 1004 (Byte Initialization)

| 1004 | Short Count I

P ——

| Belocation Word |

| Byte Pointer |
| == s s s s s s s s s s s e - |
| Byte String }
[et et e e et et e e e - 2

Block Type 1004 iz wused to mowve a character string into static
storage.

The byte count is the number of bytes in the string. The byte pointer
is relocated and used to initialize & string im the user's program.

A second form of Type 1004 block is formatted as follows:

| T I T LT LTttt rrrrrrryrrrrrrreryl

| 1004 | Short Count |
. Relocation Word |
e Glebsl Symbel F
T - Byte Count 'l
A A byte Polnter :

| I
| Byte String |

In this form, the global symbol (in BRadix-50 format) Iis used to
relocate the byte pointer, which, consequently, becomes an offset to
the static storage. The symbol must be defined when this REL block is
encountered.

LINE Version 5 h—-44 April 1982

REL BLOCES

Bleck Types 1010 = 1037 (Code Blocks)

Block types 1010 through 1037 are similar in functien toe blocks of
Type 1. They contain code and data to be loaded. These blocks also
contain relocation bytes that permit inclusion of PSECT indexes local
to the module. For PSECTed programs with many inter=-PSECT references
this permits a substantial decrease in the size of the REL files. The
number of PSECTs that can be encoded in this manmner is limited by the
size of the relocation byte. A set of parallel code blocks differing
only in the size of the relocation byte permits the compiler or
assembler to select the most space efficient representation according
to the number of PSECTs referenced in a given load module.

This set of blocks is divided by the type of relocation:

Right Relocation Block types 1010 - 1017
Left/Right Relocation Block types 1020 - 1027
Thirty=bit Belocation Block types 1030 - 1037

LINKE Version 5 A=45 April 1982

REL BLOCES

Blocks 1010 - 1017 ([Right Relocation)

| 1010 I M I

[Data (i-1}) |

| Block Types 1010 - 1017 are identical in function. They differ only
in the size and number of relocation bytes. Each relocation byte
applies to the right half of the corresponding data word.

H is the length of the REL block, including all
wordas in the block except the Header word.

bl,b2...bi are the relocation bytes.

Each relocation byte contains a8 PSECT index
number. A zero bybte means no relocation
[absolute daka). All PSECT index numbers
must reference predefined PSECTS.

Size I-value Block Type

2 18 1010
i 12 1011
&] 1012
9 4 1013
8 2 1014

A size of 2 allows 3 PSECTs; a size of 13
allows 7 (2+*=*3-1) PSECTs, etc.

Beginning Addr is the address where the block of code is to
be loaded. This address is relocated with
respect to the PSECT im “"b1l". "&B1" also
defines the curcent PSECT. It is not
necessary to declare the current PSECT with a
block of Type 22.

Datal...Datafi=-1) are the words to be loaded. The right halves
of these words are relocated with respect to
the various PSECTs that are specified by the
corresponding relocation bytes, b2.b3,...bi.

LINE Version 5 b= 46 April 1982

REL BLOCES

Block Types 1020-1027 ([Left/Right Relocation Blocks)

| 1020 | N |

I------------------------—--; --------------------------- |
| Data (i=1} |

1..--.--..-'.'-..--..--.---.---.---.---.---.---.--.--.------------- I

Block Types 1020 - 1027 are identical inm function. They differ only
in the s&ize and number of relocation bytes. Each pair of bytes
applies to the left and right halves, respectively, of the
corresponding data word.

H is the length of the REL block, including all
words except the Header word.

L1,Rl are the relocation byte pairs fer the left
and right halves respectively.

Size I-Value Block Type

2 9 1020

3 6 1021

[3 1022

] 2 1023
{Block Types 1024-1027 are reserved]
Polish blocks must be used to do lefe
relocation if there are more than (2%%9)=1
{decimal 511) PSECTs local to the module.

Beginning Adde iz the address of the block of code to be
loaded. This address is relocated with
respect to the PSECT im “R1". "R1" also
defines the curremt PSECT. "L1" must be
ZRE0.

Datal,..Data{i-1) is the block of code to be loaded, whose left
and right halves are relocated with respect
to the various PSECTs as specified by the
corresponding byte pairs. The L2 index
relocates the left half of data word 1 and R2
relocates the right half of date word 1.
Hote that these blocks ceontain 2 bytes for

cach data word as compared to one byte for

Block Types 1010 = 1017.

LINK Version 5 A-47 April

1282

REL BLOCES

Block Types 1030 - 1037 (Thirty-bit Relocation Blocks)

I 103y] I

I-----------u——————————————l ——————————————————————————— |
| Data (i-1) I

]l-l-ll-l.----.l-ll--l-l-----l--l--l-l--l--.-l--l--.-l--lr

Block Types 1030 = 1037 are identical in function. They differ only
in the size and number of relocation bytes. Each relocation byte

applies to the entire 30-bit address field of the corresponding data
word.

103x iz the Block Type number
H is the length of the REL block, including all
words in the block except the Header word.
bl:b2..bi are the relocation bytes.
Each relocation byte contains a PSECT index
number. A zero byte means npno relocation
{absolute data). All PSECT index numbers
must reference predefined PSECTS.
Size I-Value Block Type Maximum No. of
PSECTs
2 18 1030 3
K| 12 1031 7
] £ 1032 63
9 4 1033 511
18 2 1034 More than 511

iBlock Types 1035% = 1037 are resepved)

Beginning Addr is the address where the block of code iz to
be loaded. This address is relocated with
respect to the PS5ECT im bl. Bl also defines
the current PSECT. It iz not necessary to
declare the current PSECT with a bhlock of
Type Z1.

Datal...Data(i=1} are the words to be loaded. The 3I0=bit
address field of these words is relocated
with respect to the various PSECTs that are

tpecified by the corresponding relocation
bytes, b2,b3,...bi.

LINE Varsion 5 A-48 April 1982

REL BLOCES

Block Type 1042 (Request Load for SFDs)

I 1042 | Short Count |

Block Type 1042 contains a list of files to be loaded. It is similar
to blocks of Type 16; but it supplies TOPS-10 sub-file directories for
the files being reguested. The first three data words (device, file
name, and extension) are reguired. The right half of the third word
(directory count) speciflies the number of directory levels that are
included. For example, the directory [27,5434,5FD1,5FD2) would have a
directory count of 3.

LINE saves the specifications for the files to be loaded, discarding

duplicates. LINE loads all specified files at the end of loading, and
immediately before beginning library searches.

A=49

REL BLOCES

Block Type 1043 (Reguest Library for SFDs)

| 1043 I Short Count 1

Block Type 1043 specifies the files to be searched as libraries. It
is similar to Type 17 Blocks, except that it provides TOPS-10 sub-file
directories. The first three data words (device, file name, and
extension) are reguired. The right half of the third word (directory
count) specifies the number of directory levels that are included.

For example, the directory [27,5434,5FD1,5FD2] would have a directory
count of 3.

The specified files are searched after reguested files are loaded, but
before user and system libraries are searched.

A=50

REL BLOCES

Block Type 1044 (ALGOL Symbols)

I 1044 I Long Count I

| Data Word |

Block Type 1044 contains a debugging symbol tabkle for ALGDDT, the
ALGOL debugging program.

If an ALGOL maim program has been loaded, or if you have used the
SBYFILE:ALGOL switch, LINE writes the data words into a S5YM file. Inm
addition, if any Type 15 [(ALGOL OWH) REL blocks have been seen, LINK
stores the Ffile specification of the file into the first OWN block
loaded.

HOTE

If you have specified the /HOSYMBOLS
switch, or 1f you have specified the
JEYFILE switch with an argument other
than ALGOL, then LINK ifgnores any Type
1044 blocks found.

A=51

REL BLOCES

Block Type 1045 (Writable Links)

r.---.-l----l--------l-----l-l'--l--l-l--l--l----l-.l---- I

| 1045 | Counk |

e e e |
I Symbol |

Block type 1045 declares as writable either the 1link containing the
current module or the links containing the definitions of the
specified symbols or both. This block type must follow any common
block declarations (Types 20 or &) in a module.

The flag word indicates which links are writable. If bit one I3 set
then the link containing the current module and the links containing
the definitions of the specified symbols are writable. If bit one of
the flag word is not set then the link containing the current module
iz not writable, but the links containing the specified symbols are
writable. All vnused flag bits are reserved and should be zero.

Any symbols specified in a block of Type 1045 must be defined im the
path of links leading from the root link to the current link. A
module cannot declare a parallel or inferior link to be writable.

If the symbol name contains six or fewer characters it is represented
in a single word, left justified, with the following format:

I SIXBIT Symbol Hame |

LINE version 5 h=52 April 1982

REL BLOCES

If the symbol name contains more than six characters it is represented
in the following format:

Bits
0 5 & 29 30 15

I 1] I Feserved (0} | H |

I Word (H=1) of SIXBIT S5ymbol Hame |

The first six bits of a long symbol are always 0. This distinguishes
& long symbol name from a single word symbol name. N is the length of
the symbol name including the header word. The remaining words
contain the symboel name in SIXBIT, six characters to a word, left
justified.

LINKE Version 5 A=53 April 1982

REL BLOCES

Block Type 1050 (PSECT Hame Block)

]--------.-------.--.------.--------l--------------------I

| 1050 I Count |

Block Type 1050 creates a PSECT with the given name, if none currently
exists. It alsoc assigns & unigue index number to the PSECT. This
index i& binding only inm the curremt module.

At least one block type 1050 is reguired for each BPSECT being loaded,
and this block must be loaded prior to any other blocks that reference
its PSECT (that is, use the unigue index number).

Field Function

Index containe the 18-bit PSECT index number. It is=s
unigue throughout the module.

SIXBIT PSECT the name of the BS5ECT being defined (in SIXBIT).
Hame

Additional contains additional characters of the PSECT name.
Name Word

LINKE Version 5 A=54 April 1982

REL BLOCES

Block Type 1051 (PSECT Attribute)

I---------------------------------------.-------.-------1

| 10581 I Count |

| Origin I

Blocks Type 1051 assigns attributes to a PSECT and specifies the
PSECT's origin address. The attributes that can be assigned are:

Bit Interpretation HACED .PSECT Eeyword
11 FPSECT is all within section
one. This is the default.
12 PSECT ig all im & nonzero
section.
13 PSECT is page-aligned. PALIGHED
14 Concatenate parts of CONCATENATE
PSECTs seen in distinct
modules.
15 Overlay parts of PSECTs OVERLAY
seen in distinet modules.
16 Read-only RONLY
17 Read and write RWRITE

LINE vVersion 5 A=55 April 1982

REL BLOCES

Block Type 1052 (PSECT End)

I 1052 | H I

|mmmm e m e —————— |
|] | PSECT Index Mumber |
et e e e T I
| FSECT Break |

Block Type 1052 allocates additional space for a given PSECT. This
space iz located between the last address in the PSECT containing data
and the address given by the PS5ECT break. A block of Type 1052 can
contain more than one pair of PSECT indexes and breaks.

A module must contaim a block of Type 1050 (FSECT Mame Block) with the
given PSECT index before a block of Type 1052 is generated. If a
given PSECT has more than one block 1052 in a single module, the block
with the largest break address is used.

LIMNE YVersion 5 A-5§ April 1982

REL BLOCES

Block Type 1066 (Trace Block Data)

| los0 I Long Count |

| Active Code | Last Changer |
[o e e |
I Creator Code I 15-Bit Date Created |
[I
| Installer Code | 15=-Bit Date Installed |
| S S S S SSSSSSssssssssssssss= |
| Reserved |
[|
I Edit Count I FCO Group Count I
| = e e S S S S S S S S S S S S S S S——————————— —— |
| I
, s
Associated Edit Hames And Codes
£/ Y
I |
| === s s s s s s s s s s s s s s s ssss s ssss s ss s s — == 1
I |
A} s
Frogram Change Order Groups
/! %,
I I
I |

Block Type 1060 contains data wused by the MAELIB program. LINK
ignores this block type.

A=D7

REL BLOCES

Block Type 1070 (Long Symbol Hames)

I 1070 I Block Length |

This block defines either a long global symbol or a long lecal symbol.
A aymbol defined with this block:

@ is output to the DODT symbol table.

® 15 output to LINKE MAP if requested.

has i1ts wvalue relocated as specified.
has global reguests resclved.

The Long Symbol Mame Block is divided into two sections, the basic and
the extension seckions.

The basic section consists of three words. The first word contains
the flags that provide information about the type of symbol, the
length of the symbol name, and the relocation type. The second word
contains the value. The third word containg the symbol name. If the
name or the walue cannot fit im a single word, the block containg an
extension section that consists of as many words as are necessary to
accommodate the symbol name and the value. The length of the symbol
name 15 Stored in the flag word and determines how many words are
allecated for the long symbol name in the extension section. In the
case of a short symbol name only the basic section is uwsed.

The next entry or entries repeat the block, starting at the Flag Word
(word 1).

LINKE Version S A=Lg April 1982

Field
Header Word
Rel=-block Type
Block Length
Flag Werd (Word 1)

Code

LIMKE Version 5

Bits

0=17
18-35

REL BLOCES

1070

Description

Humber of words used in this block

A nine-bit code field:

bit 0 Must Be Zero

ooo
100

200

100

A-59

Program name

Local symbol definitions

101 Extended value

110 Suppressed to DDT

120 HMAP only

Global symbols

defined by one word

201 Completely defined by
extended value

202 Mot defined

203 Right fixup

204 Lefr Fixup

205 Right and left fixzups

206 30=bit Fixup

207 PFullword fixup

210-217
Suppress to DDT

220=227
MAF only

24x Global symbol regquest for
chain fixzup

240 Mo fixup

241 ERight half fizup

242 Left half fixup

243 (Mot defined)

244 30-bit fixup

245 Fullword fixup

25 Global reguest for
additive fixups (the
value of x has the same
meaning as in 24x)

26x Global regquest for symbol
fixups (the wvalue of x
has the same meaning as
in 24x)

completely

Block names

HOTE
All symbols that
reguire a fixup for
their definition must
have the fixup block
immediately following
the entry.

April 1982

Field
(Unused field)

H=-=Name length

R==Relocation Type

(Unused field)

PSECT numbers (optional)

Value Word (word 2}

Hame (word 3)

hdditional name field

Additional value field

LIMK Version 5

Biks
9-10

11-17

18=21

22-35

REL BLOCES

Description
Hust Be Iero

field of
g0 that the

If not zero, extended name
length n words is used,
name occupies M+l words.

d=bit relocation type field.

bit 1B=0 relocate with respect to the
current PSECT. HNo PSECT numbers are
needed.
bBit l8=] relocate with respect to the
PSECT specified in the next word.

R=1) Absolute

R=1 Right half

R=2 Left half

R=3 Both halves

R=4 i0=-bit

R=5 Ful lword

Re=f Indirect
Hot used
Exists only if bit 18=1 in the FPFlag

word. Contains Left and Right PESECT
numbers. Bit 18 and bit 0 of this
word are zZeros.,

Contains the symbol value, it may be

relocated as specified by the
relocation type and the PSECT numbers
provided.

Contalins the symbol name in SIXBIT.

Optional. It exists only if W > 0.

It contains the additional characters
when a long symbol name is used.

Optional. It exist only if the code
equals xxl. The first word contains
the length of the extended Field.

MOTES

1. Omnly one fixup by a
E: lﬂ'; 11; lﬂTU, ar 1072
Block is allowed for a
given fleld. (There can
be separate fizups for
the left and right halwves
of the same ward.)

Type

2: Fixups are not
necessarily performed in
the order LIME finds
them.
A=&0 April 1%82

REL BLOCES

Block Type 1072 (Long Polish Block)

| 1072 | Block Length |

LR L B P B B R P Rl

Long Polish Blocks of type 1072 define Polish fixups for operations on
relocatable long external symbols. This type block is interpreted as
a string of 1B8-bit operators and operands. The block iz im Polish
prefix format, with the stored operator at the end of the bloeck. Each
halfword can contain one of he following:

A halfword code in which the first 9 bits contain the data
length (when applicable)} and the second 9 bits contain the
basic code telling LINKE how toe interpret the data that
follows. The largest that can be encoded is 3177.

A halfword data or a part of a larger data packet to be
interpreted by LINK as indicated by the code that immediately
precedes it.

¢ A PSECT index of the format 400000+M. The PSECT index field
of a long Polish block is handled by LINE the same way that a

Polish block type 11 is handled. The first PSECT index that
iz found sets up the current relocation counter

« A Polish operator.

NOTE

Operands are performed in the order in
which they are encountered.

CODE DEFIMITIONS

Category Code Desceription
Operand EEEYYY next "xxx" halfwords contain data of
E¥pe "¥yy"
afilulilufi] halfword - absolute
LR Ll fullword - absolute
aooonl halfword = relocatable
ooloo0l fullword - relocatable
0ooolo fullword symbol name in Radix-350
wex0l0 xxx halfwords of symbol name in SIXBIT

[xxx <= 3ITT)

LINK Version 5 A-6] April 1982

Category Code

Operator
oooloo
goolal
gooloz2
aoola3
ooolo04
000105
oo0lo6
goolav
000110
000111
oopl12
000113
000114
000115
0001lé
000117
000120
000121
000122=00177

Store Operator
KEXTIT-%xx770

xxxTTT
xxxTTE
XXATTS
XXKTT4
XxATTH

000767=000T60

001767-001760

EXXTET-%xxT50

ZxxT5T
xxxT56
XEXTEE
xExT54
®xxxT4T=-xxx700

PSECT index 4000000+

LINE Version 5

REL BLOCES

Description

Add

Subtract

Hultiply

Diwvide

Logical AMND

Logical OR

Logical shift

Loegical XOR

One's complement (not)
Two's complement (negative)
Count leading zeros
Remainder

Magnitude

Maximum

Minimum

Egual relation

link

Defined

Regerved

Chained fixzup

Mext xxx+]l halfwords contain starct
addreas of ar [(xxx+]l halfwords)

Right half chain fixup

Left half chain fizup

10=bit chain fixup

Fullword chain fixup

Indirect fixup

Chained fizup with absolute address.
Mext halfword contains an absolute
address.

Chained fixup with absolute fullword
address. Next two halfwords contain
absolute address.

Symbol fixup.

For xxx=0 next two halfwords contain a
Fadix-50 symbol to be fized-up.

For le=xxx<=377 the next wxxd]l
halfwords contain a SIXBIT symbol name
to be fixed-up

Right half symbol fixup
Left half symbol fizup
30-bit symbol fizup
Fullword symbol fizup
Hot defined

PSECT index for PSECT H.

A-62 April 1982

REL BLOCES

NOTES

l. ©Only one fixup by a Type 2, 10, 11, 1070, or
1072 Block is allowed for a given field.
(There can be separate fixups for the left and
right halves of the same word.}

2. Fixups are not necessarily performed in the
order LINK finds them.

LINK Version 5 A=63 April 1982

REL BLOCES

Block Type 1100 = 1107 (Program Data Vector)

| 1100 - 1107 | Count I
[o o =|
| Relocation Byte Word |

| Address |
et e =|
| Relocation Byte Word |
| e e e e e e e e -
| hddress |

e —

Block Types 1100 - 1107 are used to declare the location of program
data wvectors to LIME. The relocation byte word uses the n-bit byte
relocation format. This format permits compact representation of
PSECT relocation and thirty=bit address resolution. For these program
data vector blocks all nonzero PSECT indexes result im thirty=-bit
fixups.

LINE Varsion 5 A-64 April 1982

REL BLOCES

Block types 1120-1127 (Argument Descriptor Blocks)

| 1120 - 1127 | Count |

I Agssociated Call Address or 0 |

I nth Argument's Primary Descriptor I
L I
| nth Argument's Secondary Descriptor |

A block of this type is generated for the argument list to each
gubroutine call. The subroutine entry point also specifies one block
with this format, though for the callee the argument block address is
ZBLO. If a descriptor block is associated with an argument list it
must always follow the loading of the argument list.

The associated call address iz wused by LINE in diagnostic ercor
messages and its walue is determined by the compiler. The argument
block address is nonzero if the descriptor block is associated with a
call. In this case the argument block address points to the base of
the argument block.

The argument block address, associated call address and the loading
address are all relocatable.

The argument descriptors in these type blocks describe the properties
of each formal (im the case of an entry point) or actuwal (im the case
of a call). Im either case the name of the associated routine is
specified as & byte count followed by an ASCIZ string. Each primary
description is optionally followed by a secondary descriptor.

A=-65

REL BLOCES

Theee are five flag bits in the Descripter Block:

Bit
1]

Usage

If bit 0 is 1 then a difference between the actual
number of arguments and the expected number of
arguments is flagged as a warning at load time. If
kit 0 is 0 no action is taken.

If kit 1 i3 1 then the block is assoclated with a
function ecall. If bit 1 = 0 then the block is
associated with the funcrtion definition.

If bit 2 i5 1 then the descriptor block is loaded
into the uvser image at the loading address.

If bit 3 i 1 then the callee returns a wvalue and
the value's descriptor iz the last descriptor
specified.

If bit 4 i5 1, and the caller expects a return
value, which is not provided by the called function,
or if the called function wunexpectedly returns a
value, then LINK will issue an error. The severity
of the error is controlled by the coercion block.

The format for the argument descriptors is as follows:

Bit
L]

B-11
12=-17
18
19-26
27=35

LINK Version 5.1

Usage

(Reserved)
He update. Im a caller block the argument is a
literal, constant, or expression. In a callee block
the argument won't be modified.
Passing mechanizm

000 = pass by address

001 - pass by descriptor

010 - pass immediate value

Others - reserved
Compile-time constant
Argqument type code (see below)
{Reserved)
Implicit argument descriptor
(Reservead)

Humber of secondary descriptors

A=66 March 1983

REL BLOCES

The argument type codes are as fallows:

Type-Code Usage

o Don't care

1 FORTRAN logical

2 Integer

3 (Reserved)

4 Real

5 (Reserved)

& 36-bit string

7 Altermate return (label)

10 Double real

11 Double integer

12 Double octal

13 G-floating real

14 Complex

15 COBOL format byte string descriptor (for constant
strings}, or FORTRAN character

16 BASIC shared string descriptor

17 ASCIZ string

20 Seven-bit ASCII string

Secondary descriptors are used to convey information about the length
of a data object passed as an argument and (in the case of the
callee's argument descriptor block) whether or not a mismatched length
is permissible. Secondary descriptors have the following format:

Bit Pos Usage

0-2 {For callee only) Defines the permissable relationships
between formal and actual lengths. The values are:

000 = Any relationships are allowed
001 - Lengths must be egual

010 = Acktupal < formal

011 - Actual <= formal

100 = Aetual »* formal

101 = Ackual »= formal

110 - Reserwved

111 - Reserved

3=5 Length of arqument (in words)

LINE Version 5.1 A=-&7 March 1983

REL BLOCKS

Block Type 1130 (Coercion Block)

| 1130 | Count |
T Field Code | action |
| Pormal Attribute 1 Actusl Atecibute i
- Field Code | action |
i"'EE:;QI'EEEEIEEE;“"""T"'EEE;?;EE:EEEE; """""" i
S - |
I Field Code I Action |
| rormal Attribure 1 Acteal Ateribute :

IIII'II.II'II‘iii-il-----.'--.-iI'--i‘ilill'll‘.ll'l'l-l------1

Block Type 1130 specifies which data type assocliations are permissible
and what action LINK should take if an illegal type association is
attempted. It may also specify actions to be takenm by LINK to modify
an actual parameter.

The Coercion Block must be placed before any instance of the
caller/callee descriptor block Iin the REL file. If more than one
coeeclon block is seen during a load, the union of the blocks ls used
for type checking. Howewver, when different actions are specified for
the same type assoclation, the more severe action is used.

When a caller's argument descriptor block is compared to the
descriptor block provided by the callee, LINE first checks bit 0 and
the argqument counts of the descriptor block. If bit 0 is set and the
argument counts differ, a warning is given.

Hext LINE compares the argument descriptors. The particular
formal /actual pair is locked wup in the internal table LINE bullds
using the information in the coercion block. The item field code

dezsignates which field of the argument descriptor is being checked.
The field codes are defined as follows:

Field Code Condition

Check update

Check passing mechanism

Check argument type code
Check if compile-time constant
Check number of arguments
Check for return value

Check length of argument

O U0 bl B S

If the fields of the formal/ /actual pair do not match, LINE searches
the internal table set up by the coercion block. If the table does
not specify an action to take in the event of such a mismatch, LINK
issues an informational message. If the formal/actual pair differs in
more than one field then LINE takes the most severe action specified
for the mismatches.

LIMK Version 5.1 A-EH March 1983

REL BLOCES

If an actual fformal pair differ and no coercion block has been sSeen,
LINE ignores the difference. If the caller has specified a descriptor
bBlock but the subroutine has not; or if the subroutine has specified a
descriptor and the caller has not, LINK does not flag the condition as
an ercor and does not take any special action.

If LINKE finds an entry in its intermal table for & particular
actual /formal mismatech, it uses the action code found im the entey to
gelect one of the following five possible responses:

Code (18 Bits) Action
a Informational message
1 Warning
2 Efrror
3 Reserved for the specific conversion of
static descriptor polnters (in the argument
list) into addresses. The descriptor
polnters are supplied by FORTRAN blocks of
types 112x.
NOTE
The actual conversion process

involves the following actions:

If byte descriptor's P field iz
not word-aligned, issued a
warning and continue.

Pick up word address of start of
string.

¢ If the string is not im the same
section as the argument block,
nonfatal ercor and continue.

¢ Put the address of the =string
into the associated argument
block in place of the address of
the string descriptor.

4 Suppreas the message.
5=7TT1776 Regserved
111777 Fatal error

These messages can be displayed or suppressed. Refer to the
descriptions of the /ERRORLEVEL and /LOGLEVEL switches.

LINK Version 5.1 A=69 March 1983

REL BLOCKS

Block Type 1140 (PLSI debugger information)

| 1140 | Long count |
| == e e e e e e —————— |
| Data Word I

|mmmmmm e —m e ——————— e —————————— -
| Data Word |

Il-l!-l-- EEIEEESEESEEE TS TSI S S E R E I

Block type 1140 is ignored by LINK.

LINE Version 5.1 A=-T0 March 1983

REL BLOCKS

Block Type Greater Than 3777 (ASCIZ)

|IIIIIIIIIIIIIH----II-iIIii-i----:--:--:-::-:t-:-::-:t-:[

| ARSCII | ASCII | ASCII | ASCII I ABCII | (1] |
| == m e e I
| ASCIT | ASCIT | ASCIT | ASCII | ASCIT | 0 |
] = e e e e e i I
B I
| ASCIT | ASCIT | ASCIT | ASCIT | © 1 0O |

rlﬁIiii--.--.--:----.--.--:--I--tt-.--:--:-.t-I--:-.t-.-I

When LIME reads a number larger than 3777 in the left half of a REL
Block header word, the block is assumed to contain ASCIZ text. If the
module containing the text is being loaded, LINK reads the ASCII
characters as if they were a command string, input from the user's
terminal.

LIHE reads the string as five 7=bit ASCII characters per word; bit 35
of each word is ignored. The string and the block end when the first
null ASCII character (000} is found in the Fifth 7-bit byte of a word
bits 28-34).

APPENDIX B
LINE MESSAGES

This appendix lists all of LINK's messages. (The messages from the
overlay handler, which have the OVL prefix, are given im Chapter 5.)

B.1l DESCRIPTION OF MESSAGES

Section B.2 lists LINE's messages. Por each message, the last three
letters of the 6-letter code, the level, the severity, and its
medium-length message are given in boldface. Then, in lightface type.
comes the long message.

When a message i issued, the three letters are suffized to the
letters LMK, forming a é=<letter code of the form LMHExxx.

The level of & message determines whether it will be issued to the
terminal, the log file;, or both. You can use the JERRORLEVEL and
JLOGLEVEL switches to control meSSage output. For Some meéessages an
asterisk (*) is given for the level or severity. This means that the
value is wvariable, anmd depends on the conditions that generated the
mess5age.

The severity of a message determines whether the load will be
terminated when the message is issued. Table B-1 lists the severity
codes used inm LIME; along with their meanings. The JSEVERITY switch
provides a means for lowering the severity that is considered fatal.

The severity also determines the first character on the message line
printed to the terminal. This character can then be detected by the
batch system. For all informational messages, the character 1is |[.
Warnings use %, and fatal errors use 7.

B=-1 April 1982

LINE MESSAGES

Table B-l
Sevyerity Codes

Code Meaning

1-7 Informational; messages of this severity genecally
indicate LIME's progress through the load.

B=15 Warning; LIME is able to recover by itself and continue
the load.

16 Warning if timesharing, but fatal and stops the load if
running under batch.

20 Fatal; LINE can only partially recover and continue the
load. The loaded program may be incorrect. Undefined

s¥mbols cause this action.

24 This is for file access erfors. Under bateh, this is
fatal and stops the load. Under timesharing, this is a
warning, and LINE prompts for the corceck file
specification if possible.

il Always fatal; LIME stops the load.

The VERBOSITY switch determines whether the medium=length and long
messages are issued. If you use /VERBOSITY:SHORT, only the e-letter
code, the level, and the severity are issuved. If you use
SYERBOSITY:HMEDIUM, the medium=-length message iz also issued. If you
uge SVERBOSITY:LONG, the code, level, severity, medium=length message,
and long message are issued.

Those portions of the medium=-length messages enclosed in braces ([and
I} are optional; and are only printed in appropriate circumstances.

Those portions of the medium=-length messages enclosed im sguare
brackets are filled in at run=time with wvalues pertinent to the

particular error. Table B-2 describes each of these bracketed
gquantities.

B-2 April 1982

LINE MESSAGES

Table B-2
Special Measage Segments

[apea] The name of one of LINK's internal memory

management areas.

[date] The date when LINE is runming.

[decimal] A decimal number, such as & node number.

[device] A device name.

[file] A file specification.

[label] An internal label in LIME.

[memoey] A memory size, such as 17P.

[name] The name of the loaded program or a node in an

overlaid program.

[ockall An octal number, such as & symbol value.

[feason] The reason for a file access failure, one of the

messages shown in Section B.3.

[switch] The name of a switch associated with the error.

[symbol] The name of a symbol, such as a subroutine ot

common block name.

[type] The type or attributes agsociated with a symbol.
Whenever possible, LINK attempts to indicate the module and file
associated] 4 41 48 This information represents the module
curcently being processed by LINE, and may not always be the actual
module containing the error. For instance, if LINE detects a
multiply-defined symbol, either value may be the incorrect one. In

this case, LINE reports only the second (and subsegquent) redefinition
and the module containing it.

B.2 LIST OF MESSAGES

Code Ley Sev
ABT 31 31
AIC 31 31
AMM t t
AMP] B
ANM 31 £
ARL] 8
and

I f The level

LINE MESSAGES

Message

Load aborted due to SLNETMA BEEOLE, max.
SARSIZE: needed was [decimal]

You loaded programs containing more ambiguous
subroutine reguests than canm fit in the tables
of one or more overlay links. ¥You received a
LMEARL meszsage for each ambiguouws reguest, and a
LHETMA message for each link with too many
requests. You can solve this problem by using
the /ARSIZE switch just before each /LINE switch
to expand the tables separately.

Atteppt to increase size of ({blank commonl
[common [symbol]} from [decimal] to [decimal]
[Detected in module [symbol] from file [file]]

FORTRAM common areas cannot be expanded once
defined. Either 1load the module with the
largest definition Ffirst, or wse the JCOMMOM:
swiktch to reserve the needed space.

Argument mismatch in argument [decimal] imn call
to routine [symbol] called from module [symbol)
at location [octal]

The caller supplied argument does not match the
argument expected by the callee.

ALGOL main program not loaded

You loaded ALGOL procedures, but ne maln
program. The missing start address and
vndefined symbols will cause termination of
execution.

Address not in memory

LIHE expected a particular user address to be in
memory, but it iz not there. This iz an
intermal LINKE error. This message 1is not
expected to occur. If it does; please notify
your Software Specialist or send a Software
Performance Report (SPR) to DIGITAL.

Ambiguous reguest in link [decimal] [name
[name]] for [symbol] defined im links [decimal].,
[decimal], ...

More than one successor link can satisfy a call
from a predecessor link. The predecessor link
regquested an entry point that is contained in
two or more of its successors. ¥You should
revise your owverlay structure to remove the
ambiguity.

severity of this message iz determined by
compller-generated coercion block. See Block Type 1130 in Appendix A.

B=4 March 1983

Code

AZW

cCco

CFS

CLP

CHC

Lev Sew
il il
i1 11
1 il
1 1
il 11

LINKE MESSAGES

Message

If you execute the current load, one of the
following will occur when the ambiguous call is
executed:

If only one module satisfying the reguest is
in memory, that module will be called.

#« If two or more modules satisfying the
regquest are in memory, the one with the most
links in memory will be called.

If no modules satisfying the reguest are in
memory,; the one with the most links in
memory will be called.

If & module cannot be selected by the methods 2
or 3 above, an arbitrarily selected module will
be called.

Allocating zero words

LIMNKE's memory manager was called with a reguest
for 0 words. This is an internal LINE ercror.
This message is not expected to occur. If it
does, please notify your Software Specialist or
send a Software Performance Report (SPR) to
DIGITAL.

CPO confliect
{Detected in module [symbol] from file [£file]}

Tou have loaded modul ez compiled with
conflicting CPU specifications, such as loading
& MACRO program compiled with the statement
.DIRECTIVE EL10O and another compiled with
L.DIRECTIVE KIl0. Recompile the affected modules

with compatible CPU specifications.
Chained fixups have been suppressed

The specified PSECT grew beyond the address
specified in the SLIMIT switch. The program is
probably incorrect. Use the /MAP or FCOUNTER
swiktch to check for accidental PSECT overlaps.
Refer to Section 3.2.2 for more Iinformation
about the SLIMIT switch.

Closing log file, continuing on file [file]
You have changed the log file specification.
The old log file is closed; further log enktries

are written in the new log file.

Cannot mix COBOL-68 and COBOL-T74 compiled code
{Detected in module [symbol] from file [£file]}

You cannot use COBOL-68 and COBOL-74 files in

the same load. Compile all COBOL programs with
the same compiler and reload.

B-5

Code

CMP

CHW

CRS

CSP

DEB

DLT

DRC

LINE MESSAGES

Message

COBOL module must be loaded first
[Detected in module [symbol] from file [file]])

You are loading a mixture of COBOL-compiled
files and other files. Load one of the
COBOL=compiled files first.

Code not vet written at [label]

You attempted o wse an unimplemented feature.
This is an internal LIME error. This message is
not expected to occur. If it does, please
notify youtr Software Specialist or Send a
Software Performance Report (SPR) to DIGITAL.

Creating section [octal]

LIME prints ttis informational message when a
module is lcaded into a new section. The
message is printed only if you have specified
SERROR:0.

Creating saved file

LINE is generating your executable ([.EXE} file.
[name] execution

LINE iz beginring program execution at the named
debugger.

Execution deleted

Though you have asked for program execution,
LINK cannot procesd due to earlier fatal
compiler or LINE errors. Your program (s left
in memory or im an executable file.

DDT not avallable

A monitor call to obtain DDT failed. This can
happen if vcu have redefined the logical name
B¥5: and neglected to include any directory
that contains DDT.

Device not specified for switch [switch]

¥You used a device switch (for example, /REWIND,
JBACKSPACE), but LIME cannot asgsociate a device
with the switch. Heither LINE's default device
nor any device you gave with the SDEFAULT switch
can apply. Give the device with or before the
awliteh (In the same command line).

Decreasing relocation counter [symbol] from
[octal]l to [octall
[Detected in module [symbol] from file [File]}

You are using the JSET switch to reduce the
value of an already defined relocation counter.
Unless you kncw exactly where each module is
loaded, code may be overwritten.

B-€ March 1983

Code
DSC

DSL

EAS

ECE

EHC

EIF

Lew
31

31

11

il

il

31

il

Sev

D

11

i1

il

31

il

LINE MESSAGES

Message

Data store to common [symbol] not in link number
[decimal]
[Detected in module [symbol] from £ile [file]}

You loaded a FORTRAN-compiled module with DATA
statement -HSE-’.I;'I'L'ITIE'M.'-S Eo a common ACea. The
common area 15 already defined im an ancestor
link. Restructure the load so that the DATA
statements are loaded in the same link as the
common area to which they refer.

Data store +to location [octal] net im link
number [decimal]
{Detected in module [symbol) from file [file])

You have a data store for an absolute location
outside the specified link. Load the module
into the root link.

NOTE

If the location is less than 140, this
message has level 8 and severity B.

Decreasing undefined symbol count below zero

LINE's wndefined symbol count has become
negative. This message 1% not expected to
occur. If it does, please notify your Scftware
Specialist or send a Software Performance Report
(SPR} to DIGITAL.

Eriur creating area AS overflow file [reason]
[file]

LINE could not make the ALGOL symbol table on
disk. You could be over your disk guoka, or the
disk could be full or have errors.

Error creating EXE file [reason] ([file]

LINKE could not write the saved file omn disk.
You could be over your disk guota, or the disk
could be full or have errors.

Error creating area HC overflow file [reason])

[file]

LINE could not write vour high-segment code on
disk. Y¥You could be over your disk guota, or the
disk could be full or have errors.

Error for input file [file]

A read error has occurred on the input file.

Use aof the file is terminated and the file is
released.

B=7 April 1982

Code

ELC

ELF

ELH

ELS

EMS

EOE

EQI

EQW

ESH

EXs

Lew

31

il

31

31

il

11

31

Sev

31

il

31

31

il

ED

11

LINE MESEBAGES

Message

Error ecreating area LC overflow file [reason]
[£ile]

LIME could not write your low-segment code on
the disk. You could be over vour disk guota, or
the disk could be full or have errors.

End of log file

LINK has finished writing your leg file. The
file is closed.

End of link number [decimal] [name [name]}
The link iz loaded.

Error creating area LS5 overflow file [reason]
[file]

LIME could not write your local symbol table on
the disk. You could be over your disk guota, or
the disk could be full or have errors.

End of MAP segment

The map file is completed and closed.

EXE file output error [£ile]

LINK could not write the saved file on the disk.
Error on input [file]

An error has been detected while rfeading the
named file.

Error on output [file]

An error has been detected while writing the
named file.

Error creating overlay file [reason] [file]

LINE could not write the overlay file on the
disk.

Extended symbol not expected

Long symbol names (more than six characters) are
not implemented. This message is not expected
to occur. If it does; please notify your
Software Specialist OF send a Sopftware
Performance Report (SPR) to DIGITAL.

EXIT segment
LINE is in the last stages of loading your

program (for example, creating EXE and symbol
files, preparing for execution if reguested).

Code
FCF

FIN

F51

FSH

FTH

GFE

HCL

Lev Sev
1 1
1 1
B B

il 31

15 15

31 31

31 31

LINE MESSAGES

Message
Final code fixups

LINE is reading one or both sSegment overflow
files backwards to perfore any needed code
Fixups. This may cause considerable disk
overhead, but occcurs only if your program is too
big for memory.

LINE finished

LIMKE is finished. Control is passed to the
monitor, or to the loaded program for execution.

FORTRAN reguires FOROTS, /FORSE switch ignored

You gave the SFORSE switch while loading
FORTRAM-compiled code. LINE ignored the switch
and will use the FORTRAN run-time system.

FURCT. subroutine not loaded

During final processing of your root linmk, LIMK
found that the FURCT. subroutine was not
loaded. This would cause an infinite recursion
if your program were executed. The FUNCT.
subroutine is reguested by the overlay handler,
and 1is wusually loaded from a default system
library. Either you prevented searching of
system libraries, or you did not load a main
progeram from anm overlay-supporting compiler inte
the root link.

Fullword value <{name? truncated to halfword

This message is printed whem a symbol that has a
value greater than 777777 is used to resolve a
halfword reference. This warning message helps
you to be sure that global addresses are used
properly throughout the modules in a load.

GTJFHN® J5Y¥Y5 failed for file [file]

While attempting to run yYour program from the
named file, LINK received an error from the
monitor. This message is not expected to occur.
If ik does, please notify your Software
Specialist or send a Software Performance Report
{SPR}) to DIGITAL.

High segment code not allowed in an overlay link
[Detected in module [symbol] from file [file]]

You have attempted to load high segment code
inte an overlay link other than the root. Any
high segment code in am overlaid program must be
in the root.

BE=9 April 1982

Code
HSL

HTL

IAS

ICB

IDM

IHC

ILC

ILS

IMA

IMI

Ley

il

31

31

31

ER

31

31

il

Sev

il

3l

31

il

31

31

11

il

LIME MESSAGES

Hessage

Attempt to set high segment origin too low
{Detected in module [symbol] from file [£ile]}

You have set the high-segment counter to a page
containing low-segment code. BReload, using the
SSET: HIGH. :n switch, or (for MACRDO programs)
resssemble after changing your TWOSEG pseudo-op.

Symbol hash table too large

Your symbol hesh table i3 larger than the
maximum LINKE can genecate [about 50P). This
table size is an assembly parameter. This
message 15 not expected to occur. IE it does,
please notify vour Software Specialist or send a
Software Performance Report (SPR) to DIGITAL.
Error inputting area as [£ile]

An error occurred while reading 1In the ALGOL
symbol table.

Invalid chain REL block (type 12} 1link number
[octal]

{Detected inm module [symbol] from file [£ile]}
REL block kype 12 (Chain), generated by the
MACRD pseudo-op .LIHNE and .LHEEHD, must containm
a number from 1 te 100 (octal) in iks first
word. The link word ls ignored.

Illegal data mode for device [device]

You specified anm illegal combination of device
and data mode (for example, terminal amnd dump
mode) . Specify & legal device.

Error inputting area HC [file]

An error occurced while reading in Your
high=segment code.

Error inputting area LC [file]

An error occurred while reading in Your
low=segment code.

Error inputting area LS [file]

An error occurred while reading in your local
symbol table.

Incremental waps not yet available

The INCREMEWTAL keyword for the /MAP switch is
not implemented. The switch is ignored.

Insufficient memory to initialize LINE

LINE needs mcre memory thanm is available.

BE-10 April 1982

Code

IMH

oV

IPD

IPX

IRC

IRR

Levy Sev
* 1
31 31
31 31
31 3l
il 31
3l 3l
8 a8

LINE MESSAGES

Message

[Decimal] included modules missing (frem file
[filel}

You have regquested with the SINCLUDE switch that
the named modules (if any) be loaded. Specify
files containing these modules.

Input error for overlay file [file]

An error occurred when reading the overlay file.

Invalid Polish operator [octall
[Detected in module [symbol] from file [file]]

Tou are attempting to load a file comtaining an
invalid REL Block Type 11 (Polish). This
message iz not expected to occur. If it does,
please notify your Software Specialist or send a
Software Performance Report (5FR) to DIGITAL.

Invalid PSECT index [for PSECT [symbol]}
{Detected in module [symbol) from file [file]]

A EREL block contains a reference ke a
nonexistent PSECT. This error is probably
caused by a fault in the language translator
used for the program. This error is not
expected to occur. If it does, please notify
your Software Specialist or send & Software
Performance Report (5PR) to DIGITAL.

Il1legal REL block type [octal]
[Detected in module [symbol] from file [file]]

The file is not in the proper binary format. Ik
may have been generated by a tramnslator that
LINE does nok recognize, or it may be an ASCII
or EXE file.

Illegal relocation counter
[Detected in module [symbol) from file [file])

One of the new style 1000+ block types has an
illegal relocation counter. This message 185 not
expected to occur. If it does, please notify
yvour Software Specialist or send a Software
Performance Report (SPR) to DIGITAL.

Illegal reguest/reguire block
{Detected in module [symbol] from file [file]}

One of the REL bleck types 1042 or 1043 is 1in
the wrong format. This message iz not expected
Lo OoCCUr. If it does, please notify vyour
Software Specialist ofr gend a Software
Performance Report (SPR) to DIGITAL.

B-11 April 1982

Code

ISH

ISP

ISS

IST

LT
31

il

3l

31

Sev

il

il

3l

31

LINE MESSAGES

Message

Incomplete symbel in store operator im Polish
block (type 11)
{Detected in module [symbol] from file [file]}

The specified module contains an incorrectly
formatted Polish Fixup Bleck (Type 11). The
store operator specifies a symbol Eixup, but the
block ends before the symbol is fully specified.
This error is probably caused by a fault in the
language translator used for the program. This
error is not expected to occour. If it does,
please notify your Socftware Specialist or send a
Software Performance Report (SPR) to DIGITAL.

Illegal symbol name [sSymbol]
[Detected in module [symbol] from file [file]}

The LINE symbol table routine was called with
the blank symbol. This error can be caused by a
fault in the language translator used for the
program. This message iz not expected to occur.
If it does, please notify your Software
Specialist or send a Software Performance Report
{SPR}) to DIGITAL.

Incorrect symbol pointer

There is an error in the global symbol table.
This is an internal LIME error. This message is
nokt expected ta accur. If it does, pleasge
notify your Software Specialist or send a
Software Performance Report [(SPR) to DIGITAL.

Insufficient space for symbol table after PSECT
[symbol] -- table truncated

There i858 insufficient address space for the
symbol table between the named PSECT and the
next higher one or the end of the address space.
Restructure your PSECT layout te allow
sufficient room for the symbol table, or use
JUPTO to allow more room.

Inconsistency in switch table

LIME has found errors in the switch table passed

Erom the S5CAM module. This is am internal
error. This message is not expected to occur.
If it does, please notify vyour Software

Specialist or send a Software Performance Report
{SPR} to DIGITAL.

B-12 April 1982

Cade
ITB

Ive

JPB

LDS

LPFB

LFC

LPI

LIT

Lewv

11

ED

Sev

11

il

LINE MESSAGES

Message
Invalid text in ASCII block from file [file]

LINK has failed to complete the processing of am
ASCII text REL block from the named file. This
iz an internal ercor. Thiz megssage is not
expected ko occur. If it does, please notify
your Software Specialist or send a Software
Performance Report (SPR) to DIGITAL.

Index validation check failed at address [octal]

The range checking of LINK's internal tables and
arrays failed. The address given is the point
in & LINE segment at which Ffallure occurced.
This is an internal error. This message is not

expected to occur. If it does, please notify
your Software Specialist or send a Software

Performance Report (SPR) to DIGITAL.

Junk at end of Polish block
{Detected in module [symbol] from file [file])

The specified module contains an incorrectly
formatted Polish Fixup Block (Type 11). Either
the last unused halfword (if it exists) is

nonfeEd, of there are extra halfwords following
all valid data.

LOAD segment

The LINK module LHELOD iz beginning its
processing.

LINE log file begun on [date]

LIME is creating your log file as a result of
defining the logical name LOG:.

Log file continuation

LINKE is continuing your log file as a result of
the /LOG switch.

Log file initialization

LINKE is beginning your log file as & result of
the JLOG switch.

Library index inconsistent, continuing

A REL Block Type 14 (Index) for a MAELIB
generated library file is inconsistent. The
libracry iz searched, but the index is lgnored.

Code

LIH

LMM

LMN

LHA

LML

LMM

Loy

1

31

31

Sev

1

31

LINE MESSAGES

Message
LIME initialization

LINE is beginning its processing by initializing
ite internal tables and variables.

Length mismatch for argument [decimal] im call
te routine [svmbeol] called from module [symbol]
at location [octal]

The length of the argument passed by the caller
doea not match what the called routine expects
it to be.

Loading module [symbol] from file [file] LIKE is
loading the naned module.

Link name [name] already assigned to link number
[decimal]

You used this name for another link. Specify a
different name for this link.

Link number [decimal] not loaded

The link with this number has not yet been
loaded. The /MNODE swiktch is ignored. If you
have used link numbers instecad of 1link npnames
with the /NODE switch, you may have confused the
link numbers. To avoid this, use link names.

Link number [decimal] not in memocy

LINE cannot fird the named link in memory. This
iz an internel erEor. This message is not
expected to occur. If it does, please notify
your Software Specialist or send a Software
Performance Report (SPRE} to DIGITAL.

Link name [name] not assigned

The name you gave with the /HODE switch sz not
the mname of any loaded 1link. The switch is
ignored.

Low segment data base not same size

The length of LINK's low segment dJdiffers from
the length stored im the current LINE high
gegment. This occurs if some but not all of
LINKE's +EXE filles have been updated after
rebuilding LINE from sources. Update all of
LINE's .EXE files.

severity of this message Iz determined by a

compiler-generated coercion block. See Block Type 1130 in Appendix A.

I t The level

B=14 March 1983

Code

LSM

LSS

MDS

MEF

MOw

Lev Sev
8 B
31 1
8 8
3l 31
1 1
1 1

LINE MESSAGES

Message

JLINE switch missing while loading 1link numsber
[decimal] == assumed

Your use of the /NODE switch shows that you want
te begin a new overlay link, but the current
link is not yet completely loaded. LINE assumes
a8 JLINE switch immediately preceding the /HODE
switch, and loads the link (without a link
name) .

{No} Library search symbols (entry pointa)
{[symbol] [octal]

The listed symbols and their values [(if any) are
those that are library search entry points.

Multiply-defined global symbol [symbol]
{Detected in module [symbol] from File [File]}
Defined value = [octal], this value = [octal]

The named module contains a new definition of anm
already defined global symbol. The old4d
definition is used. Make the definitions
consistent and reload.

Memory expansion failed
LINE cannot expand m@emory further. A1l

permitted overflows to disk have been tried, but
your program is still too large for available

EBEMOTY . A probable causze is a large global
symbol table, which cannot be overflowed to
disk. It may be necessary to restructure your

program, or use owverlays, to alleviate this
problem.

Moving low segment to expand area [area]

LINE is rearranging its low segment to make more
room for the specified area. Area is one of the
following:

AS ALGOL symbol table

BG bound global symbols
DY dynamic free memory

FX fixup area

G5 global symbol table

HC your high-segment code
LC your low-gsegment code
L% local symbol tables

RT relocation tables

MAP segment
The LIMNK module LMEMAP is writing a map file.

Code
MPT

MEN

HER

MEB

HED

HPS

HSA

Lew

ED

31

il

3l

Sev

EN

il

24

LIMNE MESSAGES

Message

Mixed PSECT anid TWOSEG code in same module
[Detected in module [symbol] from file [file])

This module contains both PSECT code and TWOSEG
code . LINKE cannot load such a module. Change
the source code to wse PSECTs (HIGH. and .LOW.
ag the high and low segments, and remove the
TWOSEG or HISEG pseudo-ops.

Multiple regions not wvet implemented

The REGION keyword for the FOVERLAY switeh is
not implemented. The argument iz lgnored.

Map sorting not yet implemented

Alphabetical or numerical sorting of the map
file is not imp?lemented. The symbols in the map
file appear in the order they are found in the
REL files.

Attempt to position to node before the root

The argument yoau gave for the /MNODE switch would
indicate & link before the root link. (For
example, from & position after the thicd link in
a path, you cannoct give /HODE:=4.)

Ho end block seen
{Detected in module [symbol] from file [Ffile]}

Ho REL Block Type 5 (End) was found in the named
module., This will happen if LINE finds two Type
6 blocks (Name) without an intervening end, or
if an end-of-file is found before the end block
ig seen. LINE simulates the missing end block.
However, fatal messages uwswally follow this,

because this condition usually indicates a bad
REL file.

Hon-existent dewvice [dewvice]

You gave a device that does not exist on this
gystem. Correct your input files and reload.

Hon-existent FSECT [symbol] specified for symbol
table

You have specified the name of a PSECT after
which LIME should append the symbol table, but
no PSECT with that name was loaded. Load the
named PSECT or specify an existing PSECT for the
symbols.

Ho start address

Your program does not have a starting address.
This can happen if you neglect to load a main
program. Procoram execution, if regquested, will
be suppressed unless you specified debugger
execution.

B-16

LINE MESSAGES

. Code Lev Sev Message
HEM 3l 3l JHODE switch missing after SLIHE switch

You used the /LINK switch, which indicates that
you want to begin a new overlay link, but you
have not specified a /MNODE switch to kell LINK
where to put the nevw overlay linmk.

HS0 3l 31 Ho store operator in Polish block (type 11}
{Detected in module [symbol] from file [file]}

The specified module contains am incorrectly
formatted Polish Fixup Block (Type 11). Either
the block does not have a store operator, or
LINKE was not able to detect it due to the
block's invalid format. This error iz probably
cauged by a Ffault in the language translator
used for the program. This error is not
expected to occur. If it does, please notify
your Software Specialist or send, a Software
Performance Report (5PR) to DIGITAL.

HVER 1 1 Mo value returned by routine [symbol] called
from module [symbol] at location [octall

The called routine does not return a wvalue,
however the caller sxpected a returned value.

OAS 3l 31 Error ocutputting area as [file]
. An error occurred while writing out the ALGOL
symbol table.

OEL B B DOutput error on log file, file closed, load
continuing [[£ile]}

An error has occurred on the output file. The
output file iz closed at the end of the last
data successfully ocutput.

OEM 8 g Output error on map file, file closed, load
. continuing [file]
An error has occurred on the output file. The

output File iz ¢losed at the end of the last
data successfully oukput.

OES 8 B Output error on symbol flle, file closed, load
continuing [file]

An error has occcurred on the ocutput Efile. The
output file is closed at the end of the last
data successfully output.

OFs 3l 3l Overlay file must be created on & file structure

Specify a disk device for the overlay file.

. t The level and severity of this message is determined by a
compiler-generated coercion block. See Block Type 1130 in Appendix A.

B=17 March 19813

Code
OHC

OHR

OLC

OLS

OMB

oMs

052

OSL

PAS

Lev

3l

11

31

3l

il

il

Sevw

3l

ED

11

3l

ER|

il

LIME MESSAGES

HMessage

Error outputting area HC [file]

An error occurred while writing out Your
high=segment code.

Overlay handler not loaded

Internal symbo!=s in the overlay handler could
not be referenced. If you are using Your own
oyerlay handler, this is a user error; 1f not,
it iz an internal error and is not expected to
occur. If it «does, please notify your Software
Specialist or snend a Software Performance Report
(SPR} to DIGITAL.

Error outputting area LC [file]

An error occurred while writing ouk your
low=segment code,

Error ocutputting area LS [file]

An error occurred while writing out your local
symbel table.

JOVERLAY switch must be first

The SOVERLAY switch must appear before you can
use any of the following awitches: JFARSIZE,
FLINK, /HODE, /PLOT, /SPACE. (It is sufficient
that the fOVERLAY switch appear on the same line
as the first of these switches you use.}

Overlays not supported in this version of LINE

LINE handles overlays with its LHEOV] and LHKOWV2
modules. Your installation hazs substituted
dummy wersions of these. You should reguest
that your installation rebuild LIME with the
real LHEOV] and LHEOV2 modules.

Output error for overlay file [file]

An error has occureed while writing the overlay
file.

Owverlay segment phase 2

LINK's module LHEOVZ2 is wrpiting your overlay
file.

Overlaid program symbols must be in low segment

You have specified /SYMSEG:HIGH or /SYMSEG:PSECT

when Iloading an owverlay structure. Specify
SSYMSEG: LOW or /SYMSEG:DEFAULT.

Area AS overflowing to disk

The load is toc large ko fit into the allowed
memory and the ALGOL symbol table is being mowved
to disk.

B=1E

Code

PRI

PCX

PEF

Lazw

31

Sev

LINE MESSAGES

Message

Program break [octal] invalid ([Detected in
module [symbol] from £ile [file]l

The highest address allocated in the named
module is greater than 512FP. This is usually
caused by dimensioning large arrays. Modify
your programs or load list to reduce the size of
the load.

FProgram too complex to load, saving as file
[file]

Your program 15 too complex to load inte memory
for one of the following reasons:

@« There are page gaps bektween PSECTs (except
below the high segment).

#« There are PSECTs above the origin of the
high segment.

Your program will not fit in memory along
with LINK's final placement code.

« 0One or more PSECTs has the cead-only
attribute.

LINE has saved your program as an .EXE file on
disk and cleared your user memory. You cCan use
a GET or RUN command to load the .EXE file.

Program too complex to load and execute, will
run From file [file]

Your program is too complex to load into memory
for one of the following reasons:

& There are page gaps between PSECTs (except
below the high segment).

There are PSECTs above the originm of the
high segment.

¢ Your program will not fit in memory along
with LINK's final placement code.

@ One or more PSECTs has the read-only
attribute.

LINK will save your program as an .EXE file on
disk and automatically rum it, but the .EXE file
will not be deleted.

Prematuce end of file from file [file]

LINK found an end-of-file inside a REL block
ithat is, the word count for the block extended
beyond the end=-of=-file). This error may be
caused by a fault in the language tramslator
used for the program.

B-19

Code Lev Sev
PEL 15 15
FHC 1 1
PLC 1 1
PLS 1 1
FHO B]
PMA T 1
PFOT 1 1
POV & 8

LINE MESCSAGES

Message
PEECT [symbol] exceeded limit of [octal]

The specified PSECT grew beyond the address
specified im the SLIMIT switch., The program is
probably incorrect. Use the J/MAP or JCOUNTER
awiteh to check for accidental PSECT overlaps.
Befer o Section 3.2.2 for more information
about the /LIMIT switch.

Area HC overflowing to disk

The load is too large to fit inte the allowed

memory and your high=-segment code is being moved
to disk.

Area LC overflowing to disk

The load is too large to fit into the allowed

memery and your low-segment code is being moved
ko disk.

Area LS overflowing to disk

The load is too lapge to fit into the allowed

memory and yeur local symbol tables are belng
moved to disk.

Program Data VYectors not allewed in overlay
links

Program data wvectors cannot be loaded as part of
an owverlay prcgram. The lead continues, but no
program data wvector will be provided.

Possible modification of argument [decimal] in
call to routine [symbol] called from module
[ymbol] at locatiom [octall]

The caller hes specified that the argument
should not be modified. The called routine
contains code which may modify this argument.
In some cases this message will occur although
the argument it not actually modified by the
routine.

Plotting overlay tree
LINE i3 creating your overlay tree file.

PSECTs [symbol] and [symbol] overlap from
address [octal] to [octal]

The named PSECTs owverlsp each other in the
indicated range of addresses. If you do not
expect this wmessage, restructure your PSECT
origins with the /SET switch.

T The level and severity of this message is determined by a
compiler-generated coercion block. See Block Type 1130 in Appendix A.

B=20 March 1983

Code

RBS

RED

RGS

RLC

LINE MESSAGES

Message

Program too long
{Detected in module [symbol] from file [file)}

Your program extends beyond location 777777,
which is the highest locatiom that LIME is
capable of loading. You may be able to make
your program fit by moving PSECT origins,
lowering the high-segment origin, loading into a
single segment; reducinmg the size of arrays in
Your program, or using the overlay facility.

REL block type [octal] too short
{Detected in module [symbol] from file [file]]

The REL block is inconsistent. Thizs may be
caused by incorrect output from a tramslator
(for example, missing argument for an end
block)l. FRecompile the module and reload.

Reducing low segment to [memory]

LINKE is reclaiming memory by deleting iks
internal tables.

[Ho} Reguest external references (inter-link
entry points)
{ [eymbol] [octal])

The listed symbols and their wvalues (if any)
represent subroutine enmtry poinks in the current
link.

Rehashing global symbol table from [decimal] to
[decimal]

LINE is expanding the global symbol table either
ko a prime number larger than your /HASHSIZE
switch reguested, or by about 50 percent. You
can speed up future loads of this program by
setting SHASHSIZE this large at the beginning of
the load.

Reloc ctr. initial value current wvalue
{Isymbol] [octal] [octalll

The listed symbols and wvalues represent the
current placement of PSECTa in your address
space.

REeturning unavailable memory

LINE attempted to return memory to the memory
manager, but the specified memory was not
previously allocated. This iz an internal
] of £ This message 15 not expected to occur.
If it does, please notify your Software
Specialist or send a Software Performance Report
{SPR) to DIGITAL.

B-21

Code
SFU

S5IF

SMP

SRC

SHL

SHP

SNE

Lew
8

il

ED|

3l

il

Sev

3l

11

i

EN

LINE MESSAGES

Message
Symbol table fouled up

Thege are errocs in the local symbol table.
Loading continses, but any maps you reguest will
not contain coatrol section lengths. This is an
internal error. This message is not expected to
oceur., If it does, please notify your Software
Specialist or send a Software Performance Report
{SPR} to DIGITAL.

Symbol insert failure, non-zero hole found

LINE's hashing algorithms failed; they are
trying to write a new symbol ower an old one.
You may be asble to load your files in a
different order. This iz an internal error.
This message is not expected to occur. If it
does, please notify vour Software Specialist or
send a Software PFerformance PReport (S5PR) to
DIGITAL.

SIMULA main program not loaded

You loaded som: SIMULA procedures orf classes,
but no main program. Missing start address and
undefined symboals will terminate execution.

Symbol [symbol] already defined, but not as
COmmon

{Detected in module [symbol] from file [file]}

You defined a FORTRAN common area with the same
name A% & non-common symbol. You must indicate
which definitisn you want. If wvou want the
common definition, locad the common area first.

Scanning new command line
LINKE is ready to process the next command line.

Subroutine [symbol] in link number [decimal) not
on path for call from 1link number [decimal]
{name [name]]

The named subrpsutine iz in & different path than
the «calling link. Redefine your overlay
struckure S50 that the subroutine 15 im the
correct path.

SITGD not supported
{Detected in module [symbol] from file [file])

LINE does not support the REL file format
produced by the SITGD compiler. Lead your
program by usiig SITGO.

Saved flle ocutaut error [file]

An error occurrced in outputting the EXE file.

B-21

Code
SRB

SRP

S5H

S8T

8TC

S0P

T13

TDS

THMA

Lew

il

3l

il

Sev

11

il

LINE MESESAGES

Message

Attempt to set relocation counter [symbol] below
initial value of [octal]
{Detected in module [symbol] from file [file]}

You cannot use the SSET switch to set the named
relocation counter below its initial wvalue. The
attempt is ignored.

SBET: switch required for PSECT ([symbol]
{Detected in module [symbol] from file [file]}

Relocatable PSECTS are not implemented; Yo
must specify an explicit absolute origin with
the /S5ET switch for the named PSECT.

Symbol table sorting not yet implemented

Alphabetical or numerical sorting of the symbol
table iz not implemented. The symbols appear in
the order they are found.

Borting symbol table

LINK is rearranging the symbol table, and if
regquired, is converting the symbols from the new
to old format as indicated on the JSYMSEG,
SSYFILE, or /DEBUG switch.

Bymbol table completed

The symbol table hazs been sorted and moved
according to the /SYMSEG, /SYFILE, or /DEBUG
switch.

Loading suppressed
Errors occurred during compilation.

LVAR REL block (type 13) not implemented
[Detected in module [symbol] from file [file)}

REL Block Type 13 (LVAR) is obsolete. Use the
MACRO pseudo-op TWOSEG.

Too late to delete initial symbols

LINKE has already loaded the initial symbol
table. Te prevent this loading, place the
JHOTINITIAL switeh before the first file
specification.

Too many ambiguous reguests in link [decimal]
{name [name]}, wvese /ARSIZE:([decimal]
{Detected in module [symbol] from file [file]}

You have more ambiguous subroutine reguests
iindicated by LNEARL messages) than will £it in
the table for thiz link. Continue loading.
Your load will abort at the end with a LMEABT
message; 1f you have loaded all modules, the
message will give the size of the needed SARSIZE
switch for a reload.

B=-23 March 1983

Code Lev Sev
THMM T t
TTF 8 B
UAR 8 8
0Gs * 1
RS il 3l
URE il 1
and

| t The leayvel

LINKE MESSAGES

Message

Type mismatch seen for argument [decimal]l in
call to routine [symbol] called from module
[symbol] at lozation [octall

The dats type 2f the argument passed by the
caller does aot mateh what the called routine
expects.

Too many titlez found

In producing the index for a map file, LINE
found mOre program names than there are
programs. The symbol table is in error. This
iz am internal error. Thiz meszsage I3 not
expected to occur. If it does, please notify
your Software Specislist or send a Software
Performance Report (S5PR) to DIGITAL.

Undefined assign for [symbol]
[Detected in module [symbol) from file [file]l

The named symbol was referenced in a REL Bleck
Type 100 [ASSIGH), but the symbol is undefined.
This 1is genecated with the MACRD pseudo-op
AESIGH. The assignment is ignored. You should
load a module that defines the symbol.

{Ho} Undefined global symbols {[symbol] [octal]

The listed symbols and their wvalues (if any)
represent symbols not vet defined by any module.
Each value is the first address in a chain of
references for the associated symbol.

If this message resulted automatically at the
end of loading, this iz a user error. In this

caze, the load will continue, leaving references
to these symbols unresolved.

Universal file REL block (type 777} not
supported from file [file)

Extraction of symbols from & MACRD uwniversal
file is not implemented.

Unknown Radix=%0 symbol code [octal] [symbol]
[Detected in module [symbol) from file [file)]]

In a REL Block Type 2 (Symbols), the first 4
bits of each word pair contain the Radix-50
symbol code. LINKE found omne or more invalid
codes in the block. This error can be caused by
a fault in the language translator used for the
program.

geverity of this message Iz determined by a
compiler-generated coercion block. See Block Type 1130 in Appendix A.

B=24 March 1983

Cade
URY

osa

usc

UsI

oon

VAL

XCcT

isv

Lew Sew
t t

8 B
3l B
8 16
] B
31 1
T T
il 1
B B

t The level

LIME MESSAGES

Message

Unexpected return walue in call te routine
[symbol] called from module [symbol] at location
[octal)

The called routine returng a value which was not
expected by the caller.

Undefined start address [symbol]

You gave an undefined global symbol as the start
address. Load a module that defines the symbol.

Undefined subroutine [symbol] called from link
number [decimal] {name [name]}

The named link contains a call for a2 subroutine
vou have not loaded. If the subroutine is
required for execution, yau musk reload,
including the required module in the link.

Undefined symbol [symbol] i1llegal in switch
[switch]

You have specified an wundefined symbel to a
switch that cam only take a defined symbol or a
number. Specify the correct switch wvalue.

Undefined fUOPTO: address [symbol]

You gave the named symbol as an argument to the
JUPTD switch, but the symbol was never defined.
Load a module that defines the symbol, or change
your argument to the SUPTD switch.

Symbol [symbol] [octal] [typel

LINKE has prinmted the specified symbol, its wvalue
and its attributes as reguested.

Wrong number of arguments in call to routine
[eymbol] called from module [symbol] at location
[octal]

The number of arguments in the routine call is
not the number of arguments expected by the
called routine,

[Hame] execution

LINK is beginning execution of your program.
Zero switch value illegal

You omitted reguired argquments for a switch (for

example, J/REQUIRE with no symbols). Respecify
the switch.

geverity of this message iz determined by a

compiler-generated coercion block. See Block Type 1130 in Appendix A.

B=-25 March 1983

APPENDIX C

JOB DATA AREA LOCATIONS SET BY LINE

LINK sets a number of locations between 40 and 140 (octal) in the
user's program. These locations are known as the Job Data Area
{commonly abbreviated to JOBDAT). They are used by the TOP5=-10
monitor and by the Compatibility Package (PAl050) on TOPS=20. 1Im
addition, two segment programs will have a Vestigial Job Data Area of
eight words following the high segment origin.

Job Data Area

Address Mnemonic Use

41 «JB41 HALT if not specified otherwise.

42 -JBERE Humber of errors during loading.

T4 -JBDDT Start address of DDT if loaded.

75 JBHSOD High segment origin.

115 - JBHRL Left: High segment length.
Right: Highest address in high segment.

116 ~JBSYH Left: Hegative length of symbol table.
Right: Address of table.

117 +JBUSY Left: Megative length of undefined symbol
table.
Right: Address of undefined symbol table.

120 ~JBSA Left: First free lecation in low segment.
Right: Start address of program.

121 -JBFF First free location in low segment.

124 +JBREN BFeenter address of program.

131 +JBOVL Address of header block for the root link in an
overlald program.

133 «JBLCOR Left: Highest location of low segment loaded with
data.

137 +JBVER Version number: gee description of SVERSION

switch in Section 3.2.2.

JOB DATA AREA LOCATIONS SET BY LINK

Vestigial Job Data Area

Offset Mnemonic Use
0 .JBHSA Copy of .JBSA.
1 .JBH41 Copy of .JB41l.
2 .JBHCR Copy of .JBCOR.
E] -JBHEH LH: left half of .JBHRL.
EH: right half of .JBREN.
4 +JBHVE Copy of .JBVER.
5 - JBHNM Program Hame.
] .JBHEM High segment svmbol table, if any.
7T « JBHGA High segment or-igin page in bits 9-17.

Abbreviating switches, 3=-4
Allocating memory, 3=-65
Allocating space, 3-22

FARSIZE switch, 3-8

FBACESPACE switch,
Bounds ,
FPSECT, 3-25

3=17

Calls to overlay handler,

5=15%

LCCL files, 3=-2

Clearing module reguests,
3-38

Cloging links, 3-27
CLHU‘U+ P '5_.16
CLROVL, 5-16
Command switches,
Comments, 3i-1
COMMON storage,

FORTRAM, 3-8
SCOMMON switch, 3-8
Conserving memory space,

3-40

Constructing overlays,
FSCONTENTS switch, 3-9%
Continuing commands, 3=1
Conkrolling,

messages, 3-77

program tecrmination, 3-63
Core (see memory), 3-20
Core image,

file, 4-1
FSCORE swiktch, 3=-9
SCOUNTER switch,
FCPU switch, 3=11
CPU type specifyving, 3-11
Creating EXE files, 3-59

2=2

3-49

3=10

Data word,; A-1
/DDEBUG switch, 3-12

ooT, 2=1
DEBUG command, 2=1
FDEBUG switch, 3=-13

Cebuggers loading, 3-13,
3-71

Debuggers specifying, 3=-12

Debugging overlayed
programs, 5-14

INDEX

Index-1

Declaring,
non=-writable links, 5-16
writable links, 5=21
Default file specifications,
3-14
SDEFAULT switch, 3=14
DEFINE command, 3-79
SDEFINE switch, 3-15
Defining,
logical names, 3-79
symbols, 3-15
Deleting,
entry name symbols, 3-37
overlay links, 3-41

Ending loading, 3-21

Entry name symbols,
printing, 3-16&

Entry name symbols deleting,

3=-37
Entry points overlay
handler, 5=1%

FJEHTRY switch, 3-16

FERRORLEVEL switch, 3=17

SESTIMATE switch, 3-3

FJEXCLUDE switch, 3-18

EXE files,
creating,

Executable,
file, 1=2
program, 4-1

EXECUTE command, 2-1

JEXECUTE switch, I-19

Execution starting, 3-19

FEXIT switeh, 3-3

Extended addressing, 31-81

EXTTAE table, 5=315

3=-5%

File specifications,
default, 3-14
FORTRAN COMMON storage, 3-8
SFRECOR switch, 3=20
Free memory,
maintaining, 3-20
FUNCT. subroutine, 5-12,
5=25

GETOV., 5=17
GETOVL, 5-17

Global switches, 3-4

Glebal symbols, 1-2
Glab;lﬁgynbala suppressing,
FGO switeh, 3-21

SHASHSIZE switch, 3=22
Header word, A-1
fHELP switch, 3-3

IDKBFR, 5-15

INBFR, 5=15

FIRCLUDE switch, 3-23
Including local symbols,

3I=28
Indirect command Eliles, 3-2
Information,
cbtaining, 3-33; 3-55;
i-12, 3-76

INIOV., 5-18
INIOVL, 5-18
INTTAR table, 5-16&

Job data area, C=1

Job names,
specifying, 3-58

JOBDAT, C-1

JOBDAT loading,
Preventing, 3-3%

Libraries,
searching, 3-60, 3-70,
3-75%, 3-80

Library files, 1-2, 3-80
JLIMIT switech, 3-25
Limits symbol table, 3-T74
LINE command, 3-1
LINE messages, 4-6, B-1
Link name table format,
=31
Link number table format,
5=-31
JLINE switch, 3-27
LINK switches, 3-4
Links specifying,
number of, 3=32
LOAD command, 2-1
Loading ,
debuggers, 3=-13, 3=-71
ending, 3=21
modules, 3-18, 3I-56

INDEX (CONMT.)

Loading (Cont.)
objeck-time systems, 3I-48
segments, 3-47

Local switches, 31-4

Local symbols,
including, 3-28

SLOCALS switch, 3-28

Log file specifyimg, 3=289

Log files, 4-6

Log files overlay, 5-18

JLOG switch, 3-29

Logical names defining,

3=-79

SLOGLEVEL switch, 3-30

LOGOV. . 5-18

LOGOVL, 5-18

Long count, A=l

Magtape,
rewinding, 3-57
skipping, 3-64
unloading, 3-=73
Magtape operations, 3-34
Maintaining free memory,
3-20
Map files, 4-6
JHAP switch, 3-31
SHAXNODE swiktch, 3-312
MBZ, A-1
Memory,
allocating, 3-65
virtual, ?—I
Hemory size,
Epecif¥ing, 3-9
Memory size specifyving, 3-4
Memory space,
Conserving, 3-40
Message levels, 4-6
Megsage severlty, 4-7
FHESSAGE switch, 3-3
Messages,
severity codes of, B-2
Mezsages controlling, 3=-77
Messages overlay handler,
=21
HMessages suppressing, 3=17,
3=-30
/MISSING switch, 3-13
Module reguests,
clearing, 3-38
Modules,
object, 1-1
Modules loading, 3-18, 3-=5&
Modules specifying, 3-23
SHTAPE switch, 3-34

Haming links, 3-27
/HEWPAGE switch, 3-35
FHODE switch, 3-36
SHOENTRY switch, 3=37
SHOINCLUDE switch, 3=38
SHOINITIAL switch, 3=39
SHOLOCAL switch, 3=40
Hon-writable links
declaring, 5-16
Non-zero sections, 3-81
JROREQUEST switch, 3-41
SHOSEARCH switch, 3=-42
SHOSTART switch, 3-413
JHOSYMBOL switch, 3-44
SHOSYSLIB switch, 3-45
SNOUSERLIB switch, 3-46
Humber of links specifyving,
3-32

Object modules, 1-1
Object-time systems loading,
3-48
Obtaining information, 3=33,
3=-55, 3=-T72, 3-76
Obtaining PPHs, 3-B0
SONLY switch, 3-47
Opening overlay links, 3-36
JSOPTION switch, 3=3
JSOTSEGHENT switch, 3-48
Overlay,
file format, 5-30A
handler, 5-14
link code, 5-34
link formak, 5-32
link paths, 5-1
link preamble, 5=33
log files, 5=18
gtructure, 5=1
switches, 5-2
Overlay handler,
calls to, 5=15
entey points, 3=15
messages, 5=21
overlay link paths, 5=1
overlay links,
opening, 3=-36
predecessor,; 5-1
successor, 5-1
Overlay links deleting,
3-41
Overlay program size, 5-14
JOVERLAY switch, 3-49
Overlayed programs,
debugging, 5-14
Overlaying links, 5-15
Overlays,
constructing, 3-49

IHDEX ([COHRT.)

Overlays ([Cont.)
Restrictions, 5-12
weltable, 5-11

Overlays relocatable, 5-=12

SPATCHSIZIE switch, 3=-50
Paths,
overlay link, 5-1
Paths overlay,
link, 5=1
PDVA (see program data
vector address), 4-5
Permanent switches, 3-4
Plot file specifying, 3-52
SPLOT switch, 3-51
SPLTTYP switch, 3-52
FFHNS ,
obtaining, 3-80
Predecessor links, 5=1
Preventing JOBDAT loading,
3=29
Printing entry name symbols,
i=-16
Program data vectors, 4-5
regquesting, 3-52A
Program size,
Overlay, 5-14
Program termination
conteolling, 3-63
JPROTECTION switch, 3-3
PEECE Egdre:ses setting,

PSECT bounds, 3-25%
SPVBLOCK switch, 3-52A
SPVDATA switch, 3=54

REL,

blecks, A-1

file, 1-1
REL file, 1-1
Relocatable,

code, 1-2

overlays, 5-12
Relocatable code, 1-2
Belocation,

counters, 3-10

table, 5-37

word, A-1
Relocation counters setting,

3=35, 3-62

REMOV., 5-19
Eemoving links, 5-19
REMOVL, 5=19
JREQUEST switeh, 3-55

Index-3

Reguesting program data
vectors, 3I-52A

SREQUIRE swikch, 3-56

Resetting symbol types, 3-9

Restrictions owverlays, 5-12

SREWIND swiktch, 3-57

Rewinding magtape, 3-57

Root link, S5-1

FRUN switch, 3-4

SRUMAME switch, 3-58

Running links, 5-20

RUROV., 5=20

RUNOVL, 5=20

Save file format, 4-2
ASAVE switch, 3-59
SAVOV., 5-21
SAVOVL, 5-21
SCAM switches, 3-3
/SEARCH switch, 3-60
Searching libraries, 3=60,
3-70, 3=-75, 3-80
SSEGMENT switch, 3-61
Segments loading, 3-47
Segments specifying, 3=61
F8ET switch, 3-62
Setting,
PSECT addresses, 3-62
relocation counters, 3-35,
3-62
Severity codes of messages,
B-2
J/SEVERITY switch, 3-63
Sharable save files, 1-2,
3-59
Short count, A=l
JERIP switch, 3-64
Skipping magtape, 3I-64
Space,
allocating, 3-22
SSPACE switch, 3-65
Specifying,
CPU type, 3=11
debuggers, 3I=-12
log Eile, 3-29
memory size, 3=4
modules, 3I-213
number of links, 3-32
plot file, 3-52
segments, 3=61
upper bounds, 31-25
version numbers, 3-T8
specifying job names, 3-58
Specifying memory size, 3-9
specifying start addresses,
3-686
Start addresses,
specifying, 3-66
SSTART switch, 3-66

INDEX (CONT.)

Starting,

execubion, 3=1%9

LINK, 3=1
Subroutine,

FUNCT., 5-12; 5-25
Successor links, 5-1
SSUPPRESS switch, 3-67
Suppressing,

global symbols, 3-67

messages, 3I-17, 3-30
Switch values, 3=-4
Switches,

LINK, 31-4

SCAM, 3-3
SSYFILE switch, 3-68
Symbol,

files, 3-68, 4=6

tables, 3I=6%
symbol table,

limits, 3-74
Symbol types,

Regetting, 3-9
Symbols defining, 3-15
SSYMSEG switch, 31=-69
SEYSLIB switch, 3-T0

Temporary switches, 3I=-4
JTEST switch, 3-71
JTHMPFIL switch, 3-4
TRAMSLATE command, 3-80
TI'E'E;
diagram, 3=51
struckure, 5=1

JUNDEFINED switech, 3-72
JUNLOAD switch, 3-73

Unloading magtape, 3-73
Uppt; ggunds specifying,

FUPTO switch, 3-74
FJUSERLIBE switch, 3-75

SVALUE switch, 3=76

/VERBOSITY switch, 3-77

VYersion numbers specifying,
3-78

SVERSION switch, 3=-78

Virtual memory, 1=1

Writable links declaring,
5=-21
Writable overlays, 5=11

Index=4

Switches (Cont.)
SCAN, 3-3
FSYFILE switch, 3-6EB
Symbol ,
files, 3=-68, 4=6
tables, 1=6%
Symbol block, A=6
Symbol entry block, A-40
Symbol file block, A-317
Symbol table limits, 3-74
Symbols,
defining, 3-15
FEYMSEG switch, 3-69
FEYSLIB switeh, 3-70

Table,

EXTTAB, 5-135

INTTAB, 5-36

relocation, 5-37
Tables,

symbol, 3-89
Temporacy switches, 3-4
STEST switch, 31=-71
STMPFIL switch, 3-4
TEANSLATE command, 3-B0
Tree,

diagram, 3=51

INDEX (COKT.)

structure, 5-1

JUNDEFINED switch, 3-72
Universal file block, A-38
JUNLOAD switch, 3=73
Unloading magtape, 3=73
Upper bounds, specifying,
3=25
JUFTO switch, 3-74
SUSERLIB switch, 3-75

SVALUE switch, 3-76
JVERBOSITY switch, 3-77
Version numbers,
specifying, 3-78
SVERSION switch, 3-T78
Virtual memory, 1-1

Writable link block, A-52

Writable links,
declaring, 5=21

Writable overlays, 5=11

Index=5

TOFS-20
LINK Reference Manual
AA=41B3C-TM

READER'S COMMENTS

MOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company’s discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com-
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges-
tions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)
[User with litlle programming experience
[] Student programmer
[0 Other (please specify)

Name Date

Organization Telephone

Street

City State _______ ZipCode

or Country

—————————— Do Mot Tear - Fold Here and Tape - - — - —-———"—-"—-—"-"—--~—-~“- - - e mcmcm s s e e ——— === — o,

[E— Do Mot Tear - Fold Here and Tape ---—--=-=-=—--ccccc e cc e e cc e e c e e s e e e e e e e e === .

1

Il =
t Mecessary i
if Mailed in the :
Lnited States 1
l
I
I
I
E—
BUSINESS REPLY MAIL I
FIRST CLASS PERMIT NO. 33 MAYMNARD MASS. — :
I
POSTAGE WILL BE PAID BY ADDRESSEE [.
S

SOFTWARE PUBLICATIONS _.
200 FOREST STREET MR1-2/L12 E——
MARLBOROUGH, MASSACHUSETTS 01752 NN
I
I
|
1
1
1

Cul Along Detted Line

TOPS-20
LINK Reference Manual
AD-4183C-T1

READER'S COMMENTS

MOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com-
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges-
tions for improvement.

Did you find errors in this manual? If so, specily the error and the page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)
[] User with little programming experience
[] Student programmer
[] Other (please specify)

Name Date

Organization Telephone

Street

City State________ Zip Code —

or Country

Do Moi Tear — Fold Hereand Tape - =-=--====-===-=====—======- ===

BUSINESS REPLY MAIL

| FIRST CLASS PERMIT NO, 33 MAYNARD MASS
|

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS
200 FOREST STREET MRO1-2/1L12
MARLBOROUGH, MA 01752

Mo Mot Tear — Fold Here and Tape - e e s s s s —

No Postage
Mecessary
if Mailed in the
Urated States

