
•

•

•

•

•

TOPS-20
LINK Reference Manual
AA-4183C-TM, AD-4183C-T1

March 1983

This document describes LINK-20, the linking loader for
TOPS-20.

This document supersedes the document of the same name,
Order No. AA- 4183C- TM, published April 1982 .

OPERATING SYSTEM:

SOFTWARE:

Software and manuals should be ordered by title and order number. In the United States. send orders
to the nearest distribution center. Outside the United States. orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid- Atlantic Region Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation Digital Equipment Corporation
PO Box CS2008 Accessories and Supplies Center Accessories and Supplies Center
Nashua. New Hampshire 03061 1050 East Remington Road 632 Caribbean Drive
Telephone:(603)884- 6660 Schaumburg. Illinois 60195 Sunnyvale. California 94086

Telephone:(312)640--5612 Telephone:(408)734- 4915

TOPS-20 VS

LINK- 20 V5.1

First printing, January 1976
Revised, January 1978
Revised, April 1982
Updated, March 1983

© Digital Equipment Corporation 1976, 1978, 1982, 1983. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation . Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this documer1t.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies .

The following are trademarks of Digital Equipment Corporation :

~D~DD~D '"
DEC MASS BUS UNIBUS
DEC mate PDP VAX
DECsystem-1 O P/OS VMS
DECSYSTEM-20 Professional VT
DECUS Rainbow Work Processor
DECwriter RSTS
DIBOL RSX

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
documentation.

•

•

•

•

•

•

•

•

•

•

PREFACE

CHAPTER 1

1.1
1.1.1
1.1. 2
1.1. 3
1. 2
1. 3
1. 4

CHAPTER 2

2.1
2.2
2.3

CHAPTER 3

3.1
3.2
3 . 2 .1
3 . 2. 2
3. 3
3 . 3 .1
3 . 3 . 2
3. 3. 3
3. 3. 4
3. 3. 4 .1
3 . 3.4.2
3 .4
3. 5
3. 6

CHAPTER 4

4.1
4.2
4. 2 .1
4. 2 .1.1
4.2.1. 2
4.2.2
4. 2. 3
4. 2. 4
4. 3

CONTENTS

INTRODUCTION TO LINK

INPUT TO LINK
Object Modules .
Commands to Lin k
Libraries

OUTPUT FROM LINK .
LINK'S OVERLAY FACILITY
USING LINK

USING LINK AUTOMATICALLY

COMMAND FORMATS
COMMAND SWITCHES
EXAMPLE OF USING LINK AUTOMATICALLY

USING LINK DIRECTLY

COMMAND STRING FORMAT
SWITCHES TO LINK

Comma nd Scanne r Switches
Link Switches ...

ACCESSING ANOTHER USER ' S FILE
Using Logical Names
Giving the DEFINE Co mma nd
Using the Logical Name
Using Project-Programmer Numbers
Using the TRANSLATE Command
Using the Project-Programmer Numbe r

LIB RARIES AND SEARCHES . . .
USING EXTENDED ADDRESSING WITH LINK
EXAMPLES USING LI NK DIRECTLY

OUTPUT FROM LINK

THE EXECUTABLE PROGRAM
OUTPUT FILES . .

Executable Files . .
Format of Sharable Save Files
Program Da ta Vector
LOG Files
Map files
Symbol Files

MESSAGES . . .

iii

1-1
1-1
1-2
1-2
1-2
1-3
1-3

2-1
2-2
2-3

3-2
3-3
3- 3
3-4

3-79
3 - 79
3-7 9
3-79
3-80
3-80
3-80
3-80
3-81
3-82

4-1
4-1
4-2
4-2
4-5
4-6
4-6
4-6
4-6

CHAPTER 5

5 .1
5 .1.1
5 .1. 2
5. 2
5. 2. 1
5. 2. 2
5. 3
5. 3 .1
5. 3. 2
5.4
5. 4 .1
5. 4. 2
5. 4. 3
5.5
5. 6
5.7
5. 7 .1
5. 7. 2
5. 7. 3
5. 7. 4
5.8
5. 8 .1
5. 8. 2
5. 8. 3
5. 8. 4

APPENDIX A

APPENDIX B

B.l
B.2

APPENDIX C

INDEX

FIGURE 5-1

TABLE 2-1
B-1
B-2

CONTENTS (Cont.)

OVERLAYS

OVERLAY STRUCTURES
Defining Overlay Structur es
An Overlay Exampl e ...

WRITABLE OVERLAYS
Writable Overlay Syntax
Writable Overlay Error Messages

RELOCATABLE OVERLAYS
Relocatable Overlay Syntax .
Relocatable Overlay Messages

RESTRICTIONS ON OVERLAYS ...
Restrictions on Absolute Overlays
Restrictions on Relocatable Overlays
Re strictions on FORTRAN Overlays

SIZE OF OVERLAY PROGRAMS ..
DEBUGGING OVERLAYED PROGRAMS .
THE OVERLAY HANDLER

Calls to the Overlay Handler
Overlay Handler Subroutines
Overlay Handler Messages
The FUNCT. Subroutine

THE OVERLAY (OVL) FILE .
The Directory Block
The Link Number Table
The Link Name Table
The Overlay Link ...

REL BLOCKS

LINK MESSAGES

DESCRIPTION OF MESSAGES
LIST OF MESSAGES

JOB DATA AREA LOCATIONS SET BY LINK

FIGURES

5-1
5-2
5-4

5-11
5-11
5-11
5-11
5-12
5-12
5-12
5-12
5-13
5-13
5-14
5-14
5-14
5-15
5-16
5-21
5-25

.5-30.l

.5-30.2
5-31
5-31
5-32

B-1
B-4

Index-1

Example of an Overlay Structure 5-2

TABLES

Switches for System Commands
Severity Codes
Special Message Segments

iv

2-2
B-2
B-3

•

•

•

•

•

•

•

•

•

PREFACE

This manual is the reference document for LINK, the TOFS-20 linking
loader. The manual is aimed at the intermediate to highly-experienced
applications programmer, and contains complete documentation of LINK.

Chapter l provides a general introduction to LINK.

Chapter 2 describes automatic use of LINK through one of the system
commands DEBUG, EXECUTE, or LOAD. This chapter is sufficient for most
loading tasks .

Chapter 3 describes direct use of LINK. This discussion is useful for
large or complicated loads. This chapter also discusses libraries and
library searches.

Chapter 4 describes output from LINK: executable programs, most
output files, and LINK messages. Included are descriptions of the
internal format of sharable save (EXE) files.

Chapter 5 discusses overlays, including overlay structures,
overlay-related output files, the overlay handler and its messages,
and the FUNCT. subroutine. This chapter has an extensive example of
an overlay load. Many of the elements of this example are of interest
outside the context of overlays.

Appendix A gives a technical description of the output from the
language translators, which is in the form of REL Blocks.

Appendix B lists all LINK messages.

Appendix C describes the job data area.

The following TOPS-20 documents are also useful:

Document Order Number

TOPS-20 User's Guide AA-4179C-TM

TOPS-20 Commands Reference Manual AA-51158-TM

MACRO Assembler Reference Manual AA-4159C-TM

FORTRAN Language Manual AA-41588-TM

COBOL-68 Language Manual AA-50578-TK

COBOL-74 Language Manual AA-50598-TK

TOPS-10 / TOPS-20 SPEAR Manual AA-J833A-TK

DECsystem-10 / DECSYSTEM-20
Processor Reference Manual AA-H391A-TK

v

I

•

•

•

•

•

•

•

•

•

CHAPTER 1

INTRODUCTION TO LINK

LINK is the TOPS-20's linking loader. It merges independently
compiled or assembled modules into a single executable program .

This merging process requires LINK to perform the following functions:

1. Perform the relocation calculations by converting relocatable
addresses to virtual addresses, and by binding segments and
PSECTs to addresses.

2. Resolve global symbol references by global chain fixups,
Polish fixups, and library searches.

3. Produce an executable program by providing some JOBDAT
information and a DDT runtime symbol table .

The virtual address space used for loading your program is not
hardware memory. During loading and execution , the system simulates
this virtual space by swapping code between disk and hardware memory
as required. For simplicity, we will refer to the virtual address
space as memory.

1.1 INPUT TO LINK

The primary input to LINK is the output from the language translators;
it is a binary file containing machine language code corresponding to
your program, called object modules. Other input may include your
commands to LINK, and libraries containing object modules.

1.1.1 Object Modules

An object module is output from a language translator; it is part of
a binary file (REL file) containing machine language code
corresponding to your program . This file is formatted into blocks,
called REL Blocks, that LINK recognizes and can handle appropriately.
The format of each REL Block Type is described in Appendix A.

Most object modules contain relocatable code. This means that the
addresses in the modul e are relative to the zero address. LINK loads
the relocatable code at an arbitrary memory address, but adds a
constant to each address referenced in the program. This resolves
relative addresses to absolute addresses .

1-1

INTRODUCTION TO LINK

Using relocatable code simplifies your programming task and helps the
system operate more efficiently . Your programming task is simpler
because you need not worry about the loading addresses of your
programs. System operation is more eff icient because LINK can load
your program at any convenient place in memory.

Besides relocating and loading your object modules,
va lue s for global symbols: those that are defined in
used in others . LINK also resolves references to entry
when modules containing these symbols are loaded.

LINK resolves
one module and

nam e symbols

Using symbols in your programs makes your programming simpler. If you
need to r ev ise a program, it is much easier to change the value of a
symbol than to change each occurrence of the value . This is
especially important for global symbols . You need only change the
value in the defining module; the other modules do not ne ed
retranslation.

1.1.2 Commands to Link

LINK is controlled during loading by the command
These strings consist of fil e specifications
command strings are discuss e rl in Chapter 3.

1.1.3 Libraries

strings you
a nd switches.

give.
LINK

A library is a file containing object modules that may be needed to
resolve r e ferenc es in your program . For exa mpl e , the FORTRAN library
FORLIB contains sub routines that ma y be referenced by the output from
the FORTRAN compiler . Wh e n loading FORTRAN-compiled code , LINK
usually searches this library to satisfy any unresolved subroutine
calls . Most l a nguage translators have their own libraries.

You can construct your own librari e s, a nd have LINK
nec essa ry subroutines. Libraries and searching
Section 3.4.

search them for
are discussed in

1.2 OUTPUT FROM LINK

The primary output from LINK is the executable program, called the
core image. In the core image, all add r esses are resolved to absolute
memory locations, and all symbols (including subroutine calls) are
resolved to absolute values or addresses .

This core image may be executed immediately or saved as a
save (EXE) file. The EXE file may be created automatically
This occurs if you specify / SAVE when you run LINK, or if the
is too complex to be left in core with LINK.

sharable
by LINK.

program

You can also execute the core image under the control of a debugging
program.

During its processing, LINK generates messages, which are output to
your terminal or a log file. Some of these give information about
LINK's operation; some warn you about possible problems; some
identify errors. LINK messages are described in Appendix B.

1-2

•

•

•

•

•

•

•

•

•

•

INTRODUCTION TO LINK

At your option, LINK can generate three special files: the map file,
the log file, and the symbol file. The map file contains information
about symbols in your program modules. The log file records LINK's
messages so that you can save them. The symbol file contains a symbol
table for the load and has a file extension of .SYM. LINK's output
files are described in Chapter 4.

1.3 LINK'S OVERLAY FACILITY

If your program is larger than your available memory, you can use
LINK's overlay facility to make it fit in memory. To do thig, you
deffne a tree structure for the program's modules. Then at execution
time, only part of the tree is in memory at one time. This reduces
the amount of memory needed for execution. See Chapter 5 for a
discussion on overlays .

1.4 USING LINK

You have two ways to use LINK:

1. You can use LINK automatically by means of the LOAD, EXECUTE,
or DEBUG system commands. This is the easiest and best way
to load many programs. Chapter 2 describes automatic use of
LINK.

2. You can use LINK
command. This
complicated loads,
3 discusses direct

directly by means of the LINK system
is necessary only for very large or
such as those involving overlays. Chapter
use of LINK.

1-3 March 1983

I
I

•
I

I

•

•

•

•

•

•

CHAPTER 2

USING LINK AUTOMATICALLY

The system commands LOAD, EXECUTE, and DEBUG invoke LINK
automatically. Each of these commands uses a simple command string;
the system converts the string into more complicated LINK commands .

This discussion of the LOAD, EXECUTE, and DEBUG commands does not
attempt to describe them completely. Only those switches applying
directly to loading will be discussed here. For a full discussion ,
see the TOPS-20 Commands Reference Manual.

These system commands invoke LINK:

• The LOAD command uses LINK to load your object modules into
memory, but does not execute the progra~ . Before loading,
your source files are compiled, if necessar y ; this
compilation will occur if there are no object modules for the
specified source files, or if the object files are older than
their source files.

• The EXECUTE command us es LINK to load your program, and then
executes the loaded program. Be for e loading, your source
files are compiled, if necessary .

• The DEBUG command works like the EXECUTE command, except that
your program is executed under th e control of a debugging
program. The debugging program that is loaded depends on the
type of program being loaded. For a COBOL program, COBDDT is
loaded. For a FORTRAN prog ram, FORDDT is load ed . For an
ALGOL program, ALGDDT is load ed . For any other language , DDT
is loaded . The sys tem uses the fil e type to determine the
language in which the program is written. Therefore, it is
highly recommended that you use standa rd file types when
naming the files of your programs. Standard fil e types are
listed in the appropriate Commands Manual for the operating
system.

2.1 COMMAND FORMATS

The formats for the LOAD, EXECUTE, and DEBUG commands are the same.
Each can accept a list of input file specifications and switches. The
format for these commands is:

@command / switches input-spec / s witches , input-spec / switches, ...

Where the command is one of the three system commands (LOAD, EXECUTE,
or DEBUG), input-spec is th e file specification of the program you
want to load, and the switches are any of the valid switches for the
command .

LINK Version 5 2-1 April 1982

I

USING LINK AUTOMATICALLY

If you separate the input file specifications with commas, each source
file will be compiled into a separate object file. If you separate
the input fil e specifications with plus signs, they will be compiled
into a single object file.

Section 2.3 shows examples of using LINK automaticall y .

2.2 COMMAND SWITCHES

You can use s witc he s with the LOAD, EXECUTE, a nd DEBUG commands to
control LINK's loading. Table 2-1 briefly describes some of the
command switches that appl y to LINK. Re fer to the TOPS-20 Commands
Reference Manual for complete descriptions of the switches for these
commands.

Switch

/ COMPILE

/ DDT

/ MAP

/ NOCOMPILE

/ NOSEARCH

/ NOSYMBOLS

/ SEA RC H

Ta bl e 2-1
Switches for System Commands

Meaning

Forces comp il a t io n of so ur ce f il es eve n if a
s uffici e ntl y r ecen t REL fil e e xists .

Loads DDT. This supe rsedes the default debugger
s e l ec tion, which is usua lly based on the file
type of the first fil e i n th e command string .

Produces a map fi l e at t he e nd of loading . This
f il e s how s all global symbols loaded .

Compiles sour ce fil es on l y if thei r REL files
are old e r tha n the source files. / NOCOMPILE is
th e d e f a ult.

Suspends the ef f ect of an ear li er global / SEARCH
s wi tc h. Thi s i s the defa ult ac ti on .

Pr eve nts load ing of symbo l t ables wi t h thei r
modul es .

Loads only the modul es from the specif i ed
lib r ary file t hat satisfy global r e f e r e nces in
t he p r ogram .

You ca n use a ny LI NK program s witches wi th t he system comma nd s LOAD ,
EXECUTE , or DEBUG by using a special s witc h form at . This format
r equires that you use a pe rcen t sig n (%) i nstea d of the usual slash
(/) , a nd t hat the e n tire switc h specification be e nclosed in doub le
quotat ion mar ks ("). For e xample , yo u can pass the / LOG s witch to
LINK by us ing t he comma nd :

@EXECUTE MYPROG %" LOG "

Used d ir e ct l y with LINK, t he comma nd s tring s wo uld inc lude :

*M YPROG/ LOG

2- 2

•

•

•

•

•

•

•

•

•

•

USING LINK AUTOMATICALLY

If you give more than one switch in this format, succeeding switches
within the quotation marks must have the usual slashes:

@EXECUTE MYPROG %"LOG/ MAP"

LINK program switches are described in Section 3.2.

2.3 EXAMPLE OF USING LINK AUTOMATICALLY

For this example, the f o llowing program, named MYPROG.FOR, is used:

TYPE 10
10 FORMAT (' This is written by MYPROG')

STOP
END

Th e following e xampl e s hows a n interactive e xecu tion of the progr am
using the EXECUTE command:

@EXECUTE MYPROG. FOR (fill)
FORTRAN:MYPROG
MAIN.
LINK: Loading
[LNKXCT MYPROG Executio n)

This is written by MYPROG .

END OF EXECUTION
CPU T IM E : 0 . 0 2 E LAPS ED T IM E : 0 . 0 5
EXIT

@

The following example shows how to load a progr a m for debugging using
the DEBUG command:

@DEBUG MYPR OG . FOR (fill)
FORTRAN : MYPROG
LINK: Lo ad ing
[LNKDEB FORDDT Execution)

STARTING FORTRAN DDT

>>START

This i s written by MYPROG.

END OF EXECUTION
CPU TIME: 0.01 ELAPSED TIME: 0.03
EXIT

@

2-3

I

•

•

•

•

•

•

•

CHAPTER 3

USING LINK DIRECTLY

If you have a loading task that cannot be handled conveniently by the
EXECUTE, LOAD, or DEBUG system commands (such as loading overlays or
PSECTs), you can load your program by using LINK directly. To do
this, you must already have compiled or assembled all required object
modules.

To use LINK directly, type LINK to the system. LINK will respond with
an asterisk:

@LINK @)
*

Continue typing command strings, ending each one with a carriage
return. For example,

@LINK @)
*/ OVERLAY(@'.)
*TEST/LINK: TEST (@'.)
* /NODE:TEST SPEXP/ LINK:SPEXP (@)
*

A command string consists of file specifications and switches. You
can continue a command string to the next line by typing a hyphen
immediately before pressing carriage return; LINK continues the line
by responding with a number sign (#). For example,

@LINK(@'.)
*MYPROG, MYMAP / MAP /CONTENTS: ALL- .(@'.)
#/ERRORLEVEL:O/LOG/LOGLEVEL:S (@)
*

The use of continuation lines is more efficient as the command scanner
must be invoked for every distinct command string.

You can include a comment on a command line by beginning the comment
with a semicolon; the remaining text on the line is not processed by
LINK.

I

When LINK sees the end of the command string (a carriage return), it I
processes the entire string, then prints an asterisk to begin the next
line. This processing continues until one of the following occurs:

1. LINK finds a /GO switch in a command string. It then
completes loading and exits to system command level (if you
did not specify execution), or passes control to the loaded
progr am for e xecution •

3- 1 March 198 3

I

USING LINK DIRECTLY

2. A fatal error occurs. LINK prints an error message and exits
to system command level.

3. A / RUN switch is encountered.

4. Either / EXIT or AZ is encountered.

3.1 COMMAND STRING FORMAT

A LINK command string can contain file specifications, LINK switches,
and command scanner switches. Command scanner switches are described
in Section 3.2.l. LINK switches are described in Section 3.2.2.

Some LINK switches take
switches are suffixed
specifications specify
command string tells
generate a saved output

output file specifications as arguments; some
to output file specifications. Other file
input files. For example, the following

LINK to use an input file called MYREL.REL to
file called MYEXE.EXE:

*MYREL,MYEXE/ SAVE/ GO

LINK supplies the missing parts of the file specifications from its
defaults.

DEFAULTS

For output files, the defaults are:

device

filename

type

directory

logical name (DSK:)

name of last module with start
then nnnLNK where nnn is
leading zeros if necessary.

log file
map file
overlay file
plotter file
executable file
symbol file

LOG
MAP
OVL
PLT
EXE
SYM

address or· , if none,
your job number· , with

a PPN corresponding to a directory. Refer to Section
3. 3.

For input files, the defaults are:

device

type

logical name (DSK:)

REL

directory a PPN corresponding to a directory.
to Section 3. 3.

Refer

You can change these defaults by using the /DEFAULT switch (see
Section 3.2.2).

You can have LINK read command strings from an indirect command file.
To do this, prefix an at-sign (@) to the command file specification.
For example, the following commands tell LINK to read all command
strings from the file LNKPRG.CCL. (.CCL is the default file type for
indirect command files):

@LINK (Bill
*@LNKPRG

March 1983 3-2

•

•

•

•

•

•

USING LINK DIRECTLY

3.2 SWITCHES TO LINK

LINK's handling of files depends on your use of LINK switches. There
are two sets of switches to LINK. The first set of switches (command
scanner switches) are optional switches that define your request to
the system command scanner. These are described in Section 3.2.1.
The second set of switches are switches to LINK that you can use to
control and modify the linking and loading process. These are
described in Section 3.2.2.

3.2.1 Command Scanner Switches

The system SCAN module
programs, one of which
included with LINK source
your command strings for
in order to run LINK.

scans command line s for va rious system
is LINK. Th ere fore the module LNKSCN is

files. You can include SCAN switches in
LINK, but none of these switches is required

The following SCAN switches are mean ingful to LINK.
SCAN switches, which are listed in LINK's HELP file,
LINK.

The remaining
are ignored by

Like LINK switches, SCAN switches are preceded by a slash (/), and can
be abbreviated up to their first unique characters.

Switch

/ EXIT

/ HELP:arg

/ MESSAGE:k eyword

/ RUN:file

LINK Version 5

SCAN Switches Meaningful to LINK

Meaning

Exits after loading, but leave LINK' s core image
in place. This switch is ignored if you have
specified program execution or requested that
th e contents of memory be included with the
loaded program.

Displa ys the LINK.HLP file. Th e arguments are
SWITCHES, to see a list of LINK switches, and
TEXT, to s ee the default HELP text for LINK.

Displ ays messages in the format specified by
keyword. Th e keywords and their meanings are:

PREFIX

FIRST

CONTINUATION

Displays only the message code
from SCAN, which is of the
form SCNxxx.

Displays the prefix and
short message.

Displays the prefix a nd
longer messag e .

a

a

Runs the specified program after loading is
finished. Thi s switch is ignor ed if you have
specified program executio n or r equested th a t
the contents of memory be included with the
loaded program .

3-3 April 1982

USING LINK DIRECTLY

3 . 2 . 2 Li nk Sw i tches

This section lists the switches that may be used to i nstruct LI NK to
take special action while loading your progra ms . The switc hes are
describe d in thi s section in alphabetical order , and for each sw i tc h
the following inf o rmation i s shown, if appropriate :

FORMAT
FUNCTION
EXAMPLES
OPT I ONAL NOTATIONS
RELATED SWITCHES

Switch es can be abb r ev iated to save typing. Howeve r , in most cases ,
th e switch must include e nough cha ract e rs to make it unique from other
switches . For examp l e , the s wit c h / NOSYMBOL cannot be abbreviated to
/ NOSY , because this r es ult in a conflict with the switch / NOSYS LI B.
Howe ve r, / NOSYM is a uniqu e se t o f characters, and thus is is a l ega l
a bbr ev i a ti on for / NOSYMBOL.

Certain s wit ches ca n be abb r ev i ated to a single letter; th ey are :

/ D for / DEBUG
/ E for / EXECUTE
/ G for / GO
/ H for / HELP
/ L for / LOCA LS
/ M for / MAP
/ N f or / NOLOCA L
/ S for / SEARCH
/ R f o r / TEST
/ U f or / UNDEF I NE
/ V f or / VERSION

Many switches ac cept a va lu e that may be spec ifi ed in dec imal
is the default) or oct a l. I f the value ca n be specified i n
this is noted in the OPTIONAL NOTATIONS section of the
description. To spec if y an octal value , t ype a pound sign (#)
th e octal number . For e xa mple , / ARSIZ E:39 ca n be s pe cified in
as /A RSIZE: #47 .

(wh i ch
octal,
switch
before
octal

Some switches can be used eithe r locally or globally (i n partic ul a r ,
/ LOCA LS , / NOLOCAL , / SEARCH , a nd / NOSEARCH). This means that if the
sw itch is suffixed to a fil e specification, it applies on l y to that
f il e ; if it is not suff ix ed to a fil e s pec ificatio n, it app l ies to
the files that fo ll ow . Fo r examp l e , in the following command strings
/ SEARCH i s used both locally a no globall y :

1. *F ILE1 , FILE2 / SEARCH , FILE3

2 . *FILE4 , / SEARCH FILE5,FILE6

In t he first li ne , / SE ARCH
FILE2 ; only that fil e is
/ SEARCH i s not suff ix ed t o
fil es nam ed in th e comma nd

is s uffixed to the file specif i cation
loaded in s ea r c h mode . In the second line ,
a fil e s pec ification ; a l l the remaining
string a r e to be searched .

3- 4

•

•

•

•

•

•

•

•

•

•

USING LINK DIRECTLY

In general, a switch used globally is disabled at the end of its
command string, unless it is overridden by another switch. The second
switch, if used locally, will override the first only for the local
file. If the second switch is us ed globally, it will persist for the
following files. For example, in the following command string, a
globally-used switch (/ SEARCH) is overridden by a locally used switch:

* / SEARCH FILE1,FILE2 / NOSEARCH,FILE3

In this command string, FILEl and FILE3 will be loaded in search mode,
but FILE2 will be loaded normally.

NOTE

The effec ts of a global switch on the
same line as a / GO s witch persist beyond
the / GO switch and apply to any modules
loaded during library se2rches .

Th e following pages co nt ain the s witches and their descriptions,
listed in alphabetical order .

3-5 April 1982

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

USING LINK DIRECTLY

/ARSIZE

/ ARSIZE:n

Where n is a positive decimal integer.

Sets the size of the overlay handler's table of
multiply-defined global symbols. Use this switch if you
have received LNKARL, LNKTMA, and LNKABT messages in a
previous attempt to load your program. These messages
will give instructions for the argument to the /ARSIZE
switch.

* / ARSIZE:39 00)

*
Allocates 39 words for the multiply-defined global symbol
table in each link of an overlay structure.

You can specify the table size in octal.

3-6

•

•

•

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

/BACKSPACE

/ BACKSPACE:n

Where n is a positive decimal integer.

Backspaces over n files on the current tape device.
switch is ignored for non-tape devices.)

*MTAO: / BACKSPACE:3 ffiDJ
*
Backspaces magtape MTAO: by three files.

If you omit n, it defaults to 1.

/ MTAPE, / REWIND, / SKIP, / UNLOAD

3-7

(The

FORMAT

FUNCTION

EXAMPLES

OPT IO NAL
NOTATIONS

USING LINK DIRECTLY

/ COMMON : name:n

Wh ere name is up
cha racters .

/ COMMON

to six

n = a positive decimal integer .

S I XBIT- compat i ble ASCII

Alloc a tes n words of l abe l e n COMMON storage for FORTRAN
and FORTRAN- compatible programs . The COMMON label is a
name , which becomes defined as an i nternal symbo l, and is
ava il ab l e to other p rogr ams as an external symbol.

For unlabe l ed COMMON storage, use COMM . as the name , or
s imply omit th e name .

You ca nnot e xpand a given COMMON area during loading . If
your program modules define a g i ve n COMMON a r ea to have
diff e rent sizes , the module giving th e largest de f inition
must be load e d first . If the / COMMON switch g i ves the
large st de fini tion , it must p r ecede the loading of the
modul e s .

* / COMMON : A:lO OO (fill)
*

Cr e 2t e s a l ab e l e d COMMON a r ea o f 1000 words .

*/ COMM ON: . COMM . : lO OO(fill)
*

Cr ea t e s a n unl a be l e d COMMON a r ea of 1000 word s .

* / COMMON : : lOOO (fill)
*

Cr ea t e s a n unl ab e l e d COMMON a r e a of 1000 words.

You c a n s pec ify the numbe r of word s in oc t a l .

3- 8

•

•

•

•

•

•

•

•

•

FOR MAT

FUNC TION

EXAMPLES

OPTIONAL
NOTATIONS

RE LATED
SWI TCHES

USING LINK DIRECTLY

/ CONTENTS

/ CONTENTS: (keywo r d , . . . ,keyword)

Ea ch ke yword g i ves a symbo l t ype t o be inc l uded in the map
fil e if t he fil e is g enerated . To gene r a t e t he map file ,
use the / MA P switch .

Th e ke ywords AL L, NONE, a nd DEFAU LT r e s e t
type s . Othe rwi se , usi ng t he / CONT ENTS switch
tho s e symbo l t ypes spec ifi ed by keywo r ds .
f o ll owing l is t of ke ywo rds , the d efa ults are i n

all s ymbol
r e se t s o n l y

In the
boldface:

ABSOLUTE
ALL
COMMON
DEFAU LT
ENTRY
GLOBAL
LOCA LS

NOABSO LUTE
NOCOM MON
NOENTRY
NOGLOBAL
NO LOCAL
NONE
NORE LOCATA BL E
NOUNDEFINED
NO ZE RO

RELOCATABLE
UNDEFINED
ZERO

Include absolute symbols.
Inc lude a ll symbol s .
Include COMMON symbols.
Reset to LINK ' s defau l ts .
I nc l ude en t r y-name symbols .
Include global s ymbols.
Inc lude l ocal symbo l s . The
symbo l s ca nnot be i nc l uded in
file unless th e / LOCA LS sw i tch
give n.
Exc l ud e abso l ute symbols .
Exclude COMMON symbols .
Exc l ude e ntry-name symbols .
Exc l ude global symbo l s .
Exclude loc al symbols.
Exclude all symbo l s .
Exc l ude relocat ab l e symbols .
Exc l ude undefi ned s ymbol s .

l oca l
the map
i s also

Exc lude symbols in ze ro-l e ngth
p r ogr ams . (a zero-length p r og r am
conta in s no code or data ; it cont a ins
only symbol defin i tio ns .)
Inc lud e r e loca t ab l e symbol s .
Include und e fined symbols .
In c l ude symbols in ze ro - l eng th
programs . (a ze ro - l e ngth program
con t a ins no code or data ; it contains
o nly symbol de finition s .)

The settings for the / CONTENTS switch ope rate by
ex c l usion , not incl usio n . For e xa mpl e , if both the
NOG LOBAL and RELOCATABLE set tings are i n force , al l global
symbo l s are exc lud ed r egard l e ss of their r e locat a b i lity .

*/ CONTENTS : (NOCOMMON , NO ENTRY) (fil]

*

Exc l ud es COMMON and e ntry- name symbols .

*/CONTENTS : (A. LL) (fil]

*
In c lud es a ll s ymbols .

You ca n omit par ent heses i f you qi ve o nly o ne keyword .

/ MAP

3-9

I

FORMAT

FUNCTION

EXAMPLE

RELATED
SWITCHES

USING LINK DIRECTLY

/ COUNTER

/COUNTER

Requ ests t e rmin al typeout of information
relocation counters . Th e information that
gives th e nam e , initial value , cur r e nt va lu e,
va lu e of each counter .

about th e
is printed
a nd limit

/ COUNTER may be used to determine the size of overlays
when loading large programs that might be too larg e for
the allocated memory space. Refer to Section 5 .4 for more
information .

@LINK Ifill
*/LI MI T : . LOW . : 5 0 0 0 \ill:
*/LI MI T : . HIGH . : 402000 1fill
* /COU NTER ®1J
[L NKRLC RELOC . CTR .

. LOW .

.~ IGH .

/ NEWPAGE, / SET

INTTr~L V~LUE

0
400000

3-1 0

CURRENT V~LUE
14 0
400010

LIMIT VALUE
5000
4020001

April 1982

I

•

•

•

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLE

OPTIONAL
NOTATI ONS

/ CPU : keyword

Keyword :

USING LINK DIRECTLY

KAlO
KilO
KLlO
KSlO

/ CPU

This switch is used to overrid e LINK ' s handling of the
processor information found in the . REL files being
loaded . (See the description of the type 6 block in
Appendix A) . Or dinarily LINK prints a warning i f all . REL
fi l es bei ng loaded togethe r do not have identical CPU
types . This switch can be used either to make LINK flag
certain modul e s built for a specific CP U type (by
specifying all but that CPU t ype a s keywords t o / CPU) or
to suppress LINK ' s warning me s sag e (by spec i fy ing all the
CPU types associated with the . REL files being l oaded) .

* /CPU : KilO~

*
Will cause LINK to issue the %LNKCCD me ssag e if any
modules with the KLlO CPU type a r e encounte r ed .

/ CPU : (keyword , keyword)

LI NK Ve rsion 5 . 1 3- 11 March 198 3

I

I

I

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/DDEBUG

/ DDEBUG:keyword

Specifies a default debugging program to be loaded if the
/ DEBUG or / TEST switch appears without an argument.

The permitted keywords and
specify are listed below.
are supported by DIGITAL.

the debugging programs they
Only those printed in boldface

A LG DDT
ALGOL
COBDDT
COBOL
DDT
FAIL
FORDDT
FORTRAN
MACRO
PASCAL
PAS DDT
SAIL
SDDT
SIMDDT
SIMULA

Specifies ALGDDT as the default.
Specifies ALGDDT as the default.
Specifies COBDDT as the default.
Specifies COBDDT as the default.
Specifies DDT as the default.
Specifies SDDT as the default.
Specifies FORDDT as the default.
Specifies FORDDT as the default.
Specifies DDT as the default.
Specifies PASDDT as the default.
Specifies PASDDT as the default.
Specifies the SAIL debugger as the default.
Specifies the SAIL debugger as the default.
Specifies SIMDDT as the default.
Specifies SIMDDT as the default.

* / DDEBUG: FORTRAN (filj)
*
Specifies FORDDT as the default debugging program for the
/ DEBUG or / TEST switch.

/ DEBUG, / TEST

LINK Version 5.1 3-12 March 1983

I

•

•

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCH.ES

USING LINK DIRECTLY

/DEBUG

/DEBUG: keyword

Requests loading of a debugging program and sets the start
address for execution as the normal start address of the
debugging program. The / DEBUG switch also sets the
/EXECUTE switch because it is assumed that the program is
to be executed. The /GO switch is still required to end
loading and begin execution.

The /DEBUG switch turns on the / LOCALS switch for the
remainder of the load. You can override this by using the
/ NOLOCAL switch, but the override lasts only during
processing of the current command string.

Local symbols for the debugging program itself are never
loaded .

If debugging overlaid programs, you must specify / DEBUG
when loading the root node. (Refer to Section 5.4 for
more information.)

The permitted keywords and the programs they load
printed in boldface listed below. Only those

supported by DIGITAL.

ALGDDT Loads ALGDDT.
ALGOL Loads ALGDDT •
COBDDT Loads COBDDT.
COBOL Loads COBDDT.
DDT Loads DDT.
FAIL Loads SOOT.
FORDDT Loads FORDDT.
FORTRAN Loads FORDDT.
MACRO Loads DDT.
PASCAL Loads PASDDT.
PAS DDT Loads PASDDT.
SAIL Loads the SAIL debugger.
SOOT Loads the SAIL debugger.
SIMDDT Loads SIMDDT.
SIMULA Loads SIMDDT.

are
are

If you give no keyword with /DEBUG, the default is either
DDT or the debugging program specified by the / DDEBUG
switch.

*/DEBUG: DDT @

*
Loads DDT, sets the /EXECUTE s witch , and specif i es that
the execution will be controlled by DDT.

Abbreviate /DEBUG to / D.

/DDEBUG, /TEST

LINK Version 5.1 3-13 March 198 3

I

I

I

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

USING LINK DIRECTLY

/DEFAULT

/ DEFAULT:keyword f ilespec
filespec/DEFAULT:keyword

Changes default specifications for input or output files.
The defaults specified remain in effect until changed by
another / DEFAULT switch.

The keywords allowed are:

INPUT Specifies the defaults for input file
specifications.

OUTPUT Specifies the defaults for output file
specifications.

For input files, the initial defaults are:

device
file type
directory

OSK:
REL
User's connected directory

For output files, the initial defaults are:

device
filename
directory

OSK:
Name of main program
User's connected directory

*/ DEFAULT:INPUT .BIN lBQ)
*
Resets input file default extension to BIN.

*/DEFAULT:OUTPUT MTAO: lBQ)
*

Resets output file default device to MTAO:.

If you omit the keyword, INPUT is assumed.

3 - 14 March 19 83

•
I

•

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

OPTIONAL

NOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

/DEFINE

/ DEFINE: (symbol:value, ... ,symbol: va lue)

Assigns each symbol the decimal value following it. This
causes them to be global symbols. You can use the
/ UNDEFINED switch to get a list of any undefined symbols,
and then define them with / DEFINE.

Defining an already defined symbol with /DEFINE generates
an error message.

*/UNDEFINED 00)
[LNKUGS 2 UNDEFINED GLOBAL SYMBOLS)

A 400123
IGOR 402017

* / DEFINE: (A:591,IGOR:l) OO)

*
Gives the decimal values 591 and 1 to A and IGOR,
respectively.

You can give the value in octal by typing # before the
value.
You can omit the parentheses if you define only one
symbol. Specifying / DEFINE:FOO:BAR will define FOO to
have the value of BAR if BAR is already defined .

/ UNDEFINED, / VALUE

3-15 March 198 3

I

I

I

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/ENTRY

/ ENTRY

Requests terminal typeout (in octal) of all entry name
symbols loaded so far. Each entry name symbol will have
been defined by an ENTRY statement (MACRO, FORTRAN, or
BLISS), a FUNCTION statement (FORTRAN), a SUBROUTINE
statement (FORTRAN, or COBOL), or a PROCEDURE declaration
(ALGOL) .

If you are using the overlay facility, / ENTRY requests
only the entry name symbols for the current link.

* / ENTRY @
[LNKLSS LIBRARY SEARCH SYMBOLS (ENTRY POINTS))

SQRT. 3456
*
/ NO ENTRY

3-16 March 1983

•

•

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/ERRORLEVEL

/ ERRORLEVEL:n

Suppresses terminal typeout of LINK messages with message
level n and less, where n is a decimal number between 0
and 30 inclusive. You cannot suppress level 31 messages.
LINK's default is / ERRORLEVEL:lO.

See Appendix B for the level of each LINK message.

*/ ERRORLEVEL:lO (fil]
*

Suppresses all messages of level 10 and less .

* / ERRORLEVEL:O (fil]
*
Permits typeout of all messages.

/ VERBOSE

3-17

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

/EXCLUDE

/EXCLUDE: (subroutine, ... ,subroutine)

Prevents loading of the specified modules from the current
file even if they are required to resolve global symbol
references. You can use the /EXCLUDE switch for any of
the following purposes:

•

•

•

If a library has several modules with the same search
symbols, you can select the module you want by
excluding the others.

You can prevent modules from giving multiple
definitions of a symbol by selectively exclud ing one
or more of them.

In defining
loading of
it.

an overlay structure, you can delay
a module until a later link by excluding

*/SEARCH LIBFIL.REL / EXCLUDE: (MOD1,MOD2) {fil!l
*
Searches LIBFIL as a library but prevents loading of MODl
and MOD2 even if they are referenced.

You can omit the parentheses if you specify only one
module.

/ INCLUDE

3-1 8

•

•

•

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWI TCHES

USING LINK DIRECTLY

/EXECUTE

/ EXECUTE

Tells LINK that the loaded program is
beginning at its normal start address.
until a / GO switch is found.

to be executed
Loading con tinues

The / EXECUTE and / DEBUG switches are mutually e xc l usi ve .

* / EXECUTE (fil]

*
You can abbreviate / EXECUTE to / E.

/ DEBUG, / GO, / TEST

3- 19

I FORMAT

FUNCTION

EXAMP LES

OPTIONAL
NOTATIONS

USING LINK DIRECTLY

/FRECOR

/ FRE CO R:nK

Where n is a posit ive decimal intege r.

Requi r es LIN K to ma int a in a mini mum amount of fre e memor y
a ft er a ny expa ns io ns. LINK' s default free memory is 4K.
If yo u use the / FRECOR : nK sw itch , LINK compute s n times
1024 word s a nd mai ntai ns th e resulting number of words of
free memory , if poss i ble.

If the modules to be l oaded are quite larg e , a l arger
a mo unt of fr ee memory avo i ds some movi ng of a reas.

LINK has n ine a r e as that may be expa nd ed du ring load ing:

l. ALGOL symbo l informa tio n (AS).

2 . Bound globa l symbo l s (BG).

3 . Dynamic area (DY).

4. Fixup a r ea (FX).

S. Gl oba l symbol t ab l es (G S) .

6 . User ' s high s e gme nt code (HC).

7 . Us <> r ' s l ow segme nt coi:'l e (LC) .

8 . Lo ca l symbol t abl es (LS) .

9 . Re l ocation t a bl es (RT) .

Each of th e s e ar e as has a l ower bound, an act ual upper
bound , a nd a maximum upper bound . LINK normally maintains
space be twee n th e a ctua l a nd ma xim um upper bou nds for each
ar ea . Th e tota l of these n in e s paces is at least the
s pace gi ve n by the / FRECOR sw i tch, if possible .

LINK r ecove r s fr ee c or e by c onca t e na ting th ese n ine fre e
a r ea s . Wh e n all this r ecove r ed space is used , one or more
of the nine a r e a s overflows to d i s k, a nd free core is no
long e r ma int a ined.

* / FR ECOR : 7K (filf)

*
Mai n ta in s 7K of free c or e , if poss ibl e .

You ca n spe c ify the free core i n octa l.

LI NK Ve rs i on 5 3-2 0 April 1 982

•

I

•

•

•

I

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

/GO

/ GO

Ends loading after the current module. LINK then performs
any required libra r y searches, ge nerates any required
output files, and does one of the following:

• Begins executio n at the normal sta rt address of the
loaded program (if you used / EXECUTE).

• Begins execution a t the start address of the deb ugging
program (if you used / DEBUG, or both / TEST and
/ EXECUTE).

• Exits to the monitor (if you used no exec ution
s witch) .

*MYPROG/ EXECUTE/ GO (fil]

[LNKXCT MYPROG EXECUTION)

Be gins e xe cution of th e load ed pr og r am a t it s nor ma l s tart
addr e s s .

*MYPROG / OEBUG/ GO (fil]

[LNKDEB DDT EXECUTION l

Be gin s e xe cution of the l oad ed prog r a m a t the no r ma l s t a rt
addr es s of DDT.

Abbreviate / GO to / G.

/ DEBUG, / EXECUTE , / TEST

3- 21

FORMAT

FUNCTION

EX AMPLES

USING LINK DIRECTLY

/HASHSIZE

/ HASHSIZE:n

Where n is a positive decimal integer.

Gives a minimum for the initial size of the global symbol
table. LINK selects a prime number larger than n for the
initial size.

If you know that you will ne ed a large global symbol
table, you can save time and space by allocati ng space for
it with / HASHSIZE. You should give a hash size 10 percent
larger than th e num ber of global symbols in the table.

If LINK gives the message [LNKRGS Rehashing Global Symbol
Table] during a load, yo u shou ld use the / HASHSIZE switch
for future loads of the same program . The minimum hash
size for loading a program appears in the header lines of
the map file.

The default hash size is a LINK assembly parameter
(initially 251 decimal) .

* / HASHSIZE:lOOO ~
*

Sets the hash size to the prim e number 1021.

3- 22

I

•

•

•

•

I

•

•

•

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

/INCLUDE

/INCLUDE: (module, ... ,module)

Specifies modules to be loaded regardless of any global
requests for them.

In library search mode,
loading of the specified
associated with a file, the
file is searched. If not,
modules are found.

an / INCLUDE switch requests
modules. If the switch is

request is cleared after that
the request persists until the

When LINK is not in library search mode, the / INCLUDE
switch associated with a file requests that only the
specified modules be loaded, and the request is cleared
after that file is processed. An /INCLUDE switch not
associated with a file requests loading of the specified
modules, and the request persists until the modules are
found.

You can use / INCLUDE in an overlay load to force a module
to be loaded in an ancestor link common to successor links
that reference that module. This makes the module
available to all links that are successors to its link.

* / SEARCH LIBl / INCLUDE: (MOD1,MOD2) (@)

*
Searches LIBl and loads MODI and MOD2 even if they are not
referenced.

You can omit the parentheses if you specify only one
modul e .

/ EXCLUDE, / NOINCLUDE, / MISSING

LINK Version 5 . 1 3-23 March 1983

USING LINK DIRECTLY

THIS PAGE INTENTIONALLY LEFT BLANK

I

•

•
3- 24

I

•

•

•

•

FORM AT

FUNC TION

EXAMPLE

USING LINK DIRECTLY

/ LIMIT

/ LI MIT: psect : address

Al lows you to specify an upper bound for a specific PSECT .
In t he forma t description , psect should be the PSECT name ,
which has been def i ned with either the / SET switch or in
one of the modules already loaded . Address should be the
uppe r bound address of the specified PSECT , expressed in
either numeric or symbolic form . This address should be
o ne greater than the highest location which may be loaded
in the PSECT . The address can be a thirty- bit quantity ,
and need not be in the same section as the PSECT or igin .

If the PSECT grows beyond the address specified in the
/ LIMIT switch , LINK will send a warning to your terminal ,
but will continue to process input files and to load code .
The wa rning message will take the following f o rm :

%LNKPEL PSECT <psect> e xceeded limit of <address >

No chained references will be resol ved , and LINK will
suppress p rogr am executio n , producing the foll owing fatal
erro r :

? LNKCFS Chaine d fixups have bee n suppressed

This action prevents unintended PSECT overlays . PSECT
ove r lays ca n cause loops a nd other unp r edictable behavior ,
because LINK uses address relocation chains in th e use r
image that is being built .

* TESTl AET
' /COUNTEf; !' RET

[LN KRLC HLOC .
. LOW .
Q

CTR .

R
' / LI MIT : Q:4 000 REI
' TEST2 R(!

tMITIAL VALUf
0
IOOC
• son

%LNKPEL PSFCT Q EXCfEDED LI MIT OF 4 000

CUPRENT VALUF
I 4 0
4 000
J 0500

DETECTED IN ~ODULE . Mfo ! FROM FILE DSK : TEST2PEL
' /COUNTERS R[I

[LNKRLC RELOC . CTR.
. LOW.
Q
R

' TEST/ SAVE/GO RET

I NITIAL VALUE
0
1000
4 500

CURRENT VALUE
l 40
5000
10500

%LNKPOV PSECTS R ft D Q OVERLAP FROM ADDRESS
?LNKCFS CHAI ED FIXUPS HAVE BEEN SUPPRESSED
@

4 500 TC 5000

LI MIT VALUE
]000000
1000000
10000001

LIMI T VALUE
1000000
4000
10000001

In thi s e xa mpl e , a program na me d TEST l , whi c h con ta in s two
PSECTs , is loaded . The PSECTs ar e nam e d Q and R. Afte r
TESTl is l oad ed , the /C OUNTERS s witch shows th a t the upper
bound of PSECT Q i s 4000 .

LINK Ve rsion 5 3- 2 5 April 1982

USING LINK DIRECTLY

The / LIMIT switch is used to limit PSECT Q to 4000.

A second program, TEST2, also requires storage for PSECT
Q. Therefore, when TEST2 is loaded, LINK produces a
warning to the effect that the limit that was set has been
exceeded. The / COUNTERS switch shows that PSECT Q now
requires an upper bound of 5000.

When the programs are started (with / GO), LINK produces
th e POV warning message and the CFS fatal error message.

LI NK Version 5 3-26 April 1982

I

I

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCH

USING LINK DIRECTLY

/LINK

/ LINK:name

Where name is up to 6 RADIX-50 compatible characters.

Directs LINK to give the specified name to the current
core image and outputs the core image to the overlay file.
/ LINK is used to close an overlay link. LINK first
performs any required library searches and assigns a
number to the link.

For a discussion of overlay structures, see Chapter 5.

The current core image has all modules loaded since the
beginning of the load or since the last / LINK switch .

*SPEXP/LINK:ALPHA~

*
Loads module SPEXP and outputs the core image to the
overlay file as a link called ALPHA.

If you omit the link name, LINK uses only its assigned
number.

/ NODE

LINK Version 5.1 3-27 March 1983

I

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

/LOCALS

/ LOCALS

Includes local symbols from a module in the symbol table.
LINK does not need these tables, but you may want them for
debugging.

The / LOCALS and / NOLOCAL switches may be used
locally or globally. If the switch is suffixed to
specification, it applies only to that file; if it
suffixed to a file specification, it applies
following files in the same command line.

* / LOCALS A,B/ NOLOCAL,C, / NOLOCAL D(fil:D
*

either
a file
is not
to all

Loads A with local symbols, B without local symbols, C
with local symbols, a nd D without local symbols.

You can abbreviate / LOCALS to / L.

/ NOLOCAL, / SYMSEG

3-28

I

•

•

I

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SW ITCHES

USING LINK DIRECTLY

/LOG

logfilespec / LOG

Specifies a file specification for the log file (see
Section 4.2.2). Any LINK messages output before the / LOG
switch is found are not entered in the log file.

* LOGF IL/ LOG (fill
*
Specifies the file DSK:LOGFIL.LOG in the user's directory.

*TTY: / LOG @
*
Directs log messages to the user's terminal.

You can omit all or part of the logfilespec.
The defaults are:

device
fil ename
file type
directory

OSK:
name of ma in program
LOG
you r connected directory

You ca n change the de faults using the / DEF AULT switch .

/ LOG LEVEL

3-29

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/LOG LEVEL

/ LOGLEVEL:n

Suppresses logging of LINK messages with level n and l ess ,
where n is a decimal number between 0 and 30 inclusive.
You cannot suppress level 31 messages .

See Appendix B for the l evel of each LINK messag e .

The default is / LOGLEVEL:lO.

* / LOG LEVEL: 0 (fill)
*
Logs all messages.

/ LOG

3-30

I

•

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

/MAP

mapfilespec / MAP:keyword

Specifies a file specification for the map output file
(see Section 4.2). The contents of the file are
determined by the / CONTENTS switch or its defaults.

Permitted keywords and their meanings are:

END

ERROR

NOW

Produces a map file at the end of the
load. This is the default if you omit the
keyword.

Produces a map file if a fatal error
occurs. Any modules loaded af ter this
switch will not appear in the log. To
e nsur e tha t a .MAP fil e is g e nerated,
specify this switch before the loading of
.REL files.

Produces a map file immediately.
searches will not have been
unless forced.

Library
p erformed

*MAPFIL/ MAP:END IBill
*
Generates a map in the file DSK:MAPFIL.MAP in your disk
area at the end of loading.

You can omit all or part of the mapf il espe c.
The de f aults ar e :

d e vice
filename
file type
directory

OSK:
name of main program
MAP
user's connected directory

You can c hange the d e faults using the / DEFAULT swi tch .

You can abbreviate / MAP to / M.

/ CONTENTS

3-31 March 198 3

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/MAXNODE

/ MAXNODE:n

Where n is a positive decimal integer.

Specifies the number of links to be defined when the
overlayed program requires more than 256 links. LINK will
allocate extra space in the OVL file for certain
fixed-length tables based on the number of links specified
with this switch.

Note that this switch must be placed after the /OVERLAY
switch and it must precede the first /NODE switch in the
set of commands to LINK.

*TEST/ OVERLAY/MAXNODE:500 (fil])
*

Reserves space for 500 defined links. See Chapter 5 for a
discussion on overlays.

/ OVERLAY

3-32

I

•

•

I

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/MISSING

/ MISS ING

Requests terminal typeout of modules requested with the
/ INCLUDE switch that have not yet been loaded.

*MYPROG (fil]
*/SEARCH/ INCLUDE: (M0Dl,MOD2) LIBl (fil]
* / MISSING (fil]
[LNKIMM 1 INCLUDED MODULE MISSING]
*LIB2 / INCLUDE:(MOD2) (fil]
* / MI SS ING (fil]
[LNKIMM NO INCLUDED MODULES MISSING]
*
This example shows the use of / MISSING to see if all the
required modules have been loaded. The module MOD2 was
not yet loaded, and it was in LIB2.

In response to the first use of the switch, LINK indicated
that one necessary module was missing. After the missing
module was included (module named LIB2), the switch is
used again. LINK responded to the second use of the
switch by indicating that all necessary modules were
present.

/ INCLUDE

3-33

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/MT APE

/ MTAPE:keyword

Specifies tape operations to be performed on the current
device. (A tape dev ice r ema ins current only unti l
end-of-line or until anothe r device is specified,
whichever is earlier.) The switch is ignored if the
current device is not a tape.

The operation is performed immed iately if / MTAPE is given
with an input file or with an already initialized output
file. Otherwise, the operation is performed when the
output file is initialized.

Th e va lid keywords and the operat ions they specify are :

MTBLK
MTBSF
MTBSR
MTDEC

MTEOF
MTEOT
MTIND

MT REW
MT SKF
MTSKR
MTUNL
MTWAT

Writes 3 inches of blank tape.
Backspaces one file.
Backspaces one record.
Initializes DIGITAL-compatible 9-channel
tape.
Writes an end - of- f il e mark.
Spaces to logical e nd-of-tape .
Initializes i ndustry-compatible 9-channel
tape .
Rewinds tape t o the load point (BOT).
Skips one file.
Skips one record.
Rewinds and unloads tape.
Waits for tape I / O to finish.

*MTAO:/MTAPE:MTEOT (fil!l
* MTAO : / MAP: NOW (fil!l
*

Spaces to logical e nd-of-tape on MTAO: and writes a map
file.

/ BACKSPACE, / REWIND, / SKIP, / UNLOAD

3-34

I

•

•

•

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/NEWPAGE

/NEWPAGE:keyword

Sets the relocation counter to the first word of the next
page. If the counter is already at a new page, this
switch is ignored.

The permitted keywords and their relocation counters are:

LOW Resets the low-segment counter to new page.
If you omit the keyword, this is the default.

HIGH Resets the high-segment counter to new page.

*/NEWPAGE:HIGHIBUJ
*SUBRl IBliJ
* /NEWPAGE: LOW IBliJ
*SUBR2 00)

*
Sets the high-segment counter to a new page, loads SUBRl,
sets the low-segment counter to a new page, and loads
SUBR2. Note that SUBRl and SUBR2 are not necessarily
loaded into the high and low segments respectively; the
/NEWPAGE switch sets a counter, but does not force the
next loaded module into the specified segment .

/SET

3-35

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/NODE

/NODE:argument

Opens an overlay link. / NODE places LINK's relocation
counter at the end of a previously defined link in an
overlay structure, which becomes the immediate ancestor to
the next link defined. (For a discussion of overlay
structures, see Chapter 5.)

The / NODE switch must precede any modules to be placed in
the new link.

Three kinds of arguments are permitted:

• A nam e given with a previous / LINK switch. LINK
place the relocation counter at the end of
specified link.

will
the

• A negati ve numb e r (-n). LINK backs up n links along
the current path .

• A positive numb e r n or 0. LINK begins further loading
at the end of link number n. You can use 0 to begin
loading at the root link.

NOTE

It is recommended that you use a link name (or 0
for the root link) r athe r than a nonzero number.
This is because a change in commands defining an
overlay may change some of the link numbers.

For exa mples defining overlay structures, see Chapter 5.

/ LINK, /OV ERLAY, / PLOT

3-36

•

•

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCHES

/NO ENTRY

/ NOENTRY: (symbol,symbol, ...)

Deletes entry name symbols from LINK's overhead tables
when loading overlays, thereby saving space at run time.
If you know that execution of the current load will not
reference certain entry points, you can use / NOENTRY to
delete them.

/ NOENTRY differs from / NOREQUEST in
deletes requests for symbols, while
symbols that might be requested.

* / ENTRY (6IT)

that / NOREQUEST
/ NOENTRY deletes

[LNKLSS LIBRARY SEARCH SYMBOLS (ENTRY POINTS)]
SQRT. 3456

* / NOENTRY: (SQRT.) (6IT)
* / ENTRY (6IT)
*
Deletes SQRT. so that it cannot be used to fulfill a
symbol request.

You can omit the parentheses if only one symbol is given.

/ ENTRY, / EXCLUDE, / NOEXCLUDE, / INCLUDE, / NOINCLUDE,
/ MISSING, / REQUEST, / NOREQUEST

LINK Version 5.1 3-37 March 1983

I

I

I

FORMAT

FUNCTION

EXAMPLE

RELATED
SWITCHES

USING LINK DIRECTLY

/NO INCLUDE

/ NO INCLUDE

Clears requests for modules that were specified in a
previous / INCLUDE.

*LIBl / INCLUDE: (M0Dl,MOD3) (Bill
* / NO INCLUDE (Bill

*
Loads MODl and MOD3 from LIBl. However, if the modules
are not found immediately, stop searching.

/ INCLUDE, / EXCLUDE, / MISSING

3-38 March 1983

I

•

•

•
FORMAT

FUNCTION

•
EXAMPLES

•

•

•

USING LINK DIRECTLY

/NOINITIAL

/NOINITIAL

Prevents loading of LINK's initial global symbol table
(JOBDAT). The /NOINITIAL switch cannot operate after the
first file specification because JOBDAT will be already
loaded. The initial global symbol table contains the
JBxxx symbols described in Appendix C.

The / NOINITIAL switch is

• Loading LINK itself
JOBDAT) .

• Loading a private
necessary) .

• Building an EXE
executive mode
loader) .

file
(for

commonly used for:

(to get the latest copy of

copy of JO BOAT (to alter if

that will e ventuall y run in
example, a monitor or boot s tr a p

• Building a TOPS-20 native program whi c h do e s not use a I
JOBDAT area.

* / NOINITIAL @)
*

3-39 April 1982

L

FORMAT

FUNCTION

EXAMPLES

OPTIONJ'l.L
NOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

/NO LOCAL

/ NO LOCAL

Suspends the effect of a preceding / LOCALS switch so that
local symbol tables will not be loaded with their modules.

The / LOCALS and / NOLOCAL switches may be used either
locally or globall y . If the switch is suffixed to a file
specification, it applies only to that file; if it is not
suffixed to a file specification, it applies to all
following files in the same command string.

This switch is useful
space, because local
segment by default.

if you need
symbols are

*/LOCALS A,B/ NOLOCAL,C, / NOLOCAL D(fil]
*

to conserve memory
loaded into the low

Loads A with local symbols, B without local symbols, C
with local symbols , and D without local symbols .

Abbreviate / NOLOCAL to / N.

/ LOCALS

3-40

•

•

•

•

I

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCH

USING LINK DIRECTLY

/NOREQUEST

/ NOREQUEST: (symbol,symbol, ...)

LINK's overhead tables
If you know that the
not require certain

to delete references to

Deletes references to links from
when loading overlay programs.
execution of the current load will
links, you can use / NOREQUEST
them.

/ NOREQUEST differs from / NOENTRY in that / NOENTRY deletes
symbols that might be requested, whi le / NOREQUEST deletes
the requests for them.

*/ REQUEST (ffi)
[LNKRER REQUEST EXTERNAL REFERENCES]

ROUTN.
SQRT.

*/ NOREQUEST: (ROUTN. ,SQRT.) (ffi)
*

Del etes references to ROUTN. 2nd SQRT.

You can omit the par enthe s es i f only o ne symbol is g i ven .

/ NO ENTRY

3-41

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/NOSEARCH

/ NOSEARCH

Suspends the effect of a pre v ious / SEARCH switch. Files
named between a / SEARCH and the next / NOSEARCH are
searched as libraries, so that modules are loaded only to
resolve global r e ferences.

The / SEARCH and / NOSEARCH switches may be used either
locally or globally. If the switch is suffixed to a file
specification, it appli e s only to that file; if it is not
suffixed to a file specification, it applies to all
following files in the same command string.

*FILEl (@)
* / SEARCH A,B / NOSEARCH,C, / NOSEARCH D(@)
*
Searches A, loads B, searches C, and loads D.

/ SEARCH

3-42

I

I

•

•

I

I

I

•

•

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/NOS TART

/NOST ART

Directs LINK to disregard any start addresses found after
the /NOSTART switch. Normally LINK keeps the most recent
start address found, overwriting any previousl y found.
The / NOSTART switch prevents this replacement.

*MAINl,/NOSTART MAIN2,MAIN3 ~
*
Directs LINK to save the start address from MAINl instead
of replacing it with other start addresses from MAI N2 and
MAIN3.

/ START

3-43

FORMAT

FUNCTION

EXAMPLES

USING LINK DIRECTLY

/NOSYMBOL

/NOSYMBOL

Prevents construction of user symbol tables. Symbols are
then not available for the map file, but the header for
the file can still be generated by the /MAP switch.

The /NOSYMBOL switch prevents writing an ALGOL SYM file if
it would otherwise have been written.

If you do not need the map file or symbols, you can speed
loading by using the /NOSYMBOL switch.

* /NOSYMBOL@l
*

3-44

•

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

USING LINK DIRECTLY

/NOSYSLIB

/ NOSYSLIB:(keyword, ... ,keyword)

Prevents automatic search of the system libraries named as
keywords. LINK usually searches system libraries at the
end of loading to satisfy unresolved global references.
The / NOSYSLIB switch prevents this search.

The / NOSYSLIB switch can also be used to terminate
searching of libraries that were specified in a previous
/ SYSLIB switch. When you specify searching of a library
with / SYSLIB, that library will continue to be searched
for every module you load. You can use / NOSYSLIB to
specify libraries that should not be searched. Refer to
/ SYSLIB for more information .

The permitted keywords and the libraries they specify are
listed below. Only those printed in boldface specify
libraries supported by DIGITAL.

ANY Prevents all library searches.
ALGOL Prevents search of ALGLIB.
BCPL Prevents search of BCPLIB.
COBOL Prevents search of LIBOL or C74LIB.
F40 Prevents search of LIB40.
FORTRAN Prevents search of FORLIB.
NELIAC Prevents search of LIBNEL.
PASCAL Prevents se2rch of PAS LIB.
SAIL Prevents search of SAILIB.
SIMULA Pr eve nts search of SIMLIB.

* / NOSYSLIB:(ALGOL,COBOL) (Bill

*

Prevents search of the system libraries ALGLIB and LIBOL.

If you omit keyword it defaults to ANY.
You can omit parentheses if only one keyword is given.

3-45

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

/NOUSERLIB

filespec/NOUSERLIB

Discontinues automatic searching of the specified file at
each /LINK or /GO switch. If you need a file searched for
some links but not others, you can use the / USERLIB and
/NOUSERLIB switches to enable and disable automatic search
of the file.

*/OVERLAY (80
*MYFORL/USERLIB:FORTRAN(fi0
*MOD1/LINK:MOD1(80
*/NODE:MODl MOD2/LINK:MOD2(80
*MYFORL/NOUSERLIB (80
*
Loads the overlay handler; requests search of MYFORL as a
FORTRAN library; loads MODl and MOD2 as links;
discontinues search of MYFORL.

If you omit the filespec, LINK discontinues search of
all user libraries.

/ USERLIB

3- 46

•

•

•

•

I

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

USING LINK DIRECTLY

/ONLY

/ ONLY:keyword

Directs LINK to load only the specified segment of
two-segment modules. The permitted keywords are:

HIGH
LOW
BOTH

Loads only high segments.
Loads only low segments.
Loads both segments.

The / ONLY switch is ignored for one-segment modules and I
for PSECTed modules.

*/ONLY:HIGH MOD1,MOD2 (8IT)
*MOD3 / 0NLY:BOTH (BIT)
*
Loads high segment for MODl and MOD2; loads both segments
for MOD3 .

LINK Version 5 3-47 April 1982

I

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/OT SEGMENT

/OTSEGMENT:k eyword

Specifies the time and manner of loading the object-time
system.

The permitted keywords are:

DEFAULT

HIGH

LOW

NONSHARABLE

SHARABLE

Suspends the effect
/ OTSEGMENT:SHAR or
switch.

of a previous
/ OTSEGMENT:NONSHAR

Loads the object-time system into the
high segment.

Loads the object-time system into the
low segment.

Loads the object-time system into user
co r e image at load time. The user
program may have code in both segments.
The object-time system may have code in
both segments.

Binds the object-time system at
execution
the low
system is

time. The user program is in
segme nt and the object-time
in the high segment.

LINK' s def a ult actio n i s to bind the object - time system at
e xec ution time. This normal act ion occurs if none of the
following are true.

e You specify / OTSEGMENT:NONSHARABLE .

• You have loaded a ny code into the high segment.

• You have specif ied /SEGMENT:HIGH for some modul es .

e You have specified / SYMSEG:HIGH.

• Your low segment is too big for sharable object-time
systems to fit .

If any of these is true, a non-sharable object-time system
is loaded as part of your program .

*MYPROG/SYSLIB/OTSEGMENT:NONSHAR~

*

Loads a non- sharable copy of the object-time system as
part of your program .

/ SEGMENT

3- 48 April 1982

•

•

•

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

USING LINK DIRECTLY

/OVERLAY

filespec / OVERLAY: (keyword, ... ,keyword)

Initiates construction of an overlay structure.
discussion of overlay structures, see Chapter 5.

For a

The permitted keywords and their meanings are listed
below. The default settings are printed in boldface.

ABSOLUTE

LOGFILE

NOLOGFILE

NONWRITABLE

NOWARNING

PATH

RELOCATABLE

TREE

WARNING

WRITABLE

See Ch apte r 5.

Specifies that links are absolute.
This is the default situation when
overlays are loaded. The inverse
situation is to use
/ OVERLAY:RELOCATABLE. Relocatable
overl ay s are described in Chapter
5.

Outputs runtime overlay messages to
your terminal .

Suppresses output
overlay messages.

Specifi es that
nonwrit a bl e .

Suppresses
messages.

overlay

of runtime

links ar e

warning

Specifies that each link pa t h will
be loaded with its link .

Spe cif i es t hat link s ar e
relocatabl e .

Specifies that the overlay wil l
have a tree st ructur e .

Outputs ove rlay wa rning me s sage s to
user t e rminal .

Spec ifi e s
writabl e .

that
Refer

mo r e informat i on.

the links a r e
to Chapt e r 5 for

You can omit t he par e nthe s es if o nly one ke ywo rd is gi ve n.

3- 49

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

/PATCHSIZE

/PATCHSIZE:n

Where n is a positive decimal integer.

Allocates n words of storage to precede the symbol table .
The allocated storage is in the same segment (high or low)
as the symbol table. The default is / PATCHSIZE:64.

The storage allocated is available for patching or for
defining new symbols with DDT, and is identified by the
global symbol "PAT .. "

*/SYMSEG:HIGH/ PATCHSIZE:200 (Btl)
*
Loads the symbol tabl e in the high segment after I
allocating 200 words between the last loaded module and
the symbol table.

You can specify the patchsize in octal.

/ SYMSEG

•

•

•
3- 50

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

/PLOT

filespec / PLOT

Directs LINK to output a tree diagram of your overlay
structure. You can have the diagram formatted for a
plotter (by default) or for a line printer (by giving the
device as LPT:).

Each box in the diagram shows a link number, its name (if
you gave one with the / LINK switch), and its relationship
to other links (as defined by your commands).

The / PLOT switch cannot precede the / OVERLAY switch.

See Chapter 5.

LINK has default settings for the size of the overlay
diagram and the increment for drawing lines. You can
override these by giving the / PLOT switch in the form:

filespec / PLOT: (LEAVES:value,INCHES:value,STEPS:value)

Where the values for each parameter define:

INCHES

LEAVES

STEPS

Width of diagram in inches. The defaults are
INCHES:29 for plotter and INCHES:l2 for line
printer .

Number of links without successors that can
appear in one row. The defaults are
LEAVES:l6 for plotter and LEAVES:B for line
printer.

Increments per inch for drawing
defaults are STEPS:lOO for
STEPS:20 for line printer.

lines.
plotter

The
and

For line printer diagrams, you cannot give INCHES or
LEAVES different from the defaults. The STEPS parameter
should be between 10 and 25.

For plotter diagrams, you should give INCHES and LEAVES in
a ratio of about 2 to 1. For example, INCHES:40 and
LEAVES:20.

If LINK cannot design the diagram on one page, it will
automatically design subtrees for diagrams on more pages.

/LINK, / NODE, /OVERLAY

3-51

FORMAT

FUNCTION

KEYWORDS

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/PLTTYP

/ PLTTYP:keyword

Allows a user to specify the type of plot file to be
generated by the / PLOT switch.

DEFAULT Generate output for a printer only if the device
is a printer or terminal.

PLOTTER Generate output for a plotter.

PRINTER Generate output for a printer.

.R LINK @

*TEST/ OVERLAY @
*DSK:TEST/ PLOT/ PLTTYP:PRINTER @
*OVLO,OVLl / LINK:TEST @
*/ NODE:TEST OVL2 / LINK:LEFT @
*/ NODE:LEFT OVL5 / LINK:LEFTl@
*/ NODE:LEFT OVL6 / LINK:LEFT2 @
*/ NODE:TEST OVL3,0VL4 / LINK:RIGHT @
*TEST / SAVE / GO @

EXIT

Causes all output f rom the / PLOT switch to be in line
prin t er format.

/ PLOT

LINK Version 5 . 1 3-52 March 1983

I

•

•

FORMAT

FUNCTION

I

•

•
EXAMPLE

•

USING LINK DIRECTLY

/PVBLOCK

/ PVBLOCK:keyword

Requests a program data vector from LINK and gives the
user control over where the vector goes. The vector
specified with this switch is the primary data vector, and
it therefore supercedes any vectors specified in Type
1100-1107 blocks. Refer to Section 4.2.1.

NOTE

This switch functions only under LINK version 5
and TOPS-20 version 5. Refer to Section 3.5 for
more information about the use of extended
addressing.

Keywords and their meanings are:

DEFAULT

HIGH

LOW

NONE

PSECT:name

disables the previous / PVBLOCK:HIGH
or / PVBLOCK:LOW, restoring LINK's
default action. The default for
one-segment programs is to position
the program data vector after the
the program, before the patch area
and the symbol table. The default
for two-segment programs is to
position the program data vector at
the end of the high segment.

places the program data vector at
the end of the high segment.

places the program data vector at
the end of the low segment.

prevents the loading of the program
data vector .

places the program data vector for
the named PSECT at the end of the
PSECT (after allocating any space
required by the / PATCHSIZE switch).

*TESTl / PVBLOCK:DEFAULT IBIT)
*TESTl / SAVE / GO IBIT)
@GET TESTl IBITJ
@INFORMATION VERSION IBIT)

2102 TOPS-20 DEVELOPMENT SYSTEM, TOPS-20 MONITOR 5(4451)
TOPS-20 COMMAND PROCESSOR 5(706)
PROGRAM IS TESTl

PDVS: PROGRAM NAME TESTl, VERSION
@

3-52.l

USING LINK DIRECTLY

THIS PAGE INTENTIONALLY LEFT BLANK

I

•

•
3- 52 . 2

•

•

•

•

•

OPTIONAL
NOTATION

USING LINK DIRECTLY

This example loads a program (TESTl) that allocates memory
words. The /PVBLOCK switch is used when the program is
loaded, to request a program data vector. After the
program is saved and loaded (using the GET system
command), the INFORMATION VERSION command shows that a POV
has indeed been allocated to the program.

If you specify / PVBLOCK with no keyword, DEFAULT is the
default.

LINK Version 5 3-53 April 1982

FORMAT

FUNCTION

EXAMPLE

USING LINK DIRECTLY

/PVDATA

/PVDATA:keyword:value

changes the contents of a program data vector block
specified with the / PVBLOCK switch. The / PVDATA switch
also allocates storage for the program data vector. If
the storage to be allocated conflicts with any PSECT, LINK
issues a message with the severity level of 16, and does
not write the program data vector information into the
image or EXE file. Refer to Section 4.2.1.

NOTE

This switch functions only under LINK version 5
and TOPS-20 version 5. Refer to Section 3.5 for
more information about extended addressing.

Keywords and their intended values ar e :

NAME

VERSION

MEMORY

PROGRAM

CB LOCK

START

program name

a global symbol or numeric v alue.

address (absolute or symbolic) of a user
supplied memory map, suppressing the map
generated by LINK

address (absolute or symbolic) of a
program-specific data block

address (absolute or symbolic) of a
customer-defined block

start address (absolute or symbolic)

*TESTl /PVDATA:NAME:STORAG ~
*TESTl / SAVE /GO ~
@GET TESTl~
@INFORMATION VERSION ~

2102 TOPS-20 DEVELOPMENT SYSTEM, TOPS-20 MONITOR 5(4451)
TOPS-20 COMMAND PROCESSOR 5(706)
PROGRAM IS TESTl

PDVS: PROGRAM NAME STORAG, VERSION

This example shows a program (TESTl) being loaded. Using
the / PVDATA switch, the program is named STORAG. After
the program is saved and again loaded, the INFORMATION
VERSION command shows that TESTl has a program data vector
named STORAG.

LINK Version 5 3-54 April 1982

•

•

•

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/REQUEST

/REQUEST

Requests terminal typeout of all
other links. (LINK recognizes
standard calling sequence.)

external references to
only those that use the

If you use /REQUEST to get the names of external
references, you can then either delete the references with
the /NOREQUEST switch, or load the referenced modules.

*/REQUEST (ill)
[LNKRER REQUEST EXTERNAL REFERENCES]

ROUTN.
SQRT.

*/ NOREQUEST:ROUTN. (ill)
*/ SEARCH LIBl (ill)
*
Obtains the external references ROUTN. and SQRT.;
deletes the request for ROUTN.; searches the file LIB!
for a module containing the entry point SQRT.

/ NOREQUEST

3-55

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

USING LINK DIRECTLY

/REQUIRE

/REQUIRE: (symbol, ... ,symbol)

Generates global requests for the specified symbols. LINK
uses these symbols as library search symbols (entry
points).

/REQUIRE differs from /INCLUDE in that / INCLUDE requests a
module by name, while / REQUIRE requests an entry name
symbol. Thus you can use /REQUIRE to specify a function
(for example, SQRT.) even if you do not know the module
name.

You can use / REQUIRE to load a module into a link common
to all links that reference the module.

Note that the global requests generated by the / REQUIRE
switch do not use the standard calling sequence, and are
therefore not visible to the / REQUEST switch.

* / UNDEFINED@
(LNKUGS NO UNDEFINED GLOBAL SYMBOLS]
* / REQUIRE: (ROUTN. ,SQRT.) @
* / UNDEFINED @
[LNKUGS 2 UNDEFINED GLOBAL SYMBOLS]

ROUTN.
SQRT.

*
You can omit the parentheses if only one symbol is given.

3-56

•

•

•

•

•
FORMAT

FUNCTION

EXAMPLES

•

•

•

•

USING LINK DIRECTLY

/REWIND

/ REWIND

Rewinds the current input or outpu t device if the device
is a tape. If not, t he switch is ignored.

*MTAO : / REWIND (filf)
*
Rewinds tape on MTAO: .

3- 57

FORMAT

FUNCTION

EXAMPLES

USING LINK DIRECTLY

/RUNAME

/ RUNAME:name

Assigns a job name for execution of your program. This
name is used only by the SYSTAT and INFORMATION modules of
the system monitor.

* / RUN AME: LNKDEV 00)

*
Assigns the name LNKDEV for job execution.

3-58

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

•

•

•

•

USING LINK DIRECTLY

/SAVE

filespec / SAVE

Directs LINK to create an EXE file with the specified
filespec. Unless you have specified otherwise, the file
type will be EXE.

Note that if you want to run the saved file with the
system command, the file extension must be .EXE.

*MYPROG ID
*DSKZ :GOODIE. EXE / SAVE / GO ID
*

Directs LINK to save the linked version of MYPROG as
GOODIE.EXE on DSKZ: .

3-59

I

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/SEARCH

/ SEARCH

Directs LINK to load selectively from all following files
up to the next / NOSEARCH or / GO. These files are searched
as libraries, and only modules whose entry point name
resolves a global request are loaded.

Using / NOSEARCH discontinues the library search mode, but
for each link the system libraries are still searched
(unless you used the / NOSYSLIB switch), and user libraries
are still searched (if you used the / USERLIB switch).

The / SEARCH and / NOSEARCH switches may be used either
locally or globally.

* / SEARCH A,B/ NOSEARCH,C, / NOSEARCH D IBITJ
*
Searches A, loads B, searches C, and loads D.

/ NOSEARCH

3-60 March 1983

I

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/SEGMENT

/SEGMENT:keyword

Specifies which segment is to be used for loading
following modules. FORTRAN object code is an exception;
both segments are loaded into the low segment unless one
or more of the following is true:

• You used the / OTSEGMENT:NONSHARABLE switch.

• You used the /SEGMENT:HIGH switch to load code
the high segment.

• You used the / SEGMENT:DEFAULT switch to load code
both segments.

• Some code is already loaded into the high segment .

The keywords for the / SEGMENT switch are:

DEFAULT Suspends effect
/SEGMENT:HIGH .

of / SEGMENT:LOW

into

into

or

HIGH Load into high segment, even if impure code.

LOW Loads into low segment.

NONE Sarne as DEFAULT .

If the switch is suffixed to
applies only to that file;
file specification, it applies
the same command string .

a file specification, it
if it is not suffixed to a

to all following files in

*/SEGMENT:LOW MODl,MOD2, / SEGMENT:HIGH MOD3 ~

*
Loads MODI and MOD2 into the low segment; loads MOD3 into
the high segment even if its code is impure .

/ OTSEGMENT

LINK Version 5 . 1 3-61 March 198 3

I

I

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/SET

/ SET:name:address

Where name is .HIGH., .LOW., or a PSECT name, and address
is an octal address or a defined symbol.

Sets the loading position of a PSECT, or sets the .HIGH.
or .LOW. relocation counter.

For setting the loading position of a PSECT, name is the
name of the PSECT, and address is a virtual memory
address. The / SET switch must precede the modules that
will make up the specified PSECT. The / SET switch is not
needed if the REL files already contain origin
information.

NOTE

core
file

the

If you load PSECTs so that the resulting
image contains gaps, you must generate an EXE
and execute that file (rather than executing
loaded core image). It is good practice
generate an .EXE file for all PSECTed programs.

to

If you do not ask for an .EXE file and you need one, LINK
will generate one for you.

* / SET: A: 200000 IBm

*
Specifies that the PSECT named A is to be loaded with its
origin at address 200000.

* / SET:.HIGH. :400000IBm

*
Sets the high segment relocation counter .HIGH. to the
address 400000. Note that saying /SET :.HIGH. causes a
high segment to appear and a v estigial JOBDAT area to be
built.

/COUNTER, /LIMIT

LINK Versio n 5 . 1 3-62 March 198 3

•

•

•

I
FORMAT

FUNCTION

EXAMPLES

•

•

•

•

USING LINK DIRECTLY

/SEVERITY

/SEVERITY:n

Specifies that messages of severity level
will terminate the job, where n is
between 0 and 30 inclusive. Level 31
terminate the job.

greater than n
a decimal number
messages always

The defaults are /SEVERITY:24 for timesharing jobs, and
/SEVERITY:l6 for batch jobs.

*/SEVERITY: 3 0 00J
*
Specifies that only level 31 messages are fatal .

3- 63

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/SKIP

/ SKIP:n

Where n is a positive decimal integer.

Skips forward over n files on the current tape device. (A
tape device remains current only until end-of-line or
until another device is specified, whichever occurs
first.) If the device is not a tape, the switch is
ignored.

*MTAO: / SKIP: 4 (BIT)

*
Skips forward over 4 files on MTAO:.

/ BACKSPACE, / MTAPE, / REWIND, / UNLOAD

3-64

I

I

•

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

USING LINK DIRECTLY

/SPACE

/ SPACE:n

Where n is a positive decimal integer.

Specifies that n words of memory will follow the
link at execution time. This memory allocation
increase the size of the overlay file, but
increase the size of the program at run time.

current
will not
it will

The / SPACE switch is used to allocate space for use by the
object time system. The OTS uses this space for I / O
buffers, and as scratch space in FORTRAN and heap space in
ALGOL.

You should place the / SPACE switch before the first / LINK
switch, to ensure allocation for the root link. It is
possible to allocate space after one or more overlays are
linked. This might be useful if an overlay has unusual
storage requirements: buffers for a file which is open
only while that overlay is resident, or a large local
matrix. To allocate space between overlays, use / SPACE
when loading the overlay that will be using this file or
'matrix. LINK allows one / SPACE switch for the root node,
and one for each overlay.

The default amount of memory allocated, if you do not
specify / SPACE, is 2000 for the root link and 0 (zero) for
other links.

If the space allocate~ for a relocatable link is too
small, the overlay handler can relocate it. If the space
allocated for an absolute link is too small, a fatal error
occurs.

*/ OVERLAY (@)
*TEST/ SPACE:90 / LINK:MAIN (fil!)
* / NODE:MAIN SUBl / LINK:SUBl (fil!)
* / NODE:MAIN SUB2/LINK:SUB2 (fil!)
*
Allocates 90 words of memory to follow the root link for
the program. See Chapter 5 for a discussion on overlay.

You can specify the number of words in octal.

3-65 March 1983

•

I

I

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

/ START:symbol
/ START:address
/ START

/START

Where symbol is a defined global symbol.

Specifies the start address for the loaded program, and
prevents replacement by any start addresses found later.
You can use the / START switch with no argument to disable
a previously given / NOSTART switch.

*MAIN1/START:ENTRY1,MAIN2,MAIN3 (@)

*
Defines the start address as ENTRYl in MAINl, and prevents
replacement of this start address by any others found in
MAIN2 or MAIN3.

You can specify the start address in octal.

/ NOS TART

3-66 March 198 3

I

•

•

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

USING LINK DIRECTLY

/SUPPRESS

/SUPPRESS:symbol

Where symbol is a previously defined global symbol.

Used to suppress a previously defined global symbol. If
the symbol is unknown, this switch has no effect. You
should use this switch when two modules define a global
symbol and you wish to suppress the unwanted definition.
The symbol is removed from LINK's internal tables; it
will not appear in map and SYM files, nor in the symbol
table supplied to DDT.

This switch is used to suppress errors from
multiply-defined symbols. When LINK encounters a new
definition for a previously defined symbol, the new
definition will supersede the old definition.

*/SUPPRESS:ENTPTR~

*
This switch would suppress any definition att ached to
ENTPTR .

LINK Version 5 3- 67 April 1982

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

USING LINK DIRECTLY

/SYFILE

filespec / SYFILE:keyword

Requests LINK to output a symbol file to the
filespec, and sets the / SYMSEG:DEFAULT switch.
previously specified / NOSYM, the / SYFILE switch
effect.

given
If you

has no

The symbol file contains global symbols sorted for DDT.
If you used the / LOCALS switch, it also contains local
symbols, module names, and module lengths.

The permitted keywords and their meanings are:

ALGOL Requests symbols in ALGOL's format. The
first word of the table is 1044, ,count.
The remaining words are copied out of Type
1044 REL blocks. If an ALGOL main program
has been loaded, then / SYFILE:ALGOL becomes
the default.

RADIX-50 Requests symbols in Radix-50 format. The

TRIPLET

first word of the table is negative. Each
symbol requires two words in the table:
the first is the symbol name in Radix-50
format; the second is the symbol value.

Requests symbols in triplet format. The
first word of the table is zero. Each
symbol requires three words in the table:
the first word contains flags; the second
is the symbol name in SIXBIT; the third is
the symbol v alue.

*SYMBOL/SYFILE (ill)
*
Creates a symbol file called SYMBOL with the symbols in
Radix-50 format.

If you omit the keyword, RADIX-50 is assumed.

3-68 April 1982

•

•

•

•

I

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/SYMSEG

/ SYMSEG:keyword

Places the symbol table so that it will not be overwritten
during execution or debugging.

Keywords and their meanings are:

DEFAULT

HIGH

LOW

NONE

Places the symbol table in the low segment,
except for overlayed programs, in which
case symbols are not loaded by default.

Places the symbol table in
segment .

the high

Places the symbol table in the low s egment.

Prevents loading of the symbol table.

PSECT:name Places the symbol table for the named PSECT
at the end of the PSECT (after allocating
any space requir e d by the / PATCHSIZE
switch).

* / SYMSEG: LOW (Bill
*
Places the symbol table in the program low segment.

/ LOCALS, / NOLOCALS

3- 69 April 1 9 8 2

I

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

/SYS LIB

/ SYSLIB:keyword

Forces searching of one or more system libraries,
immediately after you end the command line. LINK will
also automatically search a system library if code from
the corresponding compiler has been loaded. By default,
LINK searches the system libraries that are appropriate
for the language compiler, after all the modules of the
program are loaded. / SYSLIB forces the search to take
place immediately.

After you specify a library with / SYSLIB, the library you
specified will be searched every time you load a module,
until you use / NOSYSLIB to end searching of that library.

The permitted keywords and the libraries they specify are
listed below. Those printed in boldface specify libraries
supported by DIGITAL.

ANY
ALGOL
BCP
COBOL
F40
FORTRAN
NELIAC
PASCAL
SAIL
SIMULA

Forces search of all system libraries.
Forces search of ALGLIB.
Forces search of BCPLIB.
Forces search of LIBOL or C74LIB.
Forces search of LIB40.
Forces search of FORLIB.
Forces search of LIBNEL.
Forces search of PASLIB.
Forces search of SAILIB.
Pre vents search of SIMLIB.

*TESTl /SYSLIB:ALGOL~
*TEST2 /NOSYSLIB:ALGOL ~

*
Where TESTl is a FORTRAN module, LINK will search both
FORLIB and ALGLIB for TESTl. Where TEST2 is a FORTRAN
module, LINK will search only FORLIB when TEST2 is loaded.

You can omit the ke yword. LINK will search all libraries
for which corresponding code has been loaded.

/ NOSYSLIB

3-70

I

•

•

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

/TEST

/ TEST:keyword

Loads the debugging program indicated by keyword. Unlike
the / DEBUG switch, / TEST causes execution to begin in the
loaded program (not in the debugging module). This switch
is useful if you expect the program to run successfully,
but want the debugger available in case the program has
err'ors.

The / TEST switch turns on the / LOCALS switch for the
remainder of the load. You can override this by using the
/ NOLOCAL switch, but the override lasts only during
processing of the current command string .

Local symbols for the debugging module itself are
loaded .

The permitted keywords and the programs they load
printed in boldface listed below. Only those

supported by DIGITAL.

ALGDDT Loads ALGDDT.
ALGOL Loads ALGDDT.
COBDDT Loads COBDDT.
COBOL Loads COBDDT.
DDT Loads DDT.
FAIL Loads SDDT.
FORDDT Loads FORDDT.
FORTRAN Loads FORDDT.
MACRO Loads DDT.
PASCAL Loads PASDDT.
PAS DDT Loads PASDDT
SAIL Loads the SAIL debugger.
SDDT Loads the SAIL debugger.
SIMDDT Loads SIMDDT.
SIMULA Loads SIMDDT.

*MYPROG/ TEST: FORTRAN (@)
*

Loads MYPROG and FORDDT.

never

are
are

If you give no keyword with /TEST, the default
DDT or the debugging program specified by the
switch.

is either
/ DDEBUG

/ DDEBUG, /DEBUG

LINK Version 5.1 3-71 March 1983

I

I

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

/UNDEFINED

/ UNDEFINED

Requests terminal typeout (in octal) of undefined global
symbols. You can use / UNDEFINED to get a list of
undefined symbols, and then define them with the / DEFINE
switch.

* / UNDEFINED 001
[LNKUGS 2 UNDEFINED GLOBAL SYMBOLS)

A 400123
IGOR 402017

* / DEFINE: (A:591,IGOR:l) 001
*

Give s the decimal values 591 and 1 to A and IGOR,
r e spectively.

You can abbreviate / UNDEFINE to / U.

/ DEFINE, /VALUE

LINK Version 5 . 1 3- 72 March 1983

I

•

•

I

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/UNLOAD

device / UNLOAD

Re winds and unloads the specified tape device. (This
swi tch is ignored if the curren t dev i ce is not a tape
device .) The / UN LOAD is not pe rformed until the current
fil e processing is completed .

*MTAO: / UNLOAD '8.m
*
Rewinds and unloads MTAO.

/ BACKS PACE, / MTAPE, / REWIND, / SKIP

3-73

FORMAT

FUNCTION

EXAMPLE

RELATED
SWITCH

USING LINK DIRECTLY

/UPTO

/ UPTO:addr

Where addr is the upper limit to which the symbol table
can grow. The addr value can be replaced by a symbol.

Sets an upper limit to which the symbol table can expand.

* / U PTO : 5 5 0 0 0 0 ru
*
Included in a FORTRAN load, this switch would override the
default upper bound for the symbol table. This might be
used if FOROTS begins above 400000.

/ SYMSEG

3-74 April 1982

•

I

I

•

•

•

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

RELATED
SWITCHES

USING LINK DIRECTLY

/USERLIB

filespec / USERLIB:(keyword, ... ,keyword)

Directs LINK to search the user library given by filespec
before searching sys t em libraries. The keyword indicates
that the given library is to be searched onl y if code from
the corresponding compiler was loaded.

Keywords and their meanings are given below. Only those
printed in boldface indicate compilers and libraries
supported by DIGITAL.

ALGOL Search as an ALGOL library.
ANY Always search this library.
BCPL Search as a BCPL library.
COBOL Search as a COBOL library.
FORTRAN Search as a FORTRAN library.
NELIAC Search as a NELIAC library.
PASCAL Search as a PASCAL library.
SAIL Search as a SAIL library.
SIMULA Search as a SIMULA lib r ary .

*MYFORL/USERLIB:FORTRAN~

*

Dir ects LINK to search the user library MYFORL (before
searching FORLIB) if any FORTRAN-compiled code is loaded .

You can omit the parentheses if only one keyword is given.

/ NOUSERLIB

3- 7 5

FORMAT

FUNCTION

EXAMPLES

OPTIONAL
NOTATIONS

USING LINK DIRECTLY

/VALUE

/ VALUE:(symbol,symbol, ...)

Requests terminal typeout of the values of each specified
global symbol. LINK will type out its LNKVAL message,
giving the symbol, its current va lue, and its status. The
status is one of the following:

defined
undefined
common
unknown

*TEST (fil!l
*SPEXP(fil!l
*SPEX2 (fil!l

The symbol and its va lue are known.
The symbol is known, but has no va lue.
The symbol is known and is defined as COMMON.
The symbol is not in the symbol table.

*/ VALUE: (SPEX2,DPEXP,X2,X) (fil!l
[LNKVAL SPEX2 460 DEFINED]
[LNKVAL DPEXP 221 UNDEFINED]
[LNKVAL X2 324 COMMON, LENGTH 1 (DECIMAL)]
[LNKVAL X UNKNOWN]
*

For DPEXP, 221 is t he last location at which the symbol
wa s refer e nced , a nd marks the beg inning of a fix up chain.

You can omit the parentheses if only one symbol is gi ve n.

3-76

•

•

•

•

I

•

•

•

•

FORMAT

FUNCTION

EXAMPLES

RELATED
SWITCHES

USING LINK DIRECTLY

/VERBOSITY

/ VERBOSITY:keyword

Specifies the length of LINK messages.

The permitted ke ywords and their meanings are:

SHORT

MEDIUM

Output only the 6-letter code.

Output the
me dium-length
1 ess) .

6-letter code
message (usuall y

and the
one line or

LONG Output the 6-letter code,
me ssage, and the long

the medium-length
mess age (usuall y

several l ine s) .

For a f e w messag e s no long me ssage exists;
the LONG specification ~s ignored.

@LIN K R
*FOO/ VERBOSITY : SHORT (filj)

%LN KFLE

I PLEASE RETYPE THE INCORRECT PARTS OF THE FILE SPEC I FICATION]

*FOO/ VERBOSITY: MEDI UMlfill)

%LNKFLE LOOKUP ERROR (0) FILE WAS NOT FOUND DS K: FOO . REL

I PLEASE RETYPE THE INCO RRECT PARTS OF THE FILE SPEC I FICATION]

*FOO/ VERBOSITY : LONG Rf

%LNKFLE LOOKUP ERROR (0) FILE WAS NOT FOUND DS K: FOO. REL
THE NAMED FILE WAS NOT FOUND . SPECIFY AN EXISTI NG FILE.

I PLEASE RETYPE THE INCORRECT PARTS OF THE FILE SPECI FICATI ON]

/ ME SSAGE

3-77

in th e se cases

FORMAT

FUNCTION

EXAMPLES

USING LINK DIRECTLY

/VERSION

/VERSION :ic(j)-k

Where:

i an octal number between 0 and 777 inclusive.

c = one or two alphabetic characters.

j an octal number between 0 and 777777 inclusive.

k an octal number between 0 and 7 inclusive.

Changes the value of .JBVER (location 137 in JOBDAT)
.JBHVR in the ve stigial job data area .

and

If the switch is associated with an input specification,
or with no specification, the version number is entered in
.JBVER and .JBHVR (location 4 in the vestigial job data
area).

as i,
major
minoi:

There are four parts to the vers ion arguments, given
c, j, and k above . The first number (i) gives the
version number . Th e character (c) gives the
version. The second number (j) gives the edit
The last number (k) , which must be preceded by a
(-), shows which group last modified the file (0
development, 1 =other DIGITAL personnel, 2-7

number .
hyphen

DIGITAL
customer

use).

* / VERSION : 3A (461) -0 00)

*

Sets the version so that the major ve rsion is 3, the minor
version is A, the edit number is 461, and the last group
to modify the file was DIGITAL development.

3- 78

I

•

•

•

I

•

•

•

•

USING LINK DIRECTLY

3.3 ACCESSING ANOTHER USER'S FILE

LINK allows you to access another user's file in two ways. The first
is to give a logical name in place of the device name; the second is
to give a project-programmer number instead of a directory name. You
can give either of these in a LINK command string.

For more information about referencing other users' files, refer to
the TOPS-20 User's Guide.

3.3.1 Using Logical Names

To use a logical name in accessing another user's file, you mu st:

1. Give the DEFINE command to define a logical name (of no more
than six characters) as the other use r's directory name .

2. Use the logical name as the device name wheneve r giving the
file specification.

3.3.2 Giving the DEFINE Command

To give the DEFINE command:

1. Type DEF and press the ESCAPE key;
(LOGICAL NAME).

@DEFINE (LOG ICAL NAME)

the system prints INE

2. Type the logical n ame , endi ng it wi th a colon; then type the
directory name in a ngl e brackets and RETURN :

@DEFINE (LOGICAL NAME) BAK: <BAKER>(fil!)
@

To check the logical name , give the INFORMATI ON (ABOUT)
LOGICAL-NAMES command .

@INFORMATION (ABOUT) LOGICAL-NAMES (OF) JOB ([IT)
BAK: => <BAKER>
@

3 . 3 . 3 Using the Logical Name

You ca n include the logical name in a comma nd string as part of a file
specification . To do this , type the logical n ame in place of a device
name .

Th e following e xampl e shows how to load the f il e <BAKER>SPEC .REL. You
mu s t have a lready d e fined t he logical n ame BAK : as <BAKER>.

@L INK ([IT)
*BAK :SPEC.REL

3-79

USING LINK DIRECTLY

3.3.4 Using Project-Programmer Numbers

To use a project-programmer number in access ing another user's file,
you must:

1. Use the TRANSLATE c ommand to find the corresponding
project-programmer number for the given directory name.

2. Includ e the project-programmer numbe r after the filename.

You do not have
proj ec t-programmer
sometimes change;
where ve r possible.

to define
numbe r.

ther e fore

a logical name if you use a
Howeve r, project-programmer numbers

it is better to use logical names

3 .3.4.1 Using the TRANSLATE Command - To use the
you must:

1. Type TRANSLATE and press @9 •
(DIRECTORY).

@TRANS LATE (DIRECTORY)

TRANSLATE command,

The system prints

2. Type the appropriate directory name and press (BIT!. The
system pri nt s the appropriate project-programmer number .

TRANSLATE (DIRECTORY) <BAKER>(BITJ

<BAKER> IS (4,204]

You can also use t he TRANSL program to make sure a project-programmer
number is correct . Simply replace the dir ectory name wi th the
project-programme r numbe r.

@TRANSLATE (BIT!
TRANSLATE (DIRECTORY) [4,204] (BIT!
[4,204] IS <BAKER >

3 . 3 .4. 2 Using the Project- Programmer Number - Because
project-programmer numbers can c hang e , you s hould use a logical name.
You may includ e the project-programmer number in a LINK command
string . To do this, type the project-programmer numbe r after the file
specification.

The following e xampl e shows how to load the file <BAKER>SPEC.REL by
using a proj e ct-progr ammer number.

@LINK (BIT!
*SPEC.REL [4,204]

3 .4 LIBRARIES AND SEARCHES

A l i br a ry is a fil e ha ving o ne or mor e obj e ct modul es ; wh e n a libra ry
i s sea r c hed, a modul e i s load ed from the fil e only if it satisfies an
unre s ol ved global r e fe r ence .

3- 80

•

•

•

•

•

•

•

•

•

USING LINK DIRECTLY

System libraries are available to all users for searching. Most
language translators also have libraries associated with them. The
translators generate calls for subroutines or functions in their
corresponding libraries, and library searches find and load the
necessary modules.

LINK normally searches system libraries before
The kinds of programs you load determine which
An object module usually has data telling
generated the module. When LINK finds a
command string, it searches a system library
corresponding translator was loaded.

completing its loading.
libraries are searched.
LINK which translator

/ GO or / LINK switch in a
if a module from the

For example, if you load a FORTRAN-compiled module, LINK will search
the system FORTRAN library SYS:FORLIB.REL when a / GO or / LINK switch
is processed. This search will resolve requests for FORTRAN-defined
subroutines and functions.

You can change this normal search procedure by using LINK switches .
The /SYSLIB switch requires LINK to search specified system libraries
no matter what kind of modules were loaded. The / NOSYSLIB switch
forbids search of specified system libraries. Using these two
switches, you can select the time for searching system libraries.

The /USERLIB switch specifies that, for modules from a specified
translator, a user library must be searched before the corresponding
system library. For example, using the switch MYFORL/ USERLIB:FORTRAN
requires LINK to search MYFORL.REL before searching FORLIB. The
/NOUSERLIB switch can suspend the effect of a / USERLIB switch .

The / SEARCH and / NOSEARCH switches, respectively turn on and off
LINK's library search mode. When the library search mode is off (the
initial default), LINK loads all modules from each input file you
specify. When the library search mode is on (between a global / SEARCH
switch and the next global / NOSEARCH switch at the end of the command
line), LINK searches each specified input file as a library.

Using combinations of these search-related switches gives you precise
control of library searches .

3.5 USING EXTENDED ADDRESSING WITH LINK

TOPS-20 version 5 provides the extended addressing feature for
programs that use mo~e than 512 pages of address space . This section
of the LINK Manual refers to MACRO programming only . Before
attempting to use extended addressing with another language, consult
the documentation for that language.

When you load a program into a nonzero section , you must use the
/ PVDATA switch to set the start address. The start address must be a
global (30-bit) address. The / PVDATA switch is described in Section
3. 2 .

If your program is using extended addressing, you must be sure to pay
particular attention to your use of local and global symbols. LINK
flags local (halfword) references to global (30-bit) symbols, and
truncates the global symbols. When this truncation occurs , LINK
notifies you by producing the %LNKFTH message. Refer to Appendix B
for more information about the %LNKFTH message.

LINK Version 5 3-81 April 1982

USING LINK DIRECTLY

While you are writing programs that use extended addressing, you
should keep the following restrictions in mind .

• Overlay programs cannot use nonzero sections.

• Only PSECTed programs can use nonzero sections.

• LINK cannot load the code or data of a single program into
both section 0 and a nonzero s ec tion.

• LINK will not set up JOBDAT for a program loaded entirely in
a nonzero section. Therefore, programs loaded into non-zero
sections should use program data vectors. JOBDAT areas are
described in Appendix C.

• LINK uses the SSAVE %
files. LINK writes
section EXE files .

JSYS
the

to
EXE

produce nonzero-section
file itself to produce

EXE
zero

• Programs s hould not put cod e into locations 0- 20 of nonzero
sections.

3 .6 EXAMPLES USING LINK DIRECTLY

For the fo llowing e x a mpl es , the load ed program is a FORTRAN program
called MYPROG that writes the following:

This is written by MYPROG.

The following exampl e s hows an interactive execut ion of the program
using a LINK command string . Aft e r running LINK, the comm a nd string
ca lls for MYPROG to be l oaded . Th e n the string MYLIB / USER LIB reque sts
searching of the libr a ry DSK:MYLIB.REL at the e nd of loaaing. The
/ NOSYSLIB switch prevents searching the default system library
(SYS:FORLIB.REL for FORTRAN progr a ms) . Finally the / EXECUTE switc h
directs LINK to e xec ute the loaded program, a nd the / GO switch tells
LINK that there are no mor e comma nd strings .

@LINK @)
*MYPROG ,MYLIB/ USERLIB/ NOSYSLIB/ EXECUTE/ GO @l
[LNKXCT MYPROG Ex e cution]

This is writte n by MYPROG.

END OF EXECUTION
CPU TIME: 0.02 ELAPSED TIME: 0.0 5
EXIT
@

LINK Ve rsio n 5 3- 8 2 April 1982

•

I

•

•

I

•

•

•

•

USING LINK DIRECTLY

The example below shows how to use LINK to load the program exactly as
above, except that the program will be executed under the control of a
debugging program (FORDDT for FORTRAN programs):

@LINK (fil"D
* / DEBUG:FORDDT MYPROG,MYLIB/ USERLIB/ NOSYSLIB/ GO (fil"D
[LNKDEB FORDDT Execution)
STARTING FORTRAN DDT
>> START

This is written by MYPROG.

END EXECUTION
CPU TIME: 0.02 ELAPSED TIME: 0.08
EXIT
@

3-83

•

•

•

•

I

•

•

•

•

CHAPTER 4

OUTPUT FROM LINK

The primary output from LINK is the
your input modules and switches.
errors, wa rnings, and informational
ca n generate a ny of several files.

executable program formed from
During its processing, LINK gives

messages. At your option, LINK

4.1 THE EXECUTABLE PROGRAM

The exec utabl e program that LINK ge nerates (called the core image)
consists mostl y of data and machine instructions from you r object
modules. In the core imag e , all relocatable addresses have been
r esolved to absolute ad dr esses , and the values of all global
references have been reso l ved .

You have several options for loading the program, depending on the
purpose of the load. Those options are:

• Execute the program. To do this , include the / EXECUTE switch
a ny pl a ce befor e the / GO switch . LINK will pass control to
your program for e xe cution .

• Execute the program under the control of DDT.
use the / DEBUG switch before the first
specification .

To do
input

this,
file

• Ex ec ute the program a nd debug it afte r execution. To do
this , use the / TEST and / EXECUTE s witches before the first
input fi l e s pec ification. After e xecution, type DDT to the
system to e nter the debugging program.

• Save the core image as an EXE file .
/SAVE s witch. See Section 4.2.

4.2 OUTPUT FILES

To do this, use the

At your option, LINK can produce any of the following output files:

• Save d (e xecutabl e) fil e .

• Log fi l e .

• map file.

4- 1

OUTPUT FROM LINK

• Symbol file .

• Plotter file (see Section 5.1) .

• Ove r lay file (see Section 5 . 1) .

4. 2 .1 Executable Files

Th e executable file , sometimes called the saved or EXE file , is a copy
of the completed core imag e generated by LINK . You ca n create an
e xecutab l e fi le by supply ing the / SAVE switch before the / GO switch
when you are loading the program with direct commands to LI NK . The
executable file will retain the same fil e name as the source program ,
wi th a file t ype EXE .

Alternatively , you can type the file specification, follo we d by / SAVE ,
and the executable fil e will be writte n to the file you specif i ed . If
you load the p r ogram with the system LOAD command , you may then sa ve
the executable file by typing the system SAVE command .

You ca n run the executable file later , without running
the system command RUN , or the two system commands GET
following section describes the in ter nal fo rmat of
file .

LINK , by using
and START . Th e
the executable

4 . 2 . 1 . 1 Format of Sharable Save Files
di v ided into two main areas : th e
information about the s tructure of the
conta in s the data of the file .

- A s harabl e sa ve fil e is
directory area , which contains

file , a nd th e data area , whi ch

The following di agram i ll ustrates the genera l format of a sha r abl e
save file :

Directory
Area :

Data Area :

LINK Ve rsion 5

Dir ec tory Sect i on

! Entry Vecto r Section !

! Program Data Vector
Section

! Te rminating Section
==== ====================

Data Sect i on

4-2 April 1982

I

•

•

•

I

•

•

•

•

OUTPUT FROM LINK

NOTE

The Program Data Vector area is useful
only with TOPS-20 version 5 and later
monitors. Earlier monitors ignore this
area.

The directory area of the sharable save file has four distinct
sections: the directory section, the entry vector section, the
program data vector section, and the terminating section. The size of
the directory area depends on the access characteristics of the pages
in the data area of the save file. The directory area of the save
file has three distinct sections: the directory section, the
terminating section, and the data section.

Each of the sections in the directory area begins with a header word
containing its identifier code in the left half and its length in the
right half. Each section is described in the following paragraphs.

The directory section is the first of the three sections and describes
groups of contiguous pages that have identical access. The length of
this section varies according to the number of groups that can be
generated from the data portion of the save file. The more data pages
that can be combined into a single group, the fewer groups required,
and the smaller the directory section.

The format of the directory section is as follows:

0 8 9 17 18 35
===!

Identifier code Number of words !
1776 (including this word)

in directory section
===!

Access Page number in file, or 0 if group
bits ! of pages is all zero

.===!
Repeat ! Page number in the process
count

!===!

!===!
! Access bits ! Page number in the file !
!===!
! Repeat count ! Page number in the process !
!===!

PSECT attributes are used to set the access
description of Block Type 24 in Appendix
defined in the directory section are:

bits. Refer to the
A. The bits currently

Bl The process pages in this group are sharabl e

B2 The process pages in this group are writabl e

The remaining access bits in the directory section are zero .

LINK Version 5 4-3 April 1982

OUTPUT FROM LINK

The repeat count is the number (minus 1) of consecutive pages in the
group described by the word pair. Pages are considered to be in a
group when the following three conditions are met:

1. The pages are contiguous.

2. The pages have the same access.

3. The pages are allocated but not loaded .

A group of all zero pages is indicate d by a file page number of O.

The word pairs are repeated for each group of pages
space.

in the address

The entry vector section follows the directory section and points to
the first word of the entry vector and gi ve s the length of the vector.

0 17 1 8 35
!===!

Identifier code
1775

Number of words
(including this word)

in entry vector section
!===!

2 54000
!============= ==!

Starting Address !
!=== !

This format is the default. However, if yo u make special provisions
in your program, the format become s t he following. (Refer to the
description of Block Type 7 in Appendix A a nd the description of the
SFRKV JSYS in the Monitor Calls Ma nu a l f or furth e r information.)

0 17 18 35
!===!

Identifier code
1775

Number of words
(including this word)

in entry vec tor section
!========= == ==== ==!

Numbe r of word s in e ntry vector
!=== ============ ===================================== === !

Addr es s of e ntry vector !
!===!

Th e data for thi s s ection i s t he addr ess o f the e ntry vec tor .

LI NK ve rsion 5 4- 4 Apr il 198 2

•

•

•

•

I

•

•

•

•

OUTPUT FROM LINK

The program data vector section may follow the entry vector section
and contains the addresses at which th~ program data vectors begin
(PDVAs). The format of the program data vector section is as follows:

0 17 18 35
!===!

Identifier code
1774

Number of words
(including this word)

in da ta vector section
!===!

Addr ess of data vector 1
!===!

Address of data vector 2
!===!

!===!
Addr es s of data vector n

!===!

The terminating section, called the e nd
precedes the data section. The fo rmat
the followi ng :

sec tion, a lways immediatel y
of the t erminating section is

!===!
I de ntifier code

1777 1
!= == !

Th e data a r ea follows the terminating section , begi nn i ng a t the nex t
page bou nda r y .

4.2.1. 2 Program Data Vector - A program data vec tor (POV) is a bloc k
of date that LINK ca n write into me mory wh e n loading a nd linking a
program . Ref e r to the /PVBLOCK and / PVDATA switches in Section 3.2 .

Th e POV r es id es in me mory as a part of the p rogr am, and starts at a
program data vec t or address (POVA). User programs can use t his data.
Al t hough TOPS-20 currentl y does not use the data in the POV, wo rd s 13
a nd 14 of the POV are provided for possible fut u r e system use .

The format of the program data vector i s as follo ws :

Word Symbol Mea ning

0 .PVCNT Le ngth of the POV (includi ng this word).
1 . PVNAM Addr ess of an ASCI Z string which is the

program name.
2 . PVSTR Program sta rting address .
3 . PVREE Program r eenter address .
4 . PVVER Program ve r sio n number .
5 . PVMEM Pointe r to a block describing the me mory

layout of the program . Th e first word of
this block specifies the bloc k length.

6 .PVSYM Address of the program symbol tabl e .
7 . PVCTM Time at which the use r program was compil ed .

LI NK Vers ion 5 4-5 April 1982

L

OUTPUT FROM LINK

Word Symbol Meaning

10 .PVCVR Version number of the compil er of main
program.

11 .PVLTM Tim e at which the program was loaded.
12 .PVLVR Version number of LINK. (See / VERSION in

Section 3. 2.)
13 .PVMON Address of a monitor data block. (Not

currently used.)
14 .PVPRG Address of a program data block. (Not

currently used.)
15 .PVCST Address of a customer-defined data block.

For more information about PDVs , refer to the PDVOP % JSYS in the
Monitor Calls Manual.

4.2.2 LOG Files

A LOG file
most of
kinds of
switch.

is generated if yo u use the / LOG switch. LINK then writes
its mess ages into the specified file. You can control the

messages en tered in the LOG file by using the / LOGLEVEL
For an example of a LOG file, see Section 5.1.

4.2.3 Map files

The map file is generated if yo u use the / MAP switch. LINK
a symbol map in this file. The kinds of symbols included
you r use of the / CONTENTS, / LOCALS, / NOLOCALS, a nd
switches. For an example of a ma p file, see Section 5.1.
of / MAP options, refer to Section 3.2.2.

4.2.4 Symbol Files

constructs
depends on
/ NOINITIAL
For a list

The symbol file
switch. This
module lengths,
symbols.

(or SYM file) is generated if you use the / SYFILE
file contains all global symbols, module names , and
and, if you used the / LOCALS switch, all local

4.3 MESSAGES

During its processing, LINK issues messages about what it is doing,
and abo ut errors or possible errors it finds. LINK also responds to
query switches such as / COUNTER, / ENTRY, / MISSING, / REQUEST, a nd
/ UNDEFINED.

Each LINK message has an assign ed level and an assigned severity.
(See Appendix B for the level and severity of each message.)

The level of a message determines whether it will be output to your
terminal, the log file, or both. You can control thi s output by using
the / ERRORLEVEL switch for the terminal and the / LOGLEVEL switch for
the log file. LINK's defaults are / ERRORLEVEL:lO a nd / LOGLEVEL:lO .

LINK Version 5 4-6 April 1982

I

•

•

•

•

•

•

•

OUTPUT FROM LINK

Responses to query switches and messages
something immediately are never output to
if you use the / UNDEFINE switch, LINK
message; this message is output to the
file.

that require you to do
the LOG file. For example,
responds with the LNKUGS
terminal but not to the log

The severity of a message determines whether LINK considers the
message fatal (that is, whether the job is terminated). You can set
the fatal severity with the / SEVERITY switch. The default severities
are 24 for interactive jobs and 16 for batch jobs. I

For both terminal messages and log file entries, LINK can issue short,
medium, or long messages, depending on your use of the / VERBOSITY
switch. For / VERBOSITY:SHORT, LINK gives only a 6-letter code; for
/ VERBOSITY:MEDIUM, LINK gives the code and a medium-length message;
for / VERBOSITY:LONG, LINK gives the code, a medium-length message, and
a long message.

Appendix B gives each 6-letter message code, its medium-length and
long messages, and its level and severity .

4-7 March 1983

•

•

•

•

•

•

•

CHAPTER 5

OVERLAYS

If your loaded program is too large to execute in one piece, you may
be able to define an overlay structure for it. This permits the
system to execute the program with only some parts at a time in your
virtual address space. The overlay handler removes and reads in parts
of the program, according to the overlay structure .

5.1

NOTE

You only need an overlay structure if
your program is too large for your
virtual address space. If the program
can fit in your virtual space, you
should not define an overlay structure
for it; the monitor's page swapping
facility is faster than overlay
execution.

OVERLAY STRUCTURES

An overlay program has a tree structure. (The tree is usually
pictured upside down.) The tree is made up of links, each containing
one or more program modules. These links are connected by paths .
Using LINK switches, you define each link and each path.

At the top of the (upside down) tree is the root link, which must
contain the main program. First-level links are below the root link;
each first-level link is connected to the root link by one path.

Second-level links are below the first-level links, and each is
connected by a path to exactly one first-level link. A link at level
n is connected by a path to exactly one link at level n-1.

Notice that a link can have more than one downward path (to successor
links), but only one upward path (to predecessor links).

Figure 5-1 shows a diagram of an overlay structure with 5 links. The
root link is TEST; the first-level links are LEFT and RIGHT; the
second-level links are LEFTl and LEFT2 .

5-1

I

OVERLAYS

TEST

LEFT RIGHT

LEFT1 LEFT2

----- MR·S-2595-83

Figure 5-1 Example of an Overlay Structure

Defining an overlay structure allows your program
smaller space. This is because the code in a given
make reference to memory only in links along a
downward path.

to execute in a
link is allowed to
direct upward or

In the structure in Figure 5-1, the link LEFT can reference memory in
itself, in the root link (TEST), or in its successor links LEFTl and
LEFT2. More generally, a link can reference memory in any link that
is vertically connected to it.

Referencing memory in any other link is not allowed. For example, a
path from LEFTl to LEFT2 is not a direct upward or downward path.

Because of this restriction on memory references, only one complete
vertical path (at most) is required in the virtual address space at
any one time. The remaining links can be stored on disk while they
are not needed.

5.1.1 Defining Overlay Structures

LINK has a family of overlay-related switches. These switches are
described in detail in Section 3.2.2. The following example shows
command strings for defining the overlay diagrammed in Figure 5-1.
(Some of the command lines in this example are indented for clarity.)

*TEST/ LOG/ LOGLEVEL:2
*/ERRORLEVEL:5
*TEST/ OVERLAY
*TEST/ MAP
*LPT:TEST/PLOT
*OVLO,OVLl/LINK:TEST
* /NODE:TEST OVL2/LINK:LEFT
* /NODE:LEFT OVL5/LINK:LEFT1
* /NODE:LEFT OVL6/LINK:LEFT2
* /NODE:TEST OVL3,0VL4/LINK:RIGHT
*TEST/SAVE
*/EXECUTE/GO

LINK Version 5.1 5-2

;Define TEST.LOG
;Important messages
;Define TEST.OVL
;Define TEST.MAP
;Request diagram
;Root link
;Left branch
;Left-left branch
;Left-right branch
;Right branch
;Define TEST.EXE

March 1983

•

•

•

•

•

•

•

OVERLAYS

The first command string above defines the log file for the overlay.
TEST/ LOG specifies that the file is named TEST.LOG. The / LOGLEVEL:2
switch directs that messages of level 2 and above be entered in the
log file.

In the second command string, the /ERRORLEVEL:S switch directs that
messages of level 5 and above be typed out on the terminal. The third
command string, TEST/ OVERLAY, tells LINK that an overlay structure is
to be defined, and that the file for the overlay is to be TESTOVL .

The fourth command string, TEST/ MAP, defines the file TEST.MAP, which
will contain symbol maps for each link.

The next command string, LPT:TEST/PLOT, directs that a tree diagram of
the overlay links be printed on the line printer.

The next command string, OVLO,OVLl / LINK:TEST, loads the files OVLO.REL
and OVLl.REL into the root link. The / LINK:TEST switch tells LINK
that no more modules are to be in the root link, and that the link
name is TEST.

Each of the next four lines defines one link with a string of the
form:

/ NODE:linkname filename / LINK:linkname

The / NODE:linkname switch specifies the previously d efined link to
which the present link is an immediate successor. The
filenames/LINK:linkname part of the line names the files containing
modules to be included in the current link and specifies the name of
the link .

The first of these four lines begins with / NODE:TEST, which tells LINK
that the link being defined is to be an immed iate successor to TEST,
the root link. Then (on the same line), the string OVL2/ LINK:LEFT
loads the file OVL2.REL, ends the link, and names it LEFT.

The next line, /NODE:LEFT OVLS/ LINK:LEFTl, defines a link named LEFTl
containing the file OVLS.REL, and this link is an immediate successor
to the link LEFT.

The next line, / NODE:LEFT OVL6/ LINK:LEFT2, de f ines another immediate
successor to LEFT, this time containing the file OVL6.REL and called
LEFT2.

The last link is
OVL3,0VL4/LINK:RIGHT.
immediate successor to
OVL4.REL.

defined in the next line, / NODE:TEST
This string defines the link RIGHT, which is an

TEST and contains the files OVL3.REL and

The next-to - last line, TEST/SSAVE, directs LINK to create the saved
fi le TEST.EXE. The last line , /EXECUTE/ GO, spec ifies that the loaded
program is to be executed , and that all commands to LINK are
completed.

The process also produced an executable file TEST.EXE, which can be I
run using the RUN system command . However, to run the program, the
file TEST.OVL must be presenf, because it provides the code for the
links •

LINK Version 5 .1 5-3 March 1983

L

OVERLAYS

5.1.2 An Overlay Example

The following pages show terminal listings of the files associated
with the example above. These pages are:

1. Terminal copy of the FORTRAN source files used in the
overlay.

2. Terminal copy of the compilation of the source files.

3. Terminal copy of the interactive use of LINK to define and
execute the overlay.

4. The file TEST.LOG generated by LINK, which shows the log
messages issued during the load.

5. The file TEST.MAP generated by LINK, which shows symbol maps
for the overlay.

6. The tree diagram requested by the LPT:/PLOT switch.

5-4

I

•

•

•

•

•

•

•

@t y pe ovl O,for
TYPE I

OVERLAYS

FORMATC'l'1 ' Execution befins in main ProfraM OVLO ')
TYPE 11

11 FORMAT<! X o'OVLO calls OVL2A 'l
CALL OVL2A
TYPE 2
FORMAT(/l X 1 ' Return to OVL O' l
TYPE 21

21 FORMAT<I X o ' OVLO calls OVLQ')
CALL OVLQ
TYPE 2
TYPE 3

3 FORMATC / 1X1' E><ecution ends in main ProfraM OVLO '/ /l
STOP
ENO

@t y pe ovll.for
SUBROUTINE OVL I
TYPE I
FORMAT U I X , '
CALL OVL3
TYPE 2
FORMATUI X , '
RETURN
ENO

@t y pe o v l2,for
SUBROUTINE OVL2A

3

@t r Pe

TYPE I
FORMAT C/ I X o '
CALL OVLS
TYPE 2
FORMAT U I X , '
TYPE 3
FORMAT <I X o '
CALL OVL6
TYPE 2
RETURN
END
SUBROUTINE OVL2B
TYPE I
FORMAT U I X •
RETURN
ENO

o v l3.for
SUBROUTINE OVL3
TYPE I
FORMAT< / I X ,
RETURN
ENO

@t y pe o v la.for
SUBROUTINE OVLQ
TY PE I
FORMAT U ! X , '
CALL OVL I
TYPE 2
FORMAT U I X , '
RETURN
ENO

@t y pe o v l5,for
SUBROUTINE OVLS
TYPE I
FORMAT (! ! >: , '
RETURN
END

@t ~· pe o v l6,f o r
SUBROUTINE O\'LG
TYPE I
FORMAT U I X , '
CALL 0'1L2B
TYPE 2
FORMAT U I X , '
RETURN
END

OVLI calls OVL3 'l

Ret1Jrn to OVLl ' >

· ovLZA calls OVLS ')

Return to OVL 2 A ')

OVL 2 A ca 11 s OVL6 ' l

Ot.JL 2 8 doesn ' t call unY thin!f ')

OVL3 doesn ' t call an Ythin!I' ')

O~•L a ca 11 s OVLI 'l

Ret u rn to DVL4 ' l

OVL5 does n' t cull ci n~· thinf 'l

0t.'L6 calls OVL Z B ' l

Return to Qt.JLG 'l

5-5

OVERLAYS

@COMP IL£ OVLO ,Qt.,ll110t.'L2 rOVL3 , QlJ La ,QVLS 101.'LGID
FORTRAN: OVL O
OVL O
FORTRAN: 0\'L 1
OVLl
FORTRAN: OVL2
O•JL2A
m•L2B
FORTRAN: OVLJ
0\ILJ
FORTRAN: O•JLa
OVLa
FORTRAN: o•.•LS
Q t.JLS

FORTRAN: OVL6
Q t,JLG

@LINK
•TEST / LOG / LO GLEVEL:S
• I ERRORLEVEL:S / NOINITIAL
oTEST / OVERLA Y
•TEST / MAP
•LPT:TEST /PLO T
•O VL010VL1/LINK:TEST
[LNKLMN Loadin9' module MAIN, froM file DSK:QIJLO.RELJ
(LNKLMN Loadin9' module Ql,lll froM file DSK: Ql.Jll . REL]
(LNKLMN Loadin9' mod u l e Qt.'RLA Y from file S Y S:Qt..'l~LA Y .RELJ

CLNKLMN Loadin; Modul e JOBDAT from file S YS:JOBOAT.RELJ
[LNKLMN Loa •Jin• modul e FORINI from file S YS:FORL!B.RELJ
CLN KLM N Loadin; module FORPSE from file SYS:FORLI5.RELJ
CLN KELN Er1d of link number 0 n ame TESTJ
• I NOOE:TEST OVL2/LIN K:LEFT
CLNKLMN Loadin; module QtJL2A from file OSK:Qt.,IL2.RELJ
[LNKLMN L oadin! module OVL26 from file DSK:01.'L2.RELJ
[LNKELN End of l in~, nuMber 1 n aMe LEFTJ
• / NOOE:LEFT OVLS / LINK:LEFT!
CLNKLHN Loadin; Mod u l e OVLS from file OSK : OVLS.RELJ
(LNKELN En d of l ink n1JMber 2 n aMe LEFT1J
• /NOOE:LEFT OVL6 / LINK:LEFT2
[LNKLMN Loadin; Module 01..ILG froM file DSK:Q l.JLG.R EL J
(LN KELN End of link nu111ber 3 na111 e LEFT2J
• I NOOE:TEST OVLJ,OVLa / LINK:RIGHT
[LN KLMN loadin; Module OVL3 froM fil e DSK:OVL3.RELJ
CLNKLMN Loadin!' 111odul e QlJLa froM file OS K :Qt) La.RELJ
[LN KELN End of link n u111ber a n aMe RIGHT]
•TEST / SA •J E
• / EXECUTE / GO
[LNK XCT OVL O e Mecut1o n J

E Me cution be!ins in 111a1n ProfrCl.M Ql.J LO
O~'LO cal Is OVL2A

0VL2A calls Ql,ILS

OVLS doesn ' t cull un Ythinf

Ret•Jrn to Qt..Jl2A
OVL2A ca 11 s Ql)LG

OVLS ca 11 s OVL26

Return to OVLG

Return to OVL2A

Return to OVLO
OVLO c al I' OVLa

OVLa cal I' OVLl

OVL2B doesn ' t call a n Ythinf

O•Jll cal ls OVLJ

Qt..JL3 doesn't call an Ythinf

Ret•Jrn to OVL1

Return to OVLll

Retur n to OVLO

E Mec ution ends in Main ProfraM OVL O

STOP

ENO OF EXECUTION
CPU TIME: o .a ELAPSED TIME: a. 1
EXIT

5-6

•

•

•

•

•

•

•

•

•

@t Y Pe test . lot'
B:aa:SB 6
e:aa:ss s
B: QS : OO 6
e:as:o1 s
B:a5: 02 6
B:a5:02 6
e: as: 13

e: as: 13
e:as:1a
B:aS:IS

e: as: 1s
e: as: 1s

e: as: 17
B:aS:20

B:a5 : 23
e:as:2a
e:as:2a

6
6

6
7

@t YPe test .maP

LMN
LMN
LMN
LMN
LMN
LMN
ELN

LMN
LMN
ELN

LMN
ELN

LMN
ELN

LMN
LMN
ELN

OVERLAYS

loadinf Modul e MAIN. from file OSK:O VLO.R EL
Load in f module OVLl from fil e OSK:OVL1.R EL
Loa.dint module OVRLA Y froM file SYS:OVRLA Y.R EL
Loadinf module J080AT from file SYS : J080AT.REL
Loadin< module FORIN I from file SYS:FORL!8,REL
Load in !f module FORPSE from file SYS:FORLifLREL
End of link nuMb er 0 naM e TEST

Loadinf Modul e OVL2A from fil e DSK:OVL2.REL
Loa.d in t' Module 0VL28 from fil e OSK:OVL2.REL
End of link number 1 nam e LEFT

Loadinf module OVLS frot11 file OSK:O VL S.REL
End of link n u mber 2 naM e LEFT!

Loa.dint' module OVLG froM file DSK:OVLG.REL
End of 1 ink nuMb e r 3 n ame LEFT2

Loadin!f modu l e OVL 3 from file DSK:D'JL3.REL
L oadin !f Modi.de QlJLa from file DSK:OVLa.REL
End of 1 ink n•Jmb e r a n aMe RIGHT

LINK S Ymbol Ma P of TEST /K l /K l /K S pa!fe 1
Prod uced b Y LINK v ersio n 5(llJ lJ2> on 29-0ct-81 at 8:lJ5:35

Ov erla y no. 0 natr1e TEST
s1as l en<th s 1a s Low se9'tr1ent starts at

Control Block address is
0 ends at
51 0 lJ' len!lth 3 2 (octal)' 26. (ojecimal)

lJ1 0 words free in L ow se9'trtent
138 Global s y mbols loaded, therefore Min. hash size is 15£1
Start address is 2021 located in Pro!fram MAIN.

SP

MAIN . from OSK:O VLO .REL created b Y FORTRAN / Kl / Kl / KS on 19-Feb-82 at lJ1:27:28
Low se9'ment star ts at 127552 ends at aa3377 le n !fth 313626 (octal> t1 0 lJ3lJ 2, (decitr1al)

MAIN, 202 E n tr y Relocatable

DI.I ll from DSK:Ot.'Ll.REL cr ea ted b Y FORTRAN /K l /K l / KS or1 19-Feb-8 2 at lJ1:27:31
Low se9'1t1ent starts at 127552 e n ds at aa3LJ 02 len!lth 313631 <oct al) t1 0lJ3lJ5. (decimal)

3 07 Ent r Y Relocatable FORD TI lJ OOO l O Global Absolute

OVRLA Y from S YS : Ot.'RLA Y .REL created b Y MACRO on 18-Feb - 82 at 61:39:23
Low se!l'ment starts at 12755 1 e n•js at 661412 len9'th 531642 (octal > '1 77058. (d e c1trtall

80UTI
ERJMP
ZOVRLA
.FHS LF
, NULi 0
,Q VR LO
GCVECZ
GJ ZOLO
HAL TF Z
JFNS Z
JS ZN AM
LOGO V,
OFZRO
OPENFZ
PAZPR\I
PSOU TI
RMAPZ
RUNQV,
SFPTRZ
SOU TI
, QIJR WA

1o ao oooooo s1
3207 00000000
ao 1ooooso
a ooooo
377777
3510
1oaoooooo 30 0
100000000000
1oaoooooo 17 o
1oaooooooo30
7000000000
2537
200000
1oaooo oooo 21
200000000
1o a ooooooo7s
1o a ooooooo s1
2010
1oaooooooo27
1oaooooooos3
35 07

Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
E nt r Y
Global
Global
Global
Global
Global
Ent r Y
Global
Global
Global

Absol •Jt e
Absol ut e
Absol u te
Absol ut e
Absol1Jte
Relocatable
Absol u te
Absol u te
Absol u te
Absol u te
Absolute
Relocatable
Absolute
Absol u te
Absolute
Absol u te
Absol ut e
Re l ocatable
Absolute
Absol u te
Relocatable

SiJPPressed
S 1J PPresse •j
S1JPPressed

Su ppre ssed

SuPPress e d

SuPPressed

SuPPressed

CLOSFZ
ERSTRZ
.FHJ08
,JSAOF
, Q\• RLA
, Q\IRLU
GETO\• ,
GTJFN Z
!NIQ\1,
JSZO IR
JSZPAF
OFZBSZ
OF ZWR
PA Z EX
P80 UTI
REMQI) ,

RPACSZ
RUNTM Z
SIN Z
TIME

5-7

10 lJ 00000002 2
1oaooooooo 11
777773

3S 0 3
227Q
I 751
1oaooooooo20
I 7aO
7 0000000000
I
770000000000
100000
20000000000
1o a ooooooo7 a
1772
10LJOOOOOOOS7
1oa ooooooo 1s
1o a ooooooo s2
l OlJOOOOOOO llJ

Global
Global
Global
Global
E r1 tr Y

E n t r Y
E n t r Y
Global
E n tr Y
G lot• al
Global
Global
Global
Global
Global
E n tr Y
Global
Global
Global
Global

Absol u te
Absol u te
Abs o l 1J t e
Absol1Jte
Relocatable
Relocatable
Relocatable
Absol ut e
Relocatable
Abs o l 1J t e
Absol 1Jte
Absol ut e
Absol u te
Absol u te
Absol ut e
Relocatable
Absol 1Jt e
Abs o l 1J t e
Absol 1Jt e
Abs o l 1J t e

S u PPressed
S u PPressed

SuPPresse 0j

Su PP ressed
Su PPre ssed
SuPPressed
S•J PPresse 0j

OVERLAYS

JOBDAT from SYS:J06DAT.REL creuted b Y MACRO on 18-Feb - 82 cit 62:38:1a
Low segment starts ut 127551 ends at 87 0325 length sao55S (octall 1180589. (decimall

IJDBDT a31oooooaa7
, JBAPR 125
,JBCHN 131
, JBCOR 133

JO BOAT
,JBOA
'JBEQl.I
,JBFF
, JBHCR
,JBHGA
,JBHNM
,JBHRN
,JBHSM
,JBJNT
,JBOPS
,JBPFH
. JBREL

10 0
112
12 1

130
135
123
aa

,JBSA 12 0
,JBTPC 127
.JBUUO ao

Global Absolute
Entr y Absol u te
En tr Y Absol u te
Entr Y Absolute
LINK s ~· mbol maP of

En tr Y
Ent r Y
Ent r Y

Global
Global
Ent r Y

Global
Ent r Y
En tr y
E nt r Y

Ent r Y
Ent rY

Ent r Y

Ent r Y

E n t n

Absol1J te
At•solute
Absolute
Absolute
Absol u te
Absolute
Absol u te
Absol u te
Absolute
Absol 1J te
Absolute
Absolute
Absol1Jt e
Absol1Jt e
Abso l ut e

SuPPressed ,Jea1 ai
,JBBLT as
,JBCNI 26
,JBCST 36

TEST / KI / KL / KS

SuPPressed
SuPPresse 0j

SuPPressed
SuPPresse •j
SuPPressed

.JBOOT
, JBERR
.JBHQI
,JBHOA
,JBHGH
,JBHRL
,JB HSA
, JBHt.JR

,JBOPC
, JBOl!L
,JBPFI
, JBREN

70
a2

10
400000
115
0
a
13 0
131
70
12a

.JBS YM 116
,JBUS Y 11 7
, JB\IER 137

Entr y Absolute
Entr v Absolute
Ent r Y Absol 1Jt e
Entr y Absolute
Pa! e 2

Ent n ·
Entr Y
Global
Ent r Y
Ent r)'
Entr y
Global
Ent r Y
Ent r Y
Ent r Y

Ent r Y

Ent n '
En tr y
Ent rY

Entr y

Absolute
Absol1Jte
Absolute
Absolute
Absolute
Absolute
Absolute
Absolute
Absol•Jte
At.solute
Absolute
Absolute
Absolute
At•solute
Absolute

FORINI from SYS:FORLIB . REL created b y MACRO on 18-Feb-82 at 61 :5 1:51
Low se9me n t starts at 12755 1 e n ds at 662766 len9'th 533216 (octa l) '177806. (decimal)

ALCHN, 4377 Ent r Y Relocatable
CLOSE. 4356 Entr y Relocatable
DEC. 4365 Entr y Relocatable
DECOR, 4376 En t n' Relocatable
ESOUT I 10400 0 0 00 313 Global Absolute
FIN. 4371 Entr Y Relocata ble
FORER, a354 Entr Y Relocatable
FUNCT. 4£1 02 Ent r Y Re l ocatable

ALCOR.
DBMS.
OECHN.
ENC,
EXIT.
FINO.

Q375
aao3
4400
Q36Q
a37a
a373

Ent r Y

Ent r Y
Ent r Y
En t r Y
Ent r Y
En t r ~·

Rel ocatable
Relocatable
Relocatable
Relocatable
Relocatable
Relocatable

FOROP. 4405 Entr Y Relocatable
GET Z 104000000200 Global Absolute

SuPPressed
SuPPressed
SuPPressed

SuPPressed
SuPPressed

GEVEC I 104000000205 Global Absolute GJ ZPHY 10 00000 0 Global Absolute SuPPressed
GJ I SHT 1000000 Global
IN. £136 0 Ent r Y
INO. 44 04 Ent r Y
MTOP, 4372 En tr y
NLO, £1367 Ent r Y
OUT. 4361 Ent r y
PM IR O 100000000000 Global
PM I WR aoooo o o o o oo Global
PO RTAL 25aoaooooooo Global
RESET$ a307 Entr Y
RF I LNG aooooooooooo Global
RTB, 4362 Entr Y
SMAP I 1oao ooooo 757 Global
WTB. 4363 Ent r Y
.RFSFL Global

Absolute
Relocatable
Relocatable
Relocatable
Relocatable
Relocatable
Abs o l 1J t e
Absol u te
Abs o l •J t e
Relocatable
Abs o l 1J t e

SuPPressed

S1JPPressed
SiJ PPresse d

SuPPressed

GTZNQl.,I
!NIT,
JOLST.
NL!'
OPEN.
PMICNT
PM'LRW X
PMAP !.
RELEA.
RESET.
RFSTS I

a o ooo Global
4353 Entr y
437 0 En tr Y
a3GS Ent r Y
l.1355 Ent n ·
4 00000000 000 Global
160000000000 Global
1o aooo oooo56 Global
£1357 Ent r y
ll2 0 G En tr y
104000000 156 Global

Relocatable SE VEC Z 104000000204 Global
Absol•Jte TRACE. ll401 Ent r Y
Relocatable XJRSTF z54zaooooooo Globa l
Absolute Suppressed

FORPSE from SYS:FORLIB.REL created b y t"IACRO on 18-Feb-82 at 61 :51:51

Absolute
Relocatable
Relocatabl e
Relocatabl e
Relocatabl e
At·solut e
Absolute
At. solute
Relocatable
Relocata tde
Absolute
Absolute
Re lo catabl e
Absolute

Low se9'Ment starts at 127551 ends at 662766 len9'th 533216 (oct al) 1177806. (decimal)

PALIS. ll6 0 1 Entr Y Relocatable RFMOO Z 104000000107 Global Absolute
SFMOD I 1oaoooo oo 11 0 Global Absolute STOP. 46 0 4 Entr Y Relocatable

S•J PPressed

SuPPressed
SuPPressed

TTIOSP ll 00000000000 Global Absolute SuPPressed .PRIOU 101 Global Absolute SuPPressed

OVL2A
Lo 1,.1

LINK s ~· mbol 1t1aP of

lnde>C to LINK s ymbol maP of

Na me

FOR!NI
FORPSE

2
2

Name

JOBOAT
MAIN,

LINK S YMbol MaP of

TEST /K I / KL/KS

TEST /K I / KL/KS

Pa 9' e Na Me

0\' L I

TEST / KI / KL / KS

Ov erla y n o. naM e LEFT
Low se9'ment starts at lllllG e n•js at 11325 len9'th
Co n trol Bloct\ ad •jress is 112Gll, len9'th 30 (octal) 1 za. (d eciMal)
Pat h is O
298 words free i n Low se9'ment
G Glot•al SYMbols loaded, therefore Mtn. hash size is 7

Pa 9'e

Pa 9' e 4

Na Me

OVRLA Y

Pa 9'e 5

160

from OSK: QlJL2, REL c reate •J t. Y FORTRAN / Kl / KL /K S o n 19-Feb-82 at 41 :27 : 33

Pase

1 p

se9'me n t starts at 127552 ends at ll4340ll le n!fth 313633 (octal) '1 04347, (deciMal)

111 71 Ent r Y Relocatable

5-8

•

•

•

•

•

•

•

•

•

OVL26
Low

OVERLAYS

from OSK:OVL2.REL created b y FORTRAN / Kl / KL/K S on 19-Feb-82 a t 41 : 27:33
11fm1 nt starts at 127552 e nd s at llll3lJ OlJ len f t h 313633 <oc tal) '104347. (dec im a l)

OVL20 11252 Ent n- Reloca t able

LINK s Ymbol map of TEST / Kl / KL/K S

Ou erla r n o. nam e LEFT!
Low set'Ment starts at
Co nt ro l BlocK addr e s s is

1132G e nd s a t
11354, le nfth

Patl'lis 0 11
252 1Jords frte in Low sefment

1140 3 lenfth
2 0 (octal>, tG. <d e ciMal)

3 Global s ymbols loaded' therefore min. hash s1ze is a

Pa !I e 6

56 1 p

OVL5 from OSK:OVL5.REL created b y FORTRAN / Kl / KL / KS on 19-Feb-82 at Q1 : 27:39
L ow se f Ment starts at 127552 e n ds at 443412 le n fth 313641 Cocta l l .104353. <d ec im a l)

Ql.J L 3
L ow

OVL5 11342 Entr y Relocatable

L INK s y mbol map of TEST / KI /KL/ KS •3 Pa .9' e 7

Overla y no . n ame LEFT 2
Low s e fMe nt starts at 11326 e nds at 1 lll20 len9'th 73 1 p

Co n trol Bloc k a ddr ess is 113711 l e n 9'th 2 0 (octal) 1 16. (dec im al)
P ii\. h i 5 0 I 1
239 words free in Loi..i se9' ment
a Global s y mbo ls loaded, therefore min. hash size is S

fr o• DSK:OVLG . RE L c r e ate d to r FORTR AN / K l / KL/ KS on 1 9 - Fe b-82 at a 1 :27 :lll
se9'me n t starts at 127552 e n ds at al13a1a le n 9'th 313Ga3 (octal) t1 0 a355. (deci mal)

11 3 44 Ent n · Relocatable

L INK s y mbo l n1aP of TEST / KI / KL/ KS Pa 9'e 8

Ov e r le>. Y no . naM e RIGHT
L o w s e9'ment s tart s a t lllll G ends a t 11 2 70 len9't h 123 1 p
Con t ro l B l oc f: a d•j re ss i s 11 237 , l e n 9't h 22 (oc t a l) ' 18 . (decimal)
Path is 0
327 words free i n L o w s e!ll me n t
5 G l o bal S YMbols l o a d e d t t h er e f or e Min . h ash s i z e i s G

f rom DSK : OV L 3 . REL crea te .j b y FORTRAN / KI / KL/ KS on 1 9 - Fe b - 8 2 at ll1 : 27 : 35
se9'm e n t s t arts at 1 27552 ends a t llll3ll 06 len9'th 3 1 3635 <octall .i oa3ll9 . (,j e c iMull

OVL3 1 1 162 Ent n Re l ocatab l e

Qt,1L a f r om DSK : Ot.'L a . RE L create•j b y FORTRAN / K I / KL / KS on 19 - F et•- 82 at ll1 : 27:37
Lo 1J s e9'n1 ent starts a t 1 27552 e nds a t aaJa1 0 le n 9'th 3 1 3637 (octal) t1 0ll35 1. (de ciM a ll

OVL a 1 1 2 1 2 Ent r l' Relo ca tatil e

Ind e)(t o ov erla y numb er s of TES T / K l / KL /KS

Ov e rla Y

• 0
• 1

Over la Y

!ri de)(t o ove r la y names o f TE S T

L EFT
LEFT !

Pu 9' e

G

[End o f L I NK MaP of

Na Me

LEFT 2

TE S Tl

Pa 9' e Over l a \.' P a 9' e

• 3

Pa 9' e Pa !lie

RIGHT 8

5-9

Ov e rlci Y P ci 9'e

• 4 8

Na Me

TES T

OVERLAYS

The listing fi l e TEST. OVL wi l l look similar to the follo wi ng :

* *
* *
* 1 * * *
* LEFT *

* *
* 2 *
* *
* *
* LEFTl *

* * 0

* *

* * * * * TE !:iT *

* *
* 3 *
* *
* *
* LEFT 2 *

* *
* *
* 4 *
* *
* HIGHT *

The process also produced a n executab l e file TES T.EXE , which can be
run using the RUN system comma nd . However, to run the program , the
file TEST. OVL must be prese nt , because it provides the code fo r the
l in ks .

5-10

I

•

•

•

•

•

•

•

•

OVERLAYS

5.2 WRITABLE OVERLAYS

Ordinarily each overlay link built by LINK is copied by the overlay
handler from the OVL file to the address space at runtime. The
contents of any locations that have been modified will be lost each
time the overlay link is copied from the OVL file. This can be
prevented by the use of writable overlays.

If a link is specified as writable, the overlay handler copies that
link to a temporary file on disk before overwriting it. Later, when
the copied link is needed, the overlay handler retrieves the link from
the temporary file rather than the OVL file. In this way, any
modified values are preserved. Because writable overlays involve more
file I/O, they are slower than the default (nonwritable) overlays and
should only be used when the program structure and storage
requirements demand dynamic storage in overlay links .

5.2.1 Writable Overlay Syntax

To build a writable overlay, specify the keyword WRITABLE with the
/OVERLAY switch in the LINK command line:

filespec/OVERLAY:WRITABLE

5.2.2 Writable Overlay Error Messages

The overlay handler must write and update a temporary file. In
addition to the error messages associated with all overlays, there are
two additional error messages for writable overlays:

? OVLCWF Cannot write file [filename]: [reason]

? OVLCUF Cannot update file [filename]: [reason]

If either of these messages appears, you should check for disk quota
violations or other conditions that could prevent the overlay handler
from writing a temporary file •

5.3 RELOCATABLE OVERLAYS

LINK ordinarily allocates 2000 extra words at the end of the root link
and no extra space at the end of each subsequent link. This is
adequate for programs with static storage requirements. If a link
requires extra storage at run-time, you can use the /SPACE switch to
make the necessary allowances for the program's requirements. The
/SPACE switch allows you to specify the ~umber of words to be
allocated after the current link is loaded.

However, there are programs whose dynamic run-time storage
requirements are unpredictable. For example, a program's run-time
storage requirements may vary according to the program's input. For
this class of programs, relocatable overlays can be useful .

5-11

I

L

OVERLAYS

For relocatable overlays LINK places extra relocation information in
the OVL file, permitting overlay links to be relocated at runtime.
The overlay handler, using the FUNCT. subroutine, can determine where
the link will fit in the address space and resolve relocatable
addresses within the link. This extra processing causes relocatable
overlays to run slower than nonrelocatable overlays. Relocatable
overlays should only be used when you cannot determine the dynamic
storage requirements of a p r ogram.

5.3.l Relocatable Overlay Syntax

To build a relocatable overlay, specify the RELOCATABLE keyword to the
/ OVERLAY switch in the LINK command line:

filespec / OVERLAY:RELOCATABLE

5.3.2 Relocatable Overlay Messages

If / OVERLAY: (LOGFILE,RELOCATABLE) is specified during the loading of a
program, informational messages of the following form are sent to the
user's terminal:

%0VLRLL Relocating link [linkname] at [address]

5.4 RESTRICTIONS ON OVERLAYS

The following restrictions apply to all overlayed programs:

• Overlayed programs cannot be run execute-only.

• PSECTed programs cannot be overlayed.

• Overlayed programs with large buffer requirements must use
the / SPACE switch. If an %0VLMAN (Memory not available)
error is encountered, the program should be reloaded using
the / SPACE switch with each link.

• If the program uses more than 256 links, use the /MAXNODE
switch to specify the number of links necessary for the
program. LINK will allocate extra space in the the OVL file
for tables that require it, based on the number of links you
specify.

5.4.l Restrictions on Absolute Overlays

The following restrictions apply to absolute overlaid programs:

1. Any intermediate results stored in non-root links are lost as
soon as the links are overlaid. Do not expect to retain a
value stored in a non-root link unless /OVERLAY:WRITABLE has
been specified.

5-12 March 1983

•

•

•

•

•

•

•

•

•

5. 4. 2

OVERLAYS

2. Certain forms of global, inter-overlay references are not
recommended, because you cannot be sure that the necessary
modules will be in memory at the right time. Some of these
references are:

• Additive fixups, in the form FOO##+BAR where FOO is in
another overla y .

• Left-hand fixups, in the form XWD FOO##,BAR, where FOO is
in another ove rlay.

• Fullword fixups, in the form EXP FOO##, where FOO is in
another ove rlay.

• Similarly, MOVE! l,FOO##, where FOO is in a different
overlay, should not be used, because the necessary module
may not be in memory .

In fact, the onl y predictable inter-o verlay global reference
is one that brings the necessary module into memory, such as
PUSHJ P,FOO# # .

Restrictions on Relocatable Overlays

The following restriction applies to r e locata b l e overlays:

• Complex expressions in vo l vi ng relocatable symbols are not
relocated prope rl y in a relocatable overlay. No standard DEC
compiler produces such exp r ess ions. MACRO programmers should
avoid using them in subroutines that are to be loaded as part
of an overlayed program. Any expression that causes MACRO to
generate a Polish f i xup block will not be properly relocated
at run-time. The following i s an example of such a complex
exp r ess i on :

MOVE! l,A## + 8## + C##

5.4.3 Restrictions on FORTRAN Overlays

Th e following restriction applies to FORTRAN programs that are written
with associate variables and using th e overlay facility.

• If th e assoc i ate variable is declared in a subrout ine, that
subroutine must be loaded in the root link of the overlay
structure. Accessing a file opened with an associate
variable changes the value of the specified va ri ab le. If
this va ri ab l e is in a nonresident ove rl ay link when th e
access is made, program ex e cutio n will produce unpredictable
results. Moreover, the va lu e of the variab l e will be reset
to zero each time it s over l ay link is removed from memory.
Only variables declared in r outines that are loaded into the
root link will always be resident. However , var i ables
declared in COMMON and in the main program will always be
resident, and may be safe ly used as assoc i ate var i ables .

• If you place COMMON in a writable overlay , be sure that all
r eferences to th e variables in that COMMON a r e in the same
overlay.

5-13 April 1982

OVERLAYS

• A FORTRAN ASSIGN statement may be used in a relocatable
overlay. If the ASSIGN is made in a subroutine, the value of
the assigned variable may be preserved from one call of that
subroutine to the next. However, the overlay containing that
subroutine could then be replaced in memory by a different
overlay. If the ove rlay containing the subroutine is
relocated differently when brought back into memory, any
subsequent GOTO may fail.

5.5 SIZE OF OVERLAY PROGRAMS

Although most programs have a consistent size, the size of an overlay
program depends on which overlays are in memory. This can be
ascertained by using the / COUNTER switch wh e n linking the program. To
do this, place / COUNTER after the / LINK switch for the overlay you
want to know the size of, but before the next / NODE switch. This wil l
give you the size of the program when the overlay is act ually loaded
into memory. Th e display will include all routi nes loaded from the
runtime libraries . This allows you to determine which overlay is the
largest, and whether the program can be loaded without restructuring.

5.6 DEBUGGING OVERLAYED PROGRAMS

COBDDT a nd ALGDDT can be used to d ebug overlay programs, but FORDDT
cannot. To use DDT with an overlayed program, the prog ram should be
loaded using / SYMSEG:LOW, with local symbols for the desired modules.

To set breakpoints in an ove rlay, p ut a subroutine in the root nod e ,
and call the subroutine from the overlay . Such a subroutin e need
consist only of a SUBROUTINE s t ateme nt, a RETURN , a nd a n END. The
brea kpoin t can be set at this subroutine befor e the program starts
running.

When a FORTRAN program starts running, it ca lls RESET. in FOROTS,
which removes the symbol table. The symbol table will return after
the first overlay is called . If you need the symbols f or debugging
the root link, insert a CALL INIOVL a t the beginning of the main
program (r efe r to Section 5 . 7 .1 for mor e information). Thi s ca ll will
r ei nstall the symbol table . LINK builds a separate symbol tabl e for
e ach ove rl a y , so that all the symbol s known to DDT are fo r modul es
that are curr e ntl y in memory. Note that it is not possible to
single-step through RESET. ($X and $$X will not work). Set a
br eakpoint after RESET . if yo u are debugging a root link , and use $G .

5 . 7 THE OVERLAY HANDLER

LINK'S overlay handler is the program that supervises execution of
overlay structures defined by LINK s witches .

Th e overlay h a ndl er i s in the
will i nsta ll LINK Version
shippe d with it . To find the
fo llowing :

@LINK OO)
*SYS:OVRLAY OOJ
* / VALUE: %0VRLA 00)

fil e SYS:OVRLAY.REL. Some ins tallations
5 withou t the overlay h a ndler that was
ve rsion of the ove rl ay handler , type the

[LNKVAL Symbol %0VRLA 40 2000056 d e fined]
*Z

LINK Version 5 5-14 April 1982

•

•

•

•

•

•

•

•

•

OVERLAYS

The left halfword of $0VRLA contains the version number of the overlay
handler, and should be 402, corresponding to Version 5 of LINK. The
right halfword is the edit number, and should be 000056 if field
image, or greater if edits have been installed.

When you load an overlay structure, the overlay handler is loaded into
the root link of the structure. From there it can supervise
overlaying operations, because the root link is always in your virtual
address space during execution. During execution, when a link not in
memory is called, the overlay handler brings in the link, possibly
overlaying one or more links already in memory. The overlay handler
consists of self-modifying code and data, and two 128-word buffers.
One of these buffers, IDXBFR, contains a 128-word section of the link
number index table. This allows 256 links to be directly referenced
at any one time. The second buffer, INBFR, contains the preambles and
relocation tables, if required, of the individual links.

There are two ways of overlaying links during execution:

1. A call to a link not in memory implicitly calls the overlay
handler to overlay one or more links with the required links.
This action of the overlay handler is transparent to the
user.

2. An explicit call to one of several entry points in the
overlay handler can cause one or more links to be overlaid.
These entry points and calls to them are discussed in the
sections below .

5.7.1 Calls to the Overlay Handler

Overlays can be used transparently, or they can be explicitly called
from the program. Such calls are made to one of the entry points in
the overlay handler.

The overlay handler has five entry points that are available for calls •
from user programs. To call the overlay handler from a MACRO program,
you must use the standard calling sequence, which is:

MOVE!
PUS HJ

16,arglst
17,entry-name

Where arglst is the address of the first argument in the argument
list, and entry-name is the entry-point name.

The argument list must be of the form:

-n,, 0
arglst: z code,addrl

Z code,addrn

;n is number of arguments
;For first argument

;For nth argument

Where addr .•. is the address of the argument.

The legal values of "code" are 2 (for a link number), 17 (for an ASCIZ
string), and 15 (for a character string descriptor) .

5-15 March 1983

I

OVERLAYS

For each word of the argument list, the code indicates the type of
argument. The code occupies the AC field, bits 9 through 12. The
address gives the location of the argument; it can be indirect and
indexed.

To call the overlay handler from a FORTRAN program, the call must be
of the form:

CALL subroutine (arglst)

Where subroutine is the name of the desired subroutine, and arglst is
a list of arguments separated by commas.

5.7.2 Overlay Handler Subroutines

Each of the seven callable subroutines in the overlay handler has an
e ntry name symbol for use with MACRO, and a subroutine name for use
with FORTRAN, as follows :

MACRO Entry
Name Symbol

CLROV.

GETOV.

INIOV.

LOGOV.

REMOV.

RUNOV.

SAVOV.

FORTRAN
Subroutine

CLROVL

GETOVL

INIOVL

LOGOVL

REMOVL

RUNOVL

SAVOVL

Subroutine
Function

Specifies a non-writable overlay.

Brings specified links into memory.

Specifies the file from which the overlay
program will be read, if the load time
specification is to be overridden.

Specifies or closes the file in which
runtime me ssages from the overlay handler
will be written.

Removes specified links from memory.

Moves into memory a specified link
begins execution at its start address.

Specifies a writable overlay.

and

Declaring a Non-Writable Link (CLROV.)

You can declare an overlay link to be non-writable, using the CLROV.
entry point. This does not immediately affect the program, but waits
until the link is about to be overlaid or r ead in. If the link is
already non-writable, this entry point has no effect .

5-16

•

•

•

I

•

•

•

Example

arglst:

arglst:

MOVE!
PUS HJ

-n t t Q
Z 17,addrl

Z 17,addrn

-n I I 0
z 2,addrl

z 2,addrn

OVERLAYS

16,arglst
17,CLROV.

OR

;n is number of arguments
;for first ASCIZ linkname

;for nth ASCIZ linkname

;n is number of arguments
;for first link number

;for nth link number

Where addr ••. is the address of the argument.

Getting a Specific Path (GETOV.)

The subroutine to bring a specific path into core can be used to make
sure that a particular path is used when otherwise the overlay handler
might have a choice of paths. It is illegal to specify a path that
overlays the calling link.

To call the subroutine from a FORTRAN program, use:

CALL GETOVL (linkname, .•. ,linkname)

where each linkname is the ASCIZ name of a link in the desired path.

To call the subroutine from a MACRO program, use the standard FORTRAN
calling sequence:

MOVE!
PUS HJ

16,arglst
17,GETOV.

The argument list has one word for each link required to be in the
path.

Example

-n I IQ ;n is number of arguments
arglst: z 17,addrl

z 17,addrn

OR

-n I I 0 ;n is number of arguments
arglst: z 2,addrl

Z 2,addrn

Where addr ••. is the address of the argument.

5-17 March 1983

I

I

OVERLAYS

Initializing an Overlay (INIOV.)

The overlay initializing subroutine specifies a file from which the
overlay program will be read. This subroutine is used to override the
file specified at load time. The file specified to INIOV. can have
any valid specification, but it must be in the correct format for an
overlay (OVL) file.

To call the subroutine from a FORTRAN program, use:

CALL INIOVL ('filespec')

where 'filespec' is a literal constant that can give a device, a
filename, a file type, and a project-programmer number CPPN).

To call the subroutine from a MACRO program, use the standard FORTRAN
calling sequence:

MOVE!
PUS HJ

16,arglst
17,INIOV.

The argument list is of the form:

-1,, 0
arglst: Z 17,address of ASCIZ filespec

where filespec is an ASCIZ string (ASCII ending with nulls) that can
give a device, a filename, a file type, and a PPN

NOTE

If you call INIOV. with no arguments, it
initiates the overlay handler and reads
in the symbols for the root link, using
the overlay file specified at load time.
This can be useful for debugging the
root link before any successor links
have been read in, because symbols are
not normally available until the first
link comes into memory.

Specifying an Overlay Log File (LOGOV.)

You can specify an output file for runtime messages from
handler. These messages are listed in Section 5.5.
entry includes the elapsed run time since the first
overlay handler.

To call this subroutine from a FORTRAN program, use:

CALL LOGOVL ('filespec')

the overlay
The log file

call to the

where 'filespec' is a literal constant that can give a device, a
filename, a file type, and a PPN.

To close the file, use

CALL LOGOVL (0)

5- 18

•

•

•

I

•

•

•

OVERLAYS

To call the subroutine from a MACRO program, use the standard FORTRAN
calling sequence:

MOVE I
PUS HJ

16,arglst
17,LOGOV.

The argument list is of the form:

-1, IQ

arglst: z 17,address of ASCIZ filespec

Where filespec is an ASCIZ string that can give a device, a filename,
a file type, and a PPN.

To close the log file, the argument list is:

-1, IQ

arglst: Z 17,address of word containing zero

Removing Specific Links from Memory (REMOV.)

The subroutine to remove specific links from memory, once they are no
longer required, can be used to reduce core image size for faster
execution. Specifying removal of the calling link causes an error.

To call the subroutine from a FORTRAN program, use:

CALL REMOVL (linkname, ... ,linkname)

Where each linkname is the ASCIZ name of a link to be removed from
memory.

To call the subroutine from a MACRO program, use the standard FORTRAN
calling sequence:

MOVE I
PUS HJ

16,arglst
17,REMOV.

The argument list has one word for each link to be removed.

Example

-n I I 0 ;n is number of arguments
arglst: z 17,addrl

Z 17,addrn

OR

- n I IQ ;n is number o f arguments
arglst: z 2,addl

Z 2,addrn

Whe re addr ••• is the address of the argument •

5-19 March 198 3

I

OVERLAYS

Running a Specific Link (RUNOV.)

The subroutine for running a specific link allows you to transfer
program execution to the start address of a particular link. (An
error occurs if the link has no start address.) If the link is not
already in memory, it and its path are brought in.

You can use this subroutine to overlay the calling link, because the
next instruction executed is the start address of the named link:
therefore, there is no automatic return to the calling link.

NOTE

The FORTRAN compiler does not generate
start addresses for subroutines.
FORTRAN main programs cannot be loaded
into non-root links. Therefore, to use
RUNOVL to transfer control to a FORTRAN
subroutine in a non-root link, you must
use the /START switch at load time to
define a start address for the link.

To call the subroutine RUNOVL from a FORTRAN program, use:

CALL RUNOVL (linkname)

Where linkname is the ASCIZ name of the link to be run.

To call the subroutine from a MACRO program, use the standard FORTRAN
calling sequence:

The

MOVE!
PUS HJ

argument

arglst:

arglst:

16,arglst
17,RUNOV.

list is of

-1,, 0

the

z 17,address of

-1 ,, 0
z 2,address of

form :

ASCIZ linkname

OR

link number

Declaring A Writable Link (SAVOV.)

You can dynamically declare an overlay link to be
SAVOV. This does not affect the current
immediately, but waits until the link is about to
link already writable, this symbol has no effect.

5-20

writable by calling
state of the code
be overlaid. If the

•

•

•

•

•

•

OVERLAYS

Example

MOVE I
PUS HJ

arglst:

16,arglst
17,SAVOV.

-n I I 0

z 17,addrl

Z 17,addrn

-n I IQ

arglist: z 2,addrl

Z 2, addrn

OR

:n is number of arguments

:for first ASCIZ linkname

:for nth ASCIZ linkname

:n is number of arguments
:for first link number

:for nth link number

Where addr •.. is the address of the argument.

If called with no arguments, SAVOV. only initializes the temporary
file.

5.7.3 Overlay Handler Messages

This section lists all of the overlay handler's messages. (The
messages from LINK, which have the LNK prefix, are given in Appendix
B.)

For each overlay handler message, the last three lette rs of the
six-letter code, the severity, and the text of the message are given
in boldface. Then, in lightface type, comes an explanation of the
message.

When a message is issued,
letters OVL, forming a
explanation of the message
/OVERLAY:LOG switch.

the three
6-letter
will be

letters
code of
printed

are
the
only

suffixed to
form OVLxxx.
if you use

the
The
the

The severity of a message determines whether the job will be
terminated when the message is issued. Level 31 messages terminate
program execution. Level 8 messages are warnings: they do not
terminate execution, but the error may affect the execution of the
program. Level 1 messages are informational and are printed on the
terminal only if you specified / OVERLAY:LOGFILE .

5-21 March 198 3

I

Code Sev

ARC 31

ARL 8

CDL 31

CGM 31

CRF 31

CSM 31

CUF 31

CWF 31

DLN l

OVERLAYS

Message and Explanation

Attempt to remove caller from link [name or number]

The named link attempted to remove the link that called
it. This error occurs when the call to the REMOV.
subroutine requests removal of the calling link.

Ambiguous request in link number [number] for [symbolr,
using link number [number]

More than one successor link satisfies a call from a
predecessor link, and none of these successors is in
memory. Since all their paths are of equal length, the
overlay handler has selected an arbitrary link.

Cannot delete link (name or numberf, FUNCT. return status
[number]

This is an internal LINK error, and is not expected to
occur. If it does, please notify your Software
Specialist, or send a Software Performance Report (SPR) to
DIGITAL.

Return status is one of the following:

1 Core already deallocated
3 Illegal argument passed to FUNCT. module

Cannot get memory from OTS, FUNCT. return status [octal)

The system does not have enough free memory to load the
link. The status 3 (illegal argument) is returned from
the object-time system.

Cannot read file [file] (reason)

An error occurred when reading the overlay file. The file
was closed after the last successful read operation.

Cannot shrink memory, FUNCT. return status [octal)

A request to the object-time system to reduce memory, if
possible, failed. This error is not expected to occur.
If it does, please notify your Software Specialist or send
a Software Performance Report (SPR) to DIGITAL.

Cannot update file (file] (reason]

An error occurred when updating the TMP file into which
non-resident writable overlay links are written.

Cannot write file (file] (reason]

An error occurred when creating the TMP file used to store
non-resident writable overlay links.

Deleting link (name or number] after [hh:mnt:ss]

The named link has been removed from memory as a result of
a call to the REMOV. subroutine. The time given is
elapsed time since the first call to the overlay handler.
This message is output only to the overlay log file, if
any.

5-22

•

•

• Code Sev

!AT 31

IEF 31

ILN 31

IMP 31

•
!PE 31

• IVN 8

LNM 31

MAN 31 •
MEF 31

NMS 8

•

OVERLAYS

Message and Explanation

Illegal argument type on call to [subroutine]

A user call to the named overlay handler subroutine gave
an illegal type of argument.

Input error for file [file] [reason]

An error occurred while reading the OVL or TMP file.

Illegal link number [number]

A user call to one of the overlay handler subroutines gave
an illegal link number as an argument.

Impossible error condition at PC=[address]

This is an internal error caused by monitor call error
returns that should not occur. This message is issued
instead of the HALT message. This error is not expected
to occur. If it does, please notify your Software
Specialist or send a Software Performance Report (S PR) to
DIGITAL.

Input positioning error for file [file] [reason]

An error occurred while reading the OVL or TMP file.

Inconsistent version numbers

The OVL and EXE files found were not created at the same
time, and may not be compatible.

Link number [decimal] not in memory

A call to the REMOV. subroutine has remo ve d the n2med
link from memory. It must be restored by a call to GETOV.
or RUNOV.

Memory not available for absolute [link], FUNCT. return
status [octal]

There is not enough room for the overlay handler to load
the specified link into the part of memory the link was
built for. Two options are available: a) Use the / SPACE
switch at load time to reserve more space for the link, or
b) Build a relocatable overlay using the RELOCATABLE
option to the / OVERLAY switch at load time.

Memory expansion failed, FUNCT. return status [octal]

The overlay handler was unable to get free space from the
memory manager. Restructure your overlay so that the
minimum number of links are in memory at any time.

Not enough memory to load symbols, FUNCT.
[octal]

return status

There was not enough free space available to load symbols
into memory.

5-23 April 1982

I

I

Code Sev

NRS 31

NSA 31

NSD 31

OEF 31

OPE 31

OPP 31

RLL 1

RLN 1

RMP 31

RPA 31

OVERLAYS

Message and Explanation

No relocation table for symbols

A relocation table was not incl uded for the symbol table.
It is possible t hat LINK failed to load the relocation
table because there wasn't enough room in memory.

No start address for link [name or number)

A user call to the RUNOV. subrout ine requests execution to
continue at the start address of the named link, but that
link has no start address .

No such device for [file)

An invalid device was specified.

Output error for file [file) [reason)

An error occurred when writing the overlay file. The file
was closed after the last successful write operation.

Output positioning error for file [file) [reason)

An er ror occurred while writing the TMP file used to hold
non-resid e nt writable overlay links.

Overlay handler in private page

The overlay handler has been loaded into a non-sharable
page of the program . Your program should not write into
the pages occupied by the overlay handler. Ask LINK for a
map of your program if ther e is doubt. If t he program is
not writing into t he se pages, this e rror may r ef l ect an
inter nal LINK e rror. Thi s e rror is not expected to occur.
If it does, please notify your Software Specialist or send
a Software Performance Report (SPR) to DIGITAL.

Relocating link [name or number) at [address]

The named r elocatab l e link h as been load ed at the given
address . This message is output only to the overlay log
file .

Reading in link [name or number) after [time]

Th e named link has been loaded. Th e time given is elapsed
time si nce t he first call to the overlay handler . This
message is output only to the overlay log file .

RMAP JSYS failed

This is an internal error a nd is not expected to occur.
If it does , please notify your Software Specialist or send
a Software Performance Report (SPR) to DIGI TA L.

RPACS JSYS failed

Thi s is a n inter nal e rror a nd i s not e xpected to occur .
If it does , pl ease notify your Software Specialist or send
a Software Per formance Report (SPR) to DIGITAL.

5-24 April 1982

I

•

•

•

•

•

•

•

OVERLAYS

Code Sev Message and Explanation

STS 8 OTS reserved space too small

ULN 31

USC 8

WLN 1

The object-time system does not have space for its minimum
number of buffers. Reload, using the / SPACE switch for
the root link with an argument greater than 2000 (octal).

Unknown link name [name]

A call to one of the overlay handler subroutines gave an
invalid link name as an argument. Correct the call.

Undefined subroutine [name] called from [address]

A required subroutine was not loaded. The instruction at
the given program counter address calls for an undefined
subroutine. Correct the call or load the required
subroutine .

Writing [link] after [time]

The overlay handler is writing out a writable overlay
link.

5.7.4 The FUNCT. Subroutine

Each DIGITAL-supplied object-time system has a subroutine that the
overlay handler uses for memory management, I / O, and message handling .
This subroutine has a single entry point, FUNCT., and is called by the
sequence:

MOVE!
PUS HJ

16,arglst
17,FUNCT.

The format of the argument list is:

- <n+3 >,,0
arglst: Z 2,address of integer function code

Z 2,address for error code on r eturn
z 2,address for status cod e on return
z c ode ,address of first argume nt

z code,address of nth argument

Where function code is one of
error code is a 3-letter
system (after?, %, or [);

the function codes described below;
ASCII mn emonic output by the object-time

a nd status (on r e turn) contains one of the
following values :

-1 Function not implemented
0 Successful return
n Number of the error message

Most object-time systems allocate separate spac e for their
for t he use of t he overlay handler. Thi s minimi zes the
that the ove rlay h a ndler will r eques t s pace t hat the
system is already using.

5-25

own use a nd
poss ibi lity
object-t ime

OVERLAYS

The permitted function code arguments, their names, and their meanings
are:

Code Name Function

0 ILL Illegal function; returns -1 status.

1 GAD Get a specific segment of memory.

2 COR Get a given amount of memory from anywhere in the
space allocated to the overlay handler.

3 RAD

4 GCH

5 RCH

6 GOT

7 ROT

Return a specific segment of memory.

Get an I / O channel.

Return an I / O channel.

Get memory from the space allocated
object-time system.

Return memory to the object-time system.

to the

10 RNT Get the initial runtime, in milliseconds, from the
object-time system.

11 IFS Ge t the initial runtime file specification of the
program being run.

12 CBC Cut back core (if possible) to reduce job size.

13 F.RRS Read retain status (DBMS)

14 F.WRS Write retain status (DBMS)

15 F.GPG Get pages

16 F.RPG Return pages

17 F.GPSI Get TOPS - 20 PSI channel

20 F.RPSI Return TOPS-20 PSI channel

All FUNCT. codes are reserved to DEC.

The following subsections describe each function
FUNCT. subroutine (except the reserved functions) .

ILL (0) Function

of the

This f unction is illegal. The argument list is ignored, and the
status returned is -1.

5-26 March 1983

•

•

•

I

•

•

•

•

OVERLAYS

GAD (1) Function

The GAD function gets memory from a specific address in the space
allocated to the overlay handler. The argument list points to:

arg 1
arg 2

Address of requested memory
Size of requested allocation (in words)

A call to GAD with arg 2 equal to -1 requests all available memory.

On return, the status is one of the following:

0 Successful allocation
1 Not enough memory available
2 Memory not available at specified address
3 Illegal arguments (address + size > 256K)

COR (2) Function

The COR function gets memory from any available space allocated to the
overlay handler. The arguments are:

arg 1
arg 2

Undefined (address of allocated memory on return)
Size of requested allocation

On return, the status is:

0 Core allocated
1 Not enough memory available
3 Illegal argument (size > 256 K)

RAD (3) Function

The RAD function returns the memory starting at the specifi ed addr e s s
to the overlay handler . The arguments are:

arg 1
arg 2

Address of memory to be returned
Size of memory to be returned (in words)

On return, the status is one of the following:

0 Successful return of memory
1 Memory cannot be returned
3 Illegal argument (address or size > 256K)

GCH (4) Function

Re turns a status of 1 . Th e channe l is not a vailabl e .

RCH (5) Function

Returns a status of 1. The channel is not ava il abl e .

5-27

OVERLAYS

GCH (4) Function

The GCH function gets an input / output channel. The arguments are:

arg 1
arg 2

Undefined (channel number allocated on return)
Ignored

On return, the status is one of the following:

0 Successful channel allocation
1 No channels available

RCH (5) Function

The RCH function returns an input / output channel. Its arguments are:

arg 1
arg 2

Number of channel to be returned
Ignored

On return, the status is one of the following:

0 Channel released
1 Channel number invalid for user

GOT (6) Function

The GOT function
object-time system.

gets memory from
Its arguments are:

the space allocated

arg 1
arg 2

Undefined (address of allocated memory on return)
Size of memory requested

On return, the status is one of the following:

0 Successful allocation
1 Not enough memory available
3 Illegal argument (size > 256K)

ROT (7) Function

to the

The ROT function returns memory to the object-time system. Its
arguments are:

arg 1
arg 2

Address of memory to be returned
Size of memory to be returned (in words)

On return, the status is one of the following:

0 Successful return of memory
1 Memory cannot be returned
3 Illegal argument (address or size > 256K)

5-28

I

I

•

•

•

•

•

•

OVERLAYS

RNT (10) Function

The RNT function returns the initial runtime, in milliseconds, from
the object-time system. (At the beginning of the program, the
object-time system will have executed a RUNTIM UUO; the result is the
time returned by RNT.) Its arguments are:

arg 1 Undefined (contains initial runtime on return)
arg 2 Ignored

On return, the runtime is in arg 1, and the status is 0.
is 0.

IFS (11) Function

The status

Always returns a value of -1. This function is not implemented.

CBC (12) Function

The CBC function cuts back memory if possible, which reduces the size
of the job. It uses no arguments, and the returned status is 0.

RRS (13) Function (Reserved for DBMS)

Returns ARGl = 0. On return, the status is always 0.

WRS (14) Function (Reserved for DBMS)

Returns ARGl = 0. On return, the status is always 0.

GPG (15) Function

The GPG function is used to fetch a page. The arguments are:

arg2: size to be allocated, in words

On return,
argl = address of allocated memory, on page boundary

and the status is one of the following:

0 if allocated OK
1 if not enough memory
3 if argument error

RPG (16) Function

The RPG function is used to return pages. The arguments are:

argl:
arg2:

address (a word)
size (in words)

On return, the status is:
0 if deallocated OK
1 if wasn't allocated
3 if argument error

5-29 March 1983

OVERLAYS

GPSI (17)

The GPSI function can be used to get a PSI channel for programs
running in a TOPS-20 environment . This entry point provides only
controlled access to the PSI tables. It will arrange that the tables
exist and that SIR and EIR have been done but does not do AIC or any
other JSYS necessary to set up the channel (ATI or MTOPR, for
example).

The arguments are:

argl: channel number,
or -1 to allocate any user-assignable channel

arg2: level number
arg3: address of interrupt routine

On return, argl contains the channel number allocated
originally specified). On return, the status is:

0 if OK
1 if channel was already assigned
2 if no free channels
3 if argument error

NOTE

This function is used by TOPS-20
programs. It is a reserved function in
the TOPS-10 environment.

RPSI (20) Function

(if -1 was

This entry point provides only controlled access to the PSI tables.
It does not do DIC or any other JSYS necessary to release a channel .
It just clears the level and interrupt address fields in CHNTAB.

This function accepts the following argument:
argl: channe l number

On return the status is one of the following:
0 if OK
1 if channel wasn't in use
3 if argument error

NOTE

This function is used by TOPS-20
programs. It is a reserved function in
the TOPS-10 environment.

5-30 March 1983

•

•

•

•

•

•

•

•

OVERLAYS

5.8 THE OVERLAY (OVL) FILE

This section contains diagrams of the contents
output by LINK as a result of the / OVERLAY
diagram shows the overall scheme of the file:

of the
switch.

overlay file
The following

Scheme of the Overlay (OVL) File

!=== !
I

Di rectory Block I
I

=== !
I

Link Number Table I
I

===!
I

Link Name Table I
I

=== !
I

Writable Link Flags Table I
I

=== !
I

Link I
I

--- !

!---!
I I
I Li nk I
I I
!===!

5-30.l

OVERLAYS

5.8.1 The Directory Block

The following diagram shows the contents of the Directory Block:

Directory Block

!===!
. DIHDR: I 0 (Reserved) I Length of Di rectory Block I

!---!
.DIRGN: I 0 (Reserved) I

!---!
.DIVER: I Version Number of Corresponding EXE file I

!---!
.DILPT: I -(Size of Link No. Table) !Link Number Table Block No. I

!---!
.DINPT: I- (Size of Link Name Table) I Link Name Table Block No. I

!---!
.DIWPT: I- (Size of Writable Flg Tbl) I Writable Flg Tbl Block No I

!---!
.DIFLG: I Flags I

!---!
I 0 (Reserved) I
!===!

In the fourth word above, the size of the Link Number Table (in words)
is half the number of links (rounded upward); the Link Number Table
Block No. is the number of the 128-word disk block c ontaining the Link
Number Table. (There are four disk blocks per disk page.)

In the fifth word above, the size of the Link Name Table (in words) is
twice the number of links; the Link Name Table Block No. is the
number of the 128-word disk block containing t h e Link Name Table.

The table defined by the .D IWPT word above consists of a string of
two- bit bytes. The first bit, OW.WRT, indi cates whether the
corresponding overlay link is writable. This bit is set under the
control of a REL block of type 1045 (writable links). The second bit,
OW.FAG, indicates whether the corresponding overlay link is currently
paged into the runtime overlay temporary file. This is strictly a
r un-time flag and should be zero in the overlay file. This flag is
defined i n the overlay file to allow the overlay handler to set up its
flag table with a si ngle read operation.

The .DIFLG word in the directory block contains a single bit flag (bit
0). If this bit is set the overlay file contains at least one
writabl e overlay . This information is also contained in the Writable
Link Table. However, by having the information available in the
directory block the overlay handler can determine if any links ar e
writabl e without scanning the Writable Link Table. All other bits in
the .DIFLG word are rese rved and must be zero.

NOTE

If a user requests both writable and
relocatable overlays , only halfwords
known to b e relocatable at loa d time
will be correctly relocated wh en the
link is r efetche d.

5- 30.2

•

•

•

•

•

•

•

•

OVERLAYS

5.8.2 The Link Number Table

The following diagram shows the contents of the Link Number Table :

Link Number Table

!=== !
I Pointer to Link 0 I Pointer to Link 1 I
!---!
I Pointer to Link 2 I Pointer to Link 3 I
1---1

1--- 1
I Pointer to Link n-1 I Pointe r to Link n I
1==================================== ============= ======1

Each pointer is a disk block number. Any unused words
disk block of the Lin k Number Ta ble are zeros.

5 .8.3 The Link Name Table

in the

Th e following diagram s hows the contents of the Link Name Table :

Link Name Table

l===I
I Link Number I
1---1
I SIXBIT Link Name I
1=== 1

1===1
I Link Number I
1---1
I S IXBIT Link Name I
1===1

last

Any unuse d words in the last disk block of the Link Name Ta ble a re
zeros .

5- 31

L

OVERLAYS

5.8.4 The Overlay Link

The following diagram shows the overall scheme of each overlay link in
the overlay file:

Scheme of an Overlay Link

!===
I
I Pr eambl e
I
!===
I
I Code for Link
I
!===
I

Link Control Section

EXTTAB

===

INTTAB

===

Relocation Table
I

===!
I

Other Relocation Tables I
I

=== !

5-32

•

I

I

•

•

OVERLAYS

~ The Preamble

•

•

•

•

The following diagram shows the contents of the preamble for an
overlay link:

Preamble

!===!
I 0 (Reserved) I Length of Preamble I
1---1
I 0 (Reserved) I 0 (Reserved) I
1---1
I 0 (Reserved) I Link Number I
1---1
I SIXBIT Link Name I
1---1
!Pointer to List of Bound Links Starting with Root Link I
1---1
I Pointer to List of Bound Links Ending with Root Link I
l-----------~---1
I Equivalence Pointer I
1---1
I Address of Control Section I
1---1
I Flags I
1---1
I Absolute Address at Which Link Loaded I
1---1
I Length of Link (Code through INTTAB) I
1---1
I Disk Block Number of Start of Link Code I
1---
1 0 (Reserved)
1---
1 Disk Block Number of Relocation Tabl e
!---
! Disk Block Number of Other Relocation Tables
1---
1 0 (Reserved)
1---
1 Disk Block Number of Radix-50 Symbols
1---
IBlock Number of Relocation Tables for Radix-50 Symbols
1---
1 Next Free Memory Location for Next Link
I===

5-33 April 1982

OVERLAYS

Code for the Link

The code for each link consists of a core image that was constructed
from the REL files placed in the l i nk. This core image contains the
code and data for the link.

The Control Section

The following diagram shows the contents of the Control Section:

Control Section

!===!
I 0 (Reserved) I Length of Header I

!---!
I 0 (Reserved) I 0 (Reserved) I
!---!
I 0 (Reserved) I Link Numbe r I

!---!
I SIXBIT Link Name I
!---!
I Ptr to Ancestor in Core I Ptr to Successor in Core I

!---!
I - (Length of Symbol Tab l e) I Address of Symbol Table I

!--- !
I 0 (Reserved) I Start Addr ess fo r Li nk I
!-- -!
!Memory Needed to Load Link I First Address in Link I
!---!
I -(Length of EXTTAB) I Pointer to EXTTAB I

!---!
I -(Length of INTTAB) I Po inter to INTTAB I

!---!
I Address of Symbols on Di s k I
!--- !
I Relocation Address I
!---!
I Copy of Block Number fo r Code I
!---!
!-(Length of Radix-50 SymTab) !Blk No. of Radix-50 SymTabl
!============ ======= ====================================!

5- 34 April 1982

•

I

I

•

•

•

•

•

•

•

OVERLAYS

The EXTTAB Table

The following diagram shows the contents of the EXTTAB table:

EXTTAB

!=== !
I JSP l,.OVRLA I
1---1
I Flags !Address of Callee's INTTAB I
1---1
I Callee's Link Number IPtr to Callee's Control Seel
1---1
I Backward Pointer I Forward Pointer I
!===!

!===!
I JSP 1, .OVRLA I
1---1
I Flags !Address of Callee's INTTAB I
1---1
I Callee's Link Number IPtr to Callee's Control Seel
1--- 1
I Backward Pointer I Forward Pointer I
!=== !

The flags in the left half of the second word have the
meanings:

Bit Meaning (if bit is on)

0 Module is in core.
1 Module is in more than one link.
2 Relocatable link is already relocated .

5-35

following

OVERLAYS

The INTTAB Table • The following diagram shows the contents of the INTTAB table:

INTTAB

1===1
I 0 (Reserved) I Address of Entry Point I

1---1
I 0 (Reserved) I Forward Pointer I

1===1

1===1
I 0 (Reserved) I Address of Entry Point I

1---1
I 0 (Reserved) I Forward Pointer I

1===1 •

•

•

•
5-36

•

•

•

•

•

OVERLAYS

The Relocation Table

The following diagram shows the contents of the Relocation Table:

Relocation Table

!===!
I Relocation Word I
!---!

!---!
I Relocation Word I
!===!

The Relocation Table contains one bit for each halfword of the link.
If the bit is on, the halfword is relocatable; if it is off, the
halfword is not relocatable.

The first word contains the relocation bits for the first 22 (octal)
words of the link; the second word contains the relocation bits for
the next 22 (octal) words; and so forth for all words in the link.

This table exists only wh en relocatable overlays are requested with
the / OVERLAY:RELOCATABLE switch .

5- 37

OVERLAYS

The Other Relocation Tables

The following diagram shows the contents of the Other Relocation
Tables:

Other Relocation Tables

!===!
I Number of Words Following for This Link I
!---!
I Link Number I Planned Load Address I
!---!
I Relocation Halfword I Ptr to Words of Code I
!---!

!--- !
I Relocation Halfword I Ptr to Words of Code I
!===!

!===!
I Number of Words Following for This Link I
!---!
I Link Number I Planned Load Address I
!---!
I Relocation Halfword I Ptr to Words of Code I
!--- !

!---!
I Relocation Halfword I Ptr to Words of Code I
!===!

This table exists only when relocatable overlays have been requested
with the OVERLAY/R ELOCATABLE switch. The Other Relocation Tables are
used to hold internal LINK references.

5-38

I

I

I

•

•

•

•

•

•

•

APPENDIX A

REL BLOCKS

The object modules that LINK loads are output from the language
translators. These object modules are formatted into REL Blocks, each
of which contains information for LINK .

This appendix describes each type of REL Block and gives its format.
Terms used throughout this discussion are defined as follows:

Header Word: a fullword giving the REL Block Type in its left half
and a short count or long count in its right half.

Short Count: a halfword giving the length of the REL Block, excluding
relocation words (which appear before each group of 18
(decimal), or 22 (octal) words) and excluding the header word.

Long Count: a halfword giving the length of the REL Block, including
all words in the block except the header word itself.

Relocation Word: a fullword containing the relocation bits for up to
18 (decimal) following words. Each relocation bit is eithe r
1, indicating a relocatable halfword, or 0, indicating a
nonrelocatable halfword.

The first two relocation bits give the relocatability of the
left and right halves, respectively, of the next following
word; the next two bits give the relocatability of the two
halves of the second following word; and so forth for all
bits in the word, except any unused bits, which will be zero .

If a REL Block has relocation words, the first one follows the
header word. If more than 18 (decimal) data words follow this
relocation word, the next word (after the 18 words) is another
relocation word. Thus, a REL Block that has relocation words
will have one for each 18 words of data that it contains. If
the REL Block does not contain an integral multiple of 18
words, the last relocation word will have unused bits.

NOTE

A block with a zero short count does not include a
relocation word .

Data Word: Any word other than a header word or a relocation word.

MBZ: Must Be Zero.

A-1

REL BLOCKS

NOTE

All numbers in this appendix are octal
unless specifically noted as decimal.

The diagram below shows a REL Block having a short count of 7, and a
relocation word.

!===
I Block Type I 7
!---
! Relocation Word
!---
! Data Word 1
!---
! Data Word 2
!---
! Data Word 3
!---
! Data Word 4
!---
! Data Word 5
!---
! Data Word 6
!---
! Data Word 7
!===============~=======================================

A- 2

•

•

•

•

•

•

•

REL BLOCKS

The diagram below s ho ws a REL Block having a short count of 31
(octal), and two relocation words.

!=== !
I Block Ty pe I 31 I
!--- !
I Relocation Word I
!--- !
I Data Wo rd 1 I
1--- 1

1--- 1
I Data Wo rd 22 I
1--- 1
I Relocat ion Wo rd I
!---!
I Data Word 23 I
!--- !

!--------------------------------- ---------------------- !
I Data Word 31 I
!===!

REL Block Ty pes must be numbered in the range 0 to 777777 (oc tal) .
Th e following list shows which numbe rs are reserved for DIGI TAL, and
which for c u stomers :

Type Numbers Use

0 - 37 Reserved for DIGITAL
40 - 77 Reserved for customers

100 - 401 Rese rved for DIGITAL
40 2 - 577 Reserved for c ustomers
600 - 677 Reserved for c ustome r files
7 00 - 77 7 Rese r ved for DIGI TAL fil es

1000 - 1777 Reserved for DIGITAL
2 000 - 3777 Reserved for customers
4000 - 777777 Reserved for ASCII text

A-3

REL BLOCKS

Block Type 0 (Ignored)

1===1
I 0 I Short Count I
1---1
I Relocation Word I
1---1
I Data Word I
!---!

1---1
I Data Word I
!===!

Block Type 0 is ignored by LINK.

If the short count is O, then no
block consists of only one word.
in a REL file.

relocation word follows, and the
This is how LINK bypasses zero words

A-4

I

•

•

•

•

REL BLOCKS

Block Type 1 (Code)

!===!
I 1 I Short Count I
1---1
I Relocation Word I
1---1
I Data Word I
1---1

1--- 1
I Data Word I
1===1

Block Type 1 contains data and code. The first data word gives the
address at which the data is to be loaded. This address can be
relocatable or absolute, depending on the value of bit 1 of the
relocation word. The remaining data words are loaded beginning at
that address.

If the start address is given in symbolic, the following format of
Block Type 1 is used:

1===1
I 1 I Short Count I
1---1
I Relocation Word I
1---1
I Symbol I
1---1
I Offset I
1---1

1--- 1
I Data Word I
1--- 1

In this alternate format, the first four bits of the first data word
(Symbol) are llOO (binary), and the word is assumed to be a Radix-SO
symbol of type 60. The load address is calculated by adding the va lue
of the global symbol to the offset given in the following word. The
third and following data words are loaded beginning at the resulting
address. The global symbol must be defined when the Type 1 Block is
found .

A-5

REL BLOCKS

Block Type 2 (Symbols)

!===!
I 2 I Short Count I
1---1
I Relocation Word I
1---1
!Code I Radix-50 Symbol I
1---1
I Second Word of Pair I
1---1

1---1
I Code I Rad ix- 50 Symbol I
1---1
I Second Word of Pair I
!===!

The first word of each pair has a code in bits 0 to 3 and a Radix-50
symbol in bits 4 to 35 (decimal). The contents of the second word of
a pair depends on the given code. The octal codes and their meanings
are:

Code Meaning

00 This code is illegal in a symbol block.

04 The given symbol is a global definition. Its value, contained
in the second word of the pair, is available to other programs.

10

14

The given symbol is a local definition, and its value is
contained in the second word of the pair. If the symbol is
followed by one of the special pairs or by a Polish REL Block
(as explained below, under code 24), the symbol is considered a
partially defined local symbol. Otherwise, it is considered
fully defined.

The given symbol is a block name (from a translator that uses
block structure). The second word of the pair contains the
block level. The symbol is considered local; if local symbols
are loaded, the value of the block name is entered in the
symbol table as its block level.

24 The given symbol is a global definition. However, it is only
partially defined at this time, and LINK cannot yet use its
value. If the symbol is defined in terms of another symbol,
then the next entry in the REL file must be a word pair in a
Block Type 2 as follows:

!===!
I 60 I Other Symbol I
1---1
I 50 I This Symbol I
!===!

In this format, code 50 indicates that the right half of the
word depends on the other symbol.

LINK Version 5 A-6 April 1982

•

•

•

•

•

•

•

•

•

•

Code

3 0

34

44

50

60

REL BLOCKS

Meani ng

If the partially defined symbol is defined in terms of a Polish
exp r ession, then the next entry in the REL file must be Block
Type 11 (Polish) , whose store operator gives this symbol as the
symbol to be fixed up. The store operator must be -4 or -6.

The given
partially
value. If
then the
Block Type

symbol is a global definition . However, it is only
defined at this time, and LINK cannot yet use its
the symbol is defined in terms of another symbol,
next entry in the REL file must be a word pair in a
2 as follows:

!=== !
I 60 I Other symbol I
1--- 1
I 70 I Th is Symbol I
1===1

I n this format, code 70 indicates that the left half of the
word depends on the other symbol .

If the partially defined symbol is defined in terms of a Polish
expression, then the next entry in the REL file must be Block
Type 11 (POLISH), whos e store operator gives this symbol as the
symbol to be fixed up. The store operator must be -5 .

The give n
partially
value . If
then the
Block Type

symbol is a global definition. However , it is only
defined at this time, and LINK cannot yet use its
the symbol is defined in terms of another symbol,
next entry in the REL file must be a word pair in a
2 as follows :

1===1
I 60 I Othe r Symbol I
1------------------------------- ------------------------1
I 50 I Th is Symbol I
1--- 1
I 60 I Other Symbol I
1--- 1
I 70 I Th is Symbol I
1===1

This format indicates that both halves of t he word depe nd on
the other symbol .

The given symbol is a global definition e xact ly as in code 04'
except that it is not output by DDT .

The given symbol is a local symbol e xact l y as in code 10,
e xcept that it is not output by DDT .

The given symbol is a global request . LINK ' s handling of the
symbol depends on the value of the code in the first fo ur bits
of the second word of the pair . These codes and their meanings
are :

00 Th e right h a lf of the word gives the address of the
first word in a c h a in of r equests for the globa l me mory
address . In each request , the right half o f t he word
gives the address of the next request . The addresses in
the chain must be s trictly descending ; the chain e nd s
wh en the address is O.

LINK Version 5 A- 7 April 1982

REL BLOCKS

Code Meaning

40 The right half of the word contains an address. The
right half of the value of the requested symbol is added
to the right half of this word.

50 The rest of the word contains a Radix-50 symbol whose
value depends on the requested global symbol. (If the
given Radix-50 s ymbol is not the one defined in the
previous word pair, then this word is ignored.) When
the value of the requested symbol is resolved, it is
added to the right half of the value of the Radix-50
symbol.

60 The right half of the word contains an address. The

70

right half of the value of the r equested symbol is added
to the left half of this word.

The rest of the word contains a Radix-SO symbol whose
value depends on the requested global symbol. (If the
given Radix-50 symbol is not the one defined in the
pre v ious word pair, then this word is ignored.) When
the value of the requested global symbol is resolved, it
is added to the l e ft half of the value of the Radix-50
symbol.

64 The gi ven symbol is a g l obal definition exactly as in code 24,
except that it is not output by DDT.

70 The gi ven symbol is partiall y defined, where the left half is
deferred, as in c ode 30, except that it is not output by DDT.

74 The given symbol is partially defined, where the right half is
deferred, as in code 34, except that it is not output by DDT.

Symbols are placed in the symbol table in the order that LINK finds
them. However, DDT expects to find the symbols in a specific order.

For a non-block-structured program, that order is:

Program Name

Symbols for Program

For a block-structured program whose structure is:

Begin Block 1 (same as program name)
Begin Block 2
End Block 2
Begin Block 3

Begin Block 4
End Block 4

End Block 3
End Block 1

LINK Version 5 A-8 April 1982

•

•

•

•

•

•

•

•

•

•

REL BLOCKS

the order is:

Program Name (Block 1)
Block Name 2
Symbols for Block 2
Block Name 4
Symbols for Block 4
Block Name 3
Symbols for Block 3
Block Name 1
Symbols for Block 1

This ordering follows the rule that the name and symbols for each
block must occur in the symbol table in the order of the block endings
in the program.

NOTES

1. Only one fixup by a Type 2, 10, 11,
1070, or 1072 Block is allowed for a
given field. (There can be separate
fixups for the left and right halves
of the same word.)

2. Fixups are not necessari ly performe d
in the order LINK finds them .

A- 9 April 198 2

REL BLOCKS

Block Type 3 (HISEG)

1===1
I 3 I 1 or 2 I
1---1
I Relocation Word I
1---1
IHigh-Segment Program Break I High-Segment Origin I
1---1
I (Low-Segment Program Break) I (Low-Segment Origin) I
1===1

Block Type 3 tells LINK that code is to be loaded into the high
segment.

If the left half of the first data word is O, subsequent Type 1 blocks
found are assumed to have been produced by the MACRO pseudo-op HISEG.
This usage is not recommended. It means that the addresses in the
blocks are relative to 0, but are to be placed in the program high
segment. The right half of the first data word is the beginning of
the high segment (usually 400000).

If the left half of the first data word is
usage) , subsequent Type 1 blocks found
produced by the MACRO pseudo-op TWOSEG.

nonzero (the preferred
are assumed to have been

The right half is interpreted as the beginning of the high segment,
and the left half is the high-segment break; the high-segment length
is the difference of the left and right halves.

(One-pass translators that cannot calculate the high-segment break
should set the left half equal to the right half.)

If the second word appears in the HISEG block, its left half shows the
low-segment program break, and its right half shows the low-segment
origin (usually 0).

A-10

•

I

I

•

•

•

•

•

•

•

REL BLOCKS

Block Type 4 (Entry)

!===!
I 4 I Short Count I
!---!
I Relocation Word (Zero) I
!---!
I Radix-SO Symbol I
!---!

!---!
I Radix-SO Symbol I
!===!

Block Type 4 lists the entry name symbols for a program module. If a
Type 4 block appears in a module, it must be the first block in the
module. A library file contains a Type 4 block for each of its
modules.

When LINK is in library search mod e , the symbols in the block are
compared to the current list of global requests for the load. If one
or more matches occur, the modul e is load ed and the name of the module
is marked as an entry point in map files, etc. If no match occurs,
the module is not loaded .

If LINK is not in library search mode, no comparison of
entry names is mad e , and the module is always loaded.
Type 17 for mor e information about libraries .

A- 11

requests and
Refer to Block

REL BLOCKS

Block Type 5 (End)

!===!
I 5 I 2 I
!---!
I Relocation Word I
!--- !
I First Data Word I
!---!
I Second Data Word I
!===!

Block Type 5 ends
encount ered earlier

a program module. A Block Type
in the module than the Type 5 block .

6 must be

If the module contains a two- segme nt program , the first data word i s
the high-segment break and the second data word is the low-s egment
break. If the module contains a one-segment program, the first data
word is the program break and the second data word is the absolute
break.

Each PRGEND pseudo-op in a MACRO program ge ne rates a Type 5 REL block .
Th e r e for e a REL file may contai n mo r e than one Type 5 block.

A library REL fil e has a Type 5 block at the end of each of its
modules.

A- 1 2

•

•

•

•

I

•

•

•

•

REL BLOCKS

Block Type 6 (Name)

!===!
I 6 I 1 or 2 I
!---!
I Relocation Word I
!---!
I Rad ix-50 Symbol I
!--- !
I (CPU) I (Compiler) I (Length of Blank Common) I
!--- !

Block Type 6 contains the program name, and must preced e any Type 2
blocks. (A module should begin with a Type 6 block and end with a
Type 5 block.)

The first data word is the program name in Radix-SO format; this name
cannot be blanks. The second data word is optional; if it appears,
it contains CPU codes in bits 0 to 5, a compiler code in bits 6 to 17
(decimal), and the length of the program's blank COMMON in the right
halfword.

The CPU codes specify processors for program execution as:

Bit 2
Bit 3
Bit 4
Bit 5

KSlO
KLlO
KilO
KAlO

If all these bits are off, then any of the processors can be used for
execution.

The compiler code specifies the compiler that produced the REL fil e .
The defined codes are:

0 Unknown 7 SAIL 16 COBOL-74
1 Not used 10 FORTRAN 17 (Reserved)
2 COBOL-68 11 MACRO 20 BLISS-36
3 ALGOL 12 FAIL 21 BASIC
4 NELIAC 13 BCPL 22 SITGO
5 PL/ I 14 MIDAS 23 G-floating FORTRAN
6 BLISS 15 S !MULA 24 PASCAL

25 JOVIAL

LINK Version 5 A-13 April 1982

I

REL BLOCKS

Block Type 7 (Start)

1===1
I 7 I 1 or 2 I
1---1
I Relocation Word I
1---1
I St a r t Address I
1------------------------------·-------------------------I
I (60) I (Radix-50 Symbol) I
!===!

Block Type 7 contains the start address for program execution. LINK
uses the start address in the last such block processed by the load,
unless / START or / NOSTART switches specify otherwise. However, if the
left halfword of the start address is nonzero , the halfword is
interpreted as the length of the entry vector, which is located at the
address specified in the right halfword. Refer to Section 4.2.1 for
further information.

If the second (optional) word is present, it must be a Radix-50 symbol
with the code 60; LINK forms the start address by adding the value of
the symbol to the value in the right half of the preceding word (Start
Addr ess) .

A- 14

•

I

I

•

•

I

•

•

•

•

REL BLOCKS

Block Type 10 (Internal Request)

!===!
I 10 I Short Count I
1---1
I Relocation Word I
1---1
I Pointer to Last Request I Value I
1---1

1---1
I Pointer to Last Request I Value I
1---1

Block Type 10 is generated by one-pass compilers to resol ve requests
caused by forward references to internal symbols. The MACRO assembler
also generates Type 10 blocks to resolve requests for labels defined
in lite ra ls; a separate chain is required for each PSECT in a PSECTed
program.

Each data wor d contains one request for a n internal symbol . The left
half is the address of the last request for a given symbol. The right
half is the value of the symbol. The right half of the last request
contains the address of the next-to-last request, and so on, until a
zero right half is found. (This is exactly analogous to Radix-SO code
60 with second-word code 00 in a Block Type 2 .)

If a data word contains -1, then the following word contains a request
for the l eft (rathe r than right) half of the specified word . In this
case , the l eft half of the wo rd being fixed up contains the address of
the next-to-last left half reque st, and so on , until a zero left half
is found. (This is a left half chain analogous to the right half
chai n described above .)

NOTES

1. Only one fixup by a Type 2, 10, 11,
1070, or 1072 Block is allowed for a
given field. (There can be separate
fixups for the left and right hal ves
of the same word .)

2 . Fixups a r e not necessarily pe rforme d
in the ord e r LINK fi nds the m .

A- 15 April 1982

I

I

REL BLOCKS

Block Type 11 (Polish)

!===!
I 11 I Short Count I
!---!
I Re location Word I
!--- !
I Data Halfword I Data Halfword I
!--- !

!---!
I Data Halfword I Data Halfword I
!=== !

Block Type 11 defines Polish fixups for operat i ons on relocatable
values or external symbols. Only one store operator code can appear
in a Block Type 11; this store operator code can be eithe r a symbol
fixup code or a chained fixup code. The store operator code appears
at the end of the block .

NOTES

1. Only one fixup by a Ty pe 2 , 10, 11,
1070, or 1072 Block is al lowed for a
given field. (There can be separate
fixups for the l eft and right hal ves
of the s ame word.)

2. Fixups are not necessarily pe rformed
in the order LINK finds the m.

Th e data word s of a Type 11 bloc k form one Polish str ing of h a lfwords .
Each h a lfword contains one o f th e following:

1. A symbol fixup store operator cod e .

A symbol f ixup define s the value to be stored in the value
field of the symbol tabl e for the give n symbol . A symbo l
fixup store operator cod e is followed by four d ata halfwords.

2 . A chained fixup stor e ope r a tor c od e .

A chained fixup takes a relocatable address whos e corrected
virtual address is the location for storing or c haining. A
cha ined fixup store operator cod e is followed by one dcta
h a lfword.

3 . A data type cod e . Data type c od e 0 i s followed by a data
h a l f word; a d a ta type code 1 or 2 i s follo wed by t wo data
ha lfword s .

4. An a rithme tic or logica l operator code .

A-16 April 1982

•

I

•

•

•

I

•

•

•

•

REL BLOCKS

5. A PSECT index code. This code defines a PSECT index to be
used for calculating the relocated addresses that appear in
this block. PSECT indexes are needed only for PSECTed
programs.

6.

A global PSECT index is associated with a Block Type 11.
This index appears as the first halfword after the relocation
word, and it defines the PSECT for the store address or store
symbol. Any addresses for a different PSECT must be preceded
by a different PSECT index.

Thus, a relocatable data halfword in a different PSECT must
appear in one of the following formats:

1---1
I 400nnn I (operator code) I
1---1
I (operands) I
1---1

OR

!---!
I I 400nnn I
!--- !
I (operator code) I (operands) I
!---!

wh ere the different PSECT index is nnn+l.

Any relocatable address that does not have an explicit
preceding PSECT index code preceding its data type code is
assumed to be in the same PSECT as the sto r e address for the
block. The current PSECT may be set by a previous REL Block
type.

A halfword of data (preceded by a data type
two halfwords of data (preceded by a
halfword).

0 halfword) or
data type 1 or 2

A sequence of halfwords containing a data type code 0 and a
data halfword can begin in either half of a word.

The codes and their meanings are:

Symbol Fixup Store Operator Codes:

-7 Fullword replaceme nt. No chaining is done.

-6 Fullword symbol fixup. The following one or two words
contain the Radix-50 symbol(s) (with their 4-bit codes) .
The first is the symbol to be fixed up, and the second is
the block name for a block-structured program (0 or
nonexistent for other programs) .

A-17 April 1982

-5

REL BLOCKS

Left half symbol fixup. The
contain the Radix-50 symbols.
fixed up, and the second
block-structured program
programs).

following one or two words
The first is the symbol to be

is the block name for a
(0 or nonexistent for other

-4 Right half symbol fixup. The following one or two words
contain the Radix-50 symbols. The first is the symbol to be
fixed up, and the second is the block name for a
block-structured program (0 or nonexistent for other
programs).

Chained Fixup Store Operator Codes:

-3 Fullword chained f ixup. The halfword following points to
the first element in the chain. The entire word pointed to
is replaced, and the old right half points to the next
fullword.

-2 Left ha lf chained fixup. The halfword following points to
the first element in the chain.

-1 Right half chained fixup. The halfword following points to
the firs t element in the chain.

Data Type Codes:

0 Th e ne xt h a l f wo rd i s a n ope rand.

1 The next two halfwords form a fullword operand.

2 The next two halfwords form a Radix-50 symbol that is a
global r e que st . Th e operand is the value of the symbol.

Arithmetic and Logical Operator Codes:

NOTE

Operand s are read in the order that t hey are
e ncounte red.

3 Add.

4 Subtract.

5 Multi ply .

6 Di v id e .

7 Logical AND .

10 Logical OR .

11 Logic a l s hift. (A posit i ve second operand causes a shift to
the l ef t. A nega ti ve operand causes a s hi ft to the right.)

1 2 Log i cal XOR.

13 Logi ca l NOT (one ' s compleme nt).

A-18

I

•

•

•

•

•

•

•

REL BLOCKS

14 Arithmetic negation (two's complement).

lS Count leading zeros (like JFFO instruction). Refer to the
MACRO Assembler Reference Manual for information about the
~L operand, which this code implements.

16 Remainder.

17 Magnitude.

20 Maximum.

21 Minimum.

22 Comparison. Returns 0 if the two operands are different;
-1 if they are equal.

23 Used to resolve the links in a chain. Refer to Block Type
12 .

24

2S

26

27

Symbol definition test. Retu r ns 0 if the
Radix-SO symbol) is unknown; l if it is
undefined; -1 if it is known and defined.

Skip N words of Polish.

Skip N words of Polish on some condition.

Return contents of location N.

operand
known

PSECT Index Codes:

400nnn PSECT index nnn, where nnn is a 3-digit octal integer.

For an example of a Type 11 block, the MACRO stateme nts

EXTERN B
A: EXP <A*B+A >

Generate (assuming that A has a relocatable value of zero):

===I
11 I 6

001011001001101101 0

3 (Add) S (Multiply)

0 (Halfword Operand Next) 0 (Relocatable)

2 (Fullword Radix-SO Nex t) 1st Half of Radix-SO B

2nd Half o f Radix-SO B I 0 (Halfword Operand Next)
1---
1 0 (Relocatable) l-3 (Rh Chained Fixup Next)
1---
1 0 (Chain Starts at 0') I I
1===1

(a
but

Th e first word contains the block type (11) and the short count (6).
The second word is the relocation word; it shows that the following
hal f words are to be relocated: right half o f second following word,
left half of fifth following word, left half of sixth following word.

A-19 March 1983

I

REL BLOCKS

The next word shows that the two operations to be performed are
addition and multiplication; because this is in Polish prefix format,
the multiplication is to be performed on the first two operands first,
then addition is performed on the product and the third operand.

The next two halfwords define the first operand. The first halfword
is a data type code O, showing that the operand is a single halfword;
the next halfword is the operand (relocatable 0).

The next three halfwords define the second operand. The first of
these halfwords contains a data type code 2, showing that the operand
is two halfwords containing a Radix-50 symbol with code 60. The next
two halfwords give the symbol (B).

The next two halfwords define the third operand. The first of these
halfwords contains a data type code 0, showing that the operand is a
single halfword; the next halfword gives the value of the operand
(relocatable 0).

The next two halfwords give the store operator for the block. The
first of these halfwords contains the chained fixup store operator
code -3, showing that a fullword chained fixup is required; the next
halfword contains the operand (relocatable 0), showing that the chain
starts at relocatable zero.

The last halfword is irrelevant, and should be zero. If it is not,
LINK issues the LNKJPB error message.

A-20

•

•

•

•

•

•

•

•

REL BLOCKS

Block Type 12 (Chain)

1===1
I 12 I Short Count I
1---1
I Relocation Word I
1---1
I Chain Number I
1---1
I Chain Address I Store Address I
1---1

1--- 1
I Cha in Number I
1---1
I Chain Address I Store Addr ess I
1===1

Block Type 12 chains together data structures
modules. (The MACRO pseudo-ops . LINK and
blocks.) Block Type 12 allows linked lists
separately compiled modul es to be constructed
be added to one modul e without ed iting or
modul e .

from separately compiled
.LNKEND generate Type 12
that have en tries in
so that new ent ri es can
recompiling a ny other

The data words in a Type 12 block are paired. The first word of each
pair contains a chain number between 1 and 100 (octal). (Th e chain
numbe r is negative if the pair was generated by a .LNKEND pseudo-op.)
The second word contai ns a store address in the right half , a nd a
chain address in the l eft half. The store address points to the
location wher e LINK will place the chain address of the last e ntr y
e ncounte red for the c urr e nt chain. The first e ntry in a chai n has a
zero in the word pointed to by the store address.

A MACRO statement of the form:

.LINK chain-number,store - address , chai n- address

ge ne rate s a word pair in a Ty pe 12 block as s hown above .
stateme nt of the form:

.LINK chain-number,store-address

A MACRO

generates a word pair in a Type 12 block with a 0 for t he chain
address field in the REL bloc k. A MACRO statement of the for m:

.LNKEND chain-numbe r, store-addr ess

generates a word pair in a Type 12 Block with a 0 for the chain
address a nd a negative chain number.

As LINK processes a load, it per forms a separate chaining for each
diffe rent chain numbe r fou nd; thus a word pair in a Type 12 block is
related to al l other wo rd pairs h aving the same c h a in num ber (eve n in
othe r loaded modul es). Type 12 pair s hav ing diffe r e nt c hain numbe r s
(e ven in the same module), a r e not related .

A-21

REL BLOCKS

To show how the chains are formed, we will take some pairs from
different programs having the same chain number (1 in the example).
The following four programs contain .LINK or .LNKEND pseudo-ops for
the chain numbered 1. After each program, the word pair generated in
the Type 12 block appears.

NOTE

When LINK stores an address resulting
from a Type 12 REL Block, only the right
half of the receiving location is
written. You can safely store another
value in the left half; it will not be
overwritten.

A-22

I

I

I

•

•

REL BLOCKS

• Example

TITLE MODO

TAGO: BLOCK

.LNKEND l,TAGO

END

l===I
I -1 I
1-------------------------------------- ----------------- 1
I 0 I Value of TAGO I
l===I

TITLE MODl

• TAGl: BLOCK

.LINK l ,TAGl

END

1=== ====== ========1
I 1 I
1--- 1
I 0 I Va l ue o f TAGl I
1=== 1

• TITLE MOD2

TAG 2 : BLOCK

.LINK l,TAG2

END

l===I

• I 1 I
1--- 1
I 0 I Value of TAG 2 I
l===I

TITLE MOD 3

TAG3: BL OC K

TAG 33 : BLOCK

.LINK l ,TAG33 ,TAG 3

END

l= == I
I 1 I
1--- 1
I Value o f TAG3 I Value o f TAG33 I

• 1=== 1

A-23

REL BLOCKS

Suppose we
a negative
recognizes
1. LINK

load MODO first. The .LNKEND statement for MODO generates
chain number. LINK sees the negative chain number (-1) and
this as the result of a .LNKEND statement for chain number
remembers the store address (value of TAGO) as the base of

the chain.

Next we load MODl. The .LINK statement for MODl does not use the
third argument, so the chain address is 0. LINK sees that this is the
first entry for chain number 1. Because it is the first entry, LINK
places a 0 in the store address (value of TAGl). LINK then remembers
the value of TAGl for use in the next chain entry. (If the chain
address is 0, as it is in MODl, LINK remembers the store address; if
the chain address is nonzero, LINK remembers the chain address.)

Next we load MOD3. The .LINK statement in MOD3 uses a third argument
(TAG3), therefore, the value of TAG3 is used as the chain address.
LINK places its remembered address (value of TAGl) in the store
address (value of TAG33). Because the chain address (value of TAG3)
is nonzero, LINK remembers it for the next entry.

Finally we load MOD2. Like MODl, the .LINK statement for MOD2 does
not take a third argument, and thus the chain address is 0. LINK
places the remembered address (value of TAG3) in the store address
(value of TAG2). Because the chain address is 0, LINK remembers the
store address (value of TAG2).

At the end of loading, LINK places the last remembered address (value
of TAG2) at the address (value of TAGO) given by the .LNKEND statement
in MODO.

The results of the chaining can be seen in the following diagram of
the loaded core image:

TAGO:

TAG3:

TAG33:

MODO

!Value of TAG2
I
I
I

I
I
I
I

MOD3

!Value of TAGl
I

I
I

MOD2

TAG2: !Value of TAG3
I
I
I

I
I

TAGl: I
I
I
I

MODl

0

Note that the order of loading for modules with .LINK statements is
critical. (A module containing a .LNKEND statement can be loaded any
time; its treatment is not affected by the order of loading.)

A-24

•

•

•

•

•

•

•

•

•

•

REL BLOCKS

For example, if we load the four programs in the order MOD2, MOD3,
MODO, MODl, we get a different resulting core image:

TAGO:

I
I

MODO

!Value of TAGl
I
I
I

I
I

MOD3

TAG3: I
I

TAG33: !Value of TAG2
I

I
I

MODl

TAGl: !Value of TAG3
I
I
I

I
I

TAG2: I
I
I
I

MOD2

0

A-25

REL BLOCKS

Block Type 14 (Index)

1===1
I 14 I 177 I
1---1
I Sub-Block I
I I
1---1

1---1
I I
I Sub-Block I
I I
1---1
I -1 I Ptr To Nxt Rel Blk Typ 14 I
!===!

Each sub-block is of the form:

1===1
I Index-Version Number I Count of Symbols I
!---!
I Rad ix-50 Symbol I
1---1

1---1
I Radix-50 Symbol I
1---1
I Pointer to Modul e Containing Entry Symbols I
1===1

Block Type 14 contains a list of all entry points in
produced by MAKLIB. The block contai ns 177 (octal) data
no relocation words); if the i nd ex requires mor e entries ,
Type 14 blocks are used.

a library
words (with
additional

The Type 14 block consists of a header word, a number of sub-blocks,
and a trail e r word containing the disk block address of the next Type
14 block, if any. Each disk block is 128 words.

Each sub-bloc k is like a Type 4 block, with three differences:

1. Th e s ub- block has no relocation words.

2. The last word of the sub-block points to the module that
contains the entry points listed in the sub-block. The righ t
half o f the pointer has the disk block number of the module
within the file ; the l e ft half has the numbe r of words (in
that block) that precede the module. If t here is no next
block , then the word after the last s ub-block is 0.

3. The ind e x-version number is used so that old blocks can still
be loaded , eve n if the format changes in the future.

A- 26

I

•

•

•

•

•

•

•

•

•

REL BLOCKS

Block Type 15 (ALGOL)

!===!
I 15 I Short Count I
!---!
I Relocation Word I
!---!
I Load Address I Length I
!---!
I Chain Address I Offset I
!---!

!---!
I Chain Address I Offset I
!===!

Block Type 15 is used to build the special ALGOL OWN block.

The first data word contains the length of the module's OWN block in
the right half, and the desired load address for the current OWN block
in the left half. Each following word contains an offset for ~he
start of the OWN block in the right half, and the address of a
standard righthalf chain of requests for that word of the OWN block in
the left half .

When LINK sees a REL Block Ty pe 15, it allocates a block of the
requested size at the r equ e sted address. Th e length of the block is
then placed in the left half of the first word, and the address of the
last OWN block se e n is placed in the rig h t half. If this is the first
OWN block s ee n, 0 is stored in the right half of the first word.

The remaining dat a word s are th e n processed by adding the address of
th e first word of th e OWN block to e ach offset, and then storing the
r e sulting va lu e in all th e l ocations chained together, starting with
the chain addr e ss .

At the end of loading, LINK c he cks to se e if the symbol %OWN is
undefined. If it is und e fined, th e n it is defined to be the address
of the last OWN block s ee n. In addition, if LINK is creating an ALGOL
symbol fil e , th e fil e spec ification of the s ymbol file is stored in
the first OWN block lo ad ed. This fil e spe cification must be standard
TOPS-10 format and can in c lud e (in ord e r): de v ice, file name, file
type, and proj e ct-programme r numb e r .

A-27

REL BLOCKS

Block Type 16 (Request Load) •
!===!
I 16 I Short Count I
!---!
I Relocation Word (Zero) I
!---!
I SIXBIT Filename I
!---!
I Project-Programmer Number I
!---!
I SIXBIT Device I
!---!

!---! •
I SIXBIT Filename I
!---!
I Project-Programmer Number I
!---!
I SIXBIT Device I
!===!

Block Type 16 contains a list of files to be loaded. The data words
are arranged in triplets; each triplet contains information for one •
file: file name, project-programmer number, and device. The file
type is assumed to be REL, unless you have specified otherwise with
/ DEFAULT.

LINK saves the specifications for the files to be loaded, discarding
duplicates. At the end of loading, LINK loads all specified files
immediately before beginning library searches.

The MACRO pseudo-op .REQUIRE generates a Type 16 REL Block.

A-28

•

•

•

•

•

•

•

REL BLOCKS

Block Type 17 (Request Library)

!===!
I 17 I Short Count I
!---!
I Relocation Word (Zero) I
!---!
I S IXBIT Fi le name I
!---!
I Proj ect-Programmer Numbe r I
!---!
I S IXBIT Device I
!---!

!--- !
I SIXBIT Filename I
!---!
I Project-Programmer Number I
!---!
I SIXBIT Device I
!===!

Block Type 17 is identical to Block Type 16 except that the specified
files are loaded in library search mode. The specified files are
searched after loading files given in Type 16 blocks, but before
searching system or user libraries .

Th e MACRO pse udo-op .REQUEST generates a Type 17 REL Block .

A-29

REL BLOCKS

Block Type 20 (Common)

!===!
I 20 I Short Count I
!---!
I Relocation Word (Zero) I
!---!
I Radix-50 Symbol I
!---!
I Length of Labeled Common Block I
!---!

!---!
I Radix-50 Symbol I
!---!
I Length of Labeled Common Block I
!=====~===!

Block Type 20 allocates labeled COMMON areas. The label for unlabeled
COMMON is ".COMM.". If a Block Type 20 appears in a REL file, it must
appear before any other block that causes code to be loaded or storage
to be allocated in the core image.

The data words are arranged in pairs. The first word of each pair
contains a COMMON name in Radix-50 format (the four-bit code field
must contain 60). The second contains the length of the area to be
allocated.

For each COMMON entry found, LINK first determines whether the COMMON
area is already allocated. If not, LINK allocates it. If the area
has been allocated, the allocated area must be at least as large as
the current requested allocation.

COMMON blocks can be referenced from other block types as standard
globally defined symbols. However, a COMMON block must be initially
allocated by a REL Block Type 20, by a REL Block Type 6 (for blank
COMMON), or by the / COMMON switch to LINK. Any attempt to initially
define a COMMON block with a standard global symbol definition causes
the LNKSNC error when the redefining Block Type 20 is later seen.

A-30

•

•

•

•

•

•

•

•

•

•

REL BLOCKS

Block Type 21 (Sparse Data)

!===!
I 21 I Short Count I
!---!
I Relocation Word (Zero) I
!--------------- --!
I I
I Sub-Block I
I I
!---!

!---!

', I Sub-Block
I I
!===!

Each sub-block is of the form:

!===!
I Long Count I Addr e ss I
!---!
I Data Word I
!---!

!----------------·--------------------------------------- !
I Da ta Word I
!===!

Block Type 21 contains data
The first word of each
sub-block in th e l e ft half,
in the right half.

to be loaded sparsely in a large area.
sub-block contains the long count for the
and the addr e ss for loading the data words

If the first four bits of the first data word of each sub-block are
1100 (binary) th e n the word is a s sumed t o be a Radix-50 s ymbol of type
60; in this case th e l e ft half of the s e cond word is t he sub-block
count, and th e right half plu s the va lu e of the s ymbol is the load
address .

A-31

I

REL BLOCKS

Block Type 22 (PSECT Origin) •
1===1
I 22 I Short Count I
1------------------------- ------------------------------1
I Relocation Word I
1---1
I (SIXBIT PSECT Name) or (PSECT Index) I
1---1
I PSECT Origin I
1===1

Block Type 22 contains the PSECT origin (base address).

Block Type 22 tells LINK to set the value of the relocation counter to •
the value of the counter associated with the given PSECT name. All
following REL blocks are relocated with respect to this PSECT until
the next Block Type 22 or 23 is found.

When data or code is being loaded into this PSECT, all relocatable
addresses are relocated for the PSECT counter.

MACRO generates a Block Ty pe 22 for each .PSECT and .ENDPS
it processes. These Type 22 blocks are interleaved with
blocks to indicate PSECT changes. A Type 22 block is also
at the beginning of each symbol table to show which PSECT
belongs in.

LINK Version 5 A-32

pseudo-op
the other
generated
the table

April 1982

•

•

•

•

•

•

•

•

REL BLOCKS

Block Type 23 (PSECT End Block)

!=== !
I 23 I Short Count I
!--- !
I PSECT Index I
!--- !
I PSECT Break I
!=== !

Block Type 23 contains information about a PSECT.

The PSECT index uniquely identifies the PSECT within the module being
loaded. The Type 24 block assigns the index.

The PSECT break gives the length of the PSECT. This break is relative
to the zero address of the current module, not to the PSECT origin .

LINK Version 5 A-33 Ap r il 19 8 2

REL BLOCKS

Block Type 24 (PSECT Header Block)

1===1
I 24 I Count I
1---1
I Relocation Word I
1---1
I PSECT Name (SIXBIT) I
1---1
I At tributes I PSECT Index I
1---1
I PSECT Orig in I
1===1

Block Type 24 contains information concerning a specified PSECT. The
first word contains the block type number and the number of words
associated with the block. The second word contains the relocation
information. The third word contains the PSECT name in SIXBIT. The
fourth word is the PSECT origin specified for this module.

Bit

11

12

Bl3

Bl4

Bl5

Bl6

Bl7

Interpretation

PSECT is all within section
one. This is the default.

PSECT is in a nonzero
section.

PSECT is page-aligned.

Concatenate parts of
PSECTs seen in distinct modules.

Overlay parts of PSECTs
seen in distinct modules.

Read-only

Read and write

MACRO .PSECT Keyword

PALIGNED

CONCATENATE

OVERLAY

RON LY

RWRITE

LINK must find a Type 24 block for a PSECT before it finds the index
for that PSECT. (MACRO generates a complete set of Type 24 blocks for
all PSECTS in a module before generating Type 2 (Symbol Table) Blocks
and Type 11 (POLISH) Blocks.)

LINK Version 5 A-34 April 1982

•

•

•

•

•

•

•

•

•

•

REL BLOCKS

Block Type 37 (COBOL Symbols)

l==F==I
I 37 I Short Count I
!---!
I Relocation Word I
!---!
I Data Word I
!---!

!---!
I Data Word I
!===!

Block Type 37 contains a debugging symbol table for COBDDT, the COBOL
debugging program. If local symbols are being loaded, the table is
loaded.

If a REL file contains a Block Type 37, it must appear after a ll other
blocks that cause code to be loaded or storage to be allocated in the
core image.

This block is in the same format as the Type 1 REL Block .

A-35

L_

REL BLOCKS

Block Type 100 (.ASSIGN)

!===!
I 100 I Short Count I
!---!
I Relocation Word I
!---!
I Code I Rad ix- 50 Symbol 1 I
!---!
I Code I Radix-50 Symbol 2 I
!---!
I Offset I
!===!

Block Type 100 defines Symbol 1 (in the diagram above) as a new global
symbol with the current value of Symbol 2, and then increases the
value of Symbol 2 by the value of the given offset.

NOTE

Symbol 2 must be completely define d wh e n
the Block Type 100 is fou nd.

A- 36

•

•

•

•

•

•

•

•

•

•

REL BLOCKS

Block Type 776 (Symbol File)

1===1
I 776 I Long Count I
1---1
I .JBSYM-Style Symbol Table Pointer I
1--- 1
I .JBUSY-Style Symbol Table Pointer I
1--- 1
I Data Word I
1---1

1---1
I Data Word I
1===1

Block Type 776 must begin in the first word of the file, if it occurs
at all. This block type shows that the file is a Radix-SO symbol
file.

The data words form a Radix-50 symbol table for DDT in the same format
as the table loaded for the switches / LOCALS/ SYMSEG or the switch
/DEBUG .

A- 37

REL BLOCKS

Block Type 777 (Universal File)

!===!
I 777 I Long Count I
!---!
I Data Word I
!---!

!---!
I Data Word I
!=== !

Block Type 77 7 i s included in a unive rsal (UNV) file that is produced
by MACRO so that LINK will recognize when a UNV file is being loaded
incorrectly. When a Block Type 777 is found, LINK produces a ?LNKUNS
error.

A- 38 April 1 98 2

I

•

•

•

•

REL BLOCKS

I Block Type 1000 (Ignored)

!===!
I 1000 I Long Count I
!---!
I Data Word I
!---!

!---!
I Data Word I
!===!

• Block Type 1000 is ignored by LINK •

•

•

•
A-39

REL BLOCKS

Block Type 1001 (Entry)

1=== 1
I 1001 I Count I
1---1
I Symbol I
1--- 1
I Symbol I
1=== 1

Block type 1001 is use d to declare symbolic entry points.
contains one SIXBIT symbol.

LINK Version 5 A- 40

Each word

April 198 2

I

I

I

•

•

•

•

•

•

•

REL BLOCKS

Block Type 1002 (Long Entry)

l===I
I 1002 I Count I
1---1
I Symbol Name I
1---1

1---1
I Symbol Name I
1===1

Block type 1002 is used to declare a symbolic entry point with a long
name in SIXBIT. The count reflects the symbol length in words .

LINK Version 5 A-41 April 1982

REL BLOCKS

Block Type 1003 (Long Title) • !===
I 1003 I Count
!---
' 640000 I o
!---
' Program Title
!---
' 0 !---
' 040000 I o
!---
' More Title
!---
' More Title
!---

!--- ! I
I 044000 I o I
!---!
I ASCII Comment I
!---!
I More Comment I
!---!

I !---
' 042000 I o
!---
' Compiler Name
!---
' Code I CPUs
1---
1 042000 I o
1---
1 More Compile r Name
1---
1 Mor e Compiler Name
1--- I

•
LINK Version 5 A- 4 2 April 1982

•

•

•

•

•

REL BLOCKS

041000 0

Compile Date and Time

Compiler Version Number

040400 0

Device Name

UFD

040200 0

File Name

File Ext

040100 0

SFDl

I SFD2
!---

!--- !
I 040040 I o I
!---!
I Source Version Number I
!---!
I Dat e I Time I
!===!

Block type 1003 is used to declare long Title symbols in SIXBIT and to
furnish other information about the source module. This Block Type is
printed in the map file that is produced by LINK.

For TOPS-20, the UFD and SFD words are 0, and the file extension is
replaced by the file type.

LINK Version 5

NOTE

For the compiler code and the CPU code,
ref er to the explanation of Block Type
6, where these codes are listed .

A-43 April 1982

REL BLOCKS

Block Type 1004 (Byte Initialization) •
!=== !
I 1004 I Short Count I
1---1
I Relocation Word I
1--- 1
I Byte Count I
1--- 1
I Byte Po inter I
1---1
I Byte String I
1---1

Block Type 1004 is used to move a char ac t e r string into static •
storage.

The byte count is the number of bytes in the string. The byte pointer
is relocated and used to initialize a string in the user's program.

A second form of Type 1004 block is formatted as follows:

1======================= ================================1
I 1004 I Short Count I
1---1
I Relocation Word I
1--- 1
I Glob al Symbol I
1---1
I Byte Count I
!---\
I Byte Po inter I
1--- 1
I Byte String I
1---1

In this form, the global symbol (in Radix-50 format)
relocate the byte pointer, which, consequently, becomes
the static storage. The symbol must be defined when this
e ncounte red.

LINK Version 5 A- 44

is used to
an offset to
REL block is

April 198 2

•

•

•

•

•

•

•

•

REL BLOCKS

Block Types 1010 - 1037 (Code Blocks)

Block types 1010 through 1037 are similar in function to blocks of
Type 1. They contain code and data to be loaded. These blocks also
contain relocation bytes that permit inclusion of PSECT indexes local
to the module. For PSECTed programs with many inter-PSECT references
this permits a substantial decrease in the size of the REL files. The
number of PSECTs that can be encoded in this manner is limited by the
size of the relocation byte. A set of parallel code blocks differing
only in the size of the relocation byte permits the compiler or
assembler to select the most space efficient representation according
to the number of PSECTs referenced in a given load module.

This set of blocks is divided by the type of relocation:

Right Relocation Block types 1010 - 1017

Left/Right Relocation Block types 1020 - 1027

Thirty-bit Relocation Block types 1030 - 1037

LINK Version 5 A-45 April 1982

REL BLOCKS

Blocks 1010 - 1017 (Right Relocation)

1===1
1 1010 1 N 1
1--- 1
1 bl 1 b2 1 b3 I 1 bi I
!--- !
I Beg inning Address I
1---1
I Data 1 I
!--- !
I Data 2 I
!---!

!---!
1 Data (i-1) I

!===!

Block Types 1010 - 1017 are identical in function. They differ only
in the size and number of relocation bytes. Each relocation byte
applies to the right half of the corresponding data word.

N

bl,b2 ... bi

Beginning Addr

Datal ... Data(i-1)

LINK Version 5

is the length of the REL block, i ncluding all
words in the block except the Header word.

are the relocation bytes.

Each relocation byte contains a PSECT index
number. A zero byte means no relocation
(absolute data). All PSECT index numbers
must reference predefined PSECTS.

Size I-value Block Type

2 18 1010
3 12 1011
6 6 1012
9 4 1013
18 2 1014

A size of 2 allows 3 PSECTs; a size of 3
allows 7 (2**3-1) PSECTs, etc.

is the address where the block of code is to
be loaded. This address is relocated with
respect to the PSECT in "bl". "bl" also
defines the current PSECT. It is not
necessary to declare the current PSECT with a
block of Type 22.

are the words to be loaded. The right ha lves
of these words are relocated with r espect to
the various PSECTs that are specified by the
c orresponding relocation bytes, b2,b3, ... bi .

A-46 April 19 82

I

•

•

•

•

•

•

•

•

•

REL BLOCKS

Block Types 1020-1027 (Left/Right Relocation Blocks)

1===1
I 1020 I N I
1---1
I Ll I Rl I L2 I R2 I I Li I Ri I
1---1
I Beginning Address I
1---1
I Data l I
1--- 1
I Data 2 I
1---1

1---1
I Data (i-1) I
l===I

Block Types 1020 - 1027 are
in the size and number
applies to the left and
corresponding data word.

identical in function. They differ only
of relocation bytes. Each pair of bytes
right halves, respectively, of the

N

Ll,Rl

Beginning Addr

Datal, .. Data (i-1)

LINK Version 5

is the length of the REL block, including all
words except the Header word .

are the relocation byte pairs for the left
and right halves respectively.

Size I-Value Block Type

2
3
6
9

9
6
3
2

1020
1021
1022
1023

(Block Types 1024-1027 are reserved)

Polish blocks must be used to do left
relocation if there are more than (2 **9) -1
(decimal 511) PSECTs local to the module.

is the address of the block of code to be
loaded. This address is relocated with
respect to the PSECT in "Rl". "Rl" also
defines the current PSECT. "Ll" must be
zero.

is the block of code to be loaded, whose left
and right halves are relocated with respect
to the various PSECTs as specified by the
corresponding byte pairs. The 12 index
relocates the left half of data word 1 and R2
relocates the right half of data word 1.
Note that these blocks contain 2 bytes for
each data word as compared to one byte for
Block Types 1010 - 1017.

A-47 April 1982

REL BLOCKS

Block Types 1030 - 1037 (Thirty-bit Relocation Blocks)

!===!
I 103x I N I
!--------------------------------------- ----------------!
I bl I b2 I • • • I bi ..1
!---!
I Beg inning Address I
!---!
I Data 1 I
!---!
I Data 2 I
!---!

!---!
I Data (i-1) I
!===!

Block Types 1030 - 1037 are identical in function. They differ only
in the size and number of relocation bytes. Each relocation byte
applies to the entire 30-bit address field of the corresponding data
word.

103x

N

bl,b2 .. bi

Beginning Addr

Datal. .. Data(i-1)

LINK Version 5

is the Block Type number

is the length of the REL block, including all
words in the block except the Header word.

are the relocation bytes.

Each relocation byte contains a PSECT index
number. A zero byte means no relocation
(absolute data). All PSECT index numbers
must reference predefined PSECTS.

Size I-Value Block Type Maximum No. of
PSECTs

2 18 1030 3
3 12 1031 7
6 6 1032 63
9 4 1033 511
18 2 1034 More than 511

(Block Types 1035 - 1037 are reserved)

is the address where the block of code is to
be loaded. This address is relocated with
respect to the PSECT in bl. Bl also defines
the current PSECT. It is not necessary to
declare the current PSECT with a block of
Type 22.

are the words to be loaded. The 30-bit
address field of these words is relocated
with respect to the various PSECTs that are
specified by the corresponding relocation
bytes, b2,b3, ... bi.

A-48 April 1982

I

•

•

•

•

•

•

•

•

•

REL BLOCKS

Block Type 1042 (Request Load for SFDs)

===
1042 Short Count

Device

SIXBIT Filename

File Extension Directory Count

Project-Programmer Number

SFDl

SFD2

Block Type 1042 contains a list of files to be loaded. It is similar
to blocks of Type 16, but it supplies TOPS-10 sub-file directories for
the files being requested. The first three data words (device, file
name, and extension) are required. The right half of the third word
(directory count) specifies the number of directory levels that are
included. For example, the directory [27,5434,SFD1,SFD2] would have a
directory count of 3 .

LINK saves the specifications for the files to be loaded, discarding
duplicates. LINK loads all specified files at the end of loading, and
immediately before beginning library searches .

A-49

REL BLOCKS

Block Type 1043 (Request Library for SFDs)

===!
1043 I Short Count I

---!
Device I

---!
SIXBIT Filename I

---!
File Extension I Directory Count I

---!
Project-Programmer Number I

---!
SFDl I

---!
SFD2 I

---!

Block Type 1043 specifies the files to be searched as libraries. It
is similar to Type 17 Blocks, except that it provides TOPS-10 sub-file
directories. The first three data words (device, file name, and
extension) are required. The right half of the third word (directory
count) specifies the number of directory levels that are included.
For example, the directory [27,5434,SFD1,SFD2] would have a directory
count of 3.

The specified files are searched after requested files are loaded, but
before user and system libraries are searched.

A-50

I

•

•

•

•

•

•

•

•

REL BLOCKS

Block Type 1044 (ALGOL Symbols)

1===1
I 1044 I Long Count I
1---1
I Data Word I
1---1

1---1
I Data Word I
1===1

Block Type 1044 contains a debugging symbol table for ALGDDT, the
ALGOL debugging program.

If an ALGOL main program has been loaded, or if you have used the
/SYFILE:ALGOL switch, LINK writes the data words into a SYM file. In
addition, if any Type 15 (ALGOL OWN) REL blocks have been seen, LINK
stores the file specification of the file into the first OWN block
loaded.

NOTE

If you have specified the /NOSYMBOLS
switch, or if you have specified the
/ SYFILE switch with an argument other
than ALGOL, then LINK ignores any Type
1044 blocks found .

A-51

REL BLOCKS

Block Type 1045 (Writable Links)

l===I
I 1045 I Count I
1---1
I Flags I
1---1
I Symbol I
1---1
I Symbol I
1---1

1---1
I Symbol I
1===1

Block type 1045 declares as writable either the
current module or the links containing the
specified symbols or both. This block type must
block declarations (Types 20 or 6) in a module.

li~k containing the
definitions of the

follow any common

The flag word indicates which links are writable. If bit one is set
then the link containing the current module and the links containing
the definitions of the specified symbols are writable. If bit one of
the flag word is not set then the link containing the current module
is not writabl e , but the links containing the specified symbols are
writable. All unused flag bits are reserved and should be zero.

Any symbols specified in a block of Type 1045 must be defined in the
path of links leading from the root link to the current link. A
module cannot declare a parallel or inferior link to be writable.

If the symbol name contains six or fewer characters it is represented
in a single word, left justified, with the following format:

1===1
I SIXBIT Symbol Name I
1=== 1

LINK Version 5 A-52 April 1982

•

•

•

•

•

I

I

•

•

•

REL BLOCKS

If the symbol name contains more than six characters it is represented
in the following format:

Bits
0 5 6 29 30 35
!===!
I 0 I Reserved (0) I N I
!---!
I Word 1 of SIXBIT Symbol Name I
!---!
I Word 2 of SIXBIT Symbol Name I
!---!

!---!
I Word (N-1) of SIXBIT Symbol Name I
!===!

The first six bits of a long symbol are always O. This distinguishes
a long symbol name from a single word symbol name. N is the length of
the symbol name including the header word. The remaining words
contain the symbol name in SIXBIT, six characters to a word, left
justified .

LINK Version 5 A-53 April 1982

REL BLOCKS

Block Type 1050 (PSECT Name Block)

!===!
I 1050 I Count I
!---!
I O I Index I
!---!
I SIXBIT PSECT Name I
!---!
I Additional Name Word I
!---!
I Additional Name Word I
!---!

Block Type 1050 creates a PSECT with the given name, if none currently
exists. It also assigns a unique index number to the PSECT. This
index is binding only in the current module.

At least one block type 1050 is required for each PSECT being loaded,
and this block must be loaded prior to any other blocks that reference
its PSECT (that is, use the unique index number).

Field

Index

SIXBIT PSECT
Name

Additional
Name Word

LINK Version 5

Function

contains the 18-bit PSECT index number.
unique throughout the module.

It is

the name of the PSECT being defined (in SIXBIT).

contains additional characters of the PSECT name.

A-54 April 1982

•

•

•

•

•

•

•

•

•

REL BLOCKS

Block Type 1051 (PSECT Attribute)

!===!
I 1051 I count I
!---!
I O I Index I
!--- !
I At tribute I
!---!
I Origin I
!=== !

Blocks Type 1051 assigns attributes to a PSECT and specifies the
PSECT's origin address. The attributes that can be assigned are:

Bit Interpretation MACRO .PSECT Keyword

11 PSECT is all within section
one. This is the default.

12 PSECT is al 1 in a nonzero
section.

13 PSECT is page-aligned . PALIGNED

14 Concatenate parts of CONCATENATE
PSECTs seen in distinct
modules .

15 Overlay parts of PS EC Ts OVERLAY
seen in distinct modules.

16 Read-only RON LY

17 Read and write RWRITE

LINK Version 5 A-55 April 1982

REL BLOCKS

Block Type 1052 (PSECT End)

!===!
I 1052 I N I
!---!
I 0 I PSECT Index Number I
!--- !
I PSECT Break I
!--- !

!--- !
I 0 I PSECT Index Number I
!--- !
I PSECT Break I
!=== !

Block Type 1052 allocates additional space for a given PSECT.
space is located between the last address in the PSECT containing
and the address given by the PSECT break. A block of Type 1052
contain more than one pair of PSECT indexes and breaks.

Th i s
data

c an

A module must contain a block of Type 1050 (PSECT Name Block) with t he
given PSECT index be f ore a block of Type 1052 is generated. If a
given PSECT has more than one block 1052 in a single module, the bloc k
with the largest break address is used.

LINK Version 5 A-56 April 1982

•

•

•

•

•

•

•

REL BLOCKS

Block Type 1066 (Trace Block Data)

I===
I 1060 I Long Count
1---
1 SIXBIT Edit Name
1---
1 Active Code I Last Changer
1---
1 Creator Code I 15-Bit Date Created
1---
1 Installer Code I 15-Bit Date Installed
1---
1 Reserved
1---
1 Edit Count I PCO Group Count
1---
1

\ I
Associated Edit Names And Codes

I \
I I
1---1
I I
\ I

Program Change Order Groups
I \
I I
!===!

Block Type 1060 contains data used by the MAKLIB program. LINK
ignores this block type .

A-57

REL BLOCKS

Block Type 1070 (Long Symbol Names)

===
1070 Block Length

Code 0 N R 0

(Left PSECT #) (Right PSECT #)

Value

SIXBIT Name

Additional Name Words

1---1
I Additional Value Words I
1---1

This block defines either a long global symbol or a long local symbol.
A symbol defined with this block:

• is output to the DDT symbol table.

• is output to LINK MAP if requested.

• has its value relocated as specified.

• has global requests resolved.

The Long Symbol Name Block is divided into two sections, the basic and
the extension sections.

The basic section consists of three words. The first word contains
the flags that provide information about the type of symbol, the
length of the symbol name, and the relocation type. The second word
contains the value. The third word contains the symbol name. If the
name or the value cannot fit in a single word, the block contains an
extension section that consists of as many words as are necessary to
accommodate the symbol name and the value. The length of the symbol
name is stored in the flag word and determines how many words are
allocated for the long symbol name in the extension section. In the
case of a short symbol name only the basic section is used.

The next entry or entries repeat the block, starting at the Flag Word
(word 1).

LINK Version 5 A-58 April 1982

•

•

•

•

•

•

•

•

•

•

Field

Header Word
Rel-b l o c k Type
Block Length

Flag Word (Word 1)

Code

LINK Ve r s i on 5

Bi ts

0-1 7
18- 3 5

0 - 8

REL BLOCKS

Descript ion

1 07 0
Number of wor d s used in this block

A nine-bit code field :

bit 0 Must Be Zero
000 Program name
100 Local symbol definitions

1 0 1 Extended value
110 Suppressed to DDT
12 0 MAP only

200 Gl obal symbols completely
defined by one word
2 0 1 Completely defined by

extended value
2 0 2 Not defined
203 Right fixup
204 Left fix up
2 0 5 Right and left fi xups
206 30-bit fix up
207 Fullword fixup
210-217

Suppress to DDT
220-227

MAP only
24x Global symbol request for

chain fixup
2 40 No fixup
241 Right half fixup
242 Left half fixup
243 (Not defined)
244 30-bit fix up
245 Fullword fixup
25x Global request for

additive fixups (the
value of x has the same
meaning as in 24x)

26x Global request for symbol
fixups (the value of x
has the same meaning as
in 24x)

300 Block names

NOTE

All symbols that
require a fixup for
their definition must
have the fixup block
immediately following
the entry .

A- 59 April 1 9 82

Field Bits

(Unused field) 9-10

N--Name length 11-17

R--Relocation Type 18-21

(Unused field) 22-35

PSECT numbers (optional)

Value Word (word 2)

Name (word 3)

Additional name field

Additional value field

LINK Version 5

REL BLOCKS

Description

Must Be Zero

If not zero, ex t ended name fie ld of
length n words is used, so that the
name occupies N+l words.

4-bi t relocation type field .

bit 18=0 relocate with respect to the
current PSECT . No PSECT numbers are
needed.

bit 18=1 relocate with respect to the
PSECT specified in the next word.

R=O Absolute
R=l Right half
R=2 Left half
R=3 Both halves
R=4 30-bit
R=S Fullword
R=6 Indirect

Not used

Exi sts only if bit 18=1 in the Flag
word. Contains Left and Right PESECT
numbers. Bit 18 and bit 0 of this
wo rd are zeros .

Contains the symbol va lue , it may be
relocated as specified by the
relocation type and the PSECT numbers
provided .

Contains the symbol name in SIXBIT.

Optional . It e xists only if N > 0.
It contains the additional characters
when a long symbol name is used .

Optional . It exist only if the cod e
equals xxl . The first word contains
the length of the extended field .

A-6 0

NOTES

1. Only one fixup by a Type
2, 10 , 11, 1070, or 107 2
Block is allowe d for a
given field . (There can
be separate f ixups for
the left and right halves
of the same word .)

2 . Fixups
necessarily
the order
them .

are not
performed in
LINK finds

April 1982

I

I

I

•

•

•

•

•

•

•

REL BLOCKS

Block Type 1072 (Long Polish Block)

1===1
I 1072 I Block Length I
1---1
I Half-Word Polish String I
1---1

1===1

Long Polish Blocks of type 1072 define Polish fixups for operations on
relocatable long external symbols. This type block is inte rpreted as
a string of 18-bit operators and operands. The block i s in Pol i sh
prefix format, with the stored operator at the end of the block. Each
halfword can contain one of he following:

• A halfword code in which the first 9 bits contain the data
length (when applicable) and the second 9 bits contain the
basic code telling LINK how to inte rpret the d a ta t hat
follows. The largest that can be encoded is 37 7 .

•

•

A halfword data or a part of a larger data pack e t to b e
interpreted by LINK as indicated by the code that imme diatel y
precedes it .

A PSECT index of the format 400000+N. The PSECT ind e x
of a long Polish block i s handl e d b y LINK the same wa y
Polish block type 11 is handle d. Th e first PSECT i nde x
is found sets up the current r e location coun ter

fi e ld
tha t a

t hat

• A Polish operator.

NOTE

Operands ar e performe d in the o r de r in
which they ar e e ncounte r e d.

CODE DEFINITIONS

Category

Ope rand

LI NK Version 5

Code

xxxyyy

000000
001000

000001
001001

000010
xxxOlO

Description

n e x t "xxx" h a l f word s con t ai n d ata of
type "yyy"

h a lfword - absolute
f ullword - a b s olu te

h a lfword - r e l oca t a bl e
f ullwo rd - r e loca tab l e

fullword symbol name in Rad ix-50
xxx halfwords of s ymbol n ame i n SIXBIT
(xxx <= 377)

A- 61 April 1982

Category

Operator

Store Operator

PSECT ind ex

LINK Version 5

Code

000100
000101
000102
000103
000104
000105
000106
000107
000110
000111
000112
000113
000114
000115
000116
000117
000120
000121
000122-00177

xxx777-xxx770

xxx777
xxx776
xxx775
xxx774
xxx773

000767-000760

001767-001760

xxx757-xxx750

xxx757
xxx756
xxx755
xxx754

xxx747-xxx700

400000 0+N

REL BLOCKS

Description

Add
Subtract
Multiply
Divide
Logical AND
Logical OR
Logical shift
Logical XOR
One's complement (not)
Two's complement (negative)
Count leading zeros
Remainder
Magnitude
Maximum
Minimum
Equal relation
link
Defined
Reserved

Chained fixu p
Next xxx+l halfwords contain start
address of a : (xxx+l halfwords)
Right half chain f ixup
Left half chain f ixup
30-bit chain fixup
Fullword chain fixup
Indirect fix up

Chained fi xup with absol ute address.
Next halfword contains an absolute
address.

Chai ned fixup with absolute fullword
address. Next two halfwords contain
absolute address.

Symbol fixup .
For xxx=O next two
Radix-S O symbol to
For l <=xxx <=377
halfwords contain
to be fixed-up

halfwords contain a
be fi xed-up.

the next xxx+l
a SIXBIT symbol name

Right half symbol fixup
Lef t half symbol f ixup
30-bit symbol fixup
Fullword s ymbol fixup

Not defined

PSECT index for PSECT N.

A-62 April 1982

•

•

•

•

•

REL BLOCKS

~ NOTES

•

•

•

•
LINK Version 5

1. Only one fixup by a Type 2, 10, 11, 1070, or
1072 Block is allowed for a given field.
(There can be separate fixups for the left and
right halves of the same word.)

2. Fixups are not necessarily performed in the
order LINK finds them .

A-63 April 1982

REL BLOCKS

Block Type 1100 - 1107 (Program Data Vector)

!===!
I 1100 - 1107 I Count I
!---!
I Relocation Byte Word I
!---!
I Address I
!---!
I Relocation Byte Word I
1---1
I Address I
1--- 1

Block Types 1100 - 1107 are used to declare the location of program
data vectors to LINK. The r elocation byte word uses the n-bit byte
relocation format. This format permits compact representation of
PSECT relocation and thirty-bit address resolution. For these program
data vector blocks all nonzero PSECT indexes result in thirty-bit
fixups.

LINK Version 5 A-64 April 1982

•

•

•

•

•

•

•

•

•

•

REL BLOCKS

Block types 1120-1127 (Argument Descriptor Blocks)

===
1120 - 1127 Count

N-Bit Byte Relocation Information

Argument Block Address or 0

Associated Call Address or 0

Loading Address or 0

Length of Function Name (in bytes)

Function Name (ASCIZ)

!--- !
I Flag Bits I Argument Count I
!---!
I First Argument's Primary Descriptor I
!---!
I First Argument's Secondary Descriptor I
!---!
I Second Argument's Primary Descriptor I
!---!
I Second Argument's Secondary Descriptor I
!--- !

!---!
I nth Argument's Primary Descriptor I
!---!
I nth Argument's Secondary Descriptor I
!===!

A block of this type is generated for the argument list to each
subroutine call. The subroutine entry point also specifies one block
with this format, though for the callee the argument block address is
zero. If a descriptor block is associated with an argument list it
must always follow the loading of the argument list.

The associated call address is used by LINK in diagnostic error
messages and its value is determined by the compiler. The argument
block address is nonzero if the descriptor block is associated with a
call. In this case the argument block address points to the base of
the argument block.

The argument block address, associated call address and the loading
address are all relocatable.

The argument descriptors in these type blocks describe the properties
of each formal (in the case of an entry point) or actual (in the case
of a call). In either case the name of the associated routine is
specified as a byte count followed by an ASCIZ string. Each primary
description is optionally followed by a secondary descriptor.

A-65

I

I

REL BLOCKS

There are five flag bits in the Descriptor Block:

Bit Usage

0

1

2

3

4

If bit 0 is 1 then a difference between the actual
number of arguments and the expected number of
arguments is flagged as a warning at load time. If
bit 0 is 0 no action is taken.

If bit 1 is 1 then the block is associated with a
function call. If bit 1 is 0 then the block is
associated with the function definition.

If bit 2 is 1 then the descriptor block is loaded
into the user image at the loading address.

If bit 3 is 1 then the callee returns a
the value's descriptor is the last
specified.

value and
descriptor

If bit 4 is 1, and the caller expects a return
value, which is not provided by the called function,
or if the called function unexpectedly returns a
value, then LINK will issue an error. The severity
of the error is controlled by the coercion block.

The format for the argument descriptors is as follows:

Bit

0

1

2-4

5

6-11

12-17

18

19-26

27-35

LINK Version 5.1

Usage

(Reserved)

No update. In a caller block the argument is a
literal, constant, or expression. In a callee block
the argument won't be modified.

Passing mechanism
000 - pass by address
001 - pass by descriptor
010 - pass immediate value
Others - reserved

Compile-time constant

Argument type code (see below)

(Reserved)

Implicit argument descriptor

(Reserved)

Number of secondary descriptors

A-66 March 1983

I

•

•

•

•

•

•

•

•

REL BLOCKS

The argument type codes are as follows:

Type-Code

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

Usage

Don't care

FORTRAN logical

Integer

(Reserved)

Real

(Reserved)

36-bit string

Alternate return (label)

Double real

Double integer

Double octal

G-floating real

Complex

COBOL format byte string descriptor (for constant
strings), or FORTRAN character

BASIC shared string descriptor

ASCIZ string

Seven-bit ASCII string

Secondary descriptors are used to convey information about the length
of a data object passed as an argument and (in the case of the
callee 's argument descriptor block) wh e the r or not a mismatched l e ngth
is permissible. Secondary descriptors have the following format:

Bit Pos

0- 2

3-5

Usage

(For callee only) Defines the permissable relationships
between formal and actual lengths. The values are:

000 - Any relationships are allowed
001 - Lengths must be equal
010 - Actual < formal
011 - Actual <= formal
100 - Actual > formal
101 - Actual >= formal
110 - Reserved
111 - Reserved

Length of argument (in words)

LINK Version 5 .1 A-67 March 1983

I

REL BLOCKS

Block Type 1130 (Coercion Block)

!===!
I 1130 I Count I
!--- !
I Field Code I Action I
!---!
I Formal Attribute I Actual Attribute I
!---!
I Field Code I Action I
!---!
I Formal Attribute I Actual Attribute I
!---!

.
!---!
I Field Code I Action I
!---!
I Formal Attribute I Actual Attribute I
!===!

Block Type 1130 specifies which data type associations are permissible
and what action LINK should take if an illegal type association is
attempted. It may also specify actions to be taken by LINK to modify
an actual parameter.

The Coercion Block must be placed before any instance of the
caller/callee descriptor block in the REL file. If more than one
coercion block is seen during a load, the union of the blocks is used
for type checking. However, when different actions are specified for
the same type assoc iation, the more severe action is used.

When a caller's argument descriptor block is compared to the
descriptor block provided by the callee, LINK first checks bit 0 and
the argument counts of the descriptor block. If bit 0 is set and the
argument counts differ, a warning is given.

Next LINK compares the argument descriptors.
formal/actual pair is looked up in the internal
using the information in the coercion block. The
designates which field of the argument descriptor
The field codes are defined as follows:

Field Code

0
1
2
3
4
5
6

Condition

Check update
Check passing mechanism
Check argument type code
Check if compile-time constant
Check number of arguments
Check for return value
Check length of argument

The particular
table LINK builds
item field code
is being checked.

If the fields of the formal / actual pair do not match, LINK searches
the internal table set up by the coercion block. If the table does
not specify an action to take in the event of such a mismatch, LINK
issues an informational message. If the formal/act ual pair differs in
more than one field then LINK takes the most severe action specified
for the mismatches.

LINK Ve rsio n 5 .1 A- 68 March 19 83

I

I

•

•

•

•

•

•

•

•

REL BLOCKS

If an actual/formal pair differ and no coercion block has been seen,
LINK ignores the difference. If the caller has specified a descriptor
block but the subroutine has not, or if the subroutine has specified a
descriptor and the caller has not, LINK does not flag the condition as
an error and does not take any special action.

If LINK finds an entry in its internal table for a particular
actual/formal mismatch, it uses the action code found in the entry to
select one of the following five possible responses:

Code (18 Bits)

0

1

2

3

4

5-777776

777777

Action

Informational message

Warning

Error

Reserved for the specific conversion of
static descriptor pointers (in the argument
list) into addresses. The descriptor
pointers are supplied by FORTRAN blocks of
types 112x.

NOTE

The actual conversion process
involves the following actions:

• If byte descriptor's P field is
not word-alig ned, issued a
warning and continue.

• Pick up word address of start of
string.

• If the string is not in the same
section as the argument block,
nonfatal error and continue .

• Put the address of the string
into the associated argument
block in place of the address of
the string descriptor.

Suppress the message .

Reserved

Fatal error

These messag€s can be displayed or suppressed. Refer to the
descriptions of the /E RRORLEVEL and /LOGLEVEL switches .

LINK Version 5 .1 A-69 March 198 3

I

REL BLOCKS

Block Type 1140 (PL/I debugger information) •
1===1
I 1140 I Long count I
1---1
I Data Word I
1--- 1

.
1---1
I Data Word I
1===1

Block type 1140 is ignored by LINK . •

•

•

•
LINK Version 5.1 A-70 March 1983

•

•

•

•

•

REL BLOCKS

Block Type Greater Than 3777 (ASCIZ)

!===!
I ASCII I ASCII I ASCII I ASCII I ASCII I 0 I

!---!
I ASCII I ASCII I ASCII I ASCII I ASCII I 0 I

!---!

!---!
I ASCII I ASCII I ASCII I ASCII I 0 I 0 I

!===!

When LINK reads a number larger than 3777 in the left half of
Block header word, the block is assumed to contain ASCIZ text .
module containing the text is being loaded, LINK reads the
characters as if they were a command string, input from the
terminal.

a REL
If the

ASCII
user's

LINK reads the string as five 7-bit ASCII characters per word; bit 35
of each word is ignored. The string and the block end when the first
null ASCII character (0 00) is found in the fifth 7-bit byte of a word
(bi ts 28-34) .

A-71

I

•

•

•

•

•

•

•

•

APPENDIX B

LINK MESSAGES

This appendix lists all of LINK's messages. (The messages from the
overlay handler, which have the OVL prefix, are given in Chapter 5.)

B.l DESCRIPTION OF MESSAGES

Section B.2 lists LINK's messages. For each message, the last three
letters of the 6-letter code, the level, the severity, and its
medium-length message are given in boldface. Then, in lightface type,
comes the long message .

When a message is issued, the three letters are suffixed to the
letters LNK, forming a 6-letter code of the form LNKxxx.

The level of a message determines whether it will
terminal, the log file, or both. You can use
/ LOGLEVEL switches to control message output. For
asterisk (*) is given for the level or severity.
value is variable, and depends on the conditions
message.

be issued to the
the / ERRORLEVEL and

some messages an
This means that the

that generated the

The severity of a message determines whether the load will be
terminated when the message is issued. Table B-1 lists the severity
codes used in LINK, along with their meanings. The / SEVERITY switch
provides a means for lowering the severity that is considered fatal.

The severity also determines the first character on
printed to the terminal. This character can then
batch system. For all informational messages, the
Warnings use %, and fatal errors use ? .

B-1

the message line
be detected by the
character is [.

April 1982

Code

1-7

8-15

LINK MESSAGES

Table B-1
Severity Codes

Meaning

Informational; messages of this severity
indicate LINK's progress through t he load.

generally

Warning; LINK is able to recover by itself and continue
the load.

16 Warning if timesharing, but fatal and stops the load if
running under batch.

20

24

Fatal; LINK can only partially recover and continue the
load. The loaded program may be incorrect. Undefined
symbols cause this action.

This is for file access errors.
fatal and stops the load. Under
warning, and LINK prompts for
specification if possible.

Under batch, this is
timesharing, this is a

the correct f ile

31 Always fatal; LINK stops the load.

The / VERBOSITY switch determines whether the medium-l e ngth and long
messages are issued. If you use /VERBOSITY:SHORT, only the 6-letter
code, the level, and the severity are issued. If you use
/ VERBOSITY:MEDIUM, the medium-length message is also issued. If you
use / VERBOSITY:LONG, the code, level, severity , medium-length message,
and long message are issued.

Those portions of the me dium-length messages enclosed in braces ({ and
}) are optional, and are only printed in appropriate circumstances .

Those portions of the medium-length messages enclosed i n square
brackets are filled in at run-time with values pertinent to the
particular error . Table B-2 describes each of these bracketed
quantities.

B- 2 Apr il 1 982

I

•

•

•

•

•

•

•

•

•

[area)

[date)

[decimal)

[device)

[file)

[label)

[memory]

[name)

[octal)

[reason)

[switch)

[symbol)

[type)

LINK MESSAGES

Table B-2
Special Message Segments

The name of one of LINK's internal memory
management areas.

The date when LINK is running.

A decimal number, such as a node number.

A dev ice name.

A file specification.

An internal label in LINK.

A memory size, such as 17P .

The name of the loaded program or a node in an
overlaid program.

An octal number, such as a symbol value.

The reason for a file access failure, one of the
messages shown in Section B.3.

The name of a switch associated with the error.

The name of a symbol, such as a subroutine or
common block name .

The type or attributes associated with a symbol.

Whenever possible, LINK attempts to indicate the module and file
associated with an error. This information represents the module
currently being processed by LINK, and may not always be the actual
module containing the error. For instance, if LINK detects a
multiply-defined symbol, either value may be the incorrect one. In
this case, LINK reports only the second (and subsequent) redefinition
and the module containing it .

B-3

I

B.2 LIST OF MESSAGES

Code Lev Sev

ABT 31 31

AIC 31 31

AMM t t

AMP 8 8

ANM 31 31

ARL 8 8

LINK MESSAGES

Message

Load aborted due to %LNKTMA
/ARSIZE: needed was [decimal]

errors, max.

You loaded programs containing more ambiguous
subroutine requests than can fit in the tables
of one or more overlay links. You received a
LNKARL message for each ambiguous request, and a
LNKTMA message for each link with too many
requests. You can solve this problem by using
the / ARSIZE switch just before each / LINK switch
to expand the tables separately.

Attempt to increase size of {blank common}
{common [symbol]} from [decimal] to [decimal]
{Detected in module [symbol] from file [file]}

FORTRAN common areas cannot be expanded once
defined. Either load the module with the
largest definition first, or use the / COMMON:
switch to reserve the needed space.

Argument mismatch in argument [decimal] in call
to routine [symbol] called from module [symbol]
at location [octal]

The caller supplied argument does not match the
argument expected by the callee.

ALGOL main program not loaded

You loaded
program.
undefined
execution.

ALGOL procedures, but no
The missing start address

symbols will cause termination

main
and
of

Address not in memory

LINK expected a particular user address to be in
memory, but it is not there. This is an
internal LINK error. This message is not
expected to occur. If it does, please notify
your Software Specialist or send a Software
Performance Report (SPR) to DIGITAL.

Ambiguous request in link [decimal] {name
[name]} for [symbol] defined in links [decimal],
[decimal], ...
More than one successor link can satisfy a call
from a predecessor link. The predecessor link
requested an entry point that is contained in
two or more of its successors. You should
revise your overlay structure to remove the
ambiguity.

t The level and severity of this message is determined by
compiler-generated coercion block. See Block Type 1130 in Appendix A.

B-4 March 1983

I

•

•

•

• Code

• AZW

CCD •
CFS

•
CLF

CMC

•

LINK MESSAGES

Lev Sev Message

31 31

31 31

31 31

1 1

31 31

If you execute the current load, one of the
following will occur when the ambiguous call is
executed:

• If only one module satisfying the request is
in memory, that module will be called.

• If two or more modules satisfying the
request are in memory, the one with the most
links in memory will be called.

• If no modules satisfying the request are in
memory, the one with the most links in
memory will be called.

If a module cannot be selected by the methods 2
or 3 above, an arbitrarily selected module will
be called .

Allocating zero words

LINK's memory manager was called with a request
for 0 words. This is an internal LINK error.
This message is not expected to occur. If it
does, please notify your Software Specialist or
send a Software Performance Report (SPR) to
DIGITAL.

CPU conflict
{Detected in module [symbol] from file [file)}

You have loaded modules compiled with
conflicting CPU specifications, such as loading
a MACRO program compiled with the statement
.DIRECTIVE KLlO and a nother compiled with
.DIRECTIVE KilO. Recompile the affected modules
with compatible CPU specifications.

Chained fixups have been suppressed

The specified PSECT grew beyond the address
specified in the / LIMIT switch. The program is
probably incorrect . Use the / MAP or / COUNTER
switch to check for accidental PSECT overlaps.
Refer to Section 3.2.2 for more information
about the / LIMIT switch.

Closing log file, continuing on file [file]

You have changed the log file specification.
The old log file is close d ; furth e r log entri es
are written in the new log file.

Cannot mix COBOL-6~ and COBOL-74 compiled code
{Detected in module [symbol] from file [file]}

You cannot use COBOL-68 and COBOL-74 files in
the same load . Compile all COBOL programs with
the same compiler and reload .

B-5

Code

CMF

•
CNW

CRS

CSF

DEB

DLT

DNA

DNS

DRC

LINK MESSAGES

Lev Sev Message

31 31 COBOL module must be loaded first

31 31

1 1

1 1

31 1

31 1

31 31

8 8

8 8

{Detected in module (symbol] from file (file]}

You are loading a mixture
files and other files .
COBOL-compiled files first .

of COBOL-compiled
Load one of the

Code not yet ~ritten at (label]

You attempted to use an unimplemented feature .
This is an internal LINK error. This message is
not expected to occur. If it does, please
notify your Software Specialist or send a
Software Performance Report (SPR) to DIGITAL.

Creating section (octal]

LINK prints ttis informational message when a
module is loaded into a new section. The
message is printed only if you have specified
/ ERROR:O.

Creating saved file

LINK is generzting your e xecutable (.EXE) file.

(name] execution

LINK is begin~ing program execution at the named
debugger.

Execution deleted

Though you have asked for program execution,
LINK cannot proceed due to earlier fatal
compiler or LINK errors. Your program is left
in memory or in an executable file.

DDT not available

A monitor call to obtain DDT failed. This can
happen if yc u have redefined the logical name
SYS: a nd neglected to include any directory
that contains DDT.

Device not specified for switch (switch]

You used a device switch (for example, / REWIND,
/ BACKSPACE), but LINK cannot associate a device
with the switch. Neithe r LINK's default device
nor any device you gave with the / DEFAULT switch
can apply. Give the device with or before the
switch (in the same command line).

Decreasing relocation counter (symbol] from
(octal] to (octal]
{Detected in module (symbol] from file (file]}

You are using the /SET s witch to red uce the
value of an a lready defined relocation counter.
Unless you know exactly where each module is
loaded, code may be overwritten.

B-E March 1983

I

•

•

•

• Code Lev Sev

DSC 31 31

CSL 31 *

•
DUZ 31 31

•
EAS 31 31

• ECE 31 31

EHC 31 31

EIF 31 31

•

LINK MESSAGES

Message

Data store to common [symbol] not in link number
[decimal]
{Detected in module [symbol] from file [file]}

with DATA
area. The

ancestor
the DATA

You loaded a FORTRAN-compiled module
statement assignments to a common
common area is already defined in an
link. Restructure the load so that
statements are loaded in the same link
common area to which they refer.

as the

Data store to location [octal] not in link
number [decimal]
{Detected in module [symbol] from file [file)}

You have a data store for an
outside the specified link.
into the root link.

NOTE

absolute location
Load the module

If the location is less than 140, this
message has level 8 and severity 8.

Decreasing undefined symbol count below zero

LINK's undefined symbol count has become
negative. This message is not expected to
occur. If it does, please notify your Software
Specialist or send a Software Performance Report
(SPR) to DIGITAL.

Error creating area AS overflow file [reason]
[file]

LINK could not make the ALGOL symbol table on
disk. You could be over your disk quota, or the
disk could be full or have errors.

Error creating EXE file [reason] [file]

LINK could not write the saved file on disk.
You could be over your disk quota, or the disk
could be full or have errors.

Error creating area HC overflow file [reason]
[file]

LINK could not write your high-segment code on
disk. You could be over your disk quota, or the
disk could be full or have errors.

Error for input file [file]

A read error has occurred on the input file.
Use of the file is terminated and the file is
released.

B-7 April 1982

I

Code Lev Sev

ELC 31 31

ELF 1 1

ELN 1 1

ELS 31 31

EMS 1 1

EOE 31 31

EOI 31 31

EOO 31 31

EOV 31 31

ESN 31 31

EXS 1 1

LINK ME3SAGES

Message

Error creating area LC overflow file [reason]
[file]

LINK could not write your low-segment code on
the dis k. You could be over your disk quota, or
the d i sk coulj be fu ll or have errors.

End of log file

LINK has finished writing your log file. The
file is closej.

End of link number [decimal] {name [name]}

Th e link is loaded.

Error creating area LS overflow file [reason]
[file]

LINK c ould not write your local symbol table on
the dis k . You could be ove r your disk quota, or
the dis k could be full or have errors .

End of MAP segment

The map file i s completed and closed.

EXE file output error [file]

LINK could not write the saved file on the disk.

Error on input [file]

An error has been detected whi le r ead i ng the
named file.

Error on output [file]

An error has been detec t ed whil e writing the
named file .

Error creating overlay file [reason] [file]

LINK could not write the overl ay file on the
disk.

Extended symbol not expected

Long symbol names (mor e than six characters) are
not implemented . Th i s message is not expected
to occur. If it does , pl ea s e notify yo ur
Software Specialist or send a Softwar e
Performance Report (SPR) t o DIGITAL.

EXIT segment

LINK i s in the la s t stages of loading your
program (for e xampl e , creating EXE and s ymbol
files, prepari ng for execut ion if requested).

B- 8

•

•

•

•

•

• Code

FCF

FIN

FSI

• FSN

•
FTH

• GFE

HCL

•

LINK MESSAGES

Lev Sev Message

1 1 Final code fixups

1 1

8 8

31 31

15 15

31 31

31 31

LINK is reading one
files backwards to
fixups. This may
overhead, but occurs
big for memory.

LINK finished

or both segment overflow
perform any needed code

cause considerable disk
only if your program is too

LINK is finished. Control is passed to the
monitor, or to the loaded program for execution.

FORTRAN requires FOROTS, /FORSE switch ignored

You gave the /FORSE switch while loading
FORTRAN-compiled code. LINK ignored the switch
and will use the FORTRAN run-time system.

FUNCT. subroutine not loaded

During final processing of your root link, LINK
found that the FUNCT. subroutine was not
loaded. This would cause an infinite recursion
if your program were executed. The FUNCT.
subroutine is requested by the overlay handler,
and is usually loaded from a default system
library. Either you prevented searching of
system libraries, or you did not load a main
program from an overlay-supporting compiler into
the root link .

Fullword value <name> truncated to halfword

This message is printed when a symbol that has a
value greater than 777777 is used to resolve a
halfword reference. This warning message helps
you to be sure that global addresses are used
prope rly throughout the modules in a load .

GTJFN% JSYS failed f or file [file]

While attempting to run your program from the
named file, LINK received an error from the
monitor. This message is not expected to occur.
If it does, pl ease notify your Software
Specialist or send a Softwa re Per formanc e Report
(SPR) to DIGITAL .

High segment code not allowed in an overlay link
{Detected in module [symbol] from file [file)}

You have attempted to load high segment code
into an overlay link other than the root . Any
high segment code in an overlaid program must be
in th e root .

B-9 April 1982

Code

HSL

HTL

!AS

!CB

IDM

IHC

!LC

!LS

IMA

I !MI

LINK MESSAGES

Lev Sev Message

31 31 Attempt to set high segment origin too low
{Detected in module [symbol] from file [file]}

31 31

31 31

8 8

31 31

31 31

31 31

31 31

8 8

31 31

You have set the high-segment counter to a page
containing low-segment code. Reload, using the
/ SET:.HIGH. :n switch, or (for MACRO programs)
reassemble after changing your TWOSEG pseudo-op.

Symbol hash table too large

Your symbol hash table is larger than the
maximum LINK can generate (about SOP). This
table size is an assembly parameter. This
message is not expected to occur. If it does,
please notify your Software Specialist or send a
Software Performance Report (SPR) to DIGITAL.

Error inputting area as [file]

An error occurred while reading in the ALGOL
symbol table.

Invalid chain REL block (type 12) link number
[octal]
{Detected in module [symbol] from file [file]}

REL block type 12 (Chain), generated by the
MACRO pseudo-op .LINK and .LNKEND, must contain
a number from 1 to 100 (octal) in its first
word. The link word is ignored.

Illegal data mode for device [device]

You specified an illegal combination of device
and data mode (for example , terminal and dump
mode). Specify a legal device.

Error inputting area HC [file]

An error occurred while
high-segment code.

reading

Error inputting area LC [file]

An error occurred while
low-segment code.

reading

Error inputting area LS [file]

in your

in your

An error occurred while reading in your local
symbol table.

Incremental rraps not yet available

The INCREMENTAL keyword for the / MAP switch is
not implemented. The switch is ignored.

Insufficient memory to initialize LINK

LINK needs mere memory than is available.

8-10 April 1982

•

•

•

•

•

• Code Lev Sev

IMM * 1

IOV 31 31

IPO 31 31

•
IPX 31 31

•
IRB 31 31

• IRC 31 31

IRR 8 8

•

LINK MESSAGES

Message

[Decimal] included modules missing {from file
[file]}

You have requested with the / INCLUDE switch that
the named modules (if any) be loaded. Specify
files containing these modules.

Input error for overlay file [file]

An error occurred when reading the overlay file.

Invalid Polish operator [octal]
{Detected in module [symbol] from file [file]}

You are attempting to load a file containing an
invalid REL Block Type 11 (Polish). This
message is not expected to occur. If it does,
please notify your Software Specialist or send a
Software Performance Report (SPR) to DIGITAL.

Invalid PSECT index {for PSECT [symbol]}
{Detected in module [symbol] from file [file]}

A REL block contains a reference to a
nonexistent PSECT. This error is probably
caused by a fault in the language translator
used for the program. This error is not
expected to occur. If it does, please notify
your Software Specialist or send a Software
Performance Report (SPR) to DIGITAL.

Illegal REL block type [octal]
{Detected in module [symbol] from file [file]}

The file is not in the proper binary format. It
may have been generated by a translator that
LINK does not recognize, or it may be an ASCII
or EXE file .

Illegal relocation counter
{Detected in module [symbol] from file [file]}

One of the new style 1000+ block types has an
illegal r elocation counter. This message is not
e xpected to occur. If it does , please notify
your Software Speci a list or send a Software
Performance Report (SPR) to DIGITAL.

Illegal request/require block
{Detected in module [symbol] from file [f il e]}

One of the REL block types 1042 or 1043 is in
the wrong format. Thi s message is not e xpected
to occur. If it does , pl ease notify your
Software Specialist or send a Softwar e
Pe rformance Report (SPR) to DIGITAL .

B- 11 April 1982

Code Lev Sev

ISM 31 31

ISN 31 31

ISP 31 31

ISS 8 8

IST 31 31

LINK MESSAGES

Message

Incomplete symbol in store operator in Polish
block (type 11)
{Detected in module [symbol] from file [file]}

The specified module contains an incorrectly
formatted Polish Fixup Block (Type 11). The
store operator specifies a symbol fixup, but the
block ends before the symbol is fully specified.
This error is probably caused by a fault in the
language translator used for the program. This
error is not expected to occur. If it does,
please notify your Software Specialist or send a
Software Performance Report (SPR) to DIGITAL.

Illegal symbol name [symbol]
{Detected in module [symbol) from file [file)}

The LINK symbol table routine was called with
the blank symbol. This error can be caused by a
fault in the language translator used for the
program. This message is not expected to occur.
If it does, please notify your Software
Specialist or send a Software Performance Report
(SPR) to DIGITAL.

Incorrect symbol pointer

There is an error in the global symbol table.
This is an internal LINK error. This message is
not expected to occur. If it does, please
notify your Software Specialist or send a
Software Performance Report (SPR) to DIGITAL.

Insufficient space for symbol table after PSECT
[symbol] -- table truncated

There is insufficient address space for the
symbol table between the named PSECT and the
next higher one or the end of the address space.
Restructure your PSECT layout to allow
sufficient room for the symbol table, or use
/ UPTO to allow more room.

Inconsistency in switch table

LINK has found errors in the switch table passed
from the SCAN module. This is an internal
error. This message is not expected to occur.
If it does, please notify your Software
Specialist or send a Software Performance Report
(SPR) to DIGITAL.

B-12 April 1982

•

•

•

•

•

• Code

!TB

IVC

• JPB

• LDS

LFB

LFC

• LFI

LI!

•

LINK MESSAGES

Lev Sev Message

31 31 Invalid text in ASCII block from file [file]

31 31

8 8

1 1

1 1

1 1

1 1

8 1

LINK has failed to complete the processing of an
ASCII text REL block from the named file. This
is an internal error. This message is not
expected to occur. If it does, please notify
your Software Specialist or send a Software
Performance Report (SPR) to DIGITAL.

Index validation check failed at address [octal]

The range checking of LINK's internal tables and
arrays failed. The address given is the point
in a LINK segment at which failure occurred.
This is an internal error. This message is not
expected to occur. If it does, please notify
your Software Specialist or send a Software
Performance Report (SPR) to DIGITAL.

Junk at end of Polish block
{Detected in module [symbol] from file [file]}

The specified module contains an incorrectly
formatted Polish Fixup Block (Type 11). Either
the last unused halfword (if it exists) is
nonzero, or there are extra halfwords following
all valid data.

LOAD segment

The LINK module LNKLOD
processing.

is

LINK log file begun on [date]

beginning its

LINK is creating your log file as a result of
defining the logical name LOG:.

Log file continuation

LINK is continuing your log file as a result of
the / LOG switch.

Log file initialization

LINK is beginning your log file as a result of
the / LOG switch.

Library index inconsistent, continuing

A REL Block Type 14 (Index) for a MAKLIB
generated library file is inconsistent. The
library is searched, but the index is ignored .

B-13

I

Code

LIN

LMM

LMN

LNA

LNL

LNM

LNN

LNS

LINK MES:3AGES

Lev Sev Message

1 1 LINK initialization

t t

6 1

8 8

8 8

31 31

8 8

31 8

LINK is beginning its processing by initiali zing
its internal tables and variables.

Length mismatch for argument [decimal] in call
to routine [symbol] called from module [symbol]
at location [octal]

The length of t he argume nt passed by t he caller
does not match what the called routine expects
it to be.

Loading module [symbol] from file [file] LINK is
loading the named module.

Link name [name] already assigned to link number
[decimal]

You used this name for another link. Specify a
different name for this link.

Link number [decimal] not loaded

The link with
load ed . The
have used link
with the / NODE
link numbers.

this number has not yet been
/ NODE switch is ignored. If yo u
numbe rs instead of link names
switch, yo u may have confused the
To avoid this, use link names.

Link number [decimal] not in memory

LINK cannot fi nd the named link in memory . This
i s an int e rncl error. This message is not
expected to oc c ur. If i t does , please notify
your Software Specialist or send a Software
Performance Report (SPR) to DIGITAL.

Link name [name] not assigned

Th e name you gave with the / NODE switch is not
the name of any loaded link. Th e switch i s
ignor ed.

Low segment data base not same size

The length of LINK's low segment differs from
the length store d in the current LINK high
segment . This occurs if some but not all of
LINK' s . EXE f il es have been updated af t e r
r ebuilding LINK from sources . Update a ll of
LINK'S .EXE files.

t The level and severity of this message is determined by a
compiler-generated coercion block. See Block Type 1130 in Appendix A.

B-14 March 1983

•

•

•

•

•

• Code

LSM

LSS

MOS

•
MEF

•
MOV

•
MPS

•

LINK MESSAGES

Lev Sev Message

8 8 /LINK switch missing while loading link number

31 1

8 8

31 31

1 1

1 1

[decimal] -- assumed

Your use of the / NODE switch shows that you want
to begin a new overlay link, but the current
link is not yet completely loaded. LINK assumes
a / LINK switch immediately preceding the / NODE
switch, and loads the link (without a link
name).

{No} Library search symbols (entry
{[symbol] [octal]

points)

The listed symbols and their values (if any) are
those that are library search entry points.

Multiply-defined global symbol [symbol]
{Detected in module [symbol] from file [file]}
Defined value = [octal], this value = [octal]

The named module contains a new definition of an
already defined global symbol. The old
definition is used. Make the definitions
consistent and reload.

Memory expansion failed

LINK cannot expand memory further. All
permitted overflows to disk have been tried, but
your program is still too large for available
memory. A probable cause is a large global
symbol table, which cannot be overflowed to
disk. It may be necessary to restructure your
program, or use overlays, to alleviate this
problem.

Moving low segment to expand area [area]

LINK is rearranging its low segment to make more
room for the specified area. Area is one of the
following:

AS ALGOL symbol table
BG bound global symbols
DY dynamic free memory
FX fixup area
GS global symbol table
HC your high-segment code
LC your low-segment code
LS local symbol tables
RT relocation tables

MAP segment

The LINK module LNKMAP is writing a map file .

B-15

Code

MPT

MRN

MSN

NBR

NEB

NED

NPS

NSA

LINK MESSAGES

Lev Sev Message

31 31 Mixed PSECT and TWOSEG code in same module
{Detected in module [symbol] from file [file]}

1 1

8 8

31 31

8 8

31 24

8 8

31 1

This module contains both PSECT code and TWOSEG
code. LINK cannot load such a modu le. Change
the source code to use PSECTs .HIGH. and .LOW.
as the high and low segments, and remove the
TWOSEG or HISEG pseudo-ops.

Multiple regions not yet implemented

The REGION keyword for the / OVERLAY switch is
not implemented. The argument is ignored.

Map sorting not yet implemented

Alphabetical or numerical sorting of the map
file is not im?lemented . The symbols in the map
file appear in the order they a r e found in the
REL files.

Attempt to position to node before the root

The argument yJu gave for the / NODE switch would
indicate a link before the root link. (For
example, from a position after the third link in
a path, you cannot give / NODE:-4.)

No end block seen
{Detected in module [symbol] from file [file]}

No REL Block Type 5 (End) was found in the named
module. This will happen if LINK finds two Type
6 blocks (Name) without an intervening end, or
if an e nd-of-fil e i s found before the end block
is seen. LINK simulates the missing end block.
However, fatal messages usually follow this,
because this condition usually indicates a bad
REL file.

Non-existent device [device]

You gave a device that does not exist on this
system. Correct your input files and reload.

Non-existent PSECT [symbol] specified for symbol
table

You have specified the name of a PSECT after
which LINK ~ hould append the symbol tabl e , but
no PSECT with that name was loaded . Lo ad the
named PSECT or specify an existing PSECT for the
symbols .

No start address

Your program does not have a starting address .
This can ha·ppen if you neg l ect to load a main
program . Prog ram e xecution, if requested, will
be suppressed unless you specified debugger
execution.

B-1 6

I

•

•
I

•

•

• I

Code

NSM

NSO

NVR

OAS

OEL

OEM

OES

OFS

LINK MESSAGES

Lev Sev Message

31 31 /NODE switch missing after /LINK switch

31 31

t t

31 31

8 8

8 8

8 8

31 31

You used the / LINK switch, which indicates that
you want to begin a new overlay link, but you
have not specified a / NODE switch to tell LINK
where to put the new overlay link.

No store operator in Polish block (type 11)
{Detected in module [symbol] from file [file]}

The specified module contains an incorrectly
formatted Polish Fixup Block (Type 11). Either
the block does not have a store operator, or
LINK was not able to detect it due to the
block's invalid format. This error is probably
caused by a fault in the language translator
used for the program. This error is not
expected to occur. If it does, please notify
your Software Specialist or send. a Software
Performance Report (SPR) to DIGITAL.

No value returned by routine [symbol] called
from module [symbol] at location [octal]

The called routine does not return a value,
however the caller expected a returned value.

Error outputting area as [file]

An error occurred while writing out the ALGOL
symbol table.

Output error on log file, file closed, load
continuing {[file]}

An error has occurred on the output file. The
output file is closed at the end of the last
data successfully output.

Output error on map file, file closed, load
continuing [file]

An error has occurred on the output file. The
output file is closed at the end of the last
data successfully output.

Output error on symbol file, file closed, load
continuing [file]

An error has occurred on the output file. The
output file is closed at the end of the last
data successfully output.

Overlay file must be created on a file structure

Specify a disk device for the overlay file .

t The level and severity of this message is determined by a
compiler-generated coercion block. See Block Type 1130 in Appendix A.

B-17 March 1983

Code

OHC

OHN

OLC

OLS

OMB

ONS

oov

OS2

OSL

PAS

LINK MESSAGES

Lev Sev Message

31 31 Error outputting area HC [file)

31 31

31 31

31 31

31 31

8 1

31 31

1 1

8 8

1 1

An error occurred while writing
high-segment code.

Overlay handler not loaded

out your

Internal symbo:_s in the overlay handler could
not be referenced. If you are using your own
overlay handler, this is a user error; if not,
it is an internal error and is not expected to
occur. If it does, please notify your Software
Specialist or s end a Software Performance Report
(SPR) to DIGITAL.

Error outputting area LC [file)

An error occurred while writing
low-segment code.

Error outputting area LS [file)

out your

An error occurred while writing out your local
symbol table.

/OVERLAY switch must be first

The / OVERLAY switch must appear before you can
use any of the following switches: / ARSIZE,
/ LINK, / NODE, / PLOT, / SPACE. (It is sufficient
that the / OVERLAY switch appear on the same line
as the first of these switches you use.)

Overlays not supported in this version of LINK

LINK handles ove rlays with its LNKOVl and LNKOV2
modules. Your installation has substituted
dummy versions of these. You should request
that your installation rebuild LINK with the
real LNKOVl and LNKOV2 modules.

Output error for overlay file [file)

An error has occurred while writing the overlay
file.

Overlay segment phase 2

LINK's module I.NKOV2 is writing your overlay
file.

Overlaid progr<1m symbols must be in low segment

You have specified /SYMSEG:HIGH or / SYMSEG:PSECT
when loading an overlay structure. Specify
/ SYMSEG:LOW or /SYMSEG:DEFAULT.

Area AS overfl(lwing to disk

The load is to(I large to fit into the allowed
memory and the ALGOL symbol table is being moved
to disk.

B-lE:

•

•

•

•

•

• Code Lev Sev

PB! 8 8

PCL 8 8

•

• PCX 8 1

•

PEF 31 8

•

LINK MESSAGES

Message

Program break [octal] invalid {Detected
module [symbol] from file [file]}

in

The highest address allocated in the named
module is greater than 512P. This is usually
caused by dimensioning large arrays. Modify
your programs or load list to reduce the size of
the load.

Program too complex to load, saving as file
[file]

Your program is too complex to load into memory
for one of the following reasons:

• There are page gaps between PSECTs (except
below the high segment) .

• There are PSECTs above the origin of the
high segment.

• Your program will not fit in memory along
with LINK's final placement code.

• One or more PSECTs has
attribute.

the read-only

LINK has saved your program as an .EXE file on
disk and cleared your user memory. You can use
a GET or RUN command to load the .EXE file.

Program too complex to load and execute, will
run from file [file]

Your program is too complex to load into memory
for one of the following reasons:

• There are page gaps between PSECTs
below the high segment) .

(except

• There are PSECTs above the origin of the
high segment.

• Your program will not fit in memory along
with LINK's final placement code.

• One or more PSECTs has
attribute.

the read-only

LINK will save your program as an .EXE file on
disk and automatically run it, but the .EXE file
will not be deleted.

Premature end of file from file [file]

LINK found an end-of-file inside a REL block
(that is, the word count for the block extended
beyond the end-of-file). This error may be
caused by a fault in the language translator
used for the program.

B-19

I

Code

PEL

PHC

PLC

PLS

PNO

PMA

POT

POV

LINK MES~:AGES

Lev Sev Message

t

15 15 PSECT [symbol] exceeded limit of [octal]

1 1

1 1

1 1

8 8

t

1 1

8 8

The specified PSECT grew beyond the address
specified in the / LIMIT switch. The program is
probably incorrect. Use the / MAP or / COUNTER
switch to check for accidental PSECT overlaps.
Refer to Section 3.2.2 for more information
about the / LIMlT switch.

Area HC overflowing to disk

The load is too large to fit into the allowed
memory and your high-segment code is being moved
to disk.

Area LC overflowing to disk

The load is too large to fit into the allowed
memory and yo u r low-segment code is being moved
to disk.

Area LS overflowing to disk

The load is too large to fit into the allowed
memory and your local symbol tables are being
moved to disk.

Program Data Vectors not allowed in overlay
links

Program data vectors cannot be loaded as part of
an overlay pr ogram. The load continues, but no
program data vector will be provided.

Possible modification of argument [decimal] in
call to routine [symbol] called from module
[symbol] at location [octal]

The caller hes specified that the argument
should not be modified. The called routine
contains code ~hich may modify this argument.
In some case~ this message will occur although
the argument i~ not actually modified by the
routine.

Plotting overlay tree

LINK is creating your overlay tree file.

PSECTs [symbol] and [symbol]
address [octal] to [octal]

overlap from

The named PSECTs overlap each other in the
indicated range of addresses. If you do not
expect this message, restructure your PSECT
origins with the / SET switch.

t The level and severity of this message is determined by a
compiler-generated coercion block. See Block Type 1130 in Appendix A.

8-20 March 1983

I

•

•

•

• Code

PTL

RBS

• RED

RER

• RGS

• RLC

RUM

•

LINK MESSAGES

Lev Sev Message

31 31 Program too long

31 31

1 1

* 1

1 1

31 1

31 31

{Detected in module [symbol] from file [f ile]}

Your program extends beyond location 777777,
which is the highest location that LINK is
capable of loading. You may be able to make
your program fit by moving PSECT origins,
lowering the h igh-segment origi n, loading into a
single segment, reducing the size of arrays in
your program, or using the overlay facility.

REL block type [octal] too short
{Detected in module [symbol] from file [file]}

The REL block is inconsistent. This may be
caused by incorrect output from a translator
(for example, missing argument for an e nd
block). Recompile the module and r el oad.

Reducing low segment to [memory]

LINK is reclaiming memory by deleting its
internal tables.

{No} Request external references (inter-link
entry points)
{[symbol] [octal]}

The listed symbols and their values (if any)
represent subroutine entry points in the current
link .

Rehashing global symbol table from [decimal] to
[decimal]

LINK is expanding the global symbol table either
to a prime number larger than your / HASHSIZE
switch requested, or by about 50 percent. You
can speed up future loads of this program by
setting / HASHSIZE this large at the beginning of
the load.

Reloc ctr. initial value current value
{[symbol] [octal] [octal]}

The listed symbols
current place ment
space.

and values represent the
of PSECTs in your address

Returning unavailable memory

LINK attempted to return memory to the memory
manager , but the specified memory was not
previously allocated . This is an internal
error. This message is not expected to occur.
If it does, please notify your Software
Specialist or send a So ftware Performance Re port
(SPR) to DIGITAL .

B-21

Code

SFU

SIF

SMP

SNC

SNL

SNP

SNS

SOE

LINK MES :3AGES

Lev Sev Message

8 8 Symbol table fouled up

31 31

8 8

31 31

1 1

8 8

31 31

31 31

There are errors in the local symbol table.
Loading continues, but any maps you request will
not contain co~ trol section lengths. This is an
internal error. This message is not expected to
occur. If it does, please notify your Software
Specialist or 5end a Software Performance Report
(SPR) to DIGITAL.

Symbol insert failure, non-zero hole found

LINK's hashin9 algorithms failed; they are
trying to write a new symbol over an old one.
You may be 3ble to load your files in a
different ord~r. This is an internal error.
This message is not expected to occur. If it
does, please notify your Software Specialist or
send a Software Performance Peport (SPR) to
DIGITAL.

SIMULA main program not loaded

You l oaded some SIMULA procedures or classes,
but no main program. Missing start address and
undefined symbo ls will terminate execution.

Symbol [symbol) already defined, but not as
common
{Detected in m.::>dule [symbol] from file [file]}

You defined a ~ORTRAN common area with the same
name as a non-common symbol. You must indicate
which definition you want. If you want the
common definition, load the common area first.

Scanning new command line

LINK is ready to process the next command line.

Subroutine [symbol] in link number [decimal] not
on path for call from link number [decimal]
{name [name]}

The named subroutine is
the calling link.
structure so that the
correct path.

SITGO not supported

in a different path than
Redefine your overlay
subroutine is in the

{Detected in m•)dule [symbol] from file [file]}

LINK does not support
produced by the SITGO
program by usi~g SITGO.

the REL
compiler.

Saved file outp ut error [file]

file format
Load your

An error occurred in outputting the EXE file.

B-22

•

•

•

• Code

SRB

SRP

SSN

•
SST

• STC

SUP

Tl3

•
TDS

TMA

•

LINK MESSAGES

Lev Sev Message

8 8 Attempt to set relocation counter [symbol] below

31 31

8 8

1 1

1 1

1 1

31 31

8 8

31 8

initial value of [octal]
{Detected in module [symbol] from file [file)}

You cannot use the / SET switch to set the named
relocation counter below its initial value. The
attempt is ignored.

/SET: switch required for PSECT [symbol]
{Detected in module [symbol] from file [file)}

Relocatable PSECTS are not implemented: you
must specify an explicit absolute origin with
the / SET switch for the named PSECT.

Symbol table sorting not yet implemented

Alphabetical or numerical sorting of the symbol
tabl e is not impleme nte d. The s ymbols appear in
the order they are found.

Sorting symbol table

LINK is rearranging the symbol table, and if
required, is converting the symbols from the new
to old format as indicated on the / SYMSEG,
/ SYFILE, or / DEBUG switch.

Symbol table completed

The symbol
according
switc h.

table
to the

Loading suppressed

has been
/ SYMSEG,

sorted and moved
/ SYFILE, or / DEBUG

Errors occurred during compilation.

LVAR REL block (type 13) not implemented
{Detected in module [symbol] from file [file)}

REL Block Type 13 (LVAR) is obs olete .
MACRO p seudo-op TWOSEG.

Us e the

Too late to delete initial symbols

LINK has already
table. To prevent
/ NOINITIAL switch
spec i f i ca tion.

loaded
t his

b efore

the initi a l symbol
loading, place the

the fi r s t fil e

Too many ambiguous requests in link [decimal]
{name [name)}, use /ARSIZE:[decimal]
{Detected in module [symbol] from file [file)}

You h a v e more ambiguous subroutine requests
(indicate d by LNKARL messag e s) than will fit in
the tabl e f or t hi s l i nk. Con t inue loa ding .
You r l o ad will abort at the e nd wi t h a LNKABT
message; i f you have loaded all modules, the
me ssag e wil l give the size of the need e d / ARSIZE
switch for a r e load.

B-23 March 1983

I

I

Code Lev Sev

TMM t t

TTF 8 8

UAR 8 8

UGS * 1

UNS 31 31

URC 31 1

LINK MESSAGES

Message

Type mismatch seen for argument [decimal] in
call to routine [symbol] called from module
[symbol] at location [octal]

The data type of the argument passed by the
caller does not match what the called routine
expects.

Too many titles found

In producing t 1e index for a map file, LINK
found more program names than there are
programs. The symbol table is in error. This
is an internal error. This message is not
expected to oc c ur. If it does, please notify
your Software Specialist or send a Software
Performance Re port (SPR) to DIGITAL.

Undefined assign for [symbol]
{Detected in module [symbol] from file [file]}

The named symbol was referenced in a REL Block
Type 100 (ASSIGN), but the s ymbol is undefined.
This is gene : ated with the MACRO pseudo-op
.ASSIGN. The assignment is ignored. You should
load a module t hat defines the symbol.

{No} Undefined global symbols {[symbol] [octal]

The listed symbols and their values (if any)
repr e sent symbols not yet defined by any module.
Each value is t he first address in a chain of
references for the associated symbol.

If this message resulted automatically at the
end of loading, this is a user error. In this
case, the load will continue, leaving references
to these symbo l s unresolved.

Universal file REL block (type 777) not
supported from file [file]

Extraction of symbols from a MACRO universal
file is not implemented.

Unknown Radix-~O symbol code [octal] [symbol]
{Detected in mc•dule [symbol] from file [file]}

In a REL Block Type 2 (Symbols), the first 4
bits of each word pair contain the Radix-50
symbol code. LINK found one or more invalid
codes in the block. This error can be caused by
a fault in the language translator used for the
program.

t The level and severity of this message is determined by a
compiler-generated coercion block. See Block Type 1130 in Appendix A.

8-24 March 1983

I

•

•

•

I

I

I

I

•

Code

URV

USA

USC

US!

UUA

VAL

WNA

XCT

zsv

LINK MESSAGES

Lev Sev Message

t t Unexpected return value in call to routine
[symbol] called from module [symbol] at location
[octal]

8 8

31 8

8 16

8 8

31 1

t t

31 1

8 8

The called routine returns a value which was not
expected by the caller.

Undefined start address [symbol]

You gave an undefined global symbol as the start
address. Load a module that defines the symbol.

Undefined subroutine [symbol] called from link
number [decimal] {name [name]}

The named link contains a call for a subroutine
you have not loaded. If the subroutine is
required for execution, you must reload,
including the required module in the link.

Undefined symbol [symbol] illegal in switch
[switch]

You have specified an undefined symbol to a
switch that can only take a defined s ymbol or a
number. Specify the correct switch value.

Undefined /UPTO: address [symbol]

You gave the named symbol as an argument to the
/ UPTO switch, but the symbol was never defined.
Load a module that defines the symbol, or change
your argument to the / UPTO switch.

Symbol [symbol] [octal] [type]

LINK has printed the specified symbol, its value
and its attributes as requested.

Wrong number of arguments in call to routine
[symbol] called from module [symbol] at location
[octal]

The number of arguments in the routine call is
not the number of arguments expected by the
called routine.

[Name] execution

LINK is beginning execution of your program.

Zero switch value illegal

You omitted required arguments for a switch (for
example, / REQUIRE with no symbols). Respecify
the switch .

t The level and severity of this message is determined by a
compiler-generated coercion block. See Block Type 1130 in Appendix A.

B-25 March 1983

I

•

•

•

•

•

•

•

•

APPENDIX C

JOB DATA AREA LOCATIONS SET BY LINK

LINK sets a number of locations between 40 and 140 (octal) in the
user's program. These locations are known as the Job Data Area
(commonly abbreviated to JOBDAT). They are used by the TOPS-10
monitor and by the Compatibility Package (PA1050) on TOPS-20. In
addition, two segment programs will have a Vestigial Job Data Area of
eight words following the high segment origin.

Address

41

42

74

75

115

116

117

120

121

124

131

133

137

Job Data Area

Mnemonic Use

.JB41 HALT if not specified otherwise.

.JBERR

.JBDDT

.JBHSO

.JBHRL

.JBSYM

.JBUSY

.JBSA

.JBFF

.JBREN

.JBOVL

.JBCOR

.JBVER

Number of errors during loading.

Start address of DDT if loaded.

High segment origin.

Left:
Right:

Left:
Right:

High segment length.
Highest address in high segment.

Negative length of symbol table.
Address of table.

Left:
table.
Right:

Negative length of undefined symbol

Address of undefined symbol table.

Left:
Right:

First free location in low segment.
Start address of program.

First free location in low segment.

Reenter address of program.

Address of header block for the root link in an
o verlaid program.

Left: Highest location of low segment loaded with
data.

Version number: see description of
switch in Se ction 3.2.2.

C-1

/ VERSION

JOB DATA AREA LOCA'rIONS SET BY LINK

Vestigial Job Data Area

Offset Mnemonic Use

0 .JBHSA Copy of .JBSA.

1 .JBH41 Copy of .JB41.

2 .JBHCR Copy of .JBCOR.

3

4

5

6

7

.JBHRH

.JBHVR

.JBHNM

.JBHSM

.JBHGA

LH: left half of .JBHRL.
RH: right hal~ of .JBREN.

Copy of .JBVER.

Program Name.

High segment symbol table, if any.

High segment o : igin page in bits 9-17.

C-·2

I

I

•

•

•

•

•

•

Abbreviating switches, 3-4
Allocating memory, 3-65
Allocating space, 3-22
/ ARSIZE switch, 3-6

/BACKSPACE switch, 3-7
Bounds,

PSECT, 3-25

Calls to overlay handler,
5-15

.CCL files, 3-2
Clearing module requests,

3-38
Closing links, 3-27
CLROV., 5-16
CLROVL, 5-16
Command switches, 2-2
Comments, 3-1
COMMON storage,

FORTRAN, 3-8
/COMMON switch, 3-8
Conserving memory space,

3-40
Constructing overlays, 3-49
/CONTENTS switch, 3-9
Continuing commands, 3-1
Controlling,

messages, 3-77
program termination, 3-63

Core (see memory), 3-20
Core image, 1-2

file, 4-1
/CORE switch, 3-9
/ COUNTER switch, 3-10
/CPU switch, 3-11
CPU type specifying, 3-11
Creating EXE files, 3-59

Data word, A-1
/DDEBUG switch, 3-12
DDT, 2-1
DEBUG command, 2-1
/DEBUG switch, 3-13
Debuggers loading, 3-13,

3-71
Debuggers specifying, 3-12
Debugging overlayed

programs, 5-14

INDEX

Index-1

Declaring,
non-writable links, 5-16
writable links, 5-21

Default file specifications,
3-14

/ DEFAULT switch, 3-14
DEFINE command, 3-79
/ DEFINE switch, 3-15
Defining,

logical names, 3-79
symbols-, 3-15

Deleting,
entry name symbols, 3-37
overlay links, 3-41

Ending loading, 3-21
Entry name symbols,

printing, 3-16
Entry name symbols deleting,

3-37
Entry points overlay

handler, 5-15
/ENTRY switch, 3-16
/ERRORLEVEL switch, 3-17
/ ESTIMATE switch, 3-3
/ EXCLUDE switch, 3-18
EXE files',

creating, 3-59
Executable,

file, 1-2
program, 4-1

EXECUTE command, 2-1
/ EXECUTE switch, 3-19
Execution starting, 3-19
/ EXIT switch, 3-3
Extended addressing, 3-81
EXTTAB table, 5-35

File specifications,
default, 3-14

FORTRAN COMMON storage, 3-8
/ FRECOR switch, 3-20
Free memory,

maintaining, 3-20
FUNCT. subroutine, 5-12,

5-25

GETOV., 5-17
GETOVL, 5-17

Global switches, 3-4
Global symbols, 1-2
Global symbols suppressing,

3-67
/ GO switch, 3-21

/ HASHSIZE switch, 3-22
Header word, A-1
/ HELP switch, 3-3

IDXBFR, 5-15
INBFR, 5-15
/ INCLUDE switch, 3-23
Including local symbols,

3-28
Indirect command files, 3-2
Information,

obtaining, 3-33, 3-55,
3- 7 2 , 3-76

INIOV. I 5-18
INIOVL, 5-18
INTTAB table, 5-36

Job data area, C-1
Job names,

specifying, 3-58
JOBDAT, C-1
JOBDAT loading,

Preventing, 3-39

Libraries,
searching, 3-60, 3-70,

3-75, 3-80
Library files, 1-2, 3-80
/ LIMIT switch, 3-25
Limits symbol table, 3-74
LINK command, 3-1
LINK messageg , 4-6, B-1
Link name table for mat,

5-31
Link number table format ,

5-31
/ LINK switch, 3-27
LINK switches, 3-4
Links specifyi ng,

number of, 3-32
LOAD command, 2-1
Loading,

debuggers, 3-13, 3- 71
ending, 3-21
modules, 3-18, 3-56

INDEX (CONT.)

Loading (Cont.)
object-time systems, 3-48
segments, 3-47

Local switches, 3-4
Local symbols,

including·, 3-28
/ LOCALS switch, 3-28
Log file specifying, 3-29
Log files, 4-6
Log files overlay, 5-18
/ LOG switch, 3-29
Logical names defining,

3-79
/ LOGLEVEL switch, 3-30
LOGOV. I 5-18
LOGOVL, 5-18
Long count, A-1

Magtape,
rewinding, 3-57
skipping, 3-64
unloading, 3-73

Magtape operations, 3-34
Maintaining free memory,

3-20
Map files, 4-6
/ MAP switch, 3-31
/ MAXNODE switch, 3-32
MBZ, A-1
Memory,

allocating, 3-65
virtual, 1-1

Memory size,
specifying, 3-9

Memory size specifying, 3-4
Memory space,

Conserving, 3-40
Message levels, 4-6
Message severity, 4-7
/ MESSAGE switch, 3-3
Messages,

severity codes of, B-2
Messages controlling, 3-77
Messages overlay handler,

5-21
Messages s uppressing, 3-17,

3-30
/ MISSING switch, 3-33
Module requests,

clearing, 3-38
Modules ,

Inde~ x-2

ob ject, 1-1
Modules loading, 3-18, 3-56
Modules specifying , 3-23
/ MTAPE s witch , 3-34

•

•

•

I

•

•

•

Naming links, 3-27
/ NEWPAGE switch, 3-35
/ NODE switch, 3-36
/ NOENTRY switch, 3-37
/ NOINCLUDE switch, 3-38
/ NOINITIAL switch, 3-39
/ NOLOCAL switch, 3-40
Non-writable links

declaring, 5-16
Non-zero sections, 3-81
/ NOREQUEST switch, 3-41
/ NOSEARCH switch, 3-42
/ NOSTART switch, 3-43
/ NOSYMBOL switch, 3-44
/ NOSYSLIB switch, 3-45
/ NOUSERLIB switch, 3-46
Number of links specifying,

3-32

Object modules, 1-1
Object-time systems loading,

3-48
Obtaining information, 3-33,

3-55, 3-72, 3-76
Obtaining PPNs, 3-80
/ONLY switch, 3-47
Opening overlay links, 3-36
/ OPTION switch, 3-3
/ OTSEGMENT switch, 3-48
Overlay,

file format, 5-30A
handler, 5-14
1 ink code, 5-34
link format, 5-32
link paths, 5-1
link preamble, 5-33
log files, 5-18
structure, 5-1
switches, 5-2

Overlay handler,
calls to, 5-15
entry points, 5-15
messages, 5-21

Overlay link paths, 5-1
Overlay links,

opening, 3-36
predecessor, 5-1
successor, 5-1

Overlay links deleting,
3-41

Overlay program size, 5-14
/OVERLAY switch, 3-49
Overlayed programs,

debugging, 5-14
Overlaying links, 5-15
Overlays,

constructing, 3-49

INDEX (CONT.)

Overlays (Cont.)
Restrictions, 5-12
writable-, 5-11

Overlays relocatable, 5-12

/ PATCHSIZE switch, 3-50
Paths,

overlay link, 5-1
Paths overlay,

1 ink-, 5-1
PDVA (see program data

vector address), 4-5
Permanent switches, 3-4
Plot file specifyinq, 3-52
/ PLOT switch, 3-51
/ PLTTYP switch, 3-52
PPNs,

obtaining, 3-80
Predecessor links, 5-1
Preventing JOBDAT loading,

3-39
Printing entry name symbols,

3-16
Program data vectors, 4-5

requesting, 3-52A
Program size,

Overlay, 5-14
Program termination

controlling, 3-63
/ PROTECTION switch, 3-3
PSECT addresses setting,

3-62
PSECT bounds, 3-25
/ PVBLOCK switch, 3-52A
/ PVDATA switch, 3-54

Index-3

REL,
blocks, A-1
file, 1-1

REL file, 1-1
Relocatable,

code, 1-2
overlays, 5-12

Relocatable code, 1-2
Relocation,

counters, 3-10
table, 5-37
word, A-1

Relocation counters setting,
3-35, 3-62

REMOV., 5-19
Removing links, 5-19
REMOVL, 5-19
/ REQUEST switch, 3-55

Requesting program data
vectors, 3-52A

/ REQUIRE switch, 3-56
Resetting symbol types, 3-9
Restrictions overlays, 5-12
/ REWIND switch, 3-57
Rewinding magtape, 3-57
Root link, 5-1
/RUN switch, 3-4
/RUNAME switch, 3-58
Running links, 5-20
RUNOV., 5-20
RUNOVL, 5-20

Save file format, 4-2
/ SAVE switch, 3-59
SAVOV., 5-21
SAVOVL, 5-21
SCAN switches, 3-3
/ SEARCH switch, 3-60
Searching libraries, 3-60,

3-70, 3-75, 3-80
/ SEGMENT switch , 3-61
Segments loading, 3-47
Segments specifying, 3-61
/ SET switch, 3-62
Setting,

PSECT addresses, 3-62
relocation counters, 3-35,

3-62
Severity codes of messages,

B-2
/SEVERITY switch, 3-63
Sharable save files, 1-2,

3-59
Short count, A-1
/SKIP switch, 3-64
Skipping magtape, 3-64
Space,

allocating, 3-22
/ SPACE switch, 3-65
Specifying,

CPU type, 3-11
debuggers, 3-12
log file, 3-29
memory size, 3-4
modul e s, 3- 23
number of links, 3-32
plot file, 3-52
segments, 3-61
upper bounds, 3-25
version numbers, 3-78

Specifying job name s, 3 - 58
Specifying memory si ze, 3-9
Spec i f ying s tart addr esse s ,

3-66
Start addresses,

specifying, 3-66
/ START switch, 3- 66

INDEX (CONT.)

Starting,
execution, 3-19
LINK, 3-1

Subroutine,
FUNCT., 5-12, 5-25

Successor links, 5-1
/ SUPPRESS switch, 3-67
Suppressing,

global symbols, 3-67
messages, 3-17, 3-30

Switch values, 3-4
Switches,

LINK, 3-4
SCAN, 3-3

/ SYFILE switch, 3-68
Symbol,

files, 3-68, 4-6
tables, 3-69

Symbol table,
limits, 3-74

Symbol types,
Resetting, 3-9

Symbols defining, 3-15
/ SYMSEG switch, 3-69
/ SYSLIB switch, 3-70

Temporary switches, 3-4
/ TEST switch, 3-71
/ TMPFIL switch, 3-4
TRANSLATE command, 3-80
Tr e e,

diagram, 3-51
structure, 5-1

/ UNDEFINED switch, 3-72
/ UNLOAD switch, 3-73
Unloading magtape, 3-73
Upper bounds specifying,

3-25
/ UPTO switch, 3-74
/ USERLIB switch, 3-75

/ VALUE switch, 3- 76
/VERBOSITY switch, 3-77
Version numbers specifying,

3-78
/ VERSION switch, 3-7 8
Virtual memory, 1-1

Writable links declaring,
5-21

Writable overlays, 5-11

Inde:c- 4

•

•

•

•

•

•

•

•

Switches (Cont.)
SCAN, 3-3

/ SYFILE switch, 3-68
Symbol,

files, 3-68, 4-6
tables, 3-69

Symbol block, A-6
Symbol entry block, A- 40
Symbol file block, A-37
Symbol table limits, 3-74
Symbols,

defining, 3-15
/ SYMSEG switch, 3-69
/ SYSLIB switch, 3-70

Table,
EXTTAB, 5-35
INTTAB, 5-36
relocation, 5-37

Tables,
symbol, 3-69

Temporary switches, 3-4
/ TEST switch, 3-71
/ TMPFIL switch, 3-4
TRANSLATE command, 3-80
Tree,

diagram, 3-51

INDEX (CONT.)

Index-5

structure, 5-1

/ UNDEFINED switch, 3-72
Universal file block, A-38
/ UNLOAD switch, 3-73
Unloading magtape, 3-73
Upper bounds, specifying,

3-25
/ UPTO switch, 3-74
/ USERLIB switch, 3-75

/ VALUE switch, 3-76
/ VERBOSITY switch, 3-77
Version numbers,

specifying, 3-78
/ VERSION switch, 3-78
Virtual memory, 1-1

Writable link block, A-52
Writable links,

declaring, 5-21
Writable overlays, 5-11

•

•

•

•

•

•

•

•

•

•

READER'S COMMENTS

TOPS-20
LINK Reference Manual

AA-4183C-TM

NOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com­
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges­
tions for improvement.

Did you find errors in this manual? If so, specify the error and the page number .

Please indicate the type of reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)---------------------

Name Date----------­

Organization--------------- Telephone---------

Street-------------------------------

City------------ ------ State---- Zip Code ___ _
or Country

I

I
I
I

-------m-.--nno mN.ot DTear t- Jo'oald Here I and Ta~------ - ----- - - - --- - --Trrnr------ ~~;~~; --•
if Ma iled in the
Un ited States

\

BUSINESS REPLY MAIL
FI RST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MR1-2/L12

MARLBOROUGH, MASSACHUSETIS 01752

• I
- - - - - - - - - Do Not Tear - Fold Here and Tape - _I

I
I
I
I
I
I
I
I
I

•
] ..
0
Q
lie
c
0

< ..
:I
u

• I
I
I
I
I
I
I
I

•

•

READER'S COMMENTS

TOPS-20
LINK Reference Manual

AD-4183C-T1

NOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com­
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges­
tions for improvement .

• Did you find errors in this manual? If so, specify the error and the page number .

•

•

Please indicate the type of reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)----------------------

Name Date - ----------­

Organization --------------- Telephone--- ---- --

Street--------------------------------
City _________________ _ State _ _ __ Zip Code ___ _

or Country

- - - - - - - - - - Do Not Tear - Fold Here and Tape

I
I
I
I --- -!

111111 No Po"''' •

~amaomn

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET

MARLBOROUGH, MA

MR01-2/L12

01752

Necessary
if Mailed in the
Un ited States

I
I
I
I
I

---1
I
I
I
I
I
I
I
I
I
I

•
- - - - - - - - - Do Not Tear - Fold Here and Tape ----- --- - ---------------- - --- ---------------'

I
I
I
I
I
I
I
I •
~

' <
<

' c
' I
' .

•

