APLSF
Language Manual

AA-H200A-TK

August 1979

This manual describes the language elements of APL-Basic
and APLSF on both the TOPS-10 and TOPS-20 operating
systems.

This manual supersedes the following: DECSYSTEM-20
APLSF Programmer’s Reference Manual DEC-20-LASFA.-
A-D, and DECsystem-10 APLSF Programmer’s Reference
Manual DEC-10-LLPLSA-A-D.

OPERATING SYSTEM: TOPS-10 Version 6.03A
TOPS-20 Version 3A

SOFTWARE: APLSF Version 2
APL-Basic Version 2

Software and manuals should be ordered by title and order number. In the United States, send orders to the nearest
distribution center. Outside the United States, orders should be directed to the nearest DIGITAL Field Sales Office
or representative.

NORTHEAST/MID-ATLANTIC REGION CENTRAL REGION WESTERN REGION

Technical Documentation Center Technical Documentation Center Technical Documentation Center
Cotton Road 1050 East Remington Road 2525 Augustine Drive

Nashua, NH 03060 . Schaumburg, lllinois 60195 Santa Clara, California 95051
Telephone: (800) 258-1710 Telephone: (312) 640-5612 Telephone: (408) 984-0200

New Hampshire residents: (603) 884-6660

digital equipment corporation ® marlboro, massachusetts

First Printing, August 1979

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (D 1979 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11

ASSIST-11 RTS-8 ITPS-10

1/82/14

CONTENTS

Page
PREFACE X1
CONVENTIONS USED IN THIS MANUAL xii
ACKNOWLEDGMENT xiii
CHAPTER 1 THE APL OPERATING ENVIRONMENT 1-1
1. INTRODUCTION 1-1
1 1-1
1.2 HARDWARE 1-2
1.2.1 APL-Keyboard Terminals 1-3
1.2.2 Terminals Without the APL Keyboard 1-5
1.3 THE APIL.- CHARACTER SET 1-5
1.4 INTERACTING WITH APL : 1-8
1.4.1 Entering APL Command Level (Starting the
Session 1-8
1.4.2 Ending the Session 1-9
1.4.3 Returning to System Command Level 1-9
1.4.4 Interrupting Execution 1-10
1.5 KEYBOARD EDITING 1-10
1.5.1 Correcting a Line Before Entering 1-10
1.5.2 Correcting a Line After Entering 1-11
CHAPTER 2 LANGUAGE SYNTAX 2-1
2.1 INTRODUCTION 2-1
2,1.1 Statement Execution Modes 2-1
2.1.2 Expression Components 2-2
2,1.2,1 Identifiers 2-2
2.1.2.2 Constants 2-3
2.1.3 Spaces and Comments 2-5
2.1.4 File Specifications 2-6
2.1.5 Statement Types 2=7
2.1.6 Evaluation of APL Statements and
Expressions 2-8
2.2 NUMBER PRECISION 2-9
2.3 ERROR HANDLING 2-10
2.4 ARRAY INDEXING AND COMPARISONS 2-11
2.4.1 Indexing Arrays 2-11
2.4.2 The Index Origin 2-15
2.4.3 Comparison Tolerance or Fuzz 2-15
2.5 TERMINAL I/O OPERATIONS 2-16
2.5.1 Evaluated Input Mode-Quad Input (0O or
.BX) ‘ 2-17
2.5.2 Character Input Mode-Quote-Quad ([or
-QQ) 2-17
2.5.3 Unedited Input Mode-Quad-Del (M or .QD) 2-18
2.5.4 Escaping From Input Mode 2-19
2.5.5 Normal and Quad Output Modes 2-19
2.5.6 Mixed Output Mode 2-21
2.5.7 Bare Output Mode (Quote-Quad [or
Quad-Del RB) 2-22

iii

CONTENTS (CONT.)

Page
CHAPTER 3 APL FUNCTIONS AND OPERATORS 3-1
3.1 INTRODUCTION 3-1
3.2 PRIMITIVE SCALAR FUNCTIONS 3-2
3.2.1 Relational Functions 3-5
3.2.2 Logical Functions 3-6
3.2.3 | or .AB - The Residue Function 3-7
3.2.4 ? - The Roll Function 3-9
3.3 PRIMITIVE MIXED FUNCTIONS 3-10
3.3.1 , — The Catenate Function 3-12
3.3.2 / and # - The Compression Function 3-15
3.3.3 ? - The Deal Function 3-17
3.3.4 L or .DE - The Decode Function 3-18
3.3.5 ¢ or .DA - The Drop Function 3-20
3.3.6 T or .EN - The Encode Function 3-22
3.3.7 \ and %X - The Expansion Function 3-25
3.3.8 ¥ or .GD - The Grade Down Function 3-27
3.3.9 A or .GU - The Grade Up Function 3-28
3.3.10 1 or .IO - The Index Generator Function 3-30
3.3.11 1 or .I0 - The Index Of Function 3-31
3.3.12 , = The Laminate Function 3-33
3.3.13 e or .EP - The Membership Function 3-35
3.3.14 , — The Ravel Function 3-36
3.3.15 p or .RO - The Reshape Function 3-37
3.3.16 ¢ or .RV and © or .CR - The Reverse
Function 3-38
3.3.17 ¢ or .RV - The Rotate Function 3-41
3.3.18 p or .RO - The Shape Function 3-43
3.3.19 + or © - The Take Function 3-45
3.3.20 ®§ or .TR - The Monadic Transpose
Function 3-46
3.3.21 & or .TR - The Dyadic Transpose Function 3-48

OPERATORS 3-70

3.5
3.5.1 £ . g - The Inner Product Operator 3-70
3.5.2 o ., £f or .80 . £ - The Outer Product
Operator 3-73
3.5.3 f/ - The Reduction Operator 3-75
3.5.4 f\ - The Scan Operator 3=-77
CHAPTER 4 APL SYSTEM COMMUNICATION 4-1
4,1 INTRODUCTION 4-1
4.2 SYSTEM VARIABLES 4-1
4,2.1 0AI - Storing Account Information 4-2
4,2.2 OALPHA - Alphabetic Characters 4-3
4.2.3 OALPHAU - Underlined Alphabetics 4-3

iv

CHAPTER

CONTENTS (CONT.)

Page

4.2.4 0ASCII - ASCII Character Set 4-3
4.2.5 JAus -~ saving a Workspace Automatically 4-7
4.2.6 JAV - Atomic Vector 4-8
4.2.7 0¢T - Comparison Tolerance 4-14
4,2.8 OCTRL - Control Characters 4-15
4.2.9 OERROR - Storing Error Messages 4-16
4.2.10 0GAG - Preventing Interruptions 4-18
4,2,11 [0Io0 - Index Origin
4 2 arce i
4 OvuM - Digits
4 PP = Output Precision 4-22
4 0PW - Determining the Width of the

Output Line 4-22
4 ORL - Setting a Random Link 4-23
4. [0sF - Setting the Evaluated Input Prompt 4-23
4

OTIMELIMIT - Setting a Time Limit
™ ’ . o

4,2,22 (7S - Reporting Current Time and Date

4,2.23 OTT - Reporting Terminal Type 4-27
4.2.24 OUL - Reporting the Job Number 4-28
4,2.25 (WA - Reporting the Available Work Area 4-28
4.3 SYSTEM FUNCTIONS 4-28
4.3.1 OBREAK - Suspending Execution 4-29

epre
4,3.3 0ODL - Delaying the Execution of a
Function
0EX - Erasing a Named Object

4,3.7 ONC - Returning a Name Classification
4.3.8 ONL - Constructing a List of ILabels,

Variables, or Functions 4-35
4,3.9 0Qrp, 0Ogco, 0OQPC - Loading and Copying

a Workspace 4-36

4.3.11 OvI - va

5 SYSTEM COMMANDS 5-1
5.1 INTRODUCTION 5-1
5.1.1 System Command Format 5-2
5.1.2 Action and Inquiry Commands 5=-2
5.1.3 Workspace Characteristics 5-3
5.1.3.1 Workspace Names 5-4
5.1.3.2 The CONTINUE Workspace 5-5
5.1.3.3 Workspace Passwords 5-6
5.1.3.4 Groups 5-6
5.1.3.5 The State Indicator 5-6
5.1.4 APL Libraries 5-7
5.2 BASIC WORKSPACE-CONTROL COMMANDS 5-7
5.2.1 JCLEAR - Clearing the Active Workspace 5-8
5.2.2)JDROP - Deleting Stored Workspaces or

Files 5-9
5.2.3 JLIB - Listing Workspace Names 5=10
5.2.4 JLOAD - Retrieving a Workspace 5-12

CONTENTS (CONT.)

Page

5.2.5 YPASSWORD - Determining the Workspace

Password 5-13
5.2.6)SAVE - Saving a Copy of the Active

Workspace 5-13
5.2.7 YWSID - Identifying the Active Workspace 5-15
5.3 EXTENDED WORKSPACE-CONTROL COMMANDS 5-15
5.3.1 YMAXCORE - Determining the Maximum

Workspace Size 5-16
5.3.2 YJMINCORE - Determining the Minimum

Workspace Size 5-17
5.3.3 JOWNER - Identifying the Owner of a

Workspace 5-18
5.3.4 JSEAL - Turning the Workspace Seal On or

Off 5-18
5.3.5)SIZE - Reporting the Workspace Size 5-19
5.3.6 JTIME - Reporting the Time Used 5-19
5.3.7 JVERSION - Displaying the APL Version

Number 5-20
5.4 WORKSPACE-CONTENT COMMANDS 5-20
5.4.1)COPY -~ Copying Objects from a Workspace 5-21
5.4.2 JERASE - Erasing Global Names 5-22
5.4.3 YFNS - Displaying a List of Functions 5-23
5.4.4 YGROUP - Defining or Dispersing a Group 5-23
5.4.5)GRP - Displaying the Members of a Group 5-24
5.4.6)GRPS - Displaying a List of Groups 5-24
5.4.7 YPCOPY - Copying from a Workspace with

Protection 5-25
5.4.8)SI - Displaying the State Indicator 5-25
5.4.9)SIV - Displaying the State Indicator and

Local Variables 5-26
5.4.10 YVARS - Displaying a List of Variables 5-27
5.5 WORKSPACE-ENVIRONMENT COMMANDS 5-27
5.5.1)DIGITS - Determining the Output Precision 5-27
5.5.2 JECHO - Determining Error Line Echoing 5-28
5.5.3 YJMODE - Determining the Terminal Output

Mode 5-29
5.5.4 JORIGIN - Determining the Index Origin 5-30
5.5.5)TABS - Determining Tab Stops on the

Terminal 5-30
5.5.6 YJWIDTH - Determining the Width of the

Output Line 5-31
5.6 APL TERMINATION COMMANDS 5=-32
5.6.1)C and)CALL - Running a Program and

Returning to APL 5-32
5.6.2 JCONTINUE - Saving the Workspace and

Ending the Session 5-33
5.6.3 YMON - Returning to Operating System

Command Level 5-34
5.6.4 JOFF - Terminating the APL Session 5-34
5.6.5)R and)RUN - Ending the Session and

Running a Program 5-35
5.7 MISCELLANEOUS COMMANDS 5-36
5.7.1 JBLOT - Generating a Mask 5-36
5.7.2 JCHARGE - Displaying APL Session

n

Inf rmat

vi

CONTENTS (CONT.)

Page

CHAPTER 6 DEFINING AND EXECUTING FUNCTIONS

T
'—I

INTRODUCTION

DEFINING THE FUNCTION
The Function Header
Symbol Classification
Local Symbols
Global Symbols
Dynamic Localization
Function Input and Output
Comment Lines
Examples of Defined Functions
Niladic Function
Monadic Function
Dyadic Function

EDITING THE FUNCTION

.
.
wN =

.
bbb bdbbdbWOWWWLWWWLWWWWDNDNDNDNDNDDMDNDNDNDDNDND
.

]
HHOOVOoOoNNOOOOUTE_BWNHE

.
oot WD

.
.

.
w N

O\G\O\O\G\O\O\O\O’\G\TO\O\O\O\G\O\O\O\O\O\

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6.
6
6
6
6
6
6
6
6
6
6
6
6
6
6

1 Adding Function Lines -

.2 Replacing Function Lines -
.3.3 Inserting Function Lines -
.3.4 Deleting Function Lines -
.3.5 Displaying Function Lines -10
.3.6 Editing the Function Header -11
.3.7 Character-Editing Procedures -11
.3.8 Performing Immediate-Mode Editing 6-14
. EXECUTING THE FUNCTION 6-14
4.1 Branching Within a Function 6-14
4.2 Statement Labels 6-16
.4.3 Suspending Function Execution 6-17
4.4 Examining the State Indicator 6-18
4D The Trace Vector 6-20
.4.6 The Stop Vector 6-22
4.7 Locking a Function 6-22

CONTENTS (CONT.)

Page

APPENDIX A ERROR MESSAGES A-1
APPENDIX B SUMMARY B-1
APPENDIX C I-BEAMS c-1
APPENDIX D SPECIFYING TOPS-20 DIRECTORIES D-1
D.1 USING LOGICAL NAMES D-1
D.1.1 Giving the DEFINE Command D-1
D.1.2 Using the Logical Name D-2
D.2 USING PROJECT-PROGRAMMER NUMBERS D=2
D.2.1 Using the TRANSL Command D-2
D.2.2 Using the Project-Programmer Number D-3
APPENDIX E TERMINAL SESSION E-1
INDEX Index-1
FIGURES
FIGURE 1-1 The APL Keyboard (LA37 Terminal) N 1-4

TABLES

TABLE 1-1 APL Terminals and Designators 1-3
1-2 APL Character Set 1-6
1-3 Editing Characters 1-11
2-1 Input/Output Functions 2-16
3-1 Results of Scalar Dyadic Functions 3-2

viii

CONTENTS (CONT.)

Page
TABLE 3-2 Primitive Scalar Functions 3-3
3-3 The Dyadic Circle Function 3-4
3-4 Truth Table 3-6

3-5 Primitive Mixed Functions 3-10

3-6 Transpose Definitions 3-48

9 Inner Product Description 3-71

1 Outer Product Description 3-74

1 Identity Elements 3-75

1 The ASCII Character Set 4-4

2 The Atomic Vector
-3 OcTRL

4

5

1

2

3

1

o

4

4
07T Terminal Types 4
Nc Classes 4
Workspace Name Defaults 5~
JLIB Switches 5
System Commands and Execute 5
Function Headers 6

B-6 Operators B-7
B=-7 System Variables B-9
B-8 System Functions B-1

Keyboard I/0 Functions

SyStem Commands

PREFACE

This manual describes version 2 of APL on both the TOPS-10 and TOPS-20
operating systems. There are two implementations of APL on each sys-
tem, APL-Basic and APLSF (System Functions). APLSF is a superset of
APL-Basic. To distinguish APLSF from APL-Basic, we have shaded the
text describing features available only in APLSF.

This document is not an APL tutorial manual. Therefore, if you are
unfamiliar with the APL language, you should read an APL primer before
reading this manual. Also, because you will be using APL in conjunc-
tion with either TOPS-10 or TOPS-20, you should have the latest edi-
tions of the following documents on hand:

1. TOPS-20 User's Guide

2. TOPS-20 Monitor Calls Reference Manual

or

3. TOPS-10 Operating System Commands Manual

4, TOPS-10 Monitor Calls Reference Manual

xi

Conventions Used In This Manual

ﬂ H Special square brackets indicating operational
information that can be omitted from a command
string.
{ } Braces indicating a choice. Choose one from

the enclosed.

Lowercase letters Lowercase characters in a command string indi-
cating variable information you supply.

UPPERCASE LETTERS Uppercase characters in a command string indi-
cating fixed (literal) information that you
must enter as shown.

Examples All examples were produced on an LA37 using
either TOPS-10 or TOPS-20.

Contrasting Colors Red - Where examples contain both user input
and computer output, the characters you type
are in red; the characters APL prints are in
black.

APL Refers to both APIL-Basic and APLSF.

xii

ACKNOWLEDGMENT

The DECsystem-10 implementation of APL was developed by Richard
Fennell, Frederick Pollack, and William Price under the guidance of
Dr. Alan J. Perlis of the Department of Computer Science at
Carnegie-Mellon University. The APLSF enhancements were made by

Frederick Pollack. The conversion to the DECSYSTEM-20 was done at
Digital Equipment Corporation.

xiii

CHAPTER 1

THE APL OPERATING ENVIRONMENT

1.1 INTRODUCTION

APL (A Programming Language) is a language interpreter that runs under
the control of either of two operating systems, TOPS-10 or TOPS-20.
The TOPS-10 and TOPS-20 operating systems provide the APL user with
standard timesharing features, such as resource allocation, job con-
trol, device handling, and usage accounting.

Because APL is a very compact programming language, it is suited for
handling numeric and character array-structured data. In addition to
its mathematically concise format, APL is also an efficient general
data-processing language.

APL is a 2-segment system. The code segment or shared segment, is
the APL interpreter consisting of code shared among all APL users.
The data segment is the APL user's workspace. Each user has a data
segment, but there is only one copy of the interpreter.

1.1.1 Workspaces

A workspace is a block of storage where all interaction with APL takes
place. Each time you access APL, you are issued a clear workspace in
which to define variables and functions as well as to execute APL
statements. The size of an APL workspace is dynamic and can vary from
2K to 176K 36-bit words on TOPS-10. On TOPS-20, the figure is express-
ed in pages of 36-bit words, 4P to 352P. The default workspace size
is 20K on TOPS-10 and 40P on TOPS-20. If you need to change the size,
refer to the)MAXCORE command, Section 5.3.1.

There are three states your workspace can assume as you proceed
through an APL session:

1. Clear workspace
2. Active workspace
3. Inactive workspace

At the beginning of an APL session, you are given a fresh workspace:
the clear workspace. It has no open files, no defined variables or
functions; it has a clear (empty) symbol table, and a clear (empty)
state indicator. System variables are set to their default values.
Once you start typing information into your workspace, it is no longer
clear. The workspace you are currently using is your active workspace.

THE APL OPERATING ENVIRONMENT

All functions and variables you define during the current APL session
are stored temporarily in this workspace. You can save an active
workspace as a file, in binary format, on a secondary-storage device,
such as a disk or magnetic tape. An active workspace becomes an in-
active workspace when you save it. You can save several workspaces
in your disk area; however, only one can be active at any one time.
As a group, inactive workspaces are known as a private library.

When you save a workspace, you are not only saving functions and vari-
ables, but also the APL symbol table, state indicator and some system
variable settings. When you retrieve an inactive workspace from your
library, it again becomes your active workspace.

A workspace can be named, copied, saved, retrieved, deleted, renamed,
protected, and cleared. These workspace operations are described in
Chapter 5.

1.2 HARDWARE

The APL language consists of a special character set in which Greek

letters and a variety of other special characters represent APL lan-
guage functions and operators. Examples of such special characters

include 1, O, Vv, and «¢.

TOPS-20 and TOPS~-10 support a variety of terminals for use with the
APL system. Some terminals provide keyboards with the full APL char-
acter set (such as the LA37 in Figure 1-1). However, terminals with-
out the APL keyboard can also be used to access APL. On non-APL
terminals, you can use a special set of keyword mnemonics to represent
APL symbols. See Table 1-2 for both character sets.

You select the APL character set or the mnemonic character set when
you begin an APL session. APL prompts you with:

terminal ..

You respond with one of the terminal designators listed in Table 1-1.

THE APL OPERATING ENVIRONMENT

Table 1-1
APL Terminals and Designators
Terminal Designator
IBM Selectric! -type 2741

terminal with APL
typing element, or equivalent

Bit-paired ASCII/APL terminal BIT

Key-paired ASCII/APL terminal KEY

DECwriter II model LA36 with LA36

APL option (LA37)

Tektronix? 4013 4013

Tektronix? 4015 4015

Any terminal without TTY H/terminalﬂ

APL character set

lgelectric is a registered trademark of IBM.
Tektronix is a registered trademark of Tektronix, Inc.

The /terminal switch with the TTY designator can be any one of the
other terminal designators in Table 1-1, for example TTY/BIT. This
switch is optional. It takes effect when you use the)OUTPUT command
(Section 7.9).

When you specify LA36, 4013, or 4015, that designator causes character
font-switching sequences to be sent to the terminal when you enter and
leave APL. This means that you do not have to manually switch charac-
ter sets by pushing a button on the terminal. Specification of KEY
does not have this effect.

1.2.1 APL-Keyboard Terminals

The keyboard illustrated in Figure 1-1 is a typical APL-keyboard ter-
minal; you can use it in either ASCII or APL mode. When you access
APL, the characters are received and interpreted by the APL system.
Note that letters, numbers, and some of the special characters appear
in the conventional keyboard positions. In APL mode, the letters print
only in uppercase and are produced only when the keyboard is not shift-
ed. The full APL character set is described in Table 1-2.

AT RPN
= RPEPT R LI
' EERFPPERLELLLL |

. Figure 1-1 The APL Keyboard (LA37 Terminal)

THE APL OPERATING ENVIRONMENT

1.2.2 Terminals Without the APL Keyboard

If you do not have a terminal with an APL keyboard, you can use a com-
bination of keyword mnemonics, or escape characters, and ASCII charac-
ters to interact with the APL interpreter. First, you respond with

TTY when APL prompts for a terminal designator (Section 1.2). Then you
can input any of the keyword or escape-mode equivalents listed in

Table 1-2.

For example, to represent the APL rho symbol (p), either type the
mnemonic .RO or the escape character @R. To type a character in es-
cape mode, first type the at sign (@) and then enter the desired upper-
case character. No delimiting blanks are necessary, and you can mix
the two input modes freely.

APL output can also be displayed in either keyword or escape modes,
but you must select one or the other; they cannot be mixed. The)MODE
command allows you to select the output mode. This is where the TTY
/terminal is relevant. See Section 5.5.3.

1.3 THE APL CHARACTER SET

Table 1-2 lists all APL characters available on TOPS-10 and TOPS-20.
The first column lists the APL character set. The second column, TTY
set, lists the keyword mnemonic equivalents. The third column supplies
names commonly associated with APL characters, and the fourth column
lists the escape characters. The uppercase letters indicate the ori-
gin of the mnemonic representation.

The second section of the table lists APL overstruck characters. These
are characters constructed by typing one character, one backspace, then
a second character on top of the first. For example, to construct the
logarithm symbol (), type the circle symbol (o), then backspace, then
type the exponentiation symbol (x). You can also type the exponenti-
ation symbol (%) before the circle symbol (0); the order is not signi-
ficant. On non-APL keyboard terminals, overstruck characters are re-
presented by single-strike characters or by keyword mnemonics. Notice
that dollar appears as both a single-strike and an overstruck charac-
ter. On some terminals you can enter dollar as a single-strike char-
acter ($), and on other terminals you must enter dollar as an over-
struck character (51).

THE APL OPERATING ENVIRONMENT

Table 1-2
APL Character Set

Single-Strike Characters

APL Set TTY Set Name Escape Mode

A-Z A-7Z alphabet

0-9 0-9 numbers
+ + add
A & and

< assignment

- (back-arrow or underline)

s ’ concatenate
: : colon
* % divide

$ S dollar format
= = equal to
\ \ expand (scan)
* * exponentiate @p
> > greater than
[C left bracket
((left parenthesis
< < less than
X # multiply
' ! quote string @K
? ? question (roll and deal) @QQ
/ / reduce
]] right bracket
)) right parenthesis
5 H semicolon
- - subtract
4 ” take Qy
| .AB residue (ABsolute value) @M
o AL ALpha @A
W .BX quad (BoX) QL
[.CE CEiling (maximum) @s
v .DA drop (Down Arrow) QU
N .DD Dieresis
L .DE DEcode @B
v .DL DeL cle]
o .DM DiaMond
n .DU Down Under @c
T .EN ENcode @N
€ .EP EPsilon @E
L .FL FLoor @D
> .GE Greater than or Equal to

> .GO GO to (branch)
1 . IO IOta (Cha
{ .LB Left curly Brace
A .LD delta (Lower Del) Q@H
< .LE Less than or Equal to
= . LK Left tackK
o .LO circle (Large O) Qo
> .LU Left Union @x
z .NE Not Equal to

THE APL OPERATING ENVIRONMENT

Table 1-2 (Cont.)
APL Character Set

Single-Strike Characters

APL Set TTY Set Name Escape Mode
- .NG NeGation
~ .NT Not @T
w .OM OMega Qw
v .OR OR
} .RB Right curly Brace
P . RO RhO @R
= .RK Right tack
c .RU Right Union @z
° .SO jot (Small O) QJ
— .Us UnderScore QF
U .UU Up Union Qv

Overstruck Characters
(None in Escape Mode)

Characters to

APL Set Strike Over TTY Set Name
$ 3 | S dollar (format)
! ! ! factorial (shriek)
' v | .GD Grade Down
A A | .GU Grade Up
I L T .IB I-Beam (histogram)
® o * .LG LoGarithm
» A ~ . NN NaNd
» \ ~ .NR NoR
X \ - .CB back expansion
e 0 - .CR (Circle) Rotate
7 / - .CS back scan
5] g + .DQ Divide Quad
13| O < .I0 Input Quad
B il > .00 Output Quad
) o U T .0OU out
X v ~ .PD Protected Del
M a v .QD Quad Del
M O ! .QQ Quote Quad
) o} | .RV ReVersal
X o \ . TR TRanspose
® 1 ° - XQ eXecute
7 T ° .FM ForMat
) n ° " Comment (lamp)
4+-Z A-72 _ +ZA- .77 underscored alphabetics
A A — .Z@ underscored lower del

THE APL OPERATING ENVIRONMENT

1.4 INTERACTING WITH APL

APL provides easy-to-use commands to allow you to interact with the
operating system. Sections 1.4.1 through 1.4.4 describe some of the
commands available. Chapter 5 discusses APL system commands.

1.4.1 Entering APL Command Level (Starting the Session)

To access APL, first log in to either TOPS-20 or TOPS-10. After a
successful log in, type the following on TOPS-20:

@AFLSF
On TOPS-10, type:
+ROAPLSE

In both cases, APLSF begins the session by asking for your terminal
designator:

terminal..
If you are unsure of what to respond, type H (for Help). For example:
terminal. oh

give bhe arerorriaste resronse for wour terminsl
resronse wour terminal

2741 it 2741 or similar with arl ball
bit seeii arxl RRE:

ke P oawl

1a36é] i " Ler set ortion
4013 teltyromix 4013

4015 telktronix 4015

tlw ary terminal mnolt heving ael Fondt

TERMINAL . .

After receiving a valid terminal designator, APL responds with a
greeting and identification message. It then supplies a clear work-
space for use during the current APL session, or automatically loads
the special (CONTINUE workspace saved from the last APL session, if
such a workspace exists in your disk area. (See Section 5.6.2 for a
description of the CONTINUE workspace.) If a clear workspace is sup-
plied, APL displays the message:

CLEOR WS

If the CONTINUE workspace is loaded, APL outputs a standard load
workspace message. For example:

Barlef

terminal..la

OFL-20 DECSTSTEM-20 AFLSF 2(407)

TTY20) 15322857 TUESHAT D& JUHe79 MASGEL LA
SAVED 1522139 26-IUN-T7Q HF

!The 2741 is supported only on TOPS-10.

THE APL OPERATING ENVIRONMENT

APL indents six spaces to signify that it is ready to accept input.
APL outputs at the left margin but automatically indents six spaces
before echoing your input. The first character you type will print in
the seventh column from the left margin. APL thus clearly differen-
tiates between what it prints out and what you type in.

1.4.2 Ending the Session

To log off the system while in APL mode, use one of the following
commands :

Y OFF ends the session and logs you off the system.

Y COMT L HUE ends the session, logs you off the system, and
stores the active workspace under the name
DSK:CONTIN.APL. This workspace, instead of a
clear workspace, will be loaded the next time
you run APL.

Note that APL commands begin with a right parenthesis. These com-
mands,)OFF and)CONTINUE, are described in Sections 5.6.4 and 5.6.2,
along with a description of options available for automatically re-
turning to system command level after ending a session rather than
logging off.

CAUTION
Do not end a work session by disconnecting

the terminal's telephone connection or
the current workspace will be lost.

1.4.3 Returning to System Command Level

To return to system command level during an APL session, type the)MON
command. APL indicates that control has been returned to the oper-
ating system by printing:

MOMITOR
When you receive the system prompt, you can then perform a variety of
system operations, including sending and receiving messages to or from
other users and the operator, assigning devices to your job, inquiring
about CPU usage, and performing other standard functions.

CAUTION

If you run any other program, the
workspace in memory will be destroyed.

To return to APL with the workspace intact, type CONTINUE. APL re-
sponds with APLSF: to indicate that it has again received control.

THE APL OPERATING ENVIRONMENT

1.4.4 Interrupting Execution

To interrupt APL during an operation, use the attention signal, CTRL/C.
Two CTRL/Cs interrupt function or program execution and return you to
APL mode. The response may be delayed for a few seconds because of
system buffering.

Typing five CTRL/Cs will return you to system command level. To return
to APL mode and resume APL operations, type one of the following oper-
ating system commands:

CREENTER

or

ECONTINUE

1.5 KEYBOARD EDITING

The following sections describe the procedures for entering and cor-
recting APL text on a terminal with an APL keyboard.

1.5.1 Correcting a Line Before Entering

You can type characters in an APL input line in any order. Regardless
of how you enter the line, APL evaluates it exactly as it appears on
the terminal; the order in which you type characters is not significant.
By using the appropriate space and backspace characters, you can even
type the line backwards. APL interprets the line only when you press
the RETURN key. (This "random order" feature is not available on TTY
terminals.)

An APL line can contain up to 390 characters. This total includes
spaces and backspaces. If you type more characters than the limit and
press RETURN, APL ignores the line and sends the error message:

48 IHFUT LIME TOO LOMG

For a complete list of APL messages, refer to Appendix A.

NOTE

Backspacing is a method for positioning
the carriage, it does not cause char-
acters to be erased or ignored by APL.

On an APL-keyboard terminal, if you discover an error in a line before
you press the RETURN key, you can backspace to the error and press the
LINEFEED key. Everything from the LINEFEED to the right is ignored by
APL. You can then complete the line directly below the part in error
by retyping it. For example:

Co ' REELVE backspace 4 then line feed
CELIVE?®
o

KECELVE

THE APL OPERATING ENVIRONMENT

There are several special characters available with which to make cor-
rections. Table 1-3 lists these characters and their meaning.

Table 1-3
Editing Characters

Character Meaning

CTRL/C Two CTRL/Cs interrupt APL function execution
and expression evaluation. Five CTRL/Cs re-
turn you to system command level.

CTRL/U Deletes the current input line and positions
you in column one of the next line. It does
not delete past the first LINEFEED it en-
counters. Echoes as XXX on TTYs and as >>>

on LAs.

CTRL/O Suppresses output to the terminal.

CTRL/R Performs a LINEFEED and displays the cor-
rected line starting at column one.

LINEFEED In conjunction with backspace, it deletes
input.

DELETE (RUBOUT) Deletes one character at a time. On an LA,

echoes one +~ character on TOPS-10 for entire
operation. Echoes one + character for every
character deleted. The + prints as a \ on
a TTY.

1.5.2 Correcting a Line After Entering

An APIL statement entered and processed in immediate mode can be edited
according to the same line-editing rules established for user-defined
functions. These rules are described in Sections 6.3.7 and 6.3.8.

CHAPTER 2

LANGUAGE SYNTAX

2.1 INTRODUCTION

This chapter describes the syntax that governs the construction of APL
statements and expressions, including statement components, data types,
and expression evaluation.

2.1.1 Statement Execution Modes

Two execution modes are available in APL:

1. Immediate mode, in which APL executes statements and express-—
ions as soon as you enter them and press the RETURN key.

2. Function-execution mode, in which APL executes the statements
contained in a user-defined function (Chapter 6). APL enters
function-execution mode whenever it discovers a user-defined
function in the statement it is currently executing, and
exits from function-execution mode when the last statement in
the function is executed, you suspend the function, or an
error occurs.

The statement syntax is identical in both modes; however, there are a
few special characters that are not generally relevant in immediate
mode, but useful in function-definition mode. These characters are
described in Chapter 6. Most of the examples in this chapter illus-
trate immediate-mode execution. Chapter 6 describes function-
definition mode, in which you prepare and edit functions, and function-
execution mode, in which you actually execute the function.

In immediate mode, APL clearly differentiates between what you type
and what it prints. APL always indents six spaces before accepting
input. After you enter text, press the RETURN key to indicate that
entry is complete. APL processes your input and, if necessary, prints
results beginning at the left margin. After printing output, APL then
performs a carriage return/line feed and indents six spaces. For
example:

34 &
[}

&
e Q
X

[ARES &

LANGUAGE SYNTAX

You can have up to 390 characters in a single line. This count
includes spaces and backspaces.

2.1.2 Expression Components

An APL expression can consist of the following components:

1. TIdentifiers
Variables, Section 2.1.2.1
Labels, Section 6.4.2
User-defined Functions, Chapter 6
Groups, Section 5.1.3.4

2. Constants
Numeric, Section 2.1.2.2
Character, Section 2.1.2.2
3. Characters
I/0 Functions, Section 2.5
Primitive Scalar Functions, Section 3.2
Primitive Mixed Functions, Section 3.3
Extended Functions, Section 3.4
File Functions, Chapter 7
Operators, Section 3.5

4. System Variables, Section 4.2
System Functions, Section 4.3

2.1.2.1 TIdentifiers - An identifier can be a variable name, a label
name, or a user-defined function name. It can consist of any number
of letters and digits; however, the first character must be a letter.
APL defines a letter, in this case, as any character 4 through Z, 4
through Z, A and A. Only the first 31 characters of the identifier
are significant, and embedded spaces are not allowed. APL truncates
all identifiers to 31 characters; therefore, you cannot create an
identifier longer than 31 characters. For example:

Legal Identifiers Illegal Identifiers
ARCLIEG 1AC7% (does not begin with a letter)
a74 204 X4 (contains an embedded space)
AGDH4HA FO740E (contains invalid character V)

Note that you cannot start an identifier with the characters SA or TA
because of a conflict with the trace and stop vectors. Refer to
Sections 6.4.5 and 6.4.6.

A variable must contain a value before you can reference it. Other-
wise, you will receive the message 11 VALUE ERROR from APL. Section
2.1.5 describes how to assign values to variables.

Variable names and their positions have special meaning in function-
definition mode. Refer to Chapter 6 for this information.

LANGUAGE SYNTAX

2.1.2.2 Constants - Constants can be either numeric or character data.
A numeric constant is one or more decimal digits with an optional
decimal point. A numeric constant can also be in exponential format;

an integer or decimal quantity followed by £ and the power of ten by
which the quantity is to be multiplied. All of the following constants,
for example, are valid representations of the same value.

712 712.0 7120E71 7,12EQ

Wherever possible, APL prints numbers without decimal points and
exponents.,

A2 7L2.0 PLR0ETL VL L2ED

PAR N2 LR MR

In APL, you represent a negative number by a numeric constant preceded
by a negative sign (7). This sign is a distinctive symbol (uppercase
2). It is not the same character as the minus sign (-) which is used
to indicate subtraction. On non-APL terminals, the negative sign is
.NG.

A character constant is one or more alphanumeric and/or special char-

acters (including carriage returns and line feeds) enclosed in single
quotation marks. For example:

VAR B G
VGEQRGE
VTHES LS A QOMSTAMNT?

When APL prints a character constant, it omits the enclosing quotation
marks. If you want APL to output quotation marks, type one extra
single quotation mark next to the one you want to print. For example:

Ee 'TOMTY Y V86 TEMRMIS FRACQRUET!
¥
TOMY VS TEMMEIS FRACQRUET

Numeric and character data can be structured in a variety of ways.
APL supports the following types of data:

1. scalars

2. wvectors

3. matrices

4, arrays of three or more dimensions

LANGUAGE SYNTAX

A scalar is a single numeric or character value with no dimensions.
For example:

32
32

1y

A vector is a l-dimensional array or character string consisting of
any number of values. Enter a numeric vector as a list of values
separated by at least one space. For example:

In this example, H is defined as a vector whose elements are 1, 2, 3,
4, and 5. APL stores the values in the order in which you enter them.

A character vector or literal vector is entered as a string of char-
acter constants enclosed in single quotation marks. Unless you want
the space character as part of the character vector, do not insert

spaces between characters in the vector. Note the following example:

Ne ' ABRCHEFG HIJKLMHOF?
A
ABCLEFG HIJKLMHOF

Because any characters, including carriage returns and line feeds, can
be elements of a character constant, you can also enter several lines
of character data as a l-character vector. For example:

AL THIS IS A
MULTIFLE LIHE
LETERAL,

0o
THIS IS
MULTIFLE L EME
LI TERAL,

Although there are several lines of text, 4 is still a vector.

Note that a common error occurs when you type a character constant
with an unbalanced number of quotation marks. APL thinks that you are
still defining the constant when you press RETURN to enter the line.
Consequently, APL includes the carriage return/line feed as part of

the constant. You can spot this error by noticing that APIL does not
indent six spaces when you press the RETURN. Typing a single quotation
mark will usually get you out of this situation.

LANGUAGE SYNTAX

A matrix is a 2-dimensional array consisting of rows and columns. APL
supports the use of matrices as well as arrays of higher dimensions.

The rho character is used to create and reshape arrays (Sections 3.3.18
and 3.3.15). You enter values corresponding to each element of an
array and also the shape or size of the array. The following examples
show array output. (To input arrays, refer to Section 3.3.15.)

The following is a numeric matrix with 2 rows and 3 columns.

—
ol

D
4 2 L8]
o

APL also supports arrays of three dimensions or more. For all practi-
cal purposes, there is no intrinsic limit on the number of dimensions
in an APL array. The only restriction is that the size of the array
cannot exceed your workspace size. If you have unlimited memory avail-
able, the maximum number of dimensions allowed is 2*18.

The following is an example of a 3-dimensional character array. Note
that APL inserts a blank line between each plane greater than two.

A ' ABCDEFGH I JKLMMHOFQRFSTUVWITR
23 4rH

ARCD

EF G

T JKL.

MM OF

QREST

UV

2.1.3 Spaces and Comments

Spaces are usually not significant in APL. Therefore, you need not
separate functions from constants or variables. This is also true on
non-APL~keyboard terminals. The mnemonics for operators need not be
preceded or followed by a space. The following expressions are equi-
valent:

b33 I3 35

Celbh

AR] -0

[A) ' ¥ 4 1 s

LANGUAGE SYNTAX

Spaces are also not required between a succession of functions or oper-
ators. For example:

AEL AR 4 AR

However, spaces must be included to separate names of adjacent user-
defined functions, constants, and variables. For example, they are
required when you are entering a series of numeric constants as a

vector. The spaces included in the following example are necessary:

2 TRIG 3 (user-defined function)
Bed 4 05 (numeric vector)

You can also use comments in APL. Their use is particularly relevant
in function-definition mode. Comments must appear on separate lines;
they may not be included on lines containing APL statements. The first
character in a comment line is the lamp character (a), formed by over-
striking the down union character (n) with the jot character (o).
Section 6.2.4 describes comment lines in greater detail and illustrates
their use in a variety of user-defined functions. On non-APL-keyboard
terminals, use a double quotation mark for the comment character.

2.1.4 File Specifications

File specifications indicate to the operating system when to locate
and identify a file. Certain operations in APL i t ply

The complete form of a file specification is:

dev:filename.extl[directoryl<prot>

where

dev: is a device name, or a logical name you have
defined. See Appendix D for defining logical
names.

filename is one to six alphanumeric characters specifying
a particular file in the directory.

.ext or .typ is one to three alphanumeric characters identify-
ing the contents of the file.

[directory] is the project-programmer number of the owner of
the directory. You can translate a directory
name on TOPS-20 to its corresponding project-
programmer number by using the TRANSLATE command.
See Appendix D for this information.

<prot> is a 3-digit octal protection code specifying
who can read and write the file.

LANGUAGE SYNTAX

You need not give the entire file specification in every case. The
defaults are:

Argument Default

dev: DSK:

filename No default; it must be specified
.ext or .typ Depends on the type of file
[directory] Your currently connected directory
<prot> Installation-dependent

2.1.5 Statement Types

There are two general types of APL statements:

1. Branches constructed with -~

2. Assignments constructed with <«
Branch statements restart a function and transfer control from one part
of a function to another. These statements are most relevant in the

context of user-defined functions and are described in Section 6.4.1.

Assignment statements store one or more values into an identifier. The
general form of an assignment statement is illustrated by the following:

AeQ R

where 2+B is an APL expression
<+ is the assignment function
4 is a variable name

You can have more than one statement on a line by separating each with
a semicolon. Each statement separated must contain a value. For
example:

CEALESACHAFECPD

Assignment statements are, themselves, expressions and can be used in
the construction of other statements. The following example illustrates
a method of assigning values to more than one variable with a single
statement:

) ¢ 3 K6 4 40 7

LANGUAGE SYNTAX

Here the value 7 is assigned to ¢, 11 to B, and 14 to A. The express-
ion is evaluated from right to left according to the rule described in
Section 2.1.5.

In any mode, if you do not include an assignment or branch function in

an expression, APL prints the results on the terminal when the express-
ion is executed. For example:

243

i

This type of expression has the effect of an implied print statement
in APL.

2.1.6 Evaluation of APL Statements and Expressions

APL evaluates unparenthesized statements and expressions in strict
right-to-left order, regardless of the particular functions in the
statement. Unlike some languages, which perform multiplication and
division before addition and subtraction, APL has no explicit function
precedence. For example, APL evaluates the expression

Ix4+5

as 27, using right-to-left evaluation, rather than 17. Thus, the
expression is interpreted as

3x(4+5)
27

You can control the order in which individual functions are evaluated
by enclosing part of the expression within parentheses. To cause the
expression above to evaluate to 17, enter the following:

(3x4)+5
17 Y

APL evaluates this expression as 17 because 5 is added to the quantity
3x4, not simply to 4.

LANGUAGE SYNTAX

2.2 Number Precision

APL is a double-precision system with internal precision of about 18
decimal digits. Numbers are represented internally in two ways.

1. Integers less than 2 to the 35th power (2*35) are stored with
full precision.

2. Non-integers and integers largér than 2 to the 35th power are
carried out in floating-point format.

APL handles conversion between the two formats automatically.

Although you cannot control the internal precision of numeric repre-
sentation, you do have some control over the output representation.
The 0OPP variable, Section 4.2.15 llows you t i

precision of non-integers. | APL £

Notice how APL outputs the numbers in these arrays:

2 2rLN0
1.701411835838
1.701411835238

Ae2 2r1
a

ALVl /00

5
1.+.000000000E0 1.000000000E0
1L+ 000000000EQ 1.701411835E38

fep 2p1
ALL51T610%6
A
1000000 1
1 1

AeR 2r1
ALR320610%76
2]

1 1

1 0.000001

Al1711¢10x6

Y
1.000000000E4 1.000000000E0
100000000080 1.000000000E™4

LANGUAGE SYNTAX

The range of numbers you can input without receiving an error (15
DOMAIN ERROR) are:

For integers _2*%35 to (2*35)-1
For non-integers .14693679E-38 to 1.7014118E38

Note that Boolean is represented as 36 bits per word: (136)=136 is
equal to 36pl.

2.3 ERROR HANDLING

When APL encounters an error, it prints three things:
1. an error message
2. the line in which the error occurred

3. a caret (") approximately underneath the particular point at
which the error was discovered

The following are examples of common error conditions:

Ee3
X Ee
11 VALUE ERFROR
£ x ¥
A

1+1E4243
7 OSTHTAN ERFRQR
141 EBe243
A

1 2+¢1 2 3 4
10 LEHGTH ERROFR
L2+ 123 4

A

In the first example, APL printed a value error because the variable
named 4 had not been assigned a value. The syntax error occurred
because an identifier cannot begin with a number (1B). The length
error was a result of an unequal number of constants on either side of
the plus sign.

Because APL is a highly interactive system, you can almost always
respond to an error condition simply by correcting the statement in
which the error occurred. This characteristic of the language also
aids the trial-and-error approach to program development. In function-
execution mode, APL prints an error message, the function name, and

the line number of the statement at which it occurred. APL also sus-
pends execution of the function. You then have the options of termin-
ating the suspended function, restarting it possibly at another state-
ment, or debugging it before resuming execution. Chapter 6 describes
techniques for developing and executing functions.

LANGUAGE SYNTAX

2.4 ARRAY INDEXING AND COMPARISONS .-

This section introduces the use of array indexing in APL and also the
use of "fuzz" in performing comparisons. Both of these concepts are
helpful in understanding the examples included in subsequent sections
of this chapter.

2,4.,1 Indexing Arrays

The concept of using and entering values for arrays has already been
introduced in Section 2.1.2.2, To be able to access, individually,
the values of the elements stored in an array, you must know the posi-
tions of the elements within the array. These positions are known as
the indices. The procedure for accessing elements is called indexing.
The first position in an array (index origin) can be either 0 or 1.
You can set the index origin with system variable 070, Section 4.2.11.

To index an array, specify the array followed by the indices enclosed
in square brackets, and separated with a semicolon. Each index must

be an integer scalar, or an expression that evaluates to an integer.
The number of indices needed to pinpoint an element depends on the
array type. In general, you must specify as many indices as the number
of dimensions of the array. For a vector, a single index is sufficient
to identify the position of the desired element. A matrix, a 2-
dimensional array, requires two indices separated by semicolons; a
3-dimensional array requires three indices separated by semicolons;

and so forth.

For example, specifying:

ALL1

accesses the first element stored in vector A. If 4 consists of the
vector shown below, then A[3] is 25.

Ae72 91 25 46 87
A3

25

If the array is a matrix, specify two indices: the first one for the
row and the second one for the column:

Eel 4P 8

L2531

LANGUAGE SYNTAX

Specifying the indices in the form of an array enables you to access
more than one element at a time. For example:

Ae32 44,6 71 .80 65 97.2

n
32 44.6 71 0.8 635 97.2

AL3 5 61
71 65 97,2
Me2 4P18
M
1 2 3 4
5 & 7 8
ML251]
5
MLL 252 31
2 3
6 7

The index can also be an expression which is evaluated to generate the
element positions.
Ie2 4 5
Vel0 22 31 49 56 68 72
viI+1]
31 G646 68

Here V and I are both vectors. The expression V[I] accesses the ele-
ments of V referenced by I: that is, the third, fifth, and sixth
members of vector V.

Character arrays can also be indexed. For example:

A4 ABRCDEFGHI JKLMHOFRRESTUVWITE
EAETEAD10 S 14 14 9 6 5 18 27 12 235 14 27 13 281
EAEY

SEMRMIFER LTH M,

Note that an element can be duplicated by specifying its position more
than once. The array being indexed need not be a variable. It can be
a constant set of values or an expression enclosed in parentheses.

For example:
PS5 4 03 2 182 41

(24 8 1622001 21
4 16

LANGUAGE SYNTAX

You can omit a subscript from an index specification, but the semi-
colon must be included if only one array dimension is specified. 1If
you omit the right subscript, all columns are selected from the matrix;
if you omit the left subscript, all rows are selected. For example:

Note that a semicolon is required to indicate which subscript has been
omitted. In general, the size of the result when a variable is indexed
is equal to the catenation of the sizes of all the indices. For ex-
ample, if Z<«X[I1;I2;I3;...IN] then (pZ2)=(pI1),(pI2),(pI3),...(pIN).

Ve ' AECDEFR !

VLY 51
CE
AVECTOR IMHDEXED WITH A& VECTOR
ARESULTS LM A VECTOR
VIL6 5 4 3 2 1]
FELC KO
AVECTOR IMDEXED WITH 6 MATRIX
AFRESULTS TMH A MOTRIN
Me2 Jp2 5 4 6 05 4
VLM
BEL
FED
AMATRIN IHDENED WITH TWO 2-DIMEMSIOMHMOL
ATMDICES BRESULTS IM A 4-DIMEMSTOMHAL ARRAT
Me2 271 2 2 1
AEMEMS MY
A
1 2
2 1
2 1
12
2 1
1 2
2
5q

LANGUAGE SYNTAX

FA
2222
MeD 4PV 6
M
1 2 3 4
5 6 1 2
ABCALAR RESULT
AeMI1511
2]
1
aHuLL AaRRAT
P .
(APL outputs a blank line)
AL-ELEMENT VECTORS
Eey,M[1511
BReMy1511
E
1
1
FE
1
PED
1
AP -ELEMENT VECTOR
CeMIIy2]
o
26
po
2
an DoET..] MATRIX
LeM[15 921
b
2
&
FL
21

You can also use indexing to change values of elements already stored
in an array. For example:

e IPé

2
r 2 3
4 F 6

A1 3167 8
Ar2il 2169

o
17 8
9 6

LANGUAGE SYNTAX

AL 10612
£

12 7 8

£4 K4 &

AL1F1 17e2 3

2.4.2 The Index Origin

In APL, the first position of a value stored in an array is called the
index origin. You have the option of beginning the indices of an array
at either 1 or 0. For example, if the index origin is 1, then members
of a vector named 4 would be numbered A[1], Af2], A[3], and so forth.
If the index origin is 0, elements begin at 4[0], A[11, A[2]1, and so
forth.

The default index origin in a clear workspace is 1, but you can change
this setting to 0 or reset it to 1 with the [0I0 variable (Section
4.2.11). The index origin setting is saved when you save your work-
space. Refer to the)SAVE command, Section 5.2.4.

The value of the index origin is often used in conjunction with several

monadic and dyadic functions. Chapter 3 discusses the index origin in
that context.

2.4.3 Comparison Tolerance or Fuzz

APL handles the problem of performing decimal arithmetic on a binary
machine with a concept known as fuzz. When two non-integer numbers
are compared, for example, 7.913 and 8.019, they are considered equal
if the difference between them is within a certain range. This range
is referred to as the comparison tolerance or the fuzz quantity.

There are two types of fuzz:

1. Absolute fuzz - which is the tolerance used to determine
whether or not a decimal number is close enough to an integer
in value to be considered an integer.

2. Relative fuzz - which is the tolerance used when comparing
two numbers to determine whether or not they are close enough
to be considered equal.

The absolute fuzz in this version of APL is approximately 1E 7. This
setting cannot be changed. The default relative fuzz is 1E 13 in a
clear workspace. You can change the relative fuzz in your active work-
space by assigning a new value to the [CT variable, Section 4.2.7.

The relative fuzz setting is saved when you save your active workspace.

The following functions use [CT when making comparisons: <, <, =, >,

>, #, A1B, AeB, LA, AlLB, A, AlB.

LANGUAGE SYNTAX

2.5 TERMINAL I/O OPERATIONS

APL provides you with utilities to ease input and output operations on
a variety of t devi Thi ti d ibes terminal input
and output £ . ¥

There are several methods of input and output as illustrated by Table
2-1.

Table 2-1
Input/Output Functions

Expression Meaning Section
A<[] Quad (evaluated) input 2.5.1
A< Quote-Quad (character) input 2.5.2
A< Quad-Del (unedited) input 2.5.3

A Normal output 2.5.5
A3B;C Mixed output 2.5.6
0«4 Quad output 2.5.5
<A Bare output (Quote-Quad) 2.5.7
M<4 Bare output (Quad-Del) 2.5.7

All terminal I/0O, except normal and mixed output, use the [0 symbol.
All forms of I/O can be used in either immediate mode or function-
cuti mode e]
The following sections describe the basic
forms of the quad function.

LANGUAGE SYNTAX

2.5.1 Evaluated Input Mode-Quad Input (O or .BX)

The most basic form of quad input is called evaluated input. In this
mode, the statement you enter at the terminal, in response to the [J
input request, is evaluated and its value is returned as the result of
the 0 input function. By placing a [0 to the right of a back arrow in
an expression, you signal APL to expect data input from the terminal.
Normally, APL prompts you by printing O: in the left margin. You can
change the prompt with the [0SF system variable (Section 4.2.18). Any
character data input must be enclosed in single quotation marks. Other-
wise, it will be considered an APL expression. For example:

K&}

5

BeRxl

t
I
10

ME G e[

THO OFEROTOR
MEG
MO OFEFROATOF

While the system is awaiting your input, you can enter and execute a
system command, evaluate an expression, or define a function. The
input request remains pending. If an error is encountered in the
input, APL prints the appropriate message and allows you to reenter
the input. If you enter a carriage return or spaces and a carriage
return, APL again prints the [J: prompt and waits for input.

The prompt signal ([0:) is the default. You can change it with the [SF
variable, Section 4.2.18.

2.5.2 Character Input Mode-Quote-Quad (M or .QQ)

APL has another version of the quad function especially for input of
character data, the quote-quad function ([1). An example of quote-
quad mode is shown below:

e[
THAT LS AMARTHG

¥
THAT VS AMAZ LG

LANGUAGE SYNTAX

Unlike evaluated input, quote-quad input allows you to enter character
strings without enclosing them in single quotation marks. Note that
APIL, does not print the [: prompt in quote-quad mode.

When APL encounters a [M symbol, it positions the carriage at the left
margin and accepts the data up to the next carriage return as a char-
acter variable. If you enter a single character, APL treats it as a
character scalar; it stores a string of characters as a character vec-
tor. If you enter only a carriage return, APL treats this input as a
vector of length zero; this treatment is significantly different from
the handling of empty input in quad-input mode, in which APL rejects
the input and waits for you to reenter it correctly. If you enter a
tab, APL converts it into the equivalent number of spaces accomplished
by the tab.

Note that you cannot enter and execute system commands or define func-
tion during [input.

2.5.3 Unedited Input Mode-Quad-Del (@ or .QD)

APL has a third version of the quad function, the quad-del function
(). The quad-del function allows you to enter special characters,
including backspace, without having APL evaluate them. The backspace
is treated as a separate character, and an overstrike symbol is not
created.

APL counts each character you input in quad-del mode. The length of
the expression includes any spaces and backspaces. (A tab is treated
as one character.) The following example illustrates the difference
between quad-del and quote-quad modes in entering overstruck APL char-
acters. The example uses the transpose function (&) which takes an
array and transposes its values (Section 3.3.20). To input this func-
tion, type ©, press BACKSPACE, and type \. The result of the shape
function (p), (Section 3.3.18), prints the number of characters in the
array.

b24 5&
T2
ATHE BRACKSFACE 19 COUMNTED a% N CHARMOTER,
£
4
e
neH
Al ROUTE.QUAD, THE KACKSEFACE T4 HOT COUNTED,
£
2
gl SEMGLE QUOTES, TT ES MHOT COUMTED ELTHEFR,
Fraa

LANGUAGE SYNTAX

The following example shows the particular use of quad-del mode in
accepting input from non-APL-keyboard terminals. The mnemonics are
not decoded.

AL QR

ROR
L ROA
4
AL QR
SOR
+ROA
2
+RORORBS

e
an

As in quote-quad input mode, if you enter only a carriage return or
spaces followed by a carriage return, APL treats this input as a null
vector of length zero.

2.5.4 Escaping From Input Mode

To escape from an input request, you have certain escape options de-
pending on the input mode:

In quad-input mode, type a right arrow (-)

In quote-quad (M) or quad-del (M) input mode, type 0UT as
follows:

0 backspace U backspace T
or
On non-APL-keyboard terminals, type .OU
Each of these methods causes function execution to be interrupted but

does not cause an exit from the function. Refer to Chapter 6 for
information on function-execution mode.

2.5.5 Normal and Quad Output Modes

In normal output mode, to display output on the terminal, type an
expression or an identifier without an assignment function (<) or
branch function (=) as the leftmost character. The result of the
expression prints on the terminal. For example:

a
25
H4x3
262144
1746
42

LANGUAGE SYNTAX

If the quad symbol appears immediately to the left of an assignment
function (<), the result of the expression to the right of the <«
prints on the terminal. This is called quad output. For example:

{](.‘ﬁ

Note that using quad output has the same effect as in the previous
example of merely typing the variable name 4. Quad output is espe-
cially helpful when an APL statement contains multiple assignments.
For example:

Ee3+[e5X4

This statement performs the computation and displays the desired out-
put - the result of the computation 5x4. This method is more efficient
than the following:

Ee5x 4
X

Ee34A

If the last operation (the leftmost expression) in an expression is an
assignment or branch, then no final output is produced. The following
will not cause output to be printed:

ARG

The following will:

arnes

When APL outputs an array, and a row cannot fit on a single line, the
remainder of the line prints on the following line, indented six
spaces. For example:

VO

L2345 &7 89 10 11 12 13 14 1% 146 17 18 19
20 20 22 23 24 28 246 27 28 29 X0 31 32 33
34 3@ & 37 38 X9 40 41 42 43 44 48 A6 47
48 49 GO

To provide more room on a line you can alter the page width with the
UPW system variable. Refer to Section 4.2.16 for this information.

LANGUAGE SYNTAX

2.5.6 Mixed Output Mode

Mixed output mode allows you to print character data and numeric data
on the same line. You request mixed output by entering a series of
values or expressions, separated by semicolons, in the order in which
they are to appear. The output displayed contains no carriage returns
or spaces, except where required by the data.

Although APL evaluates from right to left, it prints items from left
to right. If you display two expressions separated by a semicolon,

APL will not put a space between them. You must specify a space if

you want one. For example:

1413242
24

1418 e

In the first part of the next example, APL reports a value error
because no value is assigned to B. In the second part, B is assigned
the value first.

1 -3 Xit ; ' ; X
11 VALUE : B) e
LAEG g
FaS

14.1{(§ ¥ 3 ;)}j«g..l

APL will not print a value if the leftmost expression on a line is an
assignment or branch operation. You can get around this by enclosing
the assignment within parentheses. Note the following examples:

YME VALWE OF & LE e
THE VALUE QF A L6 05

e VHOTHERG WILL FREINT BECOUSBE OF THE MAFREOW!

L FEERT O EECAUNGE
OF TR P AFRERCT

(Ae " THIS 1y 5 WL
THIG WELL FRIMT RECHUS

TR FOFERT

Another way of printing the leftmost expression containing an assign-
ment or branch, is to precede the statement with a semicolon:

pRes

LANGUAGE SYNTAX

Although the semicolon is considered a statement separator, each ex-
pression in the list must return a value. For example, if F is a user-
defined function that does not return an explicit result (regardless

of the number of arguments F requires), the construct ';F;' returns

an 11 VALUE ERROR.

wE
e LT
31

2.5.7 Bare Output Mode (Quote-Quad [1 or Quad-Del M)

Bare output is a special mode that allows you to request input on the
same line as an output string.

Like quad output mode, if yqQu place a quote-quad or a quad-del to the
left of an assignment function, the expression to the right of the
function prints on the terminal. However, unlike quad output, APL
does not perform a carriage return/line feed at the end of the output.
Note the difference in the following example:

e e e VERYEFR YOUIE HAME !
Y OQUE HOME

[21

KRR

Notice that the value input is preceded by a number of spaces equal to
the length of the B output.

If the last character of a character constant to be output is a
comment (lamp) character a, APL suppresses the printing of the na as
well as the usual delimiting carriage return/line feed, thus, leaving
the carriage in mid-line. This feature is useful for entering input
on the same line as the previous output. For example:

Bl e CENTER YOURE MOME g
ERYER TOURE MOAME ROSE
I

Fr Y5 EE

In immediate mode, bare output is the same as normal output. A bare
output statement such as [«4 must be followed by an input entry at

the terminal. Thus, in this instance, output is concluded by the
conventional carriage return/line feed. Bare output is more appro-
priate in function-execution mode. Refer to Chapter 6 for more infor-
mation on functions.

CHAPTER 3

APL FUNCTIONS AND OPERATORS

3.1 INTRODUCTION

APL provides several characters, known as functions and operators,
that allow you to perform various operations with numeric data and
character data. These functions and operators are grouped as follows
within this chapter:

1. Primitive Scalar functions - arithmetic, relational, and
logical, Section 3.2

2, Primitive Mixed functions - for extensive array manipulation,
Section 3.3

4, Operators - more than one function in the syntax, Section 3.5

Functions are either monadic or dyadic. A monadic function requires
only one argument placed immediately to the right of it. A dyadic
operator requires two arguments, with the function placed between
them. Depending on the function, arguments can be variables, numbers,
character strings, or expressions.

Functions are also classified as either scalar or mixed. A scalar
function generally takes a single-value argument and returns a single-
value result. However, scalar functions can also be used with vectors
and arrays where they operate on an element-by-element basis. A mixed
function can take a scalar argument and return a result in the form of
a vector or an array, or take a vector or array argument and return a
scalar result. Therefore, the result of a mixed function is not as
apparent as a scalar function.

Both scalar and mixed functions can be either monadic or dyadic. With
a scalar monadic function, the shape of the argument determines the
shape of the result. For example, a scalar argument returns a scalar
result; a vector argument returns a vector result, and so forth. When
using scalar dyadic functions, you must specify arguments that have
the same number of elements and, if arrays, the same dimensions.

Table 3-1 shows the results achieved by specifying certain arguments
to scalar dyadic functions.

An operator is a function that takes another function as its argument.
APL operators are described in Section 3.5.

APL FUNCTIONS AND OPERATORS

Table 3-1
Results of Scalar Dyadic Functions
Argument Function Argument Result
scalar £ scalar scalar
scalar £ vector vector
vector £ scalar vector
vector f vector vector
scalar f matrix matrix
matrix f scalar matrix
matrix f matrix matrix

3.2 PRIMITIVE SCALAR FUNCTIONS

The primitive scalar functions are the arithmetic, relational, and
logical functions. They are used primarily for basic arithmetic and
logical operations, such as addition, exponentiation, maximum value,
and logical OR. With a few exceptions, primitive scalar functions
take numeric scalar arguments. The relational functions (=<,2,<,>,=,%)
can take either character or numeric arguments but only the equal (=)
and the not equal (%) primitives can take both character and numeric
arguments in the same expression. The logical functions (A,v,~,%,¥)
must have arguments that are equal to 0 or 1 within a tolerance of
1E~7, the absolute comparison tolerance that APL uses (Section 2.4.3)

Table 3-2 summarizes the primitive scalar functions available in this
version of APL. Most of the functions are straightforward and familiar
arithmetic or logical operations.

APL FUNCTIONS AND OPERATORS

Table 3-2
Primitive Scalar Functions

Monadic Dyadic
Function Meaning Function Meaning

+Y Y X+Y Add X to Y

Y Negative of Y X-Y Subtract Y from X

xY Sign of y! xxY Multiply X and Y

Yy Reciprocal of Y XY Divide X by Y

*Y E to the Yth power X*Y X to the Yth power

|y Magnitude of Y Xy X residue of Y (see
primitive mixed
operators)

ry Ceiling of Y Xry Maximum of X and Y

LY Floor of Y XLy Minimum of X and Y

ey Natural logarithm of Y Xey Log of Y to the
base X

'Y Factorial of Y X'y Binomial coeffici-

ent (number of
combinations of Y
things taken X at
a time)

?Y A random integer of 1Y X?y X number of random
integers in the
range 1 through Y

oy Pi times Y Xoy Trigonometric
functions (Y is in
radians. See Table
3-3)

!pefinition: xY is -1 if ¥<o0
xY is 0 if Y=0
xY is 1 if Y>0

APL FUNCTIONS AND OPERATORS

Table 3-3 lists the values 0 through 7 and 0 through -7 that are
needed as the left argument to the circle function (0) in order to
perform trigonometric functions. The right argument, a scalar or
vector, is expressed in radians.

Table 3-3
The Dyadic Circle Function

Expression Result Expression Result
0oXx (1-X%2)*.5
10X sine X -10X arcsin X
20X cosine X -20X arccos X
30X tangent X -30X arctan X
LoX (1+4X%x2)*.5 -40X (-1+X*2)*.,5
50X sinh X -50X% arcsinh X
60X cosh X -60X arccosh X
70X tanh X -70X arctanh X

The following examples illustrate ways in which primitive scalar
functions can be extended to arrays:

2("3 35 6 8B 3 21 6 42

H 6 8
3 2 1
b 4 2
AELEMEMT By - ELEMERYT MULTLIFLIOOANTION
£ X 1Y
29 36 44
P 4 1
X6 1é 4
2xn
10 12 146
& 4 2
12 f 4

2x0 1 23 4 5 6 78
1248 16 32 64 128 288

4 9 16 25 36%x0.0
23 40 6

APL FUNCTIONS AND OPERATORS

3.2.1 Relational Functions

In APL, the relational functions (<,z,<,>,=,#) return results; they
are not simply comparison functions. An expression of the form A<B
yields the result of 1 if true (4 is less than or equal to B), and 0
if false. For example:

Pré

426

ey e

These functions can take either numeric or character arguments, but
only the equal and not equal functions can have mismatched arguments,
that is, one numeric and one character argument simultaneously. For
example:

YOt

When you use relational functions with Boolean arguments (0 and 1),
the relational functions can perform logical operations. For example,
the not equal (#) function performs an exclusive OR operation if its
arguments are 0s and 1ls:

O#0F 04151405 1#1

0110
0011#0101

1

APL FUNCTIONS AND OPERATORS

3.2.2 Logical Functions

The following table is a truth table that describes the results of
logical operations:

Table 3-4
Truth Table

Arguments Functions
AND OR NAND NOR
X Y XANY Xvy XnY &Y
0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 1 0 0
NOT
X ~X
0 1

APL FUNCTIONS AND OPERATORS

| or .AB ~ The Residue Function

Format

dyadic

Argument Types

Both arguments can be either scalars or vectors and either
integer or noninteger.

Definition

Obtains the remainder or residue of a number. The residue is a
unique number whose value is in the range between the value of
the left argument and zero. It is obtained by adding or sub-
tracting multiples of the left argument from the right argument.
For example, for positive arguments, the remainder is obtained
by dividing right arguments from left arguments. The result of
a residue operation has the same sign as the sign of the left
argument.

The formal definition of the residue function is as follows:

A|B IS B-Ax|B+ A+A=0

If the left and right arguments are equal, the residue is 0. If
the left argument is 0, then the residue is equal to the value of
the right argument.

If the left argument is not 0, then the residue is in the range
of the left argument through 0; it may equal 0 but not equal the
value of the left argument.

APL FUNCTIONS AND OPERATORS

Examples

S8
R V4
717
710
o7
215.8

uoEIg 8

[-
5% 512
P]
222
L B R
oo
A s

Related Functions

None

APL FUNCTIONS AND OPERATORS

3.2.4 ? — The Roll Function

Format
monadic
Argument Types

The argument is an array of positive integers.

Definition

Generates an array of independent random integers. Each element
is in the range 0 or 1 (depending on (I0) to the wvalue of the
corresponding element in the argument. There may be duplicate
values. Roll also changes [RL. See Section 4.2.17.

The term "roll" relates to the analogy between the operation
performed by this function and the rolling of several dice.

Examples
PEOLO 1E 20 2%
206 2 1408
TEH OO 1S 20 25
B 13 2 21
feR 3ps
2]
L2 3
4 8 &
Py
| 203
2008 4
'.i) ﬂ)
12 2
4 24
Py
1 L
3 4

Related Functions
Deal, Section 3.3.3

Deal differs from roll in that deal generates a set of random
numbers in which no number is selected twice.

APL FUNCTIONS AND OPERATORS

3.3 PRIMITIVE MIXED FUNCTIONS

Unlike the primitive scalar functions discussed in the previous
sections, the functions presented in the following sections are
considered primitive mixed functions. Scalar functions usually take
scalar arguments, return scalar results, and are extended to arrays

on an element-by-element basis. Primitive mixed functions, however,

can take vector arguments and return scalar or vector results, or can
take scalar arguments and return vector results. In expressing primi-
tive mixed functions for arrays of higher rank, you may need to speci-
fy the particular coordinate of the array to which the function applies.

The primitive mixed functions provide the capability of extensive
array manipulation.

Table 3-5 lists the primitive mixed functions available in this
version of APL. The operators are also listed.

Table 3=5
Primitive Mixed Functions
Function Section Meaning
X.,Y 3.3.1 Catenate X to Y along the last dimension of
X
X/Y 3.3.2 X (logical) compression along the last

dimension of Y

X/LN1Y 3.3.2 X (logical) compression along the Nth
dimension of Y

X+Y 3.3.2 X (logical) compression along the first
dimension of Y

X?Y 3.3.3 Deal X integers selected randomly in range
1 through Y without duplication

XLy 3.3.4 Decode the representation of Y in number
system X

XyY 3.3.5 For X>0, drop first X elements of Y - for
X<0, drop last |X elements of Y

XTY 3.3.6 Encode Y in number system X

X\Y 3.3.7 X (logical) expansion along the last

dimension Y

X\N[N1Y 3.3.7 X (logical) expansion along the Nth
dimension of Y

x\Y 3.3.7 X (logical) expansion along the first
dimension of Y

vy 3.3.8 Generate an index vector such that X[VY]
is in descending order

APL FUNCTIONS AND OPERATORS

Table 3-5 (Cont.)

Primitive Mixed Functions

Function Section Meaning
XAY 3.3.9 Generate an index vector such that X[4Y]
is in ascending order
1Y 3.3.10 Generate the first Y consecutive integers
from current origin
Xy 3.3.11 Find the first occurrence of Y in vector X
X,[N1Y 3.3.12 ;aminate X to Y along the Nth dimension of
XeY 3.3.13 Determine the membership of X in array Y
,Y 3.3.14 Return the ravel of Y (make Y a vector)
¢y 3.3.16 Reverse along the last dimension of Y
oLN1Y 3.3.16 Reverse along the N¥th dimension of Y
ey 3.3.16 Reverse along the first dimension of Y
pX 3.3.18 Return the shape of X
XpY 3.3.15 Reshape Y to make dimension X
XoY 3.3.16 Rotate by X along the last dimension of X
XoLN1Y 3.3.16 Rotate by X along the Nth dimension of Y
XeY 3.3.16 Rotate by X along the first dimension of Y
X+Y 3.3.19 For X>04 take first X elements of Y - for
X<0, take last]X elements of Y
RY 3.3.20 Transpose the dimensions of Y (for a
matrix, exchange the rows and columns)
xyy 3.3.21

Transpose array Y according to X

APL FUNCTIONS AND OPERATORS

3.3.1 , — The Catenate Function

Format
dyadic
Argument Types

scalars, vectors, or arrays
Both arguments can be either numeric or character data.

Definition

Chains two scalar or vectors to form a new vector. Catenation
joins constants or variables along an existing dimension. Any
number of items can be catenated. The order in which values are
catenated is the order in which you specify them in the APL
statement. Actually, the value(s) of the argument to the right
of the catenate function is appended to the value(s) of the
argument to the left of the function.

The result of a catenation can be formally expressed as follows:
if o4 is 5 and oB is 3, then pR<A.B is 8, R[15] is A and R[5+13]
is B.

You can also catenate literals. APL does not allow you to
catenate numbers to characters and vice versa. If you attempt
this, you will receive a 15 DOMAIN FRROR.

The catenate function also allows you to join multidimensional
arrays along an existing coordinate as long as they have the same
length over the other dimensions. You include the coordinate
within square brackets along with the right argument of the
catenate specification. For example, 4,[1]B. The coordinate is
1 for first dimension (row), 2 for second dimension (column), and
so forth.

You can also catenate constants to an array or matrix. If you do
not specify the coordinate, APL assumes the highest rank of the
array being catenated, that is, the last dimension. See examples.

When catenating arrays, you must follow two general rules:

1. Using the expression A,[X]B, if the arrays have equal rank
((ppd)=ppB), then X must be in 1ppd and p4d must equal pB
except in the XKth dimension. This is illustrated in the
following:

P
3435
Pk
368
Frg-3 y [T20 7] %
i
31009

Here A is equal to R[;14;]1 and B to R[;u4+16;1].

Examples

APL FUNCTIONS AND OPERATORS

If the arrays have different rank ((pp4d)#ppB) then one of the
arguments must be a scalar (1=]|(ppd)-ppB), and pB must equal
pA without its Kth coordinate. This is shown below:

Fa2]
3 44
¥

Fiefy [1%
Fol &

Here, A is equal to R[13;;] and B to R[4;;].

The following example catenates two vectors to each other and to
several scalar values:

Al
Rey g
Ayl

98978

39
}

LOsrAy By 122
105 89 72 8 12

CELMED S M
HEOME Y

Bep BpL R O3 A4 E 6
el Zp7 8 9 10 11 12

4]
o2 3
4 5 6
X
7 8 K4

10 11 12

Ay LR

TR
4 H 8
78 9

10 41 12

fry [0
1 2 3 V4 8 P
4 W & 10 11 12
My D117

a2 3
4 G &

7 7
Ay

APL FUNCTIONS AND OPERATORS

MeR Be8 7 3 9 4
TeR PO L 2 X 4

He 1Y
g 7 3
? 4 8
o 1 2
o4 0

Wy
g 7 3 o6 1 2
4 8 3 4 0

Related Functions

Laminate, Section 3.3.12
Ravel, Section 3.3.14

APL FUNCTIONS AND OPERATORS

/ and # - The Compression Function

Format

dyadic

Argument Types

The right argument can be a scalar or any array. The left
argument must be the scalar argument 0 or 1, or a Boolean vector
(a vector containing only 0s and ls).

Definition

Builds a new vector or array from an old one by specifying the
elements to be deleted and the elements to be preserved. For
example:

fes 7 % 11 13
¥el 10 10
606k /0

AV ARE

Elements in A whose positions correspond to the positions of
nonzero elements of B are preserved; elements corresponding to
zeros in B are dropped. If B contains only 1ls, all elements of
A are preserved; if B contains only 0s, the result is an empty
vector.

The lengths of both arguments, for example 4 and B, must generally
be the same. However, if A is of length 1, it will automatically
be extended to the length of B; if B is of length 1, it will be
extended to the length of 4. Thus:

ael 79 11 13
Bel 1 0 1 0
/%

1/6
5709 11 13

0/
(APL outputs a blank line)

The expression 0/4 produces an empty vector because all elements
of 4 are dropped.

You can also compress arrays by specifying, within square brackets,
the coordinate to be compressed. (The coordinate is dependent
upon the index origin, Section 4.2.11.) For a matrix, compres-—
sion along the first coordinate can cause certain rows to be
omitted; compression along the second coordinate can cause columns
to be dropped. The result in all cases is a matrix.

APL FUNCTIONS AND OPERATORS

If you omit the coordinate in square brackets, APL compresses the
highest-ranking coordinate of the array. By specifying the
special compression symbol # (.CS) without including a coordinate,
APL compresses the first coordinate.

Examples

faeX 4pl?
“
1 2 3 4
% & 7 8
g 10 1112

B O T N W S

1 2 X 4

¢ 10 11 12
L0 1 os020A

13
57
9 11
FOO/B)
30

4 B 4

O 1 1/
2 3
5 &

1L 0F
2 X

Related Functions

Expansion, Section 3.3.7

APL FUNCTIONS AND OPERATORS

3.3.3 ? — The Deal Function

Format

dyadic

Argument Types

Both arguments must be positive scalars or single-element vectors.

Definition

Generates a vector of integers randomly selected from the right
argument vector without selecting any number more than once.

The length of the vector produced by the operation is specified
by the left argument. You can set the seed of the pseudo-
random-number generator with the ORI system variable, Section
4.2,17. Everytime you use the deal function, ?, you change 0ORL.

Examples

[T
L]

L3 % 2 4

GTL.0RY
GEPHOHI 6G1LA970 GRQ4LTH 43BPIBL THA0PTS

1. 087
2010076 9444312 G9PEIPY 3427744 IHAGHE2

ST, OEY
UQAIEAT AREVPTIO SI2IBLA HIAH0I00 2709928

Related Functions
Roll, Section 3.2.3

Unlike the roll function, deal is like dealing a number of cards
from a deck with no two cards alike. Roll is like rolling
several dice independently. Roll may generate duplicates but
deal will not.

APL FUNCTIONS AND OPERATORS

L or .DE — The Decode Function

Format

dyadic

Argument Types

scalars, vectors, or arrays

Definition

Reduces a representation in a number system to a value. It is
the converse of the encode function (T); equivalent examples of
the two functions as they operate on a quantity expressed in
yards, feet, and inches, are shown below:

1760 3 12v63
1203

1760 3 1201 23
63

The expressions ATB and A1B differ only in the value included in
B; A expresses the number base in both cases.

The number of elements in both arguments, for example 4 and B,
must generally be the same; the first element in 4 expresses the
base in which the first element in B is decoded, and so on.
However, if A is a scalar or a single-element array, it is
extended so that its length is the same as that of B. For
example, the following expression has the effect of producing the
base 10 value of the base 8 number 3777 (octal to decimal
conversion).

You can also specify the decode function with multidimensional
arrays. The expression 41B is equal to W+.XB where W is the
weighting vector given by the expression W[p4dl 1 and WL(-N)+pA]
is equal to AL(-N)+1pAIxW[(-N)+1+pA]l. The value of 4[1] is
irrelevant.

The arrays you specify as arguments must conform to the following
rules using 4 and B as arguments:

1. 4 or B is a scalar.
2. The results of -14p4 and 14pB are equal.

3. Either 17p4 or 17pB equals 1.

APL FUNCTIONS AND OPERATORS

Examples

ACOMYERTYTS X 7TDH, O FT 4 DTHCHES TO LRCHES
) 1312 . 32 4
136

ATSE 2.5

P ey e g
2450) 7 2 [4)

TERO O OF THE FOLTHOMEIAL §Ma0- 700
0

ABAGE] O ERUEIVALERY OF ROSE..% MUMERER

a4 X 4
119

Related Functions

Encode, Section 3.3.6
Inner Product, Section 3.4.1

The decode function can be viewed as a form of the inner product
operator. The following example illustrates two equivalent
operations:

BELTHO B 1R
Yol 203

%
&3

X6 L2 Ly xE
63

APL FUNCTIONS AND OPERATORS

3.3.5 ¥ or .DA — The Drop Function

Format

dyadic

Argument Types
The right argument must be an array. In most cases, the left

argument must be a scalar; it can be a vector if the right
argument is a multidimensional array.

Definition

Builds a new vector or array by dropping a specified number of
elements from an existing array. For example:

[eve 5

The expression drops the first two elements of V and forms a new
vector with the remaining elements. If the value of the scalar
is greater than the number of elements in V, then the result is
the null vector.

The drop function handles negative scalar values by dropping the
elements from the end of the array instead of from the beginning.
For example:

ARG

You can also specify multidimensional arrays with the drop func-
tion. In this case, the left argument must be a vector contain-
ing one element for each dimension of the array. In the
expression, S+V, the value of S[1] indicates the number of
elements to be dropped along the first coordinate of V, and so
on.

APL FUNCTIONS AND

Examples

[leAed Grulh
1 2 3 4 ¥
é 7 8 ® 10
10 12 13 14 135

"1 3o
4 5
9 10

¢ 10
14 1%

Related Functions

Take, Section 3.3.19

OPERATORS

APL FUNCTIONS AND OPERATORS

3.3.6 71 or .EN — The Encode Function

Format

dyadic

Argument Types

The right argument identifies the scalar or array to be trans-
lated. The left argument is a vector that represents the number
base in which the value is to be expressed. The vector contains
one element for each column representation.

Definition

Represents a scalar or an array in any number system. For
example, to encode the decimal value 7 in four columns of binary
representation, the following expression can be specified:

You can also specify mixed bases for the number to be represented.
The encode function can express some number of inches in miles,
yards, feet, and inches; or some number of milliseconds in days,
hours, minutes, seconds, and milliseconds. The following examples
illustrate these two situations:

ORI , MILLISEQOMDS

In the expression ATB, 4 can be considered as the representation
rule to be applied by B. Each element of the vector 4 is defined
in terms of the element immediately to its left. Thus, in
encoding a number as miles, yards, feet, and inches, the follow-
ing elements are specified from right to left:

1. 12 inches in 1 foot
2. 3 feet in 1 yard
3. 1760 yards in 1 mile

In the previous example, a miles specification is not defined in
terms of another quantity, so 0 is printed in the miles column.

APL FUNCTIONS AND OPERATORS

The following examples of base 3 conversions demonstrate the
specification of different numbers of columns in the rule vector
and illustrate the way in which negative numbers are encoded:

X3 el

Another useful application of encode is to return the integer and
fractional portions of a number:

O 1
823 0. 7013

You can also specify the encode function with multidimensional
arrays. The shape of the result of the expression R<ATB is
always (p4d),pB.

Examples
enend 202 3
22 2
. S
|7f & o g €y X
i 0
. 0
10
2002
202
202
I3 e
2
e
23
PR
2 32
o

845 429
103 &9%

APL FUNCTIONS AND OPERATORS

10 10 10+

(%)

wr

1 \()
&2
o 9
59
3 2

01 1 01
oy

Lo 011

Related Functions

Decode, Section 3.3.4

APL FUNCTIONS AND OPERATORS

3.3.7 \ and X - The Expansion Function

Format

dyadic

Argument Types

The right argument can be any array. The left argument must be a
scalar value 0 or 1 or a Boolean vector, a vector containing only
0s and 1ls. If the right argument is a character vector, spaces
are used instead of 0s. The number of 1ls in the Boolean vector
must generally be the same as the number of values in the array
included as the right argument.

Definition

Builds a new vector or array by expanding the elements of another
vector into a new format specified by the function. For example:

Ael 27
VL? o] f 0 1l
AN

1 0 2 03
VN ALY

(2

The function expands the elements of 4 into the format specified
by V. The values of 4 are inserted in positions corresponding to
the occurrences of 1ls in V. For numeric values, zeros are
inserted in positions corresponding to 0s in the Boolean vector.
If the right argument is a character string, as in the second
example above, spaces are used instead of zeros.

A scalar Boolean value as the right argument is extended as in
the following example:

L0 ING
008

You can also expand multidimensional arrays along a particular
coordinate. (The coordinate is dependent upon the index origin,
Section 4.2.11.) You include the coordinate within square
brackets. The syntax is the same as the compression function,
Section 3.3.2. If you omit the coordinate, APL expands along the
last coordinate of the array. To specify expansion along the
first coordinate, use the special symbol \, or type .CB.

APL FUNCTIONS AND OPERATORS

Examples

[lefe Irprd
o2 3

4 5 6

1O INELIA

E el
RN
~ O L

10 1 INL2Ie
0o @ 3
0O % 6

O 0 0NO
o 00

lened 0 ON'!
(APL outputs a blank line)

xR THLS Y SaM

D SAYMF LG ED S %
J AR

Vel 1oL L oL 0011 01
VA M

RTHEIS TS oM

EXFAM SE Or

EMOMFE LE %X

10 1 %
wTHL G LGN

I B P ey 0
EOMFLE & &

Related Functions

Compression, Section 3.3.2

APL FUNCTIONS AND OPERATORS

3.3.8 V¥ or .GD - The Grade Down Function

Format

monadic

Argument Types

The argument can be a vector or a matrix.

Definition

Creates an index to sort a vector or matrix in descending order.
The V¥ function creates a permutation vector that APL can use to
sort the original vector. Duplicate values are ordered by their
relative positions in the original vector. You can also reorder
character arrays with VY. The grade down function does not use
fuzz in performing comparisons.

The symbol V¥ is formed by overstriking the del (V) with the
residue (]).

Examples

AeR ® 7 4 3 10 3
[eEeyn
623 45 7 1
ALE]
109 7 4332
AlLgoe ' MORUMAL YT
LML A6

Related Functions

Grade Up, Section 3.3.9

APL FUNCTIONS AND OPERATORS

3.3.9 4 or .GU -~ The Grade Up Function

Format

monadic

Argument Types

The argument can be a vector or a matrix.

Definition

Creates an index to sort a vector or matrix in ascending order.
If two or more elements of a vector or matrix have the same
value, the order of the elements is determined by their relative
positions in the original array. (Fuzz is not used in comparing
the elements.)

The A symbol is formed by overstriking the delta (A) with the
residue ().

Grade up does not actually sort the vector. It creates a per-
mutation vector of the index numbers of the elements. This vector
is then used to sort the original wvector.

If the array to be sorted is a matrix, the simplest operations
cause each row of the matrix to be treated as a string. The
result of the grade up operation is a vector whose length is
equal to the number of rows in the matrix.

You can cause a matrix to be sorted by rows; and by subscripting
the function, you can also sort on the basis of columns. For
matrices, the expression AM is equal to A[21M.

Examples
Ae2 9 7 4 3 10 3
[l¢EehA
157 4326
AKX

23347910

2]
GHTEVIE
HOM
ST AM

Py
35

AP
2 31

ALan;]
HBAM
ST A
G TEVE

APL FUNCTIONS AND OPERATORS

)
J 2 1 5 0
1L 9 7 0
102 0 8 0
£E
385
AE
231
Bl Akg]
I S T S ¢
I 2 0 8 0
I 2 1 % 0

Related Functions

Grade Down, Section 3.3.8

APL FUNCTIONS AND OPERATORS

3.3.10 1 or .I0O - The Index Generator Function

Format

monadic

Argument Types

The argument can be a nonnegative integer scalar or a l-element
array.

Definition

Generates a number of consecutive integers equal to the value
specified as the argument, starting from the value of the index
origin, Section 2.4.2,

The expression 1N generates a vector containing ¥ components. If
the index origin is set to 1, these components have values 1
through ¥. If the index origin is set to 0, then the resulting
vector has values 0 through N~1.

The index origin default is 1 in a clear workspace, but this
setting can be changed with the)ORIGIN command (Section 5.5.4)
or the [(I0 variable (Section 4.2.11).

Examples

[1e-Ae 14
123 4
[

AP OWE RS OF 2
drl2

24 8 16 32 64 128 2565 U122
AOETER WSED WELTH MO
F S0

1024 2048 40946

He@ L 3 4

EFATES 0 MULL VECTOR

(APL outputs a blank line)

Related Functions

Index of Section 3.3.11.
Reshape and Shape, Sections 3.3.15 and 3.3.18

APL FUNCTIONS AND OPERATORS

3.3.11 1 or .IO - The Index Of Function

Format

dyadic

Argument Types

The left argument must be a vector. The right argument can be
any scalar or array.

Definition

Returns the index in the left argument of the first occurrence of
the value in the right argument. The result of a dyadic iota
operation always has the same shape as the right argument. That
is, the result returns an index for each of the values in the
right argument.

If the value is not located in the vector specified as the left
argument, APL reports a value equal to the number of values in
the vector plus 1, ((p4d)+1).

The right argument need not be a single-element array; it may
have many elements and many dimensions. The right argument can
also contain literal characters.

The result of a dyadic iota expression, for example X<«Bi14, always
has the same shape as the right argument, formally pX is the same
as pA. If A is a matrix, the correspondence between 4 and X can
be expressed as X[I;J] is the smallest X such that A[I:J] is
equal to B[K].

Examples
b3
4 9 & 8
[2]

Ry

[

He¥ [/B
[eBe /%

B[]
BEAP/E]D

EBe(L 23 485 67 89
Ae3 276 5 X3 209
HeENH
)3

01 234867 8¢9

API, FUNCTIONS AND OPERATORS

7 &
3
1 10
‘QHCﬁEFGH'\'HHQﬁHﬂ'

g5 1 4% 4

B o4 23 7 8

A2 24

B

A A= I8 LEGAL SO IS | WITH CHAR AMND HUMERIC ARGS

Y- Y-S)

Related Functions
Index Generator, Section 3.3.10

APL FUNCTIONS AND OPERATORS

3.3.12 , - The Laminate Function

Format

dyadic

Argument Types

Both arguments can be scalars, vectors, or arrays.

Definition

Joins scalars, vectors, or arrays along a new dimension. The
syntax is the same as the catenate function, Section 3.3.1.
However, the coordinate specification ([]) is usually a fraction
to indicate a position between existing coordinates in which the
new coordinate is to be placed. (The coordinate is dependent
upon the index origin, Section 4.2.11.)

If two arguments in a laminate operation do not have the same
dimensions, then at least one of them must be a scalar value.

Examples
[ledte t ABE Ly 10, 5] WEF:
EYEQ
DRI
[‘\ ;-(
23
FHEW CCEMETH S LOM BEFQFRE
O ANDE A FROW
Cledte C AR o 1] B LB
an
bal:S
[N
[
3 2
LVEMEMSLOM OFTER
HED S ADG N COL LM
[leXeX Dp i uvwsr:
(WA
W
R
Aed D ABROQDER
Fre-fy |0, 2010
ol
2082
Fiefry 74,900
-~ F
322
Foefry 13, 300
fol
322

Fefy o500

APL FUNCTIONS AND OPERATORS

[‘l"
232
[leFe Xy 1] ., 51A

(v
My

Qo

fwEws
Bt

B
3 22

TA
TR

e
hp

A
o

Related Functions

Catenate Function, Section 3.3.1
Ravel Function, Section 3.3.14

APL FUNCTIONS AND OPERATORS

3.3.13 ¢ or .EP - The Membership Function

Format

dyadic

Argument Types

Both arguments can be arrays of any dimension; the left argument
contains the elements by which membership in the right argument
is determined. The arrays need not have the same rank.

Definition

Determines whether or not particular elements of one array occur
as elements of another array. The result is a Boolean array
whose shape is the same as that of the left argument.

The result consists of only 0s and ls; a 1 indicates that the
corresponding element in the left array is present in the right
array, 0 indicates that it is not present.

Examples

[1e e CORCOEFG ¢ CHEADED
Lo o1 100

A7 VO ECRIE G
OLE

The compression function /, is helpful here in identifying the
particular characters that are members of the vector.

feR Xr7 B2 4 609
Az 1h

0 01

110

3 4534
0 0
X 40
00
A ‘A= IS LEGAL, S0 I% ¢ WITH CHAK AHD HUMERIC ARGS
tannY g R
0O 00

Related Functions

Index of, Section 3.3.1l1

APL FUNCTIONS AND OPERATORS

3.3.14 , - The Ravel Function

Format

monadic

Argument Types

The argument can be any scalar or array.

Definition

Produces a vector from any
has the same length as the
array are preserved in the
argument is a scalar, then
containing one element.

Examples
o)
12 3
4 5 6
6
23
L4 X6y
123 485 6
PR
&
[efe2 3 4p190
1 2 3 4
G 6 7 8
® 10 11 12
13 14 185 16
1718 19 20
21 22 23 24
y
123456789 10 11 12
Fyf
24
[
23 4

scalar or array. The vector produced
original array. The elements of the
resulting vector in row order. If the
the ravel function produces a vector

13 44 1% 16 17 18 19 20 21 22 23 24

Note the difference in the shape of a scalar and the shape of a
scalar to which the ravel function has been applied

P4

Related Functions

Catenate, Section 3.3.1
Laminate, Section 3.3.12

(APL outputs a blank line)

APL FUNCTIONS AND OPERATORS

3.3.15 p or .RO - The Reshape Function

Format

dyadic

Argument Types

The left argument can be a scalar or a vector. The right argu-
ment can be a numeric constant, or a literal character, or the
name of an existing array. A literal array can be constructed

by including a character string as the right argument and enclos-
ing the string within single quotation marks.

Definition

Constructs an array or reshapes an existing one. The left argu-
ment specifies the shape of the array; the right argument speci-
fies the values to be assigned to each element of the array. The
shape of the array describes both the number of dimensions of the
array and the number of elements in each dimension. The values
are placed in the array in row order; that is, the first value is
placed in row 1 column 1; the second value is placed in row 1
column 2; the third value is placed in row 1 column 3, and so on.

If the left argument is a single value, a l-dimensional array is
created.

The array being reshaped need not have the same number of values
as the array from which the values are taken. If the right
argument has too many values, the excess values are ignored from
the right., If there are too few arguments, the values are du-
plicated from the right.

Any number of array elements can be specified in a reshape
operation as long as the number is not negative or fractional and
does not generate a vector or array too large for your workspace.

Examples
3G
58 8
G ARG
RO AR MR
Re3 @ 7 4
TeR ApH
v
8 @
7 4
el 23 4
D Hpe
i . X 4 1
> 3 4 1 2

3-37

APL FUNCTIONS AND OPERATORS

[lemed 2pr14
L2
3 4

The following expressions each generate a

AGBHAFE WITH A SCALA Fi:
Ae

£y

o

080

10

[lePex O G 4 50

faR 2]
305 4

Related Functions

Shape, Section 3.3.18

(APL
(APL
(APL

(APL

outputs
outputs
outputs

outputs

null vector:

a blank line)
a blank line)
a blank line)

a blank line)

APL FUNCTIONS AND OPERATORS

3.3.16 ¢ or .RV and e or .CR - The Reverse Function

Format

monadic

Argument Types

The argument can be a vector or array.

Definition

Reverses a vector or the elements of one coordinate (last
dimension) of an array. It changes the order of the elements,
not their dimension.

To specify the coordinate to be reversed, include it in square
brackets. (The coordinate is dependent upon the index origin,
Section 4.2.11.) The default is the highest coordinate (last
dimension) of the array. The special character e (.CR) reverses
the first coordinate of +he array.

The reverse is formed by overstriking the circle o with the
residue function |. The e character is formed by overstriking
the circle (o) with the minus (-).

Examples
[14M¢2 418
12 3% 4
5 06 7 8
[A 2
% & 708
12 3 4
OL2IH
4 3 2 1
8 7 6 %
(12
5 o0& 7 8
1 2 3 4

The following example reverses a matrix in both dimensions

simultaneously:
[ee 3 véh
12 3
4 G b
(720 N R
& B4

3 o2 1

APL FUNCTIONS AND OPERATORS

Reverse is not the same as transpose:

nH
1 4

200

3 &

Related Functions

Rotate, Section 3.3.17

APL FUNCTIONS AND OPERATORS

3.3.17 ¢ or .RV - The Rotate Function

Format

dyadic

Argument Types

The left argument can be a scalar or a vector. The right argu-
ment can be any array.

If a vector is being rotated, the left argument must be a scalar
or a l-element vector. If a multidimensional array is being
rotated, the left argument must be a scalar, a single-element
vector, or a vector whose elements correspond to dimensions of
the array being rotated, with the dimension being rotated omitted
from the vector.

The rotate function is formed by overstriking the circle o with
the residue function |.

Definition

Rotates an array by a specified number of places. A positive
rotation causes a left shift; a negative rotation causes a right
shift.

You rotate a multidimensional array by specifying the coordinate
along which rotation is to take place. (The coordinate is de-
pendent upon the index origin, Section 4.2.11.) The default is
the highest coordinate of the array.

To specify the first coordinate, use the special symbol e (.CR)
which is formed by overstriking the circle o with a minus -.

Examples
Ad
4 % 123
TEOE
34 %5 12
MR 4p ' ABCDEFGHIIKL
AECT
EF G
TS
0 1 20%
MECD
F G IHE
K. X
11 2 JFapilx
ELF K X
TG
(2R 3 T
[efed 5P ARCHDEFGHE JKLMHO
[P cIng ul:N
F TS
KL Mo

APL FUNCTIONS AND OPERATORS

1712 2 Qe
FLMMO
KECDE
AGHL

502 Tlee
ABRCLE
HIJFG
OKL.MM

Related Functions

Reverse, Section 3.3.16

APL FUNCTIONS AND OPERATORS

3.3.18 p or .RO - The Shape Function

Format

monadic

Argument Types

The argument can be scalar, vector, or array.

Definition

Returns the shape of the argument, that is, it returns the length
of a vector or the dimensions of an array. For example, if the
argument B is a character vector consisting of 'ABCDEF', then the
following expression returns the number of characters in the

array:

¥ege ' ARCIEF ¢
X

RO LIEF
[

é

If the argument is a matrix, rho returns the number of rows and
columns it has. For example:

AeS &P110
faxsl

o
fe

If the argument is a scalar and not a vector or array, then the
rho of that scalar is a null vector, a vector of length zero.
APL outputs a blank line in response to the shape operation with
a scalar. Two shape functions (pp) return the number of dimen-
sions (rank) of the arguments as follows:

Argument ppK
scalar 0
l1-dimensional array 1
2-dimensional array 2
3-dimensional array 3

and so on.

This effect is the result of the fact that pX is a vector con-
taining one element for each dimension of X, so its p (ppkK) is
a l-element vector consisting of the number of dimensions of X.

APL FUNCTIONS AND OPERATORS

Examples
n
] 2 3 4 v b
7 8 @ 10 1 2
3 4] & 7 &
® 10] 2 b 4

o] & 7 4} 9 10

fa)
506

FFA
2

K3

PK

Related Functions

Reshape, Section 3.3.15

(APL outputs a blank line)

APL FUNCTIONS AND OPERATORS

3.3.19 4 or © - The Take Function

Format

dyadic

Argument Types

The left argument can be a scalar. However, if the right argu-
ment is a multidimensional array, the left argument must be a
vector containing one element for each dimension of the array.
The right argument can be any array.

Definition

Builds a new vector or array by taking a specified number of
elements from an existing array. If the value of the scalar is
greater than the number of elements in the vector, the resulting
vector is extended so that its length is the value of the scalar.
Zeros extend numeric vectors, and spaces extend character vectors.

In the expression R<«S+V, if S is positive, then R consists of

the first S elements of V. If S is negative, then R contains the
last |5 elements of V. If |5 is greater than the number of
elements in V, then zeros or blanks are inserted in R before the
values of V.

Examples
203
12
At
1230
LG4 AFLEF ! § Oy
AF LG E 50 00 0 0 00
THALD 24 3G 48
0O 0 12 24 38 48
R AR
00

12300
0L TEST
TEST

Related Functions

Drop, Section 3.3.5

APL FUNCTIONS AND OPERATORS

3.3.20 & or .TR - The Monadic Transpose Function

Format

monadic

Argument Types

The argument can be a matrix or higher-dimensional array.

Definition

Transposes the dimensions of an array. For a matrix, it exchanges

rows and columns. If you use a vector as the argument, it will
have no effect. For example:

23 470

(=4
P

A g
: R
123 4

To form the & symbol, overstrike the circle o with the slash \.

Examples
[lene2 Zp1a
12 3
4 5 4
[14-C 41O
1 4
2
3 b
FRA
32

Neke2 3 4918
L2 3 4

5 06 7 8
12 3 4
5 06 7008
1R 3 4

5 o0& 78

APL FUNCTIONS AND OPERATORS

W
L%
L8
L)

b R
26
X 7
73
3 7
4 8
8 4
4 8
FRE
4 3 2

Related Functions

Dyadic Transpose, Section 3.3.21

APL FUNCTIONS AND OPERATORS

3.3.21 § or .TR - The Dyadic Transpose Function

Format

dyadic

Argument Types

The left argument must be a vector containing one element for
each of the dimensions of the array to be transposed. The right
argument can be an array. The shape of the vector expresses the
rank of the right argument. For example, in the expression V&4,
the rank of the right argument can be expressed as: pV which
must be equal to ppd. Thus, V must have two elements if 4 is a
matrix, three if A4 1is a 3-dimensional array, and so on.

If the rank of the array is 3, then valid values for the left-
argument vector can be 1 11, 1 2 1, 132, 312, but not1 31
(2 is missing).

Definition
Permutes the coordinates of an array. The following table lists

transpositions for a variety of arrays:

Table 3-6
Transpose Definitions

Expression Shape of R Definition
R<1QV oV R«V

R<+1 28 M oM p<M

R<«2 1&M (pM)[2 11 RLI;JI«M[J5I]

R<«1 18M L/oM RLTI«M[II]

R<+1 2 3%4 pA R<4

R«1 3 284 (pd)[1 3 21 RLI;JKI«ALIK3J]
R<2 3 184 (pA)L3 1 2] RLI;J3;K1«AlJ3K:3I]
R«3 1 284 (pA)[2 3 11 RLI;J3;K1«ALK;T3J]
R«1 1 2%®A (L/(pA)L1 21),(pA)L3] RLIIJI1<ALT T3]
R<1 2 184 (L/(p4)T1 31),(pA)L21] RIIT;J1«ALT;;J3I]
R<«2 1 184 (L/(pA)L2 3]1),(p4d)[1] RLI;J1<«ALJ:I:5T]
R+«1 1 184 L/p4 RLI1«A[TT:1I]

APL FUNCTIONS AND OPERATORS

Examples

[leRe Zrg

T2 3

4 H &
ARTYADEC SOMETEMES SAME A% MOMADILIC
wA

A X
2]

el 3 Aré

2 3 4

S o046 1 2

A

3 o4 B 6

Lo
b6
W

Related Functions

Monadic Transpose, Section 3.3.20

APL FUNCTIONS AND OPERATORS

APL FUNCTIONS AND OPERATORS

Related Functions

Matrix Divide Section 3.4.2. The monadic expression EHX is equal
to the dyadic IEX, where I is an identity matrix whose order can
be described as 14pX. If the argument of the matrix inverse is
a scalar, the expression BHX is equal to X.

APL FUNCTIONS AND“OPERATORS

3.4.2 B or .DQ - The Matrix Divide Fﬁnction (Quad-~Divide)
]

Format

dyadic

Argument Types
Both arguments can be scalars, vectors, or matrices.

Definition

Performs more complicated matrix operations than the inversions
described in Section 3.4.1. In the expression XFY, X and Y must
conform to the following:

1l. Y must have a rank of 2 or less.
2. If the dimensions of Y are M by N, then M2V.
3. X must have a rank of 2 or less and (1+pY¥)=14pX

This implies that matrices X and Y have the same number of rows,
and the columns of Y are linearly independent. If Z<«XxHY, then
ppZ is the same as ppX and +\((Y+.xZ)-X)*2 is minimized (least
squares solution).

The matrix divide treats scalar arguments as matrices containing
one row and one column. The expression XHY is equal to scalar
division X+:Y, except that the operation 080 produces an error
condition. If the arguments are vectors, they are treated as
matrices with a single column. If I is an identity matrix of the
same dimension as X, then BX is equal to IBEX.

Examples

The following example illustrates the use of the matrix division
function in solving these linear equations:

3A+B=9
2A-B=1

In the expression XEY, Y is a matrix whose values are the coef-
ficients of the equations, and X is a vector containing the
values 9 and 1.

He9 o
TeR P31 o2
BT

S

The result is a vector in which the first element is the value of
4 in the linear equations, and the second is the value of B.

3

52

APL FUNCTIONS AND OPERATORS

The following examples illustrate the use of the matrix divide,
including a least squares solution:

Oede (2 1r2)l

2 1
I |

EelO 19
FHEBPA

Ay X
10 19
[lefre (5 1r1E)el
1 1
2 1
3 1
4 1
S5 01

Ee2,001 2.998 4.002 4.997 6.01
[16 e EEA
1.0017 0.996%
B4, XM
[eHenn
T2+000000000ET1L "1, 000000000E™] 2 PR2JATHHR2ET0
1.000000000E™] 2+000000000E™]
8,000000000E™], e 000000000E™] 2+0000000008E™]
T1.000000000%™1L T4, 00000000081
My XA
1.000000000E0 5, 4210108628720
"1.301042607E18 1,000000000E0

Related Functions

Matrix Inverse, Section 3.4.1

APL FUNCTIONS AND OPERATORS

3.4.3 € or L+ ,EP or .DE - The Execute Function or Unquote Function

Format

monadic

Argument Types

The argument can be a scalar or a vector. If the scalar is
numeric, the value of ¢4 is equal to 4. If the scalar or vector
is a literal, APL evaluates it exactly as quad input from the
terminal would be evaluated.

Definition

Executes a character string as an APL statement. The scalar or
vector included as the right argument of the function is evalu-
ated as the character string to be executed by APL. The ¢ and

L can be used interchangeably to indicate the execute function.

APL treats carriage return/line feeds in the argument as state-
ment separators, just as they would be if they were input from
the terminal, so multiple lines are allowed. The result of the
expression R«ed is the value of the last statement evaluated in
A. If the last statement has no value, R is a null vector.

Errors encountered in the character string processed by the
execute function are handled exactly as if they occurred in
statements entered from the terminal. If an error is encountered
while evaluating the execute string, an error message is output,
and the segment of the execute string currently being evaluated
is displayed. No further evaluation of the string is performed.
The €4 returns a null array whose shape is 0 EF, where F is a
number indicating the error that was encountered. Appendix A
contains a complete description of all APL error conditions.

The execute function is also known as the unquote function,
because it strips quotes from the value entered as its argument.
Other uses of this function include:

1. Function definition (character-editing commands are not
permitted)

2. Conversion of vectors of characters representing numeric
constants into numeric values

3. Passing an unevaluated APL name to a function. (The argument
can be evaluated with ¢ .inside the function.)

APL FUNCTIONS AND OPERATORS

Examples

The following examples illustrate the use of ¢ in function
definition, system command execution, and APL statement evalu-

ation:

[RE TRV N o

Xe g 4y
AaF LE HOT DEFE L HED
B
11 VLUE EFREOF:
¥
A

Cou i
Ja

A TH MOW DEELHED
'ZC'
49
Coog ' YFMS
o

Ereg ' H+4

11 YALUE EREOR

X2y
4
10
P e BTHTHOR
32y
A

P E

g YEROHE g5 YyVOARS

HOW ERAGED

APL FUNCTIONS AND OPERATORS

wH
rid CTHIS I8 HORD TO BELIEVE
el Heg ')BOVE THISWS
£ PWHEM LOADED, EMEQUTION RESUMES AFTER EMECUTE
AUTOMOT ECALLT
41 @

H

THIS L% HARD T EEL LEVE

WHEM LOADEX, EXECUTION FRESUMES OFTER EXECUTE

AUTOMATELOCALLY
YLOAX THIE

WHER LOGEX

AUTOMOTLCALLY

R

UTLROR FESUMES AFTER EMECUTE

ATHE REMT EXMPFRESSIOM DDESG MNOT FRIMT A VALUE
FACE!

ATHE MEMT OHE DOES
Oeg'aed:

Fege & LI
Jd b3

The last example illustrates that the execute function always
returns a value. Because, in this case, there is no value ex-
pressed in the character string, the value of the operation is
simply a null vector. Similarly, if the character string con-
tains a branch (»), the execute function does not transfer
control but returns the null vector.

Note that you can use)ECHO (OFF),Section 5.5.2, to suppress
the error message from «.

Related Functions

Extended Execute, Section 3.4.4

APL FUNCTIONS AND OPERATORS

3.4.4 2 or .XQ - The Extended Execute Function

Format

monadic

Argument Types

The argument can be a scalar or a vector.

Definition

Processes system commands and supports the entry of multiple
lines. The execute symbol & is formed by overstriking the
decode or ungquote character L with the. jot character o.

The ¢ function is very similar to the ¢ or 1 functions. However,
there are two major differences. If an error is encountered in
the character string being executed, ¢ does not return a null
vector indicating the type of error. Instead, & generates an
error message for the line on which the actual execute occurred.

The second major difference is that if the @ character string
contains a branch (+»), control passes to the specified function
line.

Examples

Lol S
i1y Fean
rey v
’:Z‘ 1) :‘5 ¥ L
7oog BYMTOM O OEFRROE
k¥
A
o EMECUTE ERFOR
B Eegn
k)
yH I
FLLD ok
¥
11 VALAME EFFOR
Y
Ia)
F:'] 1
11 VOALUE ERFQOR
FLLD Eegn
A

APL FUNCTIONS AND OPERATORS

In the last example, a value is required in the execute string,
but none is included. APL generates an error message and
suspends function execution.

Related Functions

Execute or Unquote, Section 3.4.3

APL FUNCTIONS AND OPERATORS

3.4.5 § - The Dollar Format Function

Format

dyadic

Argument Types

The right argument can be one or more scalars, vectors, or
multidimensional arrays containing numeric or character fields
to be formatted. The left argument is a character vector con-
taining one or more format fields describing the type of format-
ting to be performed on the specified fields. The left argument
is enclosed in single quotation marks.

Table 3-7 summarizes the syntax of the format fields.

Table 3-7
Format Fields

Format Meaning

'MAW' Character data - cannot be used for numeric values
'MEW.4' Floating-point numeric data with exponent

'MEFW.4' Fixed-point numeric data

"MRIW' Integer numeric data with automatic rounding

'MW Blanks inserted in edited line

'MtextM' Literal text inserted in edited line
where

M is an optional repetition factor (number of

values to which the format is to be applied).

W is the width of the field.
d is the number of decimal positions.
Q is any number of qualifiers (see Table 3-8).

The lamp character (n), formed by overstriking the down union
(n) with the jot (o), can be used instead of the quote-quad (M).
On non-APL-keyboard terminals, .QQ replaces [M and " replaces a.

APL FUNCTIONS AND OPERATORS

Table 3-8
Qualifiers
Qualifier Meaning
B Blank field if value is 0
C Insert commas
L Left justify
Z Fill with zeros
MMtextM Insert text left of
negative result
NMtextM Insert text right of
negative result
PMtext Insert text left of
nonnegative result
QMtext Insert text right of
nonnegative result
RMtext Insert text in background

If more than one format field is included in the left argument,
the fields must be separated by commas. Successive fields apply
to successive vectors or arrays represented by the right argument
of the function. If you include a repetition factor in one of
the format fields, this factor indicates the number of vectors to
which that format is to be applied.

Definition

The result of a format operation is one or more lines of edited
text, Each resulting line consists of one edited row of each
array in the right argument, where each vector (V) is treated as
an array of dimensions (pV) by 1. The total number of lines
produced by a format is equal to the longest column in the array
contained in the right argument. The columns of values with
shorter columns are extended with blanks.

As many as 18 significant digits can be specified in a format
statement. A format field that requests more than 18 significant
digits will cause digit positions to the right of the decimal
point to be filled with blanks, and digit positions to the left
of the decimal point to be filled with underscores. A minus sign
is output on non-APL-keyboard terminals.

A format field that does not specify sufficient room for all
significant digits plus any inserted characters causes the entire
field to be filled with stars on APL terminals and asterisks on
TTYs.

If a format expression produces a very large matrix that is not
assigned explicitly to a variable name, APL saves storage in the
workspace by displaying each line of the matrix as it is format-
ted and not saving the results.

As in other languages that support format specification similar
to this APL function, parentheses can be used to repeat groups of
fields. They can be nested to three levels.

APL FUNCTIONS AND OPERATORS

Examples

‘T4 4 (1551041 6)
11

12

13

14

15

16

'EF4,1'61 2 3

G LI

01.0
02,0
03.0
AC'FA, 2, 3(X24EG, 1)L
AIlS EQUAL TO.
AL B4 Dy TRy EG, Ly T2VEG, 1y T2yEG, 1yAL?
PEFEI TV 4.7 4.2

5 NG

CIG S (EETVIALTIA L)
3 v b 4
[eRe ' FE, 2 4(35657754.3)
Z.00 6.00 T7.00 4,30
[eme FE 24 (3546 7754.3)
3.00 4.00 4.30
700

2}
218
G DEDY
LA T
200000000000000000 e
'F3L 24500
L3 .3
AeR ZPr(LHPPP9)+100
LAy FéE 2eRBpELQ L2 60
H1 HL.19 8. 9EQ
701 29.36 P OB L
IQ:’. i $) ‘\E{!
2]

ARG ARC
A

Ted 75 ' FEMHS FEMC L L S AP ER TOTAL '
COBTe . 19 005’ 01
AMMT 20 0 20589
TCOSTAMMHTXCOHT

AL MM ThsFR, 2y F 12,2 G (THAMNTCOSTFTCOBTy 4 /TCOBT)
FEMS | 20 L9 3.80
FEHCILS | HO Q.05 20
FaFER) 2589 0.0l 2. 89
TOTAHL | 32419

APIL FUNCTIONS AND OPERATORS

KeT2IANE, T8 TRE 0.4 .8 0 100
PEE10, 1§

100.0

ORI ER

TR235 4057
i
W]

1
100

VEFGQ] M
TORIAGSE . 8
TO00025.0
T000000. 4
0000000.8
0000000,0
0000100,0

LYY g
POBTHTOM ERREOR
L9 g

A

VLG g
23457

g
o)

0

100.00

APL FUNCTIONS AND OPERATORS

CREHEIFEEATT L 6
DR AG T
F A 2R R T R N T Mt 4
IR TR TR TR T N WA 0
EI I I S R AR Y 1
B A R A A R 4
bttt 00

CMTIIF TG IR L] 2
T$234%6 .78
T$25.00
TH0 .40
$0.80

$100,00

VM MOER0 " $K
TRy AGY

0
10O

CEERIFTGEHCELL 2 b
#B2Fy 486, 78
KRAR RG2S, 00
KERARKRGD , A0
Kk xxbO, O
Kk xx$0, 00
ERRAELOO.O0

L) FOME [EFQ 00
TRIAEE. 78
TR 00
Q.40
0.80
HOME

100.00

CMICE MEDD QR N FLO. 2 e
(234%56.78)
(2%5.00)
(0.40)
0.80
0,00
L0000

VP OEE RE CEE M EELG, 2 X
2DIABE TG Ve

DE 00 IR

0,40 LE

0,80 CE

100.00 CF

Related Functions

None

APL FUNCTIONS AND OPERATORS

3.4.6 ¥ or .FM - The Monadic Format Function

Format

monadic

Argument Types

The argument can be a scalar or an array of any shape and either
numeric or character data.

Definition

Converts numeric arrays to character arrays. When applied to a
character scalar or array, the result of the format R<«%4 is an
array identical to A. If A4 is numeric, then the character array
represented by R will be identical to 4 as it appears when dis-
played by APL. However, the blank characters displayed along
with the values of 4 will actually be a part of the new array R.
The format of a scalar number is always a vector.

Examples
The following example illustrates the difference between the

shapes of a displayed numeric array and a formatted character
array:

AeR 4F18
Eeg 403
2

5 & 78

3]
£

2 12

EL§3x147]
1234
G678

Related Functions
Dyadic Format, Section 3.4.7

System variables [IPP Section 4.2.15
0PW Section 4.2.16

APL FUNCTIONS AND OPERATORS

3.4.7 ¥ or .FM - The Dyadic Format Function

Format

dyadic

Argument Types

The right argument must be a numeric array. The left argument
can be a scalar, a pair of numbers, or a vector whose length is
no more than twice the number of columns in the numerical array.
The left argument controls the format of the result. Two numbers
are usually supplied as the left argument. The first number
specifies the width of the numeric field, and the second sets the
precision of that field.

Definition

Provides output control exceeding that available with the monadic
format. It offers a number of formatting options but does not
provide the comprehensive formatting capability available with
the dollar format function (§).

Dyadic format provides a powerful tool for formatting tables,
headings, and labels. Precision is expressed differently for
decimal values and in scaled exponential forms of output. The
form is determined by the sign of the precision argument. For
decimal output, precision is a positive number, expressed as the
number of digits to the right of the decimal point. For scaled
output, precision is negative and is the number of digits in the
multiplier.

If the width of the specification is zero or omitted from the
expression, APL provides a default width such that at least one
space 1is inserted between pairs of numbers. If only one number
is provided as the left argument, the number is assumed to re-
present the precision of the result, not its width.

In general, the width must be large enough to accommodate the
number field. However, APL does not require that space be in-
serted between columns.

You can specify width and precision arguments for each column of
the array to be formatted or even for each element of the array.

A format operation can also be specified for a multidimensional
array and applied to the last two coordinates.

APL FUNCTIONS AND OPERATORS

Examples

3116 0
T1ELG78 8
it

o83

3
Devel? Fex ‘
31,160 0,000 1,070
15,578 8,000 TRA% 610
L3
36

P

AeY Dy
o .

31.168 0.00
T1G. 08 8,00
Oekes Qe
31 0 1
T1lé 8 236

il

+3

18

[leEeQ T2eH
KW RN O 1L 1ED
16K 8., 08D TR AR

Detey ~1ex
3E 0 "LEQ

"REL 8EQ TRED

ACOLUMMN FORMATTING
A1 0 0 72 8 0 ¥
310 1
146 8L0EO R34

23 mEn

PR |

AFORMATTLING 6 MULTLIOEMENSEOMHML. AREAY
[le-@e2 2 208

o2

3 4

5 &4

7 8
oodeA

1.00 2.00

3+00 4,00

5.00 6.00
7.00 8.00

Ee
3 1E] 0 TlelEQ
Tl 6E] 8. 0EQ TRAEDR

Ee3 Zp1 001 0 1 1 11

APL FUNCTIONS AND OPERATORS

ATEAELE FORMOTTING

FOWS e 7p b arL FORTRAMRCOEOL. BB I FL.1
" LS ER S FF QOGS HYEYTS

Fpa

G EHT S
AF L.
FOQRTEOM
OO

BelyG L C

Nod o=

n orm

U
RN N

”,~
woa

Related Functions

Monadic Format, Section 3.4.6

APL FUNCTIONS AND OPERATORS

3.4.8 T or .EN - The Quote Function

FPormat

monadic

Argument Types

The argument can be a scalar or an array with either numeric or
character data. If numeric, APL converts it to a character
string.

Definition

Converts numeric values to character strings and also provides
aid in preparing text to be processed by the execute function.

If the argument is already a character string, APL determines
whether or not the string represents an identifier (for example,
a variable name or function name). If the character string is
not an identifier, then APL returns a null vector. If the
argument if a variable, APL returns the value of the variable.
If the argument is a function, APL returns the lines of the
function definition, separated by pairs of carriage return/line
feed characters.

Examples

In the following example, array 4 is converted to a 20-character
vector (spaces output by APL are included in the size) in which
the character representations of 1 through 6 are members, but
the corresponding numeric values are not.

fe2 ZF1é
g v [}
Ee
1 2 3
4 5 6
FE

]

123454 ¢ B
131 11

(16) sk
000000

APL FUNCTIONS AND OPERATORS

APL FUNCTIONS AND OPERATORS

3.5 OPERATORS

An operator differs from a function in that an operator takes a
function as its argument. The following operators are available in
APL:

1. Inner Product Section 3.5.1
2. Outer Product Section 3.5.2
3. Reduction Section 3.5.3
4. Scan Section 3.5.4

3.5.1 £ . g - The Inner Product Operator

Format

dyadic

Argument Types

Both arguments can be vectors, matrices, arrays, or higher-
dimensional arrays. If either argument is a scalar or a
l-element vector, it is extended so that its dimensions match
the dimensions of the other argument.

Both f and g can be any dyadic scalar function as long as both
are of the same type, that is, both arithmetic, both logical,
and so on.

Definition

Obtains the common algebraic matrix product, and also extends
this capability to other arithmetic operations and other array
dimensions.

You can also specify an inner product in which an operation other
than multiplication is performed. It is possible to locate
values containing specific characters by this method or to search
for a row of one array in which all the elements are equal to
those in a column of another array.

The two arguments, say 4 and B, must conform to certain rules to
be used in an inner product operation. The two arguments con-
form if any of the following is true:

1. A or B is a scalar.

2. Results of -1+4p4 and -1+pB are equal.

3. Either -14p4 or -1+4pB equals 1.

If the third characteristic is the case, then the corresponding

argument is extended so that the arguments have equal lengths
along the specified coordinate. The basic test for conformability

API, FUNCTIONS AND OPERATORS

is whether or not the length of the last dimension of the left
argument matches the length of the first dimension of the right
argument. The dimensions of the result can then be considered
all dimensions of 4 except the last, catenated to all dimensions
of B except the first.

In Table 3-9, the letters have the following meaning:

£ is a primitive function.

g is a primitive function.

A is an argument.

B is an argument.

Z is the result.

C,D,E,F are the respective shapes of the
arguments.

I,J are indices.

Note that when one or both of the arguments are scalar the shape
of the arguments need not conform to any rules.

Table 3-9
Inner Product Description

Definition of Shape Result
Z<Af.gB pA pB 02
Z«£/AgB scalar scalar scalar
Z<«f£/AgB scalar E scalar
Z<«f/AgB D scalar scalar
Z[L11<«£f/AgBL[;I] scalar E F F
ZLIT1«£/ALI;1gB c D scalar c
ZLI1+«£/4AgBL:T] D D F F
ZL11«£/A0I;19B c D D c

ZLI3J1<«£/401 5 1gBL ;]

Q
9
S|
oy
Q
fx

APL FUNCTIONS AND OPERATORS

Examples

flefe Zr1d
o2 3

4 5 6

[le-Be 3
123
D4, XK
14 32
(1 3)+.x13
14
2 bt LR
o1 2
e, XRA
14 32
32 77
(134 A ' OHETWOS EHTER?
OME
TWO
SLX
TEM
£
4 3
Ve ' SEM
FVv
3
HA =V
0010

Related Operators

Outer Product, Section 3.5.2

APL FUNCTIONS AND OPERATORS

3.5.2 o ., £f or .80 . £ - The Outer Product Operator

Format

dyadic

Argument Types

Both arguments can be any array. The ¢ symbol is the jot char-
acter, not the circle.

The f is any dyadic scalar function. The period (.) is the
connector between the jot and the function.

Definition

Specifies an operation to be performed by every element of one
array on every element of another array. For example, in the
expression R<«A.fB, R is any array that results from applying f to
every pair of elements of 4 and B. The shape of R is the dimen-
sions of 4 catenated to the dimensions of B, or (p4),pB. Unlike
inner product, outer product performs only one operation.

Table 3-10 describes the results of using a variety of arrays.
The letters have the following meaning:

f is a primitive function.

g is a primitive function.

A is an argument.

B is an argument.

C,D,E,F are the respective shapes of the
arguments.

I,J,K,L are indices.

Z is the result.

APL FUNCTIONS AND OPERATORS

Table 3-10
Outer Product Description

Definition of Shape Result
7<Ao .gB Ly oB 07
Z+«AgB scalar scalar scalar
ZUI1«AgBLTI] scalar E E
ZLI1«A[I1gB D scalar D
Z[I;J]1<«ALI]1gBLJ] D E D E
ZLI;J1<AgBLI;J] scalar E F E F
Z[I;J]«ALI;J1gB c D scalar c D
ZLI;J3K1«ALI1gBl[J ;K] D E F DEF
ZLTsJ 3 K1<ALI3J1gBLK] c D E C DF
Z0I;J3KsL1«ALT;J1gBlKL] c¢ D E F cC DFEF
Examples
102 3e,x2 3 4 5
2 3 4 K]
4 é g 10
& 12 14
el 20X 2 21
(VE) e, =M
100 0 01
o1 01 10
001 000
EE QIR T2
231
gD ORES, XOTWOS, AMO] THEEE Tt A

Related Operators

Inner Product, Section 3.5.1

3-74

APL FUNCTIONS AND OPERATORS

3.5.3 £/ - The Reduction Operator

Format

monadic

Argument Types
The argument is a scalar, a vector or one coordinate of an array.

The £ can be any scalar dyadic function.

Definition

Specifies that an operation is to be used to combine the elements
of a vector or elements along a specified dimension of an array.
The result of reducing any vector is a scalar value.

The result of reducing an array has a rank that is one less than
the rank of the original array. Thus, the reduction of a matrix
yields a vector. To specify a coordinate, include it within
square brackets. (The coordinate is dependent upon the index
origin, Section 4.2.11.) The default is the highest coordinate.
The special symbol to specify the first coordinate is # (.CS).

If the argument is an empty vector, then the result of a reduc-
tion is the identity element of the operator, if one exists.
Table 3-11 lists the identity elements for scalar dyadic functions.

Table 3-11
Identity Elements
Dyadic Operator Symbol Identity Element

Plus + 0

Minus - 0

Times x 1

Divide + 1

Power * 1

Residue | 0

Max imum F “"1.701411835E38
Minimum L 1.701411835E38
Logarithm @ none
Combination ! 1

Circle (o} none

And & 1

or v 0

Nand *x none

Nor L4 none

Less < 0

Not Greater < 1

Equal to = 1

Not Less = 1

Greater > 0

Not Equal # 0

Examples

[1e2e b
345 6
e

¥ /3

[
&

[
1

L ,/ E'J ?
20

P S
14

/i 1. \‘)

2

A S AME

- sy
s

X0

Ile-Aed
12 3
Soo6 1

208

4
)

.

10 14
+/01 A

6 8 4 6

Related Operators

Scan,

APL FUNCTIONS AND

4F 16

Section 3.5.4

OPERATORS

APIL FUNCTIONS AND OPERATORS

3.5.4 £\ - The Scan Operator

Format

monadic

Argument Types

The argument can be a scalar, a vector, or one coordinate of an
array.

The f is any scalar dyadic function.

Definition

Returns partial results in calculating the reduction of an array.
The shape of the result of a scan is the same as the shape of the
original vector. The first element of the result is always iden-
tical to the first element of the original vector. The last
element is equal to a reduction of the entire original vector.
For example:

N3 4 0
3 712

If the argument is a null vector, then the result of the scan is
a null vector.

You can also specify a scan for one particular coordinate of a
multidimensional array. You specify the coordinate to be scanned
by including a bracketed number with the function. The syntax is
the same as that of the reduction function. If you omit the
coordinate within brackets, APL scans the last coordinate of the
array. You can specify a scan on the first coordinate by using
the symbol \ (.CB), which is formed by overstriking the scan
(backslash) with the minus sign.

If the dyadic function specified with scan is associative (for
example, + or x) APIL performs the scan in a way that is different
from the conventional scan, in order to increase efficiency by
reducing the number of operations. The definition of R<f\4 is
equal to R[I]=f/I+4 as follows:

R[11=4[11
RLIT=R[I-11fA[I1FOR Iel+pA

This definition requires fewer operations than the traditional
scan. The result of an associative operation of this kind may
differ slightly from the nonassociative approach and should be
used carefully if the results require a high degree of precision.

APL FUNCTIONS AND OPERATORS

Examples
Al ES THES 1ETLS
[2]
1000000 T1LO00000 1,.000000000E™1L4
AN

1000000 O 1.000000000E™14
46

0

O 1 0 0
L R A §

N

12 6 24 120 7220 5040

[lefe Zpvd

4 £y
L2 3
5o 9

Related Operators

Reduction, Section 3.5.3

CHAPTER 4

APL SYSTEM COMMUNICATION

4.1 INTRODUCTION

There are a variety of ways in which you can communicate with the APL
system to change parameters, determine hardware or operational char-
acteristics, and modify processing methods. The APL system commands
in Chapter 5 facilitate many of these system operations. The ele-
ments in Chapter 4 that aid system communication are:

system variables - They are similar to ordinary variables but are
distinguished by special names that begin with a quad character,
for example,

system functions - They allow you to interact with APL by speci-
fying distinguished names beginning with a quad character, for
example,

Section 4.2 describes system variables and Section 4.3 describes
system functions.

4.2 SYSTEM VARIABLES

APL system variables allow you to perform such operations as the
following:

1. Set the index origin and relative fuzz
2, Change the output precision and line width

3. Specify an operation to be performed when the workspace is
activated

4, Save the active workspace automatically after editing

The syntax of APL system variables is similar to ordinary variables in
that you can use both types of variables in any language expression or
function. APL system variables have distinguished names; they begin
with a quad character ([0). They differ from ordinary variables
because of their special significance to the system.

APL system variables cannot be used as names for user-defined func-
tions. Also, you cannot copy, erase, or collect them in a group.

APL SYSTEM COMMUNICATION

The 25 system variables described in this chapter serve as an inter-

face between APIL and the operating system you are using.

The work-

space and the APL processor can each use values specified by the other

as appropriate to the particular operation being performed.

The value

of a system variable being used in a workspace can sometimes be dif-
ferent from the value last specified by the user of the workspace.

System variables fall into two categories:

1. System variables to which you can assign a value.

These

variables retain the value until you override it with another

value or clear the workspace.

You can save the value with

the workspace, and you can also localize them in a function

definition.

These system variables do have default values.

The following system variables are in this category:

Q4aus Section 4.2.5

acr Section 4.2.7

OERROR Section 4.2.9

0GAG Section 4.2.10
gro Section 4.2.11
gpp Section 4.2.15
dpw Section 4.2.16
ORL Section 4.2.17
gsF Section 4.2.18
OTIMELIMIT Section 4.2.19

2. System variables that have values you cannot change.

If you

assign a value to this type of variable, you will not receive
an error; however, the assignment will have no effect. The
following system variables are in this category:

OAT Section 4.2.1
OALPHA Section 4.2.2
OALPHAU Section 4.2.3
JAascIir Section 4.2.4
JAV Section 4.2.6
OCTRL Section 4.2.8
grc Section 4.2.12
ONuM Section 4.2.14
OrIMEOUT Section 4.2.20
grs Section 4.2.22
grr Section 4.2.23
Jur Section 4.2.24
Ow4a Section 4.2.25

4.2.1 [0AI - Storing Account Information

The [JAI (account information)

system variable stores the following
account information during a work session:

1. User identification (for the project-programmer number

2.

[PROJ,PROG] this is PROG+PROJx2%18)

Computer time (CPU time) used during the current APL session

APL SYSTEM COMMUNICATION

3. Connect time used during the current APL session

4, Keying time (time during which the keyboard is unlocked) used
during the current APL session

All times are expressed in milliseconds.
For example:

e
1048708 1235 440947 382458

4.2.2 [OALPHA - Alphabetic Characters

The OALPHA system variable is a subset of the 04V system variable,
Section 4.2.6. The value contained in [JALPHA is a vector of the 27
alphabetic characters A and 4 through Z.

For example:

[IOLF A
OARCDEFGH L JKLMHOFQESTUVWITE

4.2.3 [OALPHAU - Underlined Alphabetics

The OALPHAU system variable is a subset of the AV system variable,
Section 4.2,.,6. The value contained in [OALPHAU is a vector of the 27
underlined characters A and 4 through Z.

For example:

|4 B LY

PE UMW

LAY L [ALFHAL
481 462 483 484 48% 484 487 488 489 490 491 492 493 494 49H
494 497 498 499 00 H01 HOZ HOJX Ho4 0% Hoé Hov

4.2.4 [UASCII - ASCII Character Set

The [JASCII system variable contains 128 ASCII characters. This dis-
tinguished variable is designed primarily for use with ASCII files,
as an easy way to output arbitrary ASCII codes to those files while
using the APL character set. The first 32 characters of UASCII are
the control characters in [OCTRL, Section 4.2.8. The rest are pure
ASCII, not translatable by APL.

0ASCII is a subset of [AV. The indices into AV that contain [4ASCIT
are [JAV[257] through [AV[288] and [0AVL3811 through 04V[iu761].

OASCII is intended for use with output functions, especially output to
the terminal. It accepts a list of numbers that it translates into
ASCII codes for transmission. It does not go through the usual trans-
lation from APL 9-bit to ASCII.

APL SYSTEM COMMUNICATION

When you write to an ASCII sequential file (Section 7.5.1) using
04ascrr, you can output the full range of ASCII characters. The
following example writes seven ASCII characters to an ASCII sequential
file while in APL mode. The APL equivalents of these characters print
during output. Once back at operating system command level, you can
access the ASCII characters.

For example:

[IAGESE P THIS /06!

e

[ASCIELRLE 3B 3Py 43060959 96TH1Z
Sun y Y

fens 19

y MO
MOMILTOFR
eplY THIS.AAS
LK™
@
@

Table 4-1 contains the decimal indices and octal values of [ASCII.

Table 4-1
The ASCII Character Set
OAscrr (OIo0<«1)

Index ASCITI Char Octal Value
1 NUL 000
2 SOH 001
3 STX 002
4 ETX 003
5 EOT 004
6 ENQ 005
7 ACK 006
8 BEL 007
9 BS 010

10 HT 0l1
11 LF 012
12 vT 013
13 FF 014
14 CR 015
15 SO 0l6
16 SI 017
17 DLE 020
18 DC1 021
19 DC2 022
20 DC3 023
21 DC4 024
22 NAK 025
23 SYN 026
24 ETB 027
25 CAN 030
26 EM 031
27 SUB 032

APL SYSTEM COMMUNICATION

Table 4-1 (Cont.)
The ASCII Character Set
OAscIr (Oro<«i)

Index ASCII Char Octal Vvalue
28 ESC 033
29 FS 034
30 GS 035
31 RS 036
32 uUs 037
33 space 040
34 ! 041
35 " 042
36 # 043
37 $ 044
38 % 045
39 & 046
40 ' (apostrophe) 047
41 (050
42) 051
43 * 052
44 + 053
45 ’ 054
46 - 055
47 . 056
48 / 057
49 0 060
50 1 061
51 2 062
52 3 063
53 4 064
54 5 065
55 6 066
56 7 067
57 8 070
58 9 071
59 : 072
60 : 073
61 < 074
62 = 075
63 > 076
64 ? 077
65 Q 100
66 A 101
67 B 102
68 o 103
69 D 104
70 E 105
71 F 106
72 G 107
73 H 110
74 I 111
75 J 112
76 K 113
77 L 114
78 M 115
79 N 116
80 o] 117
81l P 120

APL SYSTEM COMMUNICATION

Table 4-1 (Cont.)
The ASCII Character Set
g4scrr (OI10<«1)

Index ASCII Char Octal Value
82 Q 121
83 R 122
84 S 123
85 T 124
86 U 125
87 v 126
88 W 127
89 X 130
90 Y 131
91 Z 132
92 [133
93 \ 134
94] 135
95 ~ (uparrow) 136
96 (underscore) 137
97 ~ “(grave) 140
98 a 141
99 b 142

100 c 143
101 d 144
102 e 145
103 f 146
104 g 147
105 h 150
106 i 151
107 3 152
108 k 153
109 1 154
110 m 155
111 n 156
112 o) 157
113 P 160
114 q 161
115 r 162
116 s 163
117 t 164
118 u 165
119 v 166
120 \" 167
121 X 170
122 y 171
123 z 172
124 { 173
125] 174
126 } 175
127 ~ 176
128 DEL 177

JAscrrlf12u4] through [127] print differently on other terminals such as
on a VT05 or VT52.

APL SYSTEM COMMUNICATION

4.2,5 [JAUS - Saving a Workspace Automatically

The [JAUS (automatic save) system variable activates a special feature
that allows you to save the currently active workspace automatically
at periodic intervals. Workspace backup is often critical when you
are performing an extensive amount of function editing and debugging
or typing a large table of values. Normally, you would stop editing
and issue the appropriate APL commands (Chapter 5) to save the work-
space on disk to ensure that a system crash does not destroy the cur-
rent workspace. If [AUS is set to 1, APL automatically saves the
workspace on disk every time a function is closed or a gquad-input
request is sent to the terminal. This ensures that you will probably
have to reenter only a small amount of input in the event of a system
crash.

The default value for UAUS in a clear workspace is installation de-
pendent and can be changed by the System Manager. APL saves the value
of [JAUS with the workspace, and you can localize it in the same manner
as [0I0 and several other variables.

When saving a workspace, [JAUS creates a disk file and assigns a name
to it in the format:

XNNWWW . TMP :
where
X is 4, if the job number divided by 100 equals O.
is B, if the job number divided by 100 equals 1, and so on.
NN is the job number modulo 100.
WWW is the first three characters of the current workspace name.
TMP is extension or filetype.
For example, if the job number is 79 and the workspace name is TESTS,
then the temporary filename will be A79TES.TMP. If the job number is
179, the temporary file will be B79TES.TMP.
If the system crashes and is reloaded, you can verify that a temporary

disk file exists for the workspace by issuing a)LIB command. For
example:

YLEE), TMF
DHK 2
AIOTES , T ME

After APL displays the sign-on message, you can load the backup file
as the active workspace by issuing a)LOAD command (Section 5.2.4).

ILOABD APYTES , TME
SAVED REAPIHG DML

APL SYSTEM COMMUNICATION

APL prints the)LOAD message. The name of the active workspace is now
the name that the workspace had before the backup was performed, not
the name of the temporary file.

IWEG LD
TESTS [4,204])

After completing the editing of a function or entering data you should
explicitly save the active workspace and delete the temporary backup
on disk.

APL deletes a .TMP file that it has written when any one of the follow-
ing conditions occurs:

1. A)SAVE has been completed successfully.
2. An)OFF,)CONTINUE,)CALL, or)RUN command is executed.
APL intends to write a new .TMP file with a different name.

For example:

[AUS e
YWHED AEC
L1a

L2231

31 9

CRE AL WELTES THE |, TME FLLE
YLLK g, TME
DHK Y
O AR, TME
JWHI L MTE
WaH AEC 14,204

31 Ke
41 v
RE AL WERITES THE MEW TME FILE
YLIE , TME

nEK Y
AL ENTE, TME

4,2.6 [JAV - Atomic Vector

The 4V (atomic vector) system variable contains a vector of every
character in APL. Table 4-2 lists the characters with their positions
in the vector. Note that the positions are based on an index origin
of 1. 1In Table 4-2 characters that are normally non-printable are
output as I, a squish quad.

APL SYSTEM COMMUNICATION

Table 4-2
The Atomic Vector 0AV (0I0<«1)
0AVL] Symbol TTY Set Name
1 through 16 1 .8Q squish quad
17 : ! factorial
18 ¢ .RV reversal
19 & .TR transpose
20 I .IB I-Beam
21 0 . Q0 quote gquad
22 @ .LG logarithm
23 * .NN Nand
24 ¥ .NR Nor
25 A " Comment (lamp)
26 A .GU grade up
27 v .GD grade down
28 e .CR circle (rotate)
29 7 .CS back scan
30 X .CB back expansion
31 i .SQ squish quad
32 4 .PD protected del
33 i .QD quad del
34 G .IQ input quad
35 # .00 output quad
36 & .DQ divide quad (domino)
37 $ $ format (dollar)
38 @ .FI fix
39) . X0 execute
40 ¥ .FM format
41 through 46 i .SQ squish quad
47 .DD dieresis
48 < < less than
49 < .LE less than or equal
50 2 .GE greater than or equal
51 > > greater than
52 ? ? question (roll, deal)
53 © .OM omega
54 € .EP epsilon
55 p .RO rho
56 4 ~ take
57 ¥ .DA drop (down arrow)
58 1 .I0 iota
59 o .AL alpha
60 r .CE ceiling
61 L .FL floor
62 ((left parenthesis
63)) right parenthesis
64 L C left square bracket
65]] right square bracket
66 c .RU right union
67 o .LU left union
68 v .Uu up union
69 _ .US underscore
70 through 72 if .SQ squish quad
73 <+ - left arrow (assignment)
74 - .GO right arrow (branch)
75 O .BX quad (box)
76 z .NE not equal
77 = = equal
78 n .DU down union
79 1 .DE decode

APL SYSTEM COMMUNICATION

Table 4-2 (Cont.)
The Atomic Vector AV (0OI0<«1)

04ve] Symbol TTY Set Name
80 A & and
81 v .OR or
82 ~ .NT not
83 / / reduce
84 \ \ expand
85 * * exponentiate (star)
86 x # multiply
87 ¥ % divide
88 + + add
89 - - subtract
90 o] .LO circle (large o)
91 | .AB residue (absolute)
92 ; : semicolon
93 . ’ comma
94 o .SO jot (small o)
95 T .EN encode
96 v .DL del
97 : : colon
98 ! ! qguote
99 (none) (backspace) for internal use
100 (none) (line feed) for internal use
101 (none) (double line for internal use
feed)
102 (none) (carriage for internal use
return)
103 (none) (null) for internal use
104 (none) (space) for internal use
105 (none) (escape) for internal use
106 (none) (formfeed) for internal use
107 (none) (tab) for internal use
108 I .80 squish quad
109 . period
110 - .NG negation
111 a .SQ squish quad
112 (none) (at @) for internal use
113 (none) (left for internal use
bracket)
114 - .LK left tack
115 (none) (right for internal use
bracket)
116 (none) (uparrow) for internal use
117 (none) (left arrow) for internal use
118 ¢ .DM diamond
119 { .LB left curly brace
120 — .RK right tack
121 1 .RB right curly brace
122 (none) (tilde) for internal use
123 (none) (delete) for internal use
124 through 256] .SQ squish quad
257 O¢TrLC11] BXCTRL[1] null (NUL)
258 Ocrrrl2] .BXCTRL[2] start of heading (SOH)
259 OcTRLL3] .BXCTRL[3] start of text (STX)
260 OcrrLly] .BXCTRIL[4] end of text (ETX)
261 OcTRLL5] .BXCTRL[5] end of transmission
(EOT)
262 OcTRLI6] .BXCTRL[6] enquiry (ENQ)
263 dcrrol71] .BXCTRLL 7] acknowledge (ACK)

APL SYSTEM COMMUNICATION

Table 4-2 (Cont.)

The Atomic Vector AV ([(0I0<1)

OAVL] Symbol TTY Set Name
264 OcTrLl8] .BXCTRL[8] bell (BEL)
265 OcrRLL9] .BXCTRL[9] backspace (BS)
266 OcTrLL10] .BXCTRL{10] horizonal tabulation
(HT)
267 OCcTrRLC11] .BXCTRL[11] line feed (LF)
268 Oc¢rrrlii12] .BXCTRL[12] vertical tab (VT)
269 OcTRrRL[13] .BXCTRL[13] form feed (FF)
270 OCTRLL 141 .BXCTRL[141] carriage return (CR)
271 OCTRLL15] .BXCTRL[15] shift out (S0)
272 OcrrL{161] .BXCTRL[16] shift in (SI)
273 OcTRLL17] .BXCTRL[17] data link escape (DLE)
274 OcTRLL18] .BXCTRL[18] device control 1 (DC1)
275 pOcrrLL191] .BXCTRL[19] device control 2 (DC2)
276 OcTRrLL20] .BXCTRL[20] device control 3 (DC3)
277 OCTRLL211] .BXCTRL[21] device control 4 (DC4)
278 OCTRLL221] .BXCTRL[22] negative acknowledge
(NAK)
279 Oc¢rRrRLL23] .BXCTRL[23] synchronous idle (SYN)
280 OdcTrLC24] .BXCTRL[24] end of transmission
block (ETB)
281 OcrrLlL25] .BXCTRL[25] cancel (CAN)
282 OcrrLl26] .BXCTRL[26] end of medium (EM)
283 OcTRLL27] .BXCTRL[27] substitute (SUB)
284 OCTRLL28] .BXCTRL[28] escape (ESC)
285 OcTrLL29] .BXCTRL{29] file separator (FS)
286 gcTrLL30] .BXCTRL[30] group separator (GS)
287 OcTRLL31] .BXCTRL[31] record separator (RS)
288 OC¢cTrRLL[32] .BXCTRL[32] unit separator (US)
289 through 304 .SQ squish quad

305
306
307
308
309
310
311
312
313
314
315 through 352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

HOERHRYUNIEONMEUQOWBDEDE OGO EWNRE OO

ok o

HOoOZRHERUHIEQHEHEBODQEDEHNOWONOAUDWNRO

zZexro
one

two

three

four

five

six

seven

eight

nine

squish quad
delta

HOZRHRgHIZQEEHODOQ®E P

4-11

APL SYSTEM COMMUNICATION

Table 4-2 (Cont.)
The Atomic Vector AV (OI0<«1)

(14AVvL] Symbol TTY Set Name

370 Q Q Q

371 R R R

372 S S S

373 T T T

374 U U U

375 14 A A4

376 W W W

377 X X X

378 Y Y Y

379 Z Z Z

380 0 .SQ squish quad

381 04sCIIl33] .BXASCII[33] space

382 0ascrrfau] .BXASCIIL34] exclamation point (1)
383 JAscrif3s] .BXASCII[35] double quote (")
384 J45CIIC36] .BXASCII[36] number sign (#)
385 04ascrrfazl .BXASCII[37] dollar sign (S)
386 OJASCIIL38] .BXASCII[38] percent (%)

387 UASCII[39] .BXASCII[39] ampersand (&)
388 04scrrfuol .BXASCII[40] apostrophe (')
389 OA8CIIC411] .BXASCII[41] left parenthesis (()
390 OAascrrtu2l .BXASCII[42] right parenthesis())
391 gascrrlfus] .BXASCITI[43] asterisk (*)

392 gAscrrfuul .BXASCII[44] plus (+)

393 gAscriil[us] .BXASCII[45] comma (,)

394 dAascriluse] .BXASCII[46] hyphen (=)

395 0ascrrlu7] .BXASCII[47] period (.)

396 gascrrfus] .BXASCII[48] slash (/)

397 Q4ascrrlfu9l .BXASCTII[49] zero (0)

398 J4sc1Il50] .BXASCII[50] one (1)

399 gAscrIls1] .BXASCII[51] two (2)

400 0AscrIls2] .BXASCII[52] three (3)

401 JASCIIC53] .BXASCIIL[531] four (4)

402 gascrrilsul .BXASCII[54] five (5)

403 0J4S8CIIC55] .BXASCII[55] six (6)

404 gAascrilsel] .BXASCII[S561] seven (7)

405 OAsc1iIi[57] .BXASCII[57] eight (8)

406 OAscIIls81] .BXASCII[58] nine (9)

407 0Ascrrls591] .BXASCII[59] colon (3)

408 0JAScIICe0] .BXASCII[60] semicolon (;)
409 gascrile1] .BXASCII[61] less than (<)
410 gascrrile2] .BXASCII[62] equal (=)

411 JAascrrles] .BXASCII[63] greater than (>)
412 O4scrrieul .BXASCII[64] question mark (?)
413 04scrrfes] .BXASCIIL[65] at sign (@)

414 (JAscrIles] .BXASCII[661 A

415 O0AsCcIIlLe7] .BXASCII[67] B

416 gJascrrles] .BXASCII[68] C

417 04s8Ccrrile9] .BXASCII[69] D

418 JAscrIl70] .BXASCII[701] E

419 gascrrlf711 .BXASCII[71] F

420 gascrrlf721] .BXASCII[721] G

421 OAsCcIIC73] .BXASCII[73] H

422 gascrilf7u] .BXASCII[74] I

423 OAscIIl751 .BXASCII[75] J

424 gAscrif{76] .BXASCII[76] K

425 0AsSCcII[771 .BXASCII[77] L

426 0ascrrilf781] .BXASCII[78] M

APL SYSTEM COMMUNICATION

Table 4-2 (Cont.)
The Atomic Vector AV (0OI0<«1)

04avi3] Symbol TTY Set Name

427 gascrriC791] .BXASCII[79] N

428 0JAscrrirsol .BXASCII[80] 0

429 04ascrrlfsal .BXASCII[81] P

430 fascrrirs2] .BXASCII[82] Q

431 gascrr(ss] .BXASCII[83] R

432 dascrrlsy] .BXASCII[84] S

433 gAascrriss] .BXASCII[85] T

434 QJascrrrsel .BXASCII[86] U

435 fascrics71 .BXASCII[87] v

436 0ascrrlss] .BXASCII[88] w

437 JAscrrrsgl .BXASCII[89] X

438 dascrr[oo0] .BXASCII[90] Y

439 Q4ascrrfo1l .BXASCII[91] Z

440 04ascrrre2] .BXASCII[92] left square bracket ([)
441 JASCIIC93] .BXASCII[93] backslash (\)
442 Dascrrroul .BXASCII[941] right square bracket

(1

443 04scrrfos] .BXASCII[95] up arrow (")
444 DASCITL96] .BXASCII[96] underscore (_)
445 04AsCIIr97] .BXASCII[97] grave (")

446 0Aascrrresl .BXASCII[98] a

447 QAscIrf9o9] .BXASCII[99] b

448 gJAascrrifzizool .BXASCII[100]1 ¢

449 QAascrrf101] .BXASCII[1l01]l d

450 gJascrilf102] .BXASCII[102] e

451 fJascrirfi1o0s3] .BXASCII[103] £

452 OAascrrftious] . BXASCII[104]1 g

453 Q4scrrf105]1 .BXASCII[105] h

454 g4ascrifi1os]] .BXASCII[106]1 i

455 bascrrf1071 .BXASCIIL1071 j

456 Q4scrrr1o81l .BXASCII[108]1 k

457 g4ascrrfi1o9] .BXASCII{109] 1

458 fJascrif110] .BXASCII[110] m

459 gascrrfi111] .BXASCII[111l] n

460 0JASCrIIc1121 .BXASCII[112]1 o

461 JAscrIf1131 .BXASCII[113] p

462 JAscrrrfiiul .BXASCII[114]1 ¢q

463 OASCIIri11sl .BXASCII[11l5] «r

464 Jascrrfi1e] .BXASCII[1l6]1 s

465 0AascrrCa1171] .BXASCII[1l1l7]1 ¢

466 OJdascrrfi18] .BXASCII[118]1 u

467 Jascrrf1191 .BXASCII[119] v

468 gJascrif{i1201 .BXASCII[120] w

469 Jascrrriz11 .BXASCII[121]1 x

470 0ascrrfi1221 .BXASCII[122] vy

471 JAscrrr123] .BXASCII[123] =z

472 0Ascrrf12u] .BXASCII[124] 1left brace ({)
473 04s5¢crrf1251 .BXASCII[125] wvertical bar (})
474 0AscrIC126] .BXASCII[126] right brace (})
475 gJascrifi1271] .BXASCII[127] tilde (~)

476 Jascrrf128] .BXASCII[128] delete (DEL)
477 through 480 i .8Q squish quad
481 A .Z@ underscored delta
482 4 . ZA underscored A
483 B .ZB underscored B
484 c .ZC underscored C
485 D . ZD underscored D

APL SYSTEM COMMUNICATION

Table 4-2 (Cont.)
The Atomic Vector AV (010+«1)

04vL] Symbol TTY SET Name

486 E .ZE underscored E
487 F .ZF underscored F
488 G .ZG underscored G
489 H .ZH underscored H
490 L .ZTI underscored I
491 J .2J underscored J
492 K .ZK underscored K
493 L .ZL underscored L
494 M .ZM underscored M
495 N . ZN underscored N
496] .20 underscored O
497 P .ZP underscored P
498 Q .Z2Q underscored Q
499 R .ZR underscored R
500 S .Z2S underscored S
501 T . 2T underscored T
502 U .ZU underscored U
503 14 . IV underscored V
504 W . IW underscored W
505 X .ZX underscored X
506 Y .ZY underscored Y
507 Z .27 underscored Z
508 through 512] .SQ squish quad

Subsets of 04V are:

UALPHA, Section 4.2.2
OALPHAU, Section 4.2.3
gascrr, Section 4.2.4
Qdc¢TRL, Section 4.2.8
anNvmM, Section 4.2.14

4.2.7 [0CT - Comparison Tolerance

The OCT (comparison tolerance) system variable sets the degree of
tolerance or relative fuzz (not absolute fuzz) to be applied in per-
forming comparisons. The meaningful range of [CT values is 0 through
1E78. The default value is 1E 13.

You can specify OCT in conjunction with the following functions:

Ceiling

Floor

Greater than

Less than or equal to
Equal to

Greater than or equal to
Less than

Not equal to

ANV UIANVY/CT

APL SYSTEM COMMUNICATION

The [OCT value is saved when you save the active workspace. See the
description of fuzz in Section 2.4.3.

For example:

ey
1.136864040E™1L3

4.2.8 [0OCTRL - Control Characters

The [CTRL system variable is a subset of 04V (Section 4.2.6). It
contains a vector of the 32 characters listed in Table 4-3.

Table 4-3
OCTRL (OI0<«1)

Index Character Name Octal Value
1 NUL (Null) 000
2 SOH(Start of Heading) 001
3 STX (Start of Text) 002
4 ETX(End of Text) 003
5 EOT (End of Transmission) 004
6 ENQ (Enquiry) 005
7 ACK (Acknowledge) 006
8 BEL (Bell) 007
9 BS (Backspace) 010

10 HT (Horiz. Tabulation) 011
11 LF (Line Feed) 012
12 VT (Vert. Tabulation) 013
13 FF (Form Feed) 014
14 CR(Carriage Return) 015
15 SO(shift Out) 0le
16 SI(Shift In) 017
17 DLE(Data Line Escape) 020
18 DC1l (Device Control 1) 021
19 DC2 (Device Control 2) 022
20 DC3(Device Control 3) 023
21 DC4 (Device Control 4) 024
22 NAK (Negative Acknowledge) 025
23 SYN(Synchronous Idle) 026
24 ETB(End of Transmission Block) 027
25 CAN (Cancel) 030
26 EM(End of Medium) 031
27 SUB (Substitute) 032
28 ESC (Escape) 033
29 FS(File Separator) 034
30 GS (Group Separator) 035
31 RS (Record Separator) 036
32 US (Unit Separator) 037

Note that for any formatting-control character the internal code that
appears in [OCTRL is not the same as the internal code used by APLSF
for that formatting-control character.

APL SYSTEM COMMUNICATION

For example:

A LHOEN OF!
OAVA[ICTELL 147

e |

270
AWHILE TAOKIMG THE FLIRST MHOLE OF
an CRLE LS

AVl

4,2,9 [OERROR - Storing Error Messages

The [ERROR system variable contains text that identifies what error
occurred and where it occurred. APL sets [FRROR during immediate mode
and function-~definition mode as well as function-execution mode.
OERROR contains one error at a time. When a new error occurs, the new
message overwrites the old one. You can, however, localize [EFRROR
within a function to save error information within the environment of
a particular function. You can also set [JERROR to contain your own
message. In this way, you can clear [ERROR by assigning a null string
to it, OERROR''.

The text that APL sets contains a character vector of variable-length
lines, each delimited by a carriage return/line feed. The text has
the following format:

nn error message
funcname [n] line containing the error caret pointing to symbol
in error
where
nn error message is the number and text of the message.

funcname is the name of the function in which the error
occurred.

[n] is the line number where the error occurred.

For example:

GARC S [T ROF § [ER&OR
L1l [ITEAF e LAX!
.21
L3l - VOMECK K
471 SHUME AT LEHE 40
L350 v

CHEQK

B MEDSG SN
I i
FOHTHTOAM ERROQFR
ABCERT 1 Aed
A

APL SYSTEM COMMUNICATION

Y&

AECIZ] %
ART THIS FOLIMY, QAN CQOMTEIMUE EMEQUTIION
A 41

FEESUME OT LIME 4
AFUMOQTION HO% :
aMEXT LS A TMMEXCATE

WY RO

Fie OV F:
O
11 VOLUE ERROR
C
N
ACMHECK GLOERAL VALUE OF [HEREOR
[R R O
10 VOLUE ERREOF
[N)
A
yal

The three lines of text in UERROR are exactly the same three lines APL
displays on the terminal.

OERROR can contain up to 384 characters. If the line containing the
error is too long to fit in [ERROR, APL truncates the line and prints
the significant portion containing the error. The last character will
contain -1+0A47V.

Note that if an error occurs during an @ execute, then OERROR con-
tains six lines of text. For example:

g wwe
11 & VALUE ERROR
ww
A
2% EMECUTE ERROR
yWW
A
(8 R OO
11 2 VALUE EfRROR
ww
A
aE EMECUTE ERROR
!Iwwl
A

For more information on [ERROR, refer to Section 6.5.

APL SYSTEM COMMUNICATION

4.2,.10 [0OGAG - Preventing Interruptions

The [JGAG system variable allows you to prevent certain messages from
appearing on your terminal. On both the TOPS-10 and TOPS-20 operating
systems, users have the ability to send each other messages. On
TOPS-10, a user can send a message with the SEND command; on TOPS-20,
a user can send a message by LINKing to you with the TALK command.

You set OGAG to either 1 or 0. The default is installation-dependent.

On TOPS-10, [GAG+«1 means "TTY NO GAG" - Accept Messages
JGAG«0 means "TTY GAG" - Refuse Messages

On TOPS-20, [OGAG+1 means "RECEIVE LINKS" - Accept Messages
JGAG+0 means "REFUSE LINKS" - Refuse Messages

On TOPS~-10, if you return to monitor level, the 0GAG setting will not
inhibit messages. On TOPS-20, the [0GAG setting remains in effect at
monitor level.

For example:

ATOF .20
[Jeae
1
Yy MO
ML T O 2
@i term
Al LAY
300

TUE SYSTEM-MESSAGES
MINAL NO TG
A0y

[

(1O G e
Y MO

MUNELE T O 2

@1 Lerm

ATOFS..] 0

THE G
0
FOOMNYT HOLX
15246124 11 IUhe 79 2 EBLKS
TTT44) 15346124 L1-JUl79

COMNME OO 07 TFW T EIME OI00200
ooETH HTE O OFERATLIONS
KOE L 0 QORGSO

EXTT

APL SYSTEM COMMUNICATION

+1 TTY

REIEHIN KL #102671048 15146835
Cornmected Lo Node KLLIO26(286) Line # 449
Job &1 User MASI [AWRIIN ER27+26171
NGKC: RLIO2S Suatem odisk NHEKC
ERIC? TOFSG-10 Benchmark STR with
NEKE KLLOZ2E Hus moooi NER
MOL.C NOTARS NOFOQRM BECHO CRLF WIDTHEZ2
FILL L NOTA

GG

terminsl . n
O L () DECHETYSTEM-] 0 OFLSE 20412)
584708 WENHESDAT
e AG 24 L) e DK
INIEELE)

TTYa4)
BAVIED

Q0
F1ey g
YOOMY OLLXY
1ELAFIRZ L] U0 D BLKE
TYY44) 15473834 11 -JIb -39
COMMECTEXD QOO LRy CFU T EME
DOHTOTEMEMTS] OFEFRMNTLOMSE
KE L. Qe O £

000800

EXTTY
«ITTY

RZISEAH KL H1026/71042 151478142
Comnnected Lo Node KL1I026(24) Line # 44
Job sl User MASELLA»S. 2726171
DEKe: KL.LO26 & sl NGSKE
ERIC? TOFS-10 BTR with
NSKE?: KL1026 Sustem disl NSKE
NOLC NOTARS NOFORM ECHO CRILF
FILLIL NOTAFE TYFE~

*

You can localize [GAG in a user-defined function.
its setting remains unchanged

saved with your workspace, however,
during a)LOAD or a)CLEAR operation.

4.2.11 [0I0 - Index Origin

TTYA44 swalem

3o e W TR MAYEEL LYy B

TTY44 swustem

WINDTH?2 NOGAG

1026/1042

7400 mornitor

NODTSFLA

L2729 26170

102671042

7400 monitor

NODISFLA

[JGAG cannot be

The 010

(index origin) system variable changes the setting of the

index origin.,

or array are indexed beginning with position 0 or 1.

1.

This setting determines whether the values of a vector
The default is

The index origin is important in array operations and in conjunction

with roll and deal (Sections 3.2.4 and 3.3.3).

The value 1is saved

when the active workspace is saved and is only meaningful if it is O

or 1.
Section 5.5.4.
A?B, AL1, 41B.

This system variable is equivalent to the)ORIGIN command,

010 is used with the following operations: 14, ?4,

APL SYSTEM COMMUNICATION

For example:
[1roe}
13

Hefe? 4r1é
3 4
12

o

-y
o
3 6

+/LRDA
10 14
+/7010A
6 8 44
+/0010
8 THDEN EREOR
+/000H

A

[1X0e0

VAR
& LTHDEX ERROR
+/L20A
A
+ALLA

10 14
+ /1014

6 8B 46

4,2,12 [LC - Reporting on Executing Functions

The [OLC (line counter) system variable is used to obtain a partial
report on functions that are currently being executed. It is stored
as a vector of the line numbers contained in the state indicator,
arranged in order of the most recently suspended function first. The
default value for [0OLC is 0.

The [0LC system variable is particularly useful in branch statements
(Section 6.4.1). You can specify that execution is to resume
immediately following the line number at which function execution was
most recently suspended with [LC.

For example:

OHEW
£131 +1
£22 v
HEW
18 OTTEMYION $LGMOLED
MEW[1]1 =1
A

(L.

APL SYSTEM COMMUNICATION

i

L %w;m; Sl
OL.

G

i
e

4.2.14 [ONUM - Digits

The ONUM system variable is a subset of the AV system variable
(Section 4.2.6). [NUM contains a vector of the ten digits, 0, 1, 2,
3l 4’ 5, 6, 7’ 8, 9.

For example:

[IHLIM

0123456789

[1AV (UM
306 307 308 309 F10 FLl 312 313 314

4-21

APL SYSTEM COMMUNICATION

4,2.15 [OPP - Output Precision

The OPP (print precision) system variable determines the precision of
noninteger output by allowing you to set the number of significant
digits to be displayed. Legal values for [PP are integers 1 through
18. The default is 10. The PP system variable does not affect the
precision of internal calculations or the display of numeric constants.

For example:

[e
10

123456789, 123456789
123456789, 1

HIFF et

123456789, 123456789
1.2346E8

[IFF e 5

123456789, 123456789
123456789 . 123457

APL rounds off a number if it contains more digits that the setting.
The precision you specify is saved when the active workspace is saved.
OrPP is equivalent to the)DIGITS command (Section 5.5.1).

4.2.16 [PW - Determining the Width of the Output Line

The 0OPW (page width) system variable sets the maximum number of
characters that can appear on a terminal output line, before a
carriage return/line feed is performed. Legal values for [PV are
integers 30 through 390. The default is 120, 0OPW has no effect on
the display of messages or the length of input lines.

For example:

[1FWe30
[leNe ' THES 15 M

THIS 16 A TESYT OF THE FOGE WILID
TH VAR T OARLE,

TOOF THE FOGE WEXTH VAR LaELE !

The width is saved along with the active workspace. [PW is equivalent
to the)WIDTH command (Section 5.5.6).

4-22

APL SYSTEM COMMUNICATION

4.2.17 ORL - Setting a Random Link

The ORL (random link) system variable sets the seed of the pseudo-
random-number generator in APL. This generator is used with the roll
and. deal functions (Sections 3.2.4 and 3.3.3). The range of meaning-
ful values you can specify is -1+2%1 through -1+2%35. The default
value is 0.

Every time you specify either a roll or deal operation, you change the
value of the random link.

For example:

[I¥et..
0
135 2 4
[t
30388006192
575
145 32
..
?311234783

The value of [JRL is saved when you save the active workspace.

4.2,18 [SF - Setting the Evaluated Input Prompt

The 0OSF (signal for evaluated input) system variable changes the
standard signal message used as the prompt in accepting evaluated
input. You can use any printing character(s) as the prompt for
evaluated output. The default is:

[0: carriage return/line feed 6 spaces
For example:
A X [14+5

4]
Ee[]

CEHFLT
¥
Ty
CI6F ¢ S WHAT T8 YOUFR MHAMES !
el
WHAT L6 YOUR MHOMEP 'SAFRAKH
o
SAF MM

Note that you must enclose the character input within single quotation
marks in evaluated input.

APL SYSTEM COMMUNICATION

4,2.19 0OTIMELIMIT - Setting a Time Limit

The OTIMELIMIT system variable sets a limit to the amount of time you
have to respond to a quote-quad input request (M) or a quad-del input
request (@). The range of meaningful wvalues you can specify is -1 to
262143 milliseconds.

Example:

[ITEMELIMIT 5000
Al
TOL MAVE FEVE O SECQORDS
2}
TOU FHAVE FEIVE SECOMDS
A1)
TOW HAY
11 vauu
COrns
A
abdrl OUYT OF TIEME
2}
TOU HAVE FENVE BE

HE COMOG

Of

If you exceed the time limit, APL accepts only the data you typed
before you ran out of time. Any input accepted ends with a carriage
return/line feed.

Note that by specifying a negative argument (-1) to OTIMELIMIT, you
can set APL to accept type-ahead input. This feature can be useful
if you are accepting input from a pseudo-terminal (PTY).

To find out whether you or another user ran out of time, use the
OTIMEOUT system variable (Section 4.2.20).

4.2.20 [0OTIMEOUT - Reporting on Time Limit

The OTIMEOUT system variable reports whether a user ran out of time
during a quote-quad input request ([1) or a quad-del input request
(M) with a OTIMELIMIT set. {OTIMEOUT is set to either 1 or 0: a 1l
means that the user ran out of time, a 0 means the user did not run
out cf time.

APL SYSTEM COMMUNICATION

For example:

[ITEMELIMET 5000
ael
TOU HAVE FEVE
[T % MEQUT

0
ALIX HOT RUM QUT OF TIME
Al
TOU HAVE FIVE (STRP AR}
11 YOLUE ERFEOR
sTuPAE:3
Y
[T EMEQUT
1

pldrd OUYT OF TIEIME

The value of OTIMEOUT remains constant until you type one of the
following:

1. Quote-quad input from the terminal ().
2. Quad-del input from the terminal (f).

3. Input from a pseudo-terminal (PTY).

i
L

4-26

APL SYSTEM COMMUNICATION

4.2.22 {075 - Reporting Current Time and Date

The OTS (time stamp) system variable obtains the current time and date
and stores it as a 7-element vector in base 10 format. This vector is
known as a timestamp and contains the following elements:

current year, month, day, hour, minute, second, millisecond

For example:

(NRR:)

1979 7 2 13 44 47 70

4.2.23 [OTT - Reporting Terminal Type

The OTT (terminal type) system variable contains a value that relates
to the type of terminal being used for the current APL session. When
you run APL, you specify the terminal type in response to

TERMEIMOL ,

APL stores this information according to the following table:

Table 4-4
OTT Terminal Types
Value Meaning
0 TTY-type terminal
1 TTYCOM terminal
2 LA36 or Tektronix 4013, 4015
3 APL keyboard- or typewriter-paired
ASCII/APL terminal
4 APL bit-paired ASCII/APL
5 APL ONTEL
6-9 Reserved
10 2741 Selectric-Type

For example:

[T

APL SYSTEM COMMUNICATION

4.2.24 [OUL - Reporting the Job Number

The QUL (user load) system variable contains the system job number
associated with the current APL session. The value is stored in base
10 format.

For example:

FIUL.

4.2.25 (WA - Reporting the Available Work Area

The OWA (work area) system variable contains the amount of available
storage space in the active workspace. This value allows you to
determine the maximum amount to which your workspace can increase.

The size is given in bytes, not words. APL obtains the value by
subtracting the current data-segment size from the maximum data-
segment size.

For example:

rwe

PR2ID

4.3 SYSTEM FUNCTIONS

The system functions described in the following sections allow you to
perform such operations:

1. Expressing the canonical representation of a function and
storing the function definition as data

2. Expunging a named object

3. Constructing a name list of labels, variables, or functions
and returning the classification of a named object

4, Delaying execution of a function for a specified period of
time

System functions are an integral part of the APL language and can be
used freely in all APL function definitions. The names of the 13
system functions described in this section all begin with a quad (0)
character and are reserved words. Like system variables, system
functions cannot be copied, erased, or collected in a group.

APL SYSTEM COMMUNICATION

You access a system function by simply stating its name with
arguments, as you would access a primitive or user-defined function.

The system functions described in this chapter are:

[OBREAK

Section
arr B ~ Sectio

4.3.1 [0OBREAKX - Suspending Execution

Format
OBREAK arg
where
arg is any APL object.

The [OBREAK system function suspends execution of the function in which
it is contained and returns you to immediate mode.

OBREAK is a monadic system function. It takes any APL object as an
argument and prints that argument before breaking to the terminal.

For example:

LG

[N
L21
31
47 ke
FLIME

AT LIME Q0
AT LIHE R

S L L HE
WREMAK AT LEME 2

YEI
FUMHCE2T %

S 4]
Fil G UME AT LERE X

To return to function execution after a break, you can either go to a
specific line number (+3) or use the system variable [LC. Specifying
OLC would return you to the line where the [OBRFEAK executes. To resume
at the line after the breakpoint, specify [OLC+1.

Note that [OBREAXK is illegal from immediate mode and ¢ execute.

For more information on the use of [OBREAK, refer to Section 6.5.

APL SYSTEM COMMUNICATION

L
G

A
]
Cenians

APL SYSTEM COMMUNICATION

4.3.3 [0ODL - Delaying the Execution of a Function

Format
ODL arg
where

arg is the number of seconds you want to delay execution. The
argument must be a scalar or vector with a single numerical value
(12ppARG) or APL returns a 9 RANK ERROR or a 15 DOMAIN ERROR.
There is no limit to the value of the argument.

Although DL specifies the desired duration of the delay of the
function, the actual delay can be somewhat different. Other demands
on the APL system at the time that the (DL is issued can affect the
accuracy of the delay. 1In addition, you can use a single attention
signal, CTRL/C, at any time to abort the delay and cause an interrupt
in the function in which the DL appears.

For example:

OE L[5, D

YL

DEL is a scalar value equal to the actual delay incurred as a result
of the 2-second [DL specification.

The [0ODL function uses a negligible amount of computer time; you can
issue it freely in situations where tests are required at periodic
intervals to determine whether or not an event has occurred as
expected.

This is helpful in simplifying interuser and interprogram communica-

tion of various kinds. Another way to wait specifically for input is
to use UTIMELIMIT, Section 4.2.19.

4.3.4 [(FEX - Erasing a Named Object

Format
OEX arg
where

arg is a function name enclosed in single quotation marks or a
variable name whose value is a matrix of function names.
Therefore, the argument can have a rank of 2 or less (22pp4dRG).

The [OFX (expunge) system function erases a variable or function name
so that you can reuse it without confusion. [UOEX operates on global or
dominant local variables. You cannot erase a named object that refers
to a label, a group, a suspended or pendent function, or a system
variable.

APL SYSTEM COMMUNICATION

When you erase a name (or names) [EX returns a 1 or a 0 depending upon
whether the name was successfully erased. A 1 signifies that the name
was erased; a 0 signifies that the name cannot be erased. You also re-
ceive a 0 if the name is not a legal APL wvariable name.

APL returns a 9 RANK ERROR if the argument has a rank higher than 2,
and returns a 15 DOMAIN ERROR is the argument is not a character string.

For example:

) F S

AR GEOW TEST

NeF Jp ' ABRQLTESTHROW!

2]

[RCENE]

[IEX A

YFHES
(APL outputs at blank lines)

Characters to Numerics

4.3.5 [OFI - Converting

Format
OFI arg

where

arg is a character

scalar, vector, or one-element array.

The 0OFI system function takes
into a numeric, placing zeros
~pond to a valid number. Note
not part of the number but is
the number.

a character argument and converts it

in each position that does not corres-

that a minus sign preceding a number is
rather an operation to be performed on

However, in the expression ~5, the negative sign is a

valid part of the number in APL.

For example:

G AVE R OGE

Hey MSlle ' ENTER
e lIVE)Y /IFE X
T (WY p

v

AVEF O GE
oo
o o0

OF

o
* (‘{) + +

MULVM BB F &

)

In the previous example,

Qvr is

10
OFT is .5

110111
1 3.500 2 6 0O

Y LABT

OQF FHUMEEF S

APL SYSTEM COMMUNICATION

APL SYSTEM COMMUNICATION

4.,3.7 0ONC - Returning a Name Classification

Format

Ovc arg

where

arg is a character matrix of names or a vector or scalar con-
sisting of one name. The rank of the argument is 22pp4RG.

The ONC (name classification) system function returns the classifi-
cation of a name or group of names. If the argument is a matrix,

ONC returns the class of the name represented by each row in the
matrix. If the argument is a vector or scalar, ONC returns the class
of a single name. [NC returns a numeric value representing each name
class. Table 4-5 lists these wvalues.

Table 4-5
wc Classes
Value Meaning
0 Name available for any use
1 Label name
2 Variable name
3 Function name
4 Not available for use as a name

A value of 4 implies that the argument is not a valid name or that it
is currently in use as a group name (Section 5.4.4).

For example:

[IHE AV

0

APL SYSTEM COMMUNICATION

4,3.8 [ONL - Constructing a List of Labels, Variables, or Functions

Format

a is a scalar or vector of alphabetic characters. The letters
must be supplied in alphabetic order. This parameter is
optional. (Do not type the square brackets.)

n is one or more integer scalars or a vector from the follow-

ing list:
Values Meaning
1 Labels
2 Variables
3 Functions

The ONL (name list) system function can be either monadic or dyadic
depending on whether you supply the left argument. In both forms, the
function constructs a list of named objects residing in the active
workspace. The "n" parameter identifies the type of named objects to
be included in the list.

For example:

Mol 12

causes the names of all labels and variables in the workspace to be
included in the name list X in alphabetic order. Each row of the
matrix will contain the name of one label or variable. The number of
columns is determined by the length of the longest name. 0ONVL fills
the shorter names with blanks to the length of the longest name.

The dyadic form of 0ONL allows you to restrict the name list to names
beginning with specified characters by including an "a", left argu-
ment, in the expression. For example:

MLEST e ' AECDER [, 3
ML LST

AVE R OGE

COF

FLIMC

causes a name list to be constructed of function names whose initial
letters are 4 through F; the list is arranged in alphabetic order.

The ONL system function is useful for a variety of purposes. Some of
these are described below:

88 in bl r . You can also use
it to analyze interactions between variables and functions.
(Remember to remove the blanks on the right, if any exist.)

APL SYSTEM COMMUNICATION

2. In conjunction with JEX (Section 4.3.4), the ONL function can
cause all of the named objects in a certain category to be
erased dynamically. It also helps the design of a function
that can be used to clear a workspace of all but a preselected
collection of named objects.

3. In its dyadic form, ONL can guide you in choosing names while
developing or interacting with a workspace.

The following example illustrates the construction of a matrix con-
taining the names of variables in the active workspace that begin with
the letter V.

TS PSRV 4 TR TR}
MLIGT

VA

VA

Va3

VARG

VEMAM

4.3.9 [0QLD, 0QC0, [0QPC - Loading and Copying a Workspace

Format

0QLD arg
0QCo0 arg
gerc arg

where

arg in each case is a character vector (enclosed in single
quotation marks) representing the workspace name, an optional
password and an optional list.

The password is the password associated with the owner of the
workspace. The password is necessary only if you are not
privileged to access the particular workspace. (Do not type the
square brackets.)

The list is an optional parameter used to identify specific
objects to be copied. If you omit this parameter, all functions,
variables, and groups in the workspace are copied. (Do not type
the square brackets.)

The 0QLD, [QC0O, and UQPC system functions perform the same operations
as the)LOAD,)COPY, and)PCOPY commands described in Chapter 5. [OQLD
loads a workspace, [0QC0 copies a workspace, and [JQPC copies a work-
space with certain protection considerations.

Unlike the system commands, the system functions do not return messages
to verify a successful load or copy. The system functions, however,
return the messages O0BJECTS NOT FOUND and NOT COPIED: when applicable.
These are not inhibited.

APL SYSTEM COMMUNICATION

Also, APL does not output a blank line to indicate that no value was
Therefore, you can use one of these system functions alone

returned.

or as a function line without blank lines a

earing on your terminal.

The 0QPC system function does not cause APL to return the names of
objects that were not copied.

If an error occurs during the execution of any of these three system

functions, APL prints an error message.

Therefore, you can trap

errors as usual with the use of the execute function (Section 3.4.3).

For example:

QAL T
BAVED 13IB3:13
s
1
Y CLUE AR
CLEOAFR W
[NESE™S (R
YWE LY
T <007y 42041
(2]
1
Y CLEAF:
CLEMARE W
YOOFY T £
HBAVED
£
1
&3
2
o
11 VELUE EFREOQR
o
A
Y LB F:
CLEMGF W
[jeoo vy
2]
1
X
2
[44
3
Y CLED ey Ee
CLUE R W
LK B S
(2]
1
X
2
g
11 VALUE EFRFREOR
o
N

I TN T

X

79 5

LRTEILLT Ll I 29 HF

Yoo

APL S

Y L E A
W
YOOFT T
13853813 11~
HOT FOUREE

OL B Ak
[
HOVED WL,
OEJECTS

£

¥e
11 VALUE
X
Fa
Y CLLEAF
W
[Reo
OQEJECTS HOT
) CLUE AR
W

L EF
vy

2]
FOURX S

Xt

CLEMAR

e 20
YECOEY T
GAVEL 13E3L3 11
HOT COFLED? n
[4]

S

20
23

)

&

3

CLEOFR WS

Ae

HOT OO LED S 2]

«

)L

w4

oy [eTnte)

OBRJECTS HOT
A

CLEME
% S
F O

0

YCLEAR

we

HE[JRFC T A

OEJECTS NOT FOUMDE
P

CLEAF:

o

YSTEM COMMUNICATION

PG G
0

7Y G

o

n

APL SYSTEM COMMUNICATION

- ;’%%&‘é%?“ .

Sao i
S
. %@@%

.@»“@’"’%ﬂi%
. -

o

it

.

L

i

APL SYSTEM COMMUNICATION

4.3.11 0OVI - Validating Input

Format

OvI arg
where

arg is a character vector, scalar, or l-element array.
The OVI (validating input) system function is used in conjunction with
the OFI system function (Section 4.3.5). While OFI converts a char-
acter vector into a numeric vector, [VI returns a Boolean vector that

contains a 1 in each position corresponding to a valid number that can
be converted with OFI. It returns a 0 for nonvalid numbers.

For example:

Ae L5 F A TE X 1L0ELE +] T3

[vE &
110 1L 01 01

[ET o
1, 3 0 7% 0 1.000000000 15 O ™3

CLvE @y T o
Lo 3 78 1.00000000081% ™3

CHAPTER 5

SYSTEM COMMANDS

5.1 INTRODUCTION

APL provides a wide variety of system commands to communicate with the
APL system and to control the operating environment in which the APL
session is conducted. System commands allow you to examine or change
the state of the system. For example, they allow you to:

l. Clear, save, or name the active workspace
2. Load or copy a workspace from a secondary storage device
3. List workspace, variable, function, and group names

4. Determine memory and workspace size, time and system
resources used, and version and device information

5. Display the status of functions and local variables in the
workspace

6. Set the index origin, the maximum number of significant
digits, and the output line width

System commands are not considered a part of the APL language itself,
but can be viewed as an interface between you and the language inter-
preter. System commands implemented for use with the APL file system
are described in Chapter 7. Appendix B provides a summary of the
format of all system commands in alphabetic order.

This chapter is structured in the following way. Section 5.1 provides
an overview of the format for system commands, the two ways of using
system commands (action and inquiry), characteristics of workspaces,
and APL libraries that allow you to share programs with other APL
users. Sections 5.2 through 5.7 describe the system commands them-
selves by category:

Section Commands
5.2 Basic Workspace-Control
5.3 Extended Workspace-Control
5.4 Workspace-Content
5.5 Workspace-Environment
5.6 APIL Termination
5.7 Miscellaneous

SYSTEM COMMANDS

Section 5.8 discusses the special function of the execute function (¢)
in relation to system commands.

5.1.1 System Command Format

Unlike other APL statements, system commands begin with a right paren-
thesis, as shown in the following format:

) command-name Hparameter—listﬂ

You can abbreviate the command-name to its shortest unique form, which
usually requires no more than four characters. Some system commands
require one or more parameters or arguments in the command string. If
you include required or optional parameters, you must separate the
individual elements of the command string with at least one space.

(Do not type the square brackets.)

The following examples illustrate the format of several system
commands :

IDIGLITS &
was 10

YOIGE

YLILGET

Y SAVE MYWOFRK
14338311 11-JUL7 | FGS
YOCOFT WHAQ-SEEAME N B C VAakRg M

SAVED 4336145 11U 9 GFF

The first three examples invoke the same system command,)DIGITS,
since the first four letters of each of the command names are the
same; note that extending a command name beyond its unique form (four
letters) has no effect. In the fourth example, MYWORK serves as an
additional argument to the)SAVE system command. The fifth example
illustrates the inclusion of a series of parameters in the)(COPY com-
mand. Only WS40 is a required argument; the password and name list
are optional (see Section 5.4.1).

5,1.2 Action and Inquiry Commands

You can use APL system commands for two distinct purposes:
To obtain information - inquiry commands

To change the state of a workspace or operating environment -
action commands

Action commands cause some change in the state of the APL system.
Inquiry commands report on the state of the system but do not change
this state in any way.

SYSTEM COMMANDS

The)MON command is an example of an action command. To return to
operating system command level, specify the following:

y MO
MOFETOR S
@

The)SI command, on the other hand, operates as an inquiry command.
It reports the status of APL program execution. For example:

Y&
ERIMESE2] %

You can use many system commands as both action and inquiry commands.
The distinction between action and inquiry is made by the inclusion of
optional parameters. The)ORIGIN command is an example of a command
you can use in both ways. The)ORIGIN command can either (1) change
the index origin setting associated with an array specification
(action) or (2) return the current setting of the index origin
(inquiry) .

The first example below shows the use of)ORIGIN as an action command;
this command sets the index origin to 0 and also reports that the pre-
vious setting was 1. The second example shows the use of)ORIGIN as
an inquiry command; this command reports that the current setting of
the index origin is 0.

YOREGIMN O
wos

yORLGELIH

5.1.3 Workspace Characteristics

The APL system uses a buffer in your memory area to store functions,
variables, and values, information on the status of functions, group
descriptions, and any temporary results obtained while executing APL
statements. When available in memory, this buffer area is known as

the active workspace.

You can enter system commands that cause this active workspace to be
saved on a secondary-storage device; subsequently, you can load the
saved workspace into the buffer area to function as the active work-
space once again. The term "workspace" is used to refer to either the
active workspace or a version of an active workspace now saved in
secondary storage.

SYSTEM COMMANDS

Many of the system commands described in this chapter aid in changing
the status of a workspace. For instance, you can clear, save, load,
name, lock, and delete a workspace. You can also copy functions,
variables, and other elements from a saved workspace into an active
workspace and display their names. Workspace size, owner, and pass-
word information can be reported. As an APL user, you have extensive
control over the activity and characteristics of the workspace in
your system.

5.1.3.1 Workspace Names - Each APL workspace defined in your disk
area has a unique name associated with it. In the command formats
presented in this chapter, this name is represented by the parameter
"wsname". The workspace name has five distinct parts:

1. Device name

2. Filename

3. Extension or type

4, Protection code

5. Directory
Legal formats for these name components correspond closely to standard
TOPS-10 naming conventions and are summarized on the following page.
For TOPS-20 users not familiar with TOPS-10 conventions, refer to
Appendix D.)

bPart Format

Device name Maximum of six characters followed by a
colon (for example, MTA:).

Filename Maximum of six characters (for example,
TEST01). The rest will be ignored.

Extension or file type Period or comma followed by a maximum of
three characters (for example, .APL).
If you are using TTY mnemonics, you must
use a comma (for example, ,APL).

Protection code Octal number in the range 0 through 777,
enclosed in angle brackets (for example,
(<377>).

Directory Directory is a project-programmer num-

ber, enclosed in square brackets (for
example, [145,7231]). For TOPS-20 users
with directory names, use the TRANSIL
command to find out the project-
programmer number associated with a
directory name. (Refer to Appendix D
for more information on TRANSL.)

SYSTEM COMMANDS

Characters you use in device names, filenames, extensions, and types
can be A-Z, A-Z,A,A, and 0-9. An example of a complete workspace
name is:

DHKIMYWORK, AFL LS 1147y 321671

The system commands do not always require all five parts of the work-
space name in the command format. When you omit parts of the name,
the default values take over. These defaults are summarized in

Table 5-1.

Table 5-1
Workspace Name Defaults

Component Default
Device name DSK:
Filename Name of active workspace
Extension or type .APL
Protection code Installation-dependent
Directory Your directory

5.1.3.2 The CONTINUE Workspace - When you terminate an APL session
with the)CONTINUE command (see Section 5.6.2) APL saves your work-
space on disk and names it CONTIN.APL. The CONTINUE workspace is an
image of the active workspace as it existed at the time of termination.
It has the workspace name:

DSK:CONTIN.APL<std prot>[directoryl]

where
<std prot> is an installation-dependent standard protection code
[directory] is your directory

APL recognizes CONTIN as a special workspace. If a CONTINUE workspace
exists in your disk area, APL loads it as your active workspace when
you begin the APL session. This means that when you run APL instead
of having a clear workspace, you will automatically have the workspace
you saved with)CONTINUE. The CONTINUE workspace replaces any exist-
ing one on disk.

You can also backup your workspace periodically by setting the 04US
system variable to 1. Refer to Section 4.2.5 for more information on
gavs.

SYSTEM COMMANDS

When you)CALL something, your active workspace is in CONTIN.APL and
will start up at the line 1 plus the)CALL line.

5.1.3.3 Workspace Passwords - In addition to the unique name, each
APL workspace can also have a password associated with it. A password
begins with a hyphen and can have up to eight more characters. The
default is a hyphen (-). This is considered a null password. For
example:

Workspace passwords provide additional workspace protection. If you
want to use a password-protected workspace, you must specify the
password associated with that workspace before APL allows you to
retrieve it from secondary storage.

5.1.3.4 Groups - Various functions and variables in a workspace can

sometimes be easier to work with when they are treated as elements in
a single logical collection. This approach is aided by the "group"
concept in APL, which allows you to treat functions and variables as
logical entities. Several system commands are available that allow
you to define a new group, list the members of a group, add members to
or delete members from an existing group, erase or "undefine" a group.
See Sections 5.4.4 through 5.4.6.

5.1.3.5 The State Indicator - Every APIL workspace contains a status
vector known as the state indicator. This indicator stores informa-
tion on the execution of functions within the workspace. You can
obtain a report on the status of APL functions by issuing an)SI or
)SIV system command (Sections 5.4.8 and 5.4.9). These commands list
the contents of the state indicator, which identifies suspended and
pendent functions. A suspended function is one that has stopped
executing for some reason. A pendent function is one that contains a
call to a function that has not completed. The pendent function is
waiting for the called function to return.

If the state indicator is "empty", no functions are currently suspended
or pendent. The use of the state indicator in debugging and executing
functions is described in Section 5.4.8.

SYSTEM COMMANDS

5.1.4 APL Libraries

A special library facility is available through the APL system that
allows you to make your programs available to all APL users. You can
save programs in workspaces on a library device and subsequently allow
other users to retrieve them. All workspaces you store on a library
device must be assigned a library-device name as the device name por-
tion of the workspace name. A library-device name consists of the
characters LIB, followed (without intervening blanks) by an integer in
the range 1 through 999, followed by a colon. Some examples of pos-
sible library-device names follow:

Lok gy 3
LEXGAT S

LIEQOL S

The third example, LIB001:, is equal to both LIB1: and LIBO1:.
Workspaces specified with a library device do not have file extensions
or file types associated with them.
CAUTION
LIB: activates a special password sys-
tem, so if the library workspaces are

removed to another area, you might need
to rename them.

5.2 BASIC WORKSPACE-CONTROL COMMANDS

This section describes the basic workspace-control commands. These
commands allow you to manipulate APL workspaces in a variety of ways.
You can:

1l. Clear or name the active workspace

2. Delete workspaces when no longer needed

3. List the names of workspaces in your area or in a library

4, Specify, change, or return a password for a workspace

5. Save the active workspace on a secondary storage device and
retrieve it when required

SYSTEM COMMANDS

5.2.1)CLFAR - Clearing the Active Workspace

Command

YJCLEAR

Example

Y CLEAF:
CLEMAF WS

The)CLEAR system command closes all open files and clears the active
workspace by replacing it with a special workspace known as the clear
workspace.)CLEAR resets all the workspace constants to their defaults.
APL also gives you a clear workspace when you begin a work session un-
less you have the CONTINUE workspace (CONTIN.APL) in your disk area.

The clear worlkspace contains the default values for all workspace
related system functions:

1. Contains no functions, groups, or variables.

2. Has an index origin of 1 (0r10).

3. Has an output line length determined by the operating system
width specification. You can change the output width with

OPWw. See Section 4.2.16.

4. Displays numbers with 10 significant digits. This output
precision can be changed with [PP. See Section 4.2.15.

5. Has a clear symbol table and state indicator.

6. Has the name CLEAR WS
Cannot be saved without being given a name with either)WSID,
or)SAVE.

7. Has the null password hyphen (-).

8. Requests quad input with the message []: followed by a
carriage return/line feed and six blanks., (OSF)

APL uses a symbol table to record function, variable, and group names
and constants. The size of this symbol table expands as new names are
specified and is limited only by the size of the workspace.

SYSTEM COMMANDS

5.2.2)DROP - Deleting Stored Workspaces or Files

Command

YDROP wsname ﬂswitch—listﬂ

Examples

YOO LMY B30
PIIBIIO LN Y
JLLE TEST,

LHK 3

TE

EET, B20
TEST MAOC
YOFROF TEST , %

RO F BB ¢

TEST , AXl

. T
T EB20
TEGT MaC
Pri6314 GO

The)DROP system command is an action command that deletes stored
workspaces or files.)DROP can delete any system file for which you
have the necessary protection privileges. You can erase one, several,
or all of the files on a directory device. To delete a single work-
space or file, specify the.name as the parameter. As described in

the)LIB command, Section 5.2.3, you can use an asterisk as a wildcard
designator. If you use the asterisk, APL lists the deleted files. 1In
both cases, APL displays the time and date of the)DROP request.

You can also include a switch-list in the)DROP command string. These
switches are the same as the ones listed in Table 5-2. If you include
a switch,)DROP displays the information applicable to the file just
prior to its deletion. For example:

YRR WHEQ SR

10 v &
L

P W L)

The example above displays the number of blocks freed by deleting the
workspace named WS9.

On TOPS-20, the file is deleted but not expunged.

SYSTEM COMMANDS

5.2.3)LIB - Listing Workspace Names

Command

YLIB ﬂwsnameﬂﬂswitch-lisﬁﬂ

Examples

JLOL g

DSK S

YHAVE WS40
14356323 11-Ul-79 | FGS
y L EE
DHK S
AlF
CHEE
GEORGE
P L M E

WS40

YHAVE WS40, VAR
143257132 11-JUL-29] FGS
YLLE WS40, &
NGK
w340
WS40, Vak

JLLE &, &
LK
AL FHA
CHAF:
GEORGE
LOGIH, CMD
LOGE M, EHE

R T ME
ws40
W& 40 , VAR
FLEX LLOGEN, M /¥
LB EL.KS
HK Y
L.OGLH , CMD 1
1

The)LIB system command is an inquiry command that displays a list of
workspaces in your disk area.)LIB assumes that any file in your disk
area with the extension or file type .4PL, contains a workspace.

You can use the)LIB command to list the names of all or selected
files on any directory device. These files need not be APL workspaces.

SYSTEM COMMANDS

If you specify the wsname, you can specify the filename or file type
to be displayed. You can identify a particular file or use the
"wildcard" character, the asterisk, to substitute for the filename
and/or extension or type. The asterisk matches any name. For example,
this command lists the names of all files that have WS40 as their
filename:

JLooE WHEAQ,

This command lists the names of all files on device DSKH:.

L DEKM Yy, X

The optional switch-list parameter is used to obtain information about
files on directory devices. A description of all switches supported
with the)LIB command are listed in Table 5-2. You can specify more
than one switch, but each switch must consist of a slash(/) followed
by one of the letters shown in the table. The information returned is
displayed on the same line as the filename.

Table 5-2
)LIB Switches

Switch Meaning

/A Access: the date the file was last read (disk only)

/B Blocks: the number of blocks required for the file
(Divide the number of blocks by four to determine
pages.)

/C Creation: The creation date of the file (disk only)

/L Long: same as typing /B/P/C

/M Mode: the mode in which the file was written (disk

only); TOPS-10 only

/N No header: suppresses printing of the display header
line
/P Protection: the protection code associated with the

file (disk only)

/T Time: +the creation time of the file (disk only)

SYSTEM COMMANDS

5.2.4)LOAD - Retrieving a Workspace

Command

YLOAD ﬂmagtape—positionﬂ wsname ﬂpasswordﬂ

Examples

ILOAD WS35

BOVED 153149156 11-JIU79 DK
YLOAD LIE] §AFLSE

BOVED QIEDIEY | X-BEF.TY 4K

G AVE T 7Y e

SNV EL XD TR YD G0 I G T | o Ay 1 S -4)
R ARW I3 4\.) ¢ N A O b

The)LOAD system command is an action command that retrieves a work-
space from a secondary storage device. When you load a workspace, it
becomes your active workspace, replacing the currently active work-
space and destroying its contents. You must specify the name of the
file in order to retrieve it. However, APL assumes the rest of the
wsname; that is, it assumes .4APL as the file type or extension, disk
as the storage device, current user directory and a null password (-).
If a password was submitted when the workspace was saved, you must
specify it, or APL will not retrieve the workspace.

If the workspace is stored on magnetic tape, you can specify the num-
ber of tape marks to skip before APL tries to load the workspace. The
magtape position is an integer corresponding to the number of end-of-
file marks to skip on the tape.

When you load a workspace the)L0OAD system command responds by dis-
playing the word SAVED, followed by the time and date when the work-
space was saved, followed by the size of the newly active workspace.
If the newly active workspace contains a suspended function, APL also
prints an asterisk (*).

The QLD system function, Section 4.3.9, performs the same operation
as the)LOAD command, except without verifying messages.

SYSTEM COMMANDS

5.2,5)PASSWORD - Determining the Workspace Password

Command

YPASSWORD ﬂpasswordﬂ

Examples
YEASSWORD - SESAME
WAS
YFASSWORD
G EGAME

FOSSWOR ..
WAS -~ GESAME
YFASHWORD

The)PASSWORD system command allows you to either display the current
password associated with a workspace or change the password. The
password parameter you supply must begin with a hyphen and can contain
up to eight more characters from 4-Z, 4-Z:; A, A, 0-9; the first char-
acter after the hyphen must be alphabetic (4-Z2, A-Z, A, A). The
default or null password is a hyphen (-).

5.2,6)SAVE - Saving a Copy of the Active Workspace

Command

)SAVE ﬂmagtape—positionﬂﬂﬁsnameﬂﬂpasswordﬂ

Examples
YWE LD
CLoE Yl Wi
) HOAVE
&I OWE HOT
YWE X
Wer s CL.f (TR
) HAVE
16208140 LU0 o FGE WERG 14,2040

IWEHLL WEO

~PE 1 FGS WS10 [42040]

) WE T
WOS WE10 L4y20470

YHEAVE WH1 (0
HO WE MOT SAVED, THIS WORKSEFOACE 1% WSI0 [4y2047

YWEIL WHXEH
WaG WEIX0 420471

The)SAVE system command is an action command that saves a copy of the
active workspace on a secondary storage device. The saved workspace
can be stored as a file on disk, DECtape!, or magnetic tape.

!Some systems do not support DECtapes. Check with your System
Administrator.

SYSTEM COMMANDS

The)SAVE system command assumes that you want to save your active
workspace on disk. All three parameters in the command string are
optional. If you specify a wsname,)SAVE stores the active workspace
under that name. The default wsname is the name of the currently
active workspace. In both cases, the file type or extension is .A4PL.
The protection code is the standard one for your installation. As
shown in the first example, APL will not save a clear workspace. If
your workspace is clear, you must use)WSID to give it a name before
you can use the)SAVE command.

If you are saving a workspace on magnetic tape, you can also specify
the position at which the save is to start. The magtape-position
parameter in the command string is an integer representing the number
of end-of-file marks you want to skip before the save begins. If you
omit this parameter, APL makes no attempt to position the magnetic
tape. For example:

FYEAVE X MTOAL WS

16126849 1 1-IULa79 3 BLKE

In the example above, APL skips three tape marks before it starts to
save the workspace.

When you save a workspace, you have the option of saving it under its
current name (check the)W¥WSID) or renaming it. However, you cannot
save a workspace under a name that already exists in your storage area
unless the)WSID is that name. APL refuses to save the workspace. If
you specify a new name with the)SAVE command, you not only store your
active workspace under that name but also change the name of the cur-
rently active workspace to the new name specified.

NOTE

If your current)WSID is the same as a
workspace you have already saved and you
save it under this name, APL overwrites
the old file with the new one.

The)SAVE system command also provides the option of specifying a
password for your workspace. The default is a null password (-).
Subsequently, you must know the password of the workspace to retrieve
it from storage.

If you interrupt a function execution by typing two CTRL/Cs and then
save your workspace, the function is suspended in your storage area.
Therefore, when you load this workspace, the function does not con-

tinue automatically

The)SAVE command responds by displaying the time, date, and amount of
space required to store the workspace. If you have not included the
wsname, APL also displays the current name.

SYSTEM COMMANDS

5.2.7)YWSID - Identifying the Active Workspace

Command

YWSID stnameﬂﬂpasswordﬂ

Examples

JWHID X HBRIMTWORK , OFL
WESE LA W
YWHILX
MTWORK [4s 2047
YWEEL MTHY S
WAS MTWORK [4,2047
YWE LT
MTOLIMTWORK 4y 204
YWHELL Ay 3110
WS MTM] IMTWO K T 4e204)
WHED
MTWORK [4y3117

The)WSID system command can be used as either an action command or
inquiry command. As an action command,)WSID allows you to change the
name and password of the active workspace. As an inquiry command,

JWSID returns the name of the active workspace. When you use)WSID as
an action command, you must specify the wsname parameter. However,

you need not specify the entire name. APL uses the defaults listed in
Table 5-1. With)WSID you can also specify a password parameter. This
causes the password associated with the active workspace to be changed
to the specified password. The)PASSWORD system command (Section 5.2.5)
allows you to change only the password.

As shown in the examples above, the)WSID system command returns a
workspace name when used either as an action command or as an inquiry
command. When)WSID returns a workspace name it always returns the
workspace filename. Those additional parts that are the same as the
defaults are not displayed. The password is never displayed with
YWSID.

5.3 EXTENDED WORKSPACE-CONTROL COMMANDS

This section describes a variety of system commands that extend the
basic workspace-manipulation functions detailed in Section 5.2. These
commands can be used to:

1. Determine the maximum and minimum size of the active workspace

2. Report workspace owner and version information

SYSTEM COMMANDS

3. Turn the workspace lock on and off to control access by other
users

4. Report how long the active workspace has been in use

5. Determine how large the active workspace would be on a
secondary storage device

5.3.1)YMAXCORE - Determining the Maximum Workspace Size

Command
YMAXCORE {K—of—memory
P-of-memory
Examples
ATOF &S0
Y MOARCOFRE
20k 176K
YMAMCORE %0
WAs 20K
ATOESG..20
408 B
YMAXCORE 70
Was 40

The)MAXCORE system command can be used as either an action command or
an inquiry command. As an action command,)MAXCORE changes the cur-
rent setting for the maximum workspace size to the amount you specify
and displays the previous setting. As an inquiry command,)MAXCORE
should be typed without a parameter; it returns the current maximum
workspace size and the system memory limit for the data segment.

The standard APL default is 20K words for the data segment on TOPS-10
and 40P words on TOPS-20. The maximum value for K-of-memory is either
176K words or the system memory limit, whichever is smaller. The
maximum value for P-of-memory is 352P words. Note that you do not
type P or K in the command string.

SYSTEM COMMANDS

5.3.2)MINCORE - Determining the Minimum Workspace Size

Command

JMINCORE H K-of-memory
P-of-memory H

Examples

a YOS 0
3 MO OFE

0K
YMEIMCORE {0

was oK

ATOF S0
3 MO E

OF
YMILHCORE 3%
Was OF

The)MINCORE system command can be used as either an action command or
an inquiry command. As an action command,)MINCORE changes the cur-
rent setting for the minimum workspace size to the amount you specify
and displays the previous setting. As an inquiry command,)MINCORE
should be typed without a parameter; it returns the current minimum
workspace size. The standard APL default on both operating systems

is 0. Note that you do not type P or K in the command string.

NOTE

APL does not allow you to specify a
minimum workspace size that is larger
than the setting of)MAXCORE.

The)MINCORE system command is very useful in dealing with very large
arrays or with operations requiring large amounts of intermediate
storage that cause the workspace to expand and contract.)MINCORE
causes APL to retain at least the amount of memory specified and thus
to speed up operations by precluding the frequent acquisition and
release of large blocks of memory.

SYSTEM COMMANDS

5.3.3)OWNER - Identifying the Owner of a Workspace

Command

JOWNER

Example

3 OWREF
CREMTED QN | 2-JUL-720 BT [4,204] AT TTrosn

The)OWNER system command is an inquiry command that displays infor-
mation about the creation of the currently active workspace.)OWNER
returns the date on which the workspace was created, the directory of
the creator of the workspace, and the terminal number of the device
at which it was created.

5.3.4)SEAL - Turning the Workspace Seal On or Off

Command

)SEAL[[{ gzl\;F}Il

Examples

HE AL
OF

yHEAL O
was OFF

The)SEAL system command is both an action command and an inquiry
command. When you use it as an action command, you can turn the work-
space seal (lock) on or off. The default setting is OFF. When the
workspace seal is on, only the user who turned the seal on can copy
objects from the workspace or turn the seal off. The)SEFAL command
has no effect on the)LOAD command.

As an inquiry command,)SEAL without a parameter returns the current
setting of the seal.

SYSTEM COMMANDS

5.3.5)SIZE - Reporting the Workspace Size

Command

)SIZE

Examples

ATOF S0

B

. - ey e
KD OBLKS

The)SIZE system command is an inquiry command that displays infor-
mation on the size of the active workspace.)SIZFE returns two numbers:
the first is the current size of the data segment, the second is the
amount of disk space that would be required to store this workspace

if it were saved in its present state.

5.3.6)TIME - Reporting the Time Used

Command

)TIME

Examples

) QLA
CLE @GR W
YT EME
COMMECTE OO0 I0A CFW TIME Q:OQ000
VOO PR ME
EANVEX LATEREEY L) dte PO Ry
) T IME
COMMECTED 0318210 CFU TIME 000103

The)TIME system command is an inquiry command that reports the amount
of connect time and CPU time accumulated while the currently active
workspace has been active. This command is useful in determining the
amount of time expended by programming projects. The time begins to
accumulate when the workspace is created as a clear workspace, and runs
until the session is terminated or the current workspace is saved.

The)COPY command does not affect the time accumulation.

SYSTEM COMMANDS

5.3.7)VERSION - Displaying the APL Version Number

Command
YVERSION

Examples

Y VB T OM
20410

The)VERSION system command is an inquiry command that displays the
APL version number with which the currently active workspace was last
saved. If your workspace is a clear workspace, APL prints the current
version of the interpreter, in the format ver (edit#) where edit is in
octal.

5.4 WORKSPACE-CONTENT COMMANDS

This section describes the system commands that examine and control
workspace elements such as functions, variables, and groups. The
following operations can be performed:

1. Copy variables, functions, and groups from a stored work-
space, and erase these elements from the active workspace
when desired

2. Display a list of functions defined in the active workspace

3. Collect named objects into a group, disperse the group, dis-
play the members of the group, and display a list of groups
defined in the active workspace

4. Display the APIL state indicator to report on the execution of
functions in the workspace

5. Display a list of variables defined in the active workspace

SYSTEM COMMANDS

5.4.1)COPY - Copying Objects from a Workspace

Command
JCOPY wsname Hpasswordﬂﬂnamed—object-listﬂ

Examples

YCORY AVEFR

15145303 24-0CT-78 35F
YCOFY OVER X

BOVED 5145103 24-0CT-78 FHE
YCOQFTY OAVER ©

SAVED 15145103 24-00T-78 FHE

OXJEQTS MOT FOWRD o

HAVE

The)COPY system command is an action command that retrieves functions,
variables, and groups from a stored workspace and places them into
your active workspace. If there is a password associated with the
workspace, you must include it in the command string. You have the
option of copying all the named objects in a workspace or a subset of
them. The named-object-list identifies the specific objects to be
copied. 1If you omit this parameter, all user-defined functions, vari-
ables, and groups are copied.

)COPY does not transfer local values for variables and functions, nor
does it copy the state indicator, the width, origin, and significant-
digits setting. Only global values of user-defined objects are copied,
since a)COPY writes a fresh user symbol table. That is, if 4 is a
local variable with a value of 3 and a global value of 15, APL copies
the global value 15. Also, if your active workspace contains objects
with the same name as those in the copied workspace, APL replaces the
global values in your active workspace with the copied ones. For
example, if B is a variable in the active workspace with a global
value of 10 and a local value of 5, and the workspace being copied

has a variable B with a global value of 20 after the)COPY, the active
workspace will have a variable B with a global value of 20 and a local
value of 5. Objects that have the same name in both workspaces but
are pendent functions or functions still being defined are not replaced.

When you copy a group, all members of the group are copied along with
their values. However, if a member of a group is itself a group, APL
copies only the group names and not the values from this level.

If you specify an object that is not located in that workspace, APL
returns a message OBJECTS NOT FOUND.

The)COPY command is the same as the [0QC0 system function except that
[JQc0o does not display messages to confirm that the copy was success-
ful. See Section 4.3.9 for [RC0 information.

SYSTEM COMMANDS

5.2.4)ERASE - Erasing Global Names

Command

YJERASE name-list

Examples
Ae 3 4
®
23 4
YERASE A
[
11 VALUE EREOFR
I
A
vk F
[JERASE F
HOT ERASEDY =
K11

The)ERASE system command is an action command that erases global
names from the active workspace by undefining the functions, vari-
ables, and groups specified in the name-list parameter. You can
undefine a suspended function but not a function in the process of
being defined. If you specify a group name, then the group name is
erased from the active workspace along with the members of the group.

If a member of the named group is itself a group, the group name is
erased but the members of the subgroup remain intact. For example:

YFNS
Y Cos O AM FADTUS SLH TR
yGRE TRIG
CIRCLE 008 Y T
YGRF CIRCLE
ARG XL M FODEUS
YERASE TRIG

TRIG
T P OFAME T ELF
RO)

AN
CIROLE
20 THCORFRECT FARAMETYEFR
y G GG E
P

Y B
oF Xk M BN TS

The)ERASE command does not distinguish between pendent functions and
other functions. You should avoid erasing pendent functions because
of problems you could create. APL attempts to alleviate such problems
by displaying the following message after performing the)ERASE
operation:

13 POSSIELE $1 DOMAGE

SYSTEM COMMANDS

This warns you that remedial action might be required before execution
of the function continues. (SI refers to the state indicator.)

Note that)ERASE leaves a slot in the symbol table for the erased name
(symbol). Although you erase a symbol, the slot in the symbol table
still exists. If you reuse a name that was in the symbol table, APL
places it in the same slot where it was before. If you do a)COPY of
the workspace, APL rebuilds the workspace thus erasing the slot as
well. as the symbol.

5.4.3)FNS - Displaying a List of Functions

Command
YFNS ﬂletterﬂ

Examples

YE MG

L F ML K iy Ly L. 4
YFMG K

X LMy LSRR

The)FNS system command is an inquiry command that displays an alpha-
betic list of global names used as user-defined function names
(Chapter 6) in the active workspace. The optional letter parameter
identifies the letter at which the alphabetic listing is to begin. If
you omit the letter the entire set of global function names is dis-
played.

5.4.4)GROUP - Defining or Dispersing a Group

Command
)JGROUP group-name ngoup-member-listﬂ

Examples

YOGROURF FERARCLIAL THYT FUTWUAL FRESVAL
YGEEQUE FEMOMOQLNL TOM BT MNAMNCEMNL

YGEEQUF FEMHAMCEMAL
YOFROUE FLIMRAMNCL AL

“

The)GROUP system command is an action command that places a collec-
tion of named objects under one group name and can disperse an exist-
ing group. The objects can be variables, functions, and other group
names. The)GROUP command is used primarily with the)COPY and
YPCOPY commands. After collecting a set of functions and variables
under one group name, you can specify this name in a)COPY or)PCOPY
command to copy the entire collection at one time. In the first
example above, the functions and variables named INT, FUTUAL, and
PRESVAL are collected into a group named FINANCIAL.

To add a new member to an existing group, you must list the groupname
as an element in the member list. This is illustrated in the second
example where the variable T4AX is added to the group named FINANCIAL.

SYSTEM COMMANDS

To disperse a group, specify the group name without a group-member-
list. The group name will no longer be defined but the individual
members of the group still exist under their original names. The
third example above disperses the group FINANCIAL.

A group name is always global; you cannot localize it. For example:

A
Kee
L O
[g 'Y GEOQUF O A ¥
L2 ¥
58
DA ¢ MOT GROUWFED, MOAME IM USE
) EROUR N R

e

5.4.5)GRP - Displaying the Members of a Group

Command
)GRP group-name
Examples
YOEREOUE FERARCEMOL LR FUTWOL FRESVAL

LHT

The)GRP system command is an inquiry command that displays the mem-
bers of the group named in the command string. The members are
listed in the order in which they entered the group.

5.4.6)GRPS - Displaying a List of Groups

Command
)GRPS Hletterﬂ
Examples

) G B

FIHAMNC T AL EHVEMTORY
Y GFE G

ERVEMTORY

The)GRPS system command is an inquiry command that displays an alpha-
betic list of global names you specified as group names in the active
workspace. The optional letter parameter identifies the letter at
which the list is to begin. If you omit the letter, the entire set

of group names is displayed.

SYSTEM COMMANDS

5.4.7)PCOPY - Copying from a Workspace with Protection

Command
YPCOPY wsname ﬂpasswordﬂﬂhamed—object listﬂ
Examples

A 20

FLUSEOWe 40
YECOFT MTWORK F PLUSKOW FRIMES O
EAVED 10124130 1 2-UL-79 FEF
HOT GO TEX S) Bl U 5 OW
YECORT MTWORK G & F
10824130 12U ZEF
MOT FOUMDS G
COFLEDS [

The)PCOPY (protected copy) system command is an action command that
performs in much the same way as the)COPY system command. However,
JPCOPY protects you from accidentally replacing objects in your active
workspace, that is,)PCOPY does not replace objects in the active
workspace with objects of the same name in the copy workspace. In-
stead, APL returns the message NOT COPIED: along with the names of the
objects involved.

When copying groups, the)PCOPY command does not copy any members of
the group that have the same name in the active workspace. If the
group name itself is the same as a group name in the active workspace,
APL does not copy the group name but does copy any member of the group
that does not have the same name in the active workspace.

Named objects that cannot be found in the copy workspace or cannot be
copied are displayed as shown in the examples.

The)PCOPY system command operates the same as the [0QPC system function

except that 0QPC does not return messages to verify the success of the
copy. See Section 4.3.9 for information on 0OQPC.

5.4.8)SI - Displaying the State Indicator

Command
)SI

Examples

Ael]

s

The)SI system command is an inquiry command that displays the state
indicator of the active workspace. The state indicator contains the

5-25

SYSTEM COMMANDS

status of the execution of user-defined functions in the workspace.
By analyzing the)SI listing, you can determine such function-status
conditions as the following:

1. suspended functions (*)

2. pendent functions

3. pending quad input requests

A bracketed line number following the function name indicates the line
at which the function stopped executing. An asterisk following the
bracketed line number indicates that the function is currently sus-
pended. If there is no asterisk, the function is a pendent function
(one awaiting the return of a called function).

Instead of a line number, the)SI display can contain only an asterisk
(*), a quad character (0O), In this
case, an asterisk indicates that a suspended function has been erased.
A quad character indicates pending quad input. An execute function
indicates an execute operation.

The order in which functions are displayed in the)S5I list is signi-
ficant; the function that was most recently active is listed first.

5.4.9)SIV - Displaying the State Indicator and Local Variables

Command
)SIV

Examples

=2 ® i I ¥
GEET x T i o o

The)SIV system command is an inquiry command that acts much the same
as)SI. However,)SIV also displays a list of variable names local to
the halted function including localized system variables. The)SIV
command displays the status of pendent and suspended functions, pend-
ing gquad input requests, and operations involving the execute operator.
Unlike)SI,)SIV also displays the current line of any pending execute
string.

SYSTEM COMMANDS

5.4.10)VARS - Displaying a List of Variables

Command

yvars [[1etter]

Examples

YUARS

8] KX) K 123
yVAFRYS K

K &)

The)VARS system command is an ingquiry command that displays an alpha-
betic list of global names used as variable names in the active work-
space. The optional letter parameter identifies the letter at which
the listing is to begin. If you omit the letter, the entire list of
global variable names is displayed. Local variables are not listed.

5.5 WORKSPACE-ENVIRONMENT COMMANDS

This section describes a variety of system commands that allow you to
control the characteristics of the workspace environment. These
commands can be used to:

1. Specify the maximum number of significant digits to be
displayed

2. Determine the index origin setting

3. Determine the terminal output mode, displaying error lines,
setting terminal tab stops

4, Set or return the width of the output line

5.5.1)DIGITS = Determining the Output Precision

Command

YDIGITS ﬂnn

Examples
YLLGEYS
10
1234547891 2B4B4789
1. 234546789
YOLG 5
WAs 10
1. 234567891 234546789
12344

SYSTEM COMMANDS

YN EG
Wes 5
1. 234567891 23456789

1.2

The)DIGITS system command is both an action command and an inquiry
command. As an action command,)DIGITS allows you to specify the
maximum number of significant digits you want APL to display for
noninteger output only. As an inquiry command,)DIGITS displays the
current setting. The parameter n can be from 1 to 18; the default
setting is 10.

APL rounds off a number if it has more digits than the current
setting.

The)DIGITS system command does not affect the precision of internal
calculations or the display of numeric constants. The setting is
preserved when you save the active workspace.

The)DIGITS command performs the same operation as the [OPP system
variable (Section 4.2.15).

5.5.2)ECHO - Determining Error Line Echoing

Command

YECHO [[{%F}ﬂ

Examples

ECHO
O

SYSTEM COMMANDS

YEQHQO QFF

The)ECHO system command is both an action command and an inquiry
command. As an action command,)ECHO allows you to select whether or
not to have APL echo statements that contain errors. As an inquiry
command,)ECHO returns the current state of echoing. The parameter is
either the word ON or the word OFF. The default is ON.

The g status is pres

ved when the active workspace is saved.

5.5.3)MODE - Determining the Terminal Output Mode

Command
YMODE {ESCAPE }
KEYWORD
Examples
YMODE
KEYWORD

YMODE ESCARE
WAS KEYWORD

AL RARKBKRZ

A
AR

YMONE KEYWORD
WAs ESCAPE

A

AL RU

The)MODE system command is both an action command and an inquiry
command. As an action command,)MODE allows you to select the mode of
output on terminals that do not have an APL character set (see Section
1.3). As an inquiry command,)MODE displays the current setting.

The parameter can be either the word KEYWORD or the word ESCAPE.

Either word can be abbreviated to one letter.
output, @p, @K, @Q, @Y, print as *, ', 2, ©

This setting has effect only if you responded
prompt, at the beginning of the session, with

The mode setting is preserved when the active

5-29

In ESCAPE mode, on
The default is KEYWOERD.
to the TERMINAL..

TTY.

workspace is saved.

SYSTEM COMMANDS

5.5.4)ORIGIN - Determining the Index Origin

Command

YORIGIN ﬂnﬂ

Examples

yOEL G

The)ORIGIN system command is both an action command and an inquiry
command. As an action command)ORIGIN allows you to change the
setting of the index origin for array operations and returns the
previous setting. The parameter "n" can be either 0 or 1. The de-
fault setting is 1. As an inquiry command,)ORIGIN displays the
current setting.

The effect of the)ORIGIN command is to renumber the elements of
arrays to begin at 0 or 1, depending on the setting. This command is
particularly relevant when used with the 1 function. (Sections 3.3.10
and 3.3.11.) The index origin setting is saved when the active work-
space is saved.

The)ORIGIN system command performs the same operation as the [OI0
system variable (Section 4.2.11).

5.5.5)TABS - Determining Tab Stops on the Terminal

Command
)TABS [[n]]

Examples

YTARS
0

YTAES @
was ()

The)TABS system command is both an action command and an inquiry
command. As an action command,)TABS sets the increment between tab
settings for APL output. As an inquiry command,)TABS returns the
current tab setting. The integer parameter "n" specifying the tab
increment can be from 0 to the page width. The default setting is 0.

SYSTEM COMMANDS

If you reset the page width with either the [PW system variable
(Section 4.2.16) or the)WIDTH command (Section 5.5.6), the)TABS
setting is reset to the new page width.

For example:

“ [
72

YTOXSE 70
was g

[W e ¥ ()

YT OB
50

FWELTH 4%
Was S

PRNAY
4%

The asterisk in the above example indicates that)T4BS has been reset.

NOTE

The)TABS system command is designed for
use on terminals with physical tab stops.
The tab setting is not saved with the
active workspace.

APL will output a TAB instead of a string of blanks if the next non-
blank character to output comes after a tab stop.

5.5.6)WIDTH - Determining the Width of the Output Line

Command
YWIDTH ﬂnﬂ
Examples
WL
72
vl
1 23 495 &7 89 10 11 12 13 14 15
YWILTH
Was 7oK

1S

123 45 67 89 10 11 12 13
14 1%
YWELIYH

The)WIDTH system command is both an action command and an inquiry
command. As an action command, you can set the maximum number of
characters that can appear in an output line and display the previous
setting. As an inquiry command, the)WIDTH command returns the

SYSTEM COMMANDS

current width of the output line. The parameter "n" must be an
integer within the range 30 .through 390. The default is determined
by the system width setting. You can change the system width for
your current job at operating system command level by using:
@TERMINAL WIDTH I TOPS-20
.SET TTY WIDTH {TOPS-10
The)WIDTH system command does not affect the display of messages on
the terminal or the allowable length of input lines. The width set-
ting is preserved when you save the active workspace.

The)WIDTH system command performs the same operation as the [0OPW
system variable (Section 4.2.16).

5.6 APL TERMINATION COMMANDS

This section describes the various system commands that can terminate

arn APL session. You can exit from APL in a variety of ways. You can
1. Terminate the session, save the active workspace, and run a
program
2. Terminate the session and save the active workspace
3. Return to system command level

4., Terminate the APL session, optionally returning to system
command level

5. Terminate a session and run a program

5.6.1)C and)CALL - Running a Program and Returning to APL

Command
)¢ Hnﬂ file specification-
YCALL ﬂnﬂ file specification
Examples

YyraLL, TS SFORTRA
Xy TTYS = TTY3

EI
oy

MATN. FORTRAN V. SA60621) /KX P2 JUL-79
FaGE 1

20001 L=
20002 ENI

SURFROGRAMSE CALLED

5-32

13100

SYSTEM COMMANDS

SCALARSG AN ARRAYS L "%* NO EXFLICIT DEFINITION - "%* NOT REFERENCED 1
X1 1

MAIN. ONQ ERRORS DETECTER 1

¥ RUNTAFLSF /RUNOQFFSET L

TERMINAL . LA

AF L2 DECETETEM.20 AFLSE 2(419)

TYYR0Y 13201133 THURSHAY 12wlUl-79 MASELLO [4s2047
CLEAK WS

The)C and)CALL system commands perform the same operation as)R and
JRUN except that)C and)CALL also save your active workspace as
CONTIN.APL. They also write an APL .TMP file (nnnAPL.TMP) or .TMPCOR
file so that, if APL is subsequently run with a CCL linkage, the
processor is able to determine the terminal type from the file written
and does not prompt you with TERMINAL...

The difference between)C and)CALL is the default device searched.
The)C command defaults to S$YS:. The)CALL command defaults to DSK:.

5.6.2)CONTINUE - Saving the Workspace and Ending the Session

Command
)CONTINUE |IH0LD]]

Examples

YOO EHUE HOLX
@IAHIEF 12 JULTH D BLKE
TYT44 PEIHIHA L2 IUNL-T79
COMMECTEY D301 49 CFUTEME 0:00:00
B OFERATLOMS
(SRS

KEL -0

EXLT

The)CONTINUE system command is an action command that ends an APL
session after saving the currently active workspace.)CONTINUE
operates the same was as)OFF (displaying the same statistics) except
that before ending the session)CONTINUE saves the active workspace in
your disk area under the name CONTIN.APL. The workspace is saved

only if it is indeed active, that is, contains at least one symbol in
the symbol table. The saved workspace replaces any other disk file
that you previously saved with the name CONTIN.APL.

The next time you begin an APL session, instead of a clear workspace,
you will receive the CONTIN.APL workspace as your active workspace.

The HOLD parameter returns you to operating system command level
after ending the APL session.)CONTINUE not only prints the same
summary information as the)OFF command, but also displays an initial
line that specifies the time, date, and size of the saved workspace.

SYSTEM COMMANDS

5.6.3)MON - Returning to Operating System Command Level

Command
YMON

Examples

ATOF G0
Y MO

MOMITOR

AU QT L HUE

e

ATOFS. 10
¥ MO
MORLT O ¢

S REENTEFR

(15 WYL 4

The)MON system command is an action command that returns control to
operating system command level. The)MXON command does not save the
active workspace as the)CONTINUE HOLD does. Therefore, if you in-
tend to return to APL and save the workspace, be careful not to destroy
your memory image while at command level. This could occur if you
issue a command that runs a program.

You can return to APL by typing the operating system command CONTINUE

or REENTER. For more information on returning to APL, refer to
Section 1.4.4.

5.6.4)OFF - Terminating the APL Session

Command
JOFF HHOLDH

Examples

yOFE

5840122 13U 7Y

O 00034 CFU TIME 00001

5 OGTAOTEMENTS & OFERATIONS

KILLED JOB 16y USER MASELLAy ACCOUNT APy TTY 22y
AT 12-JH. 29 15140822y USEIN 02081 IN 030342

TTERR)

YOFE O
TYTR2) 15341318 12-IUL-79
COMH 0100119 CFU TIME 0100:00
£ HTOTEMEMTES (§ OFEROATIE ars

EXIT
@

The)OFF system command is an action command that terminates your APL
session. If you specify the HOLD parameter, APL terminates your

5-34

SYSTEM COMMANDS

session and returns you to operating system command level. Without
the HOLD, APL not only terminates your session but also logs you off
the system.

The)OFF commands outputs several lines of information before termin-
ating the session. The lines contain the following:

1. Your terminal identification

2. Current time

3. Current date

4. Length of time connected to APL

5. Amount of computer CPU time used

6. Number of statements

7. Number of operations executed

8. Kilo-core-seconds-used (TOPS-10 only)

The)OFF command destroys the currently active workspace.

5.6.5)R and)RUN - Ending the Session and Running a Program

Command
)R Hnﬂ file specification
YRUN Hnﬂ file specification
Examples

YRR DEKETEST

YEOFOFRTE O

The)R and)RUN system commands perform essentially the same function
as)OFF HOLD. They terminate the current APL session and return you
to the operating system, but unlike)OFF HOLD, they also run the
program you specify as the filespec in the command string. The file
you specify must contain a program ready to run, that is, a program
with a file extension or file type of .EXE. The optional parameter
"n" is an integer value that is added to the starting address of the
file to be run; this facility is useful when starting from alternate
entry points (for example, CCL entry points are equal to 1).

The)R and)RUN commands do not save the currently active workspace
nor the reentry point to APL before ending the APL session. TIf the
program you identify cannot run for some reason, you will be at
operating system command level.

SYSTEM COMMANDS

The difference between the)R command and the)RUN command is the
default device that is searched. The)R command default device is
SYS:. The)RUN command default device is DSK:.

5.7 MISCELLANEOUS COMMANDS

This section describes the additional system commands that perform such
tasks as the following:

1. Generating a mask to protect confidential data

2. Displaying a record of activity during the current APL
session

5.7.1)BLOT - Generating a Mask

Command
)BLOT ﬂnﬂ
Examples

YELOT X0
GROLENWNBLEMRERMNDGHEEREREGRNARM K

The)BLOT system command is an action command that generates a mask in
a random pattern to conceal confidential input such as passwords. The
optional parameter "n" specifies the length of the mask. If you omit
the parameter, the default length is 25 characters.

5.7.2)CHARGE - Displaying API, Session Information

Command
)CHARGE
Examples
5 O AT G B
18343239 12

STED 03008
) BTaY EMEMTE) OFE

S R G
CEUTIME 0100300
LEYTE QRS

The)CHARGE system command is an inquiry command that displays a
record of activity during the current APL session. Information to be
displayed includes the statistics as the)OFF and)CONT commands
display:

1. connect time
2. CPU time

3. number of APIL statements

SYSTEM COMMANDS

4., number of operations executed

5. kilo-core seconds (TOPS-10 only)

0L &
em c

S
= i

o
L
o

3&‘@ o

- £ : ‘
i o s o i i : i
o . - -
a . o -
. o

o - 4 - i G
5 » i v : s

o
.

L
.
e e

s

C
. e
€ (ﬁ% zé‘;.,“*ﬁ o
L -

i N |: 3 BR
L e s e s i o
s
G B a e i
é’g‘ga\& i (iﬁ&ss?g%ﬁg - - S
i L piit i %
L =

St e o o L o
it e Eﬁ”i&@ L e L e
&%j ﬁ; | égj s i s . M?& “N;%gfﬂhiinsg%

dhn e
o
= vk

e

o ona
- .

i i i
L 5 2k ks
o Sl - .
et o o : “i?gﬁ i
dhme
L
: e : . L o
s o . e . .
i e 5 oL
.
W

de
b

Rl

SYSTEM COMMANDS

CHAPTER 6

DEFINING AND EXECUTING FUNCTIONS

6.1 INTRODUCTION

APL language statements operate in any of three modes:
Immediate mode (or execution mode): in this desk-calculator
mode, APL statements and expressions are executed immediately
after you terminate the line.

Function-definition mode: in this mode, you name, develop, edit,
and save functions for use at a future time.

Function-execution mode: in this mode, you execute the function
you created in function-definition mode.

The language syntax is the same in all modes. However, in function-
definition mode there are a variety of special APL characters avail-
able and a number of practical considerations you need to take into
account when you construct a function.
This chapter discusses:

1l. Function definitions, headers, and variables

2. Editing procedures

3. Branching and the use of labels, trace vectors, stop vectors,
and the state indicator

4. Use of locked and suspended functions

6.2 DEFINING THE FUNCTION

APIL provides a comprehensive facility for defining, changing, and
calling user-defined functions that supplement the large set of
primitive functions discussed in Chapter 3. Once you write or define
a function, you can save it and recall it with the ease of a primitive
function.

You construct a user-defined function in two parts, a function header
and a function body. For the function header, you define the name of
the function and the syntax of the function call. The function body
consists of a series of statements and expressions that define the
actions to be performed by the function when it is executed.

DEFINING AND EXECUTING FUNCTIONS

To enter function-definition mode, type a del character (V) followed
by the function header and a carriage return/line feed. This signals
the APL processor not to execute subsequent lines as you enter them,
as it would in immediate mode. However, system commands are executed
immediately. In function-definition mode, APL prompts you for suc-
cessive lines of the function body by displaying successive bracketed
line numbers for every line. All the lines you enter are treated as
function lines until you type another del (V). The second del returns
you to immediate mode. Functions can have up to 1000 lines.

The format of a function is shown in the following:

v function header
[11]
£21]
3]

[ul function body
[51]
[6]
L71
L8l .
v

There are no restrictions on the type of statements you can include in
a function definition. You can include system commands in a function
but you must precede them with the execute function. If you do not,
APL executes them immediately. See Section 5.8.

You can define and execute functions in quad input mode. The input
request remains pending until you leave function-definition mode.

You delete a function from your workspace with the system function [EX
(Section 4.3.4).

6.2.1 The Function Header

The function header contains the name of the function and the syntax
of the function call. You type the function header on the same line
as the del (V) that signals function-definition mode. There are six
types of functions that you can define depending on the number of
arguments the function header takes and whether or not the function
returns an explicit result. Table 6-1 displays the formats of the six
function types.

Table 6-1
Function Headers
Type Explicit Result Type No Explicit Result
niladic vV variable <«name niladic vV name
monadic vV variable <name arg monadic V name arg
dyadic Vv variable <arg2 name argl dyadic vV arg2 name argl

The arg, argl, and arg2 in the function header are dummy arguments.
They look like variable names but they have no values assigned to
them. A dummy argument is a placeholder for an actual argument

DEFINING AND EXECUTING FUNCTIONS

(value) you supply when you call the function. The number of dummy
arguments in the function header determines the calling syntax of the
function (niladic, monadic, dyadic). You must include the same dummy
arguments in the function definition as in the function header.

The variable in the function-header syntax (Table 6-1) is also another
dummy argument. However, the presence of this variable in the func-
tion header determines whether or not the function returns an explicit
result. This variable temporarily stores the results of the function
execution. You assign the function name to the variable in the func-
tion header. If a function returns an explicit result, you can use
this function in subsequent computations by including its name in an
expression just as you would an APL function. A function that does
not return an explicit result (no variable assigned in the function
header), may also return a result when you execute it. However, you
cannot use this function result for further work as a value within
another function.

Functions that return explicit results can be included as part of any
expression. Functions that do not return explicit results must be
either the only statement on the line or the last statement in a
multi-statement line (last statement on the left).

The following function header returns an explicit result:

VReE FROG
In this function header, 4 is the variable (dummy argument) that
designates this function to be one that returns an explicit result.
The result of the execution is stored temporarily in 4. The variable
names B and (¢ are dummy arguments, and PROG 1is the function name.
When you call a function containing dummy arguments, you must supply
the values for APL to use during execution. You include the values in
the calling syntax of the function name. For example, if the function

header has two dummy arguments:

WA MOAME X

you must supply values for 4 and B.

2% MAME 42
When APL executes the function, the values 25 and 42 are used in the
calculations wherever you placed A4 and B in the function definition.
You can also include local symbols in a function header. Local names

must be unique from dummy names in the same function definition. See
Section 6.2.2.1.

6.2.2 Symbol Classification

An APL workspace contains an area that is known as the symbol table.
This area is empty in a clear workspace. Every time you create a
variable name, function name, or group name (Section 5.4.4), this name
is written, and referred to as a symbol, in the symbol table. (Dummy
arguments are not recorded in the symbol table). Any values you

DEFINING AND EXECUTING FUNCTIONS

assign to these symbols are also stored in the symbol table. When you
save an active workspace, APL also saves the symbol table.

Symbols are classified as being either local or global symbols de-
pending on how their values are treated before and after function
execution. The following subsections describe the characteristics of
local and global symbols.

6.2.2.1 Local Symbols - A local symbol has significance only during

the execution of a particular function. To specify a symbol as being
a local symbol, include that symbol in the function header and then
assign it a value within the function definition. Separate local
symbols from the function name with semicolons. All local symbols are
placed to the right of the function name. For example:

GHAME § L5 LOCS G

In this function header, I, LOC and G are local variables. Local
variables have no significance in determining whether a function is
niladic, monadic, or dyadic. Dummy variables do. See Section 6.2.1.

During execution of a function, the local value is always dominant.
For example, if a local variable has the same name in two separate
functions, the execution of one function does not affect the value of
the local variable in the other function. You initialize local vari-
ables when you call the function, and any local values are lost upon
exiting from the function. Using a local variable before you have
assigned it a value results in an 11 VALUE ERROR. Note that there is
no need to include local variables in the function call.

Function-line labels (Section 6.4.2) are treated as local variables
and are also initialized when you call the function; however, they
cannot be assigned a value.

System variables (Section 4.2) can also be localized within a function
definition.

6.2.2.2 Global Symbols - A global symbol has the same significance
(value) throughout the scope of its workspace, whether or not it is
inside or outside a function. You can change a global symbol, erase
it, or expunge it throughout that scope. However, you can have only
one global definition at a time for a symbolic name.

Because naming conventions for functions and variables are the same,
you cannot have a global function and a global variable with the same
name. You can, however, have a local and a global with the same name.
In this case, certain rules apply for determining which value takes
precedence, global or local. See Section 6.2.2.3 for this explanation.

6.2.2.3 Dynamic Localization - The phrase "dynamic localization"

refers to the precedence of local symbols over global symbols with the
same name. During function execution, the value of a local variable
supersedes the value of a global variable with the same name. Also,
depending on the particular function being executed, a local variable
can supersede another local variable of the same name.

DEFINING AND EXECUTING FUNCTIONS

For example, if you have a global variable 4 and you execute a func-
tion containing a local variable, A, APL uses the value of the local
variable 4 during function execution. Once APL exits from the func-
tion, 4 retains its global value.

If two functions have a local variable with the same name, APL uses
the value from the function in which it is currently executing. For
example, the local variable B has a value of 10 in FUNC1 and a value
of 25 in FUNC2. While executing FUNC1, APL uses 10; while executing
FUNC2, APL uses 25. Upon APL's return to FUNC1, B resumes the value
of 10. Finally, upon APL's exit from FUNC1, B has no value.

6.2.3 Function Input and Output

You can input and output data and the results of function execution by
using the standard APL input/output functions described in Chapter 2.
All the quad symbols ([J) can be used in both immediate and function-
definition mode. These are:

1. Quad (0) or evaluated input, Section 2.5.1
2, Quote-quad (M) or character input, Section 2.5.2

3. Quad-del (M) or unedited input, Section 2.5.3

e o - -

5. Normal output, expressed by simply typing a variable name,
Section 2.5.4

6. Mixed output, expressed by typing values separated by
semicolons, Section 2.5.6

7. Quad output ([), Section 2.5.5

8. Bare or character output (M or M), Section 2.5.7

File input and output are discussed in Chapter 7. The other varieties
of input and output are described in detail in Section 2.5.

One aspect of APL I/0O, escaping from an input request within an
infinite loop, is particularly relevant to a discussion of function
execution. 1In this case, you may not be able to escape by typing the
attention signal, two CTRL/Cs. You can escape by typing several
right-arrows (»). Also, you can escape from either gquote-quad or
quad-del input mode by typing the following:

0 backspace U backspace T (or .0U from a non-APL terminal)
Either form of escape has the same effect as function suspension

(Section 6.4.3); it causes function execution to be interrupted but
does not result in an exit from the function.

DEFINING AND EXECUTING FUNCTIONS

6.2.4 Comment Lines

You can include comment lines anywhere in the APL function. They are
particularly useful in annotating statements in the definition.
Comments must appear on separate lines and cannot be included on lines
containing APL statements. The first character in a comment line must
be a lamp character (n), formed by overstriking the down union (n) and
the jot (o). APL treats the text following this symbol as a comment;
and the text can consist of any combination of valid APL characters.
Note that a comment cannot extend across line boundaries.

When you display a function definition, APL begins a comment line one
character position to the left of the rest of the text. Actually, the
lamp character (m), itself, prints one position to the left. An ex-
ample of this is shown in Section 6.2.5.3.

6.2.5 Examples of Defined Functions

This section contains three different examples of defined functions.

6.2.5.1 Niladic Function - The following niladic function does not

return an explicit result. Note the value of VECTOR, as a global
variable outside the definition of AVG and as a local variable inside
AVG.

CAVEG G VEQTOFR
[| Me ' ERTER THE VECTOR YO EE AVERAGEDD !
L2 CYHE RESULT LS V3 (4 /VECTOR) & VEQTOR G ¢ [

31 v

VECTORE P ARCD!

ave
EMTER THE VECTOR TO EE AVEROGED: 3 4 % & 7
THE RESULT I8 5

VECTOFR

ALCD

6.2.5.2 Monadic Function - The following monadic function returns an

explicit result:

VA AV EFL
1 A S ¢ (4 S VE
1 v

AVEROGE 3 % 4 4 7

1OOXAVERAGE 3 % 4 & 7

DEFINING AND EXECUTING FUNCTIONS

6.2.5.3 Dyadic Function - The following dyadic function included
below does not return an explicit result:

YLETTER IH STRINGST
13 ARETURNG MUMERIC FOSITION WHERE
L2l ANFFEARS TH STRING
231 T (LETTERSTRING) /10y STIREMG

CHOFRMNCTEF

47 20 [1eT§AEXVQ=pT
L YO OCCUREMCES
L& v

LETTEFR¢ Q!
Vgt GLOEAL Y
LETTER Trb ¢ ARCOCRS!

LETTER I P LMMORE
MO OCCUREMCES

T
G, O X,

6.3 EDITING THE FUNCTION

You can edit a function definition in a variety of ways. There is no
need to go to a text editor outside of APL. APL has a line editor
that allows you to add, delete, and change definition lines and also
alter the function header. You can even edit individual characters in
a line. See Section 6.3.7 for character-editing procedures.

You must be in function-definition mode to edit a function. To open a
function for editing, type:

v function name

After an addition, replacement, insertion, deletion, or display

operation, APL displays a line number to allow you to add or enter
additional text. If you do not want to do this, type a del (V) to
close the function and thus shift from function definition to imme-
diate mode. You can also type a del on an edit line. For example:

VETAT
L7y Lamly

In this example, APIL deletes line [5] and then exits from function-
definition mode. The del can be included on any line except a com-
ment line.

After you return to immediate mode, the lines in the function are
automatically renumbered sequentially, beginning at line [11].
Therefore, lines you insert with fractional numbers affect the
function only while it is open for editing.

DEFINING AND EXECUTING FUNCTIONS

6.3.1 Adding Function Lines

You can add lines to the end of a function in a very convenient man-
ner. When you open an existing function, APL assumes that you want
to add new lines and it displays the next available line number. For
example, the function named STAT can exist in the following form be-
fore you edit it to remove errors.

QETAMDNKEHEUERYD STAHAT

[GUIMM e g

L2 SUMMD e+ /(Ha2)

eS| ACOMEPUTE MEOM, VARIAMCE, STAMOAFRD DEMVEIOTEOR
L4 MEAMH&SUMM S HS RIS

I MEONN ¢ S UMM MBS UE

Lal v

You can add lines in response to the bracketed line numbers displayed
as shown below.

CEHTHNT

L& AFUNMOTION RETURMHE YALUE OF STAMOARD DEVIATION OF M
L7 STOMOM L VORI KO, 5
1

To terminate the specification of additional lines, enter a del to
transfer from function-definition mode to immediate mode.

6.3.2 Replacing Function Lines

You can replace existing lines in a function definition by entering
function-definition mode, then specifying the affected line number and
the new text of the line. 1In the next example, APL displays the line
number [8] indicating that the existing function has seven lines. The
first line of the function is replaced with the new text.

SETHT
rg1 D11 SUMNed /3
e I

*

APL then displays the next line number after the replaced line, in
this case, [2]. At this point, you can either enter new text for line
[2], or escape from function-definition mode by typing V.

The line number you specify must be a positive number less than 1000.
If the line does not currently exist, it is inserted (see Section
6.3.3). You can include a decimal point but you cannot specify more
than three decimal places.

DEFINING AND EXECUTING FUNCTIONS

6.3.3 Inserting Function Lines

You can insert new lines between existing lines of a function defin-
ition by first entering function-definition mode. Then, specify the
new line number followed by the text. For example, to insert a line
between [5] and [6] you can specify any number from [5.001] to
[5.999]. To insert a line before line [1], you can use any humber
from [0.001] through [0.999]. Note the following example:

VETHT
£al COL.%5T1 ASUM ELEMEMTS OF OREOAT X
FO.67 D851 VARMe (SUMMDLMEUED) ~MEAMN X

8.6 ¥

The new lines are inserted between existing lines [0] and [1] and [5]
and [6] respectively. In each case, APL prompts with the next line
number after the inserted line. To derive the line that is next in an
inserted sequence, APL increments the present line number by 1E D
where D is the number of decimal places in that line number. The next
line after [0.5] is thus [0.6], the next line after [5.5] is [5.61,
and the next line after [8.29] would be [8.3]. Line number [6] is
after [5.9], and line number [7], not [6.1], is after [6]. You can
enter new text for the line number displayed, override the line number
by specifying another one, or return to immediate mode by typing a V.

After you close the function, APL renumbers the lines to consecutive
integers beginning with [1]. Line numbers you insert must be positive
numbers up to but not including 1000, with or without a decimal point,
and with no more than three decimal places. The renumbered function
definition now exists in the following form.

14 ST e HELXE BTHT
f LM EMETT S OF AFFRAT M
HLIM A
LR Tt 3D
Oy VMAFLAMOCE STOMDARD DENVEATLOM
GLIMM S LIS

SN g 7
DOOF STAMLARD DEVIATION OF X

¥

6.3.4 Deleting Function Lines

To delete existing lines in a function-definition mode, you type a
delta (A) and the line number both within square brackets. For
example, to delete line [5] of STAT, type the following:

vHTOT
£101 L[5
£s1 v

DEFINING AND EXECUTING FUNCTIONS

APIL displays the number of the line just deleted to give you the
opportunity to type a new version of the deleted line. You can enter
new text or escape from function-definition mode by typing V. After
you close the function, APL renumbers the lines.

6.3.5 Displaying Function Lines

APL gives you the ability to display an individual line, a part of the
function definition from the specified line to the end, or the entire
function definition.

To display an individual line, type the line number and a quad char-
acter (0) within square brackets. For example, to display line [3]
of function STAT, type:

CETAT[31
31 BUMMRe+/ ()
A4

APL prints the number of the line just displayed to give you the
opportunity to specify a new version of the line. You can now perform
any editing operation or escape from function-definition mode by
typing V.

To display the function definition from a particular line number to
the end, you type the quad character first and then the line number
from which lines are to be displayed. For example:

vETATL[17])
7 AFUMETION RETURMS VALUE OF STOMHDORD DEVIATION OF X
e’ HTOMIKEVARN R , 5
o

APL displays the number of the next line after the final line of the
function definition, in this case [9], to give you the opportunity to
add more text.

To display the entire function definition, type the quad character
without a line number. For example:

CETATIY
Vo OSTAMIKEMSUED STAT M

K1 ASUM ELEMENTS OF OFEEAY X
L2 UMM e /3
L33 BUMHD e/ (HRD)
L4l ACOMEUTE MEAM, VARIAMCE, STOMHDARD OEVIATION
L5 ME A ¢ B UMM MG UL
&1 VAR (SUMM D HESUE)« MEAMN & D
L7 AFUMCTION RETURNS VALUE OF STANDARD DEVIATION OF X
L8 STAMDNEVARN R, 5
Xl'l

DEFINING AND EXECUTING FUNCTIONS

The V characters preceding line [1] and following line [81 indicate
the delimiters of the function and identify its name. They do not

change the mode as the function prints. APL displays the number of
the next line after the final line of the function to give you the

opportunity to add new text.

If you want to display a line or an entire function and return to
immediate mode after the display, type the closing V on the same line
as the display request. For example:

GETATL[w

6.3.6 Editing the Function Header

You can edit the name or arguments of a function header by accessing
line number [0]. You can display and replace the function header just
like any other line in the function. However, you cannot delete the
header using the delta character A. Also, you must include a valid
function header before leaving function-definition mode.

The following example displays the function header:

vETAT
L9l Lol
v STARNDHeMNSUED STAT M
£0a v

Notice that the header is displayed without a line number. When you
specify a character position in the header (see Section 6.3.7), APL
types the header with line number [0] and without the V. For example:

wETAT
Lo ronzl
01

L GTAMOMEHSWUEY STAT
A

The caret in the above example indicates the position of the terminal
head. It does not print on your terminal. Line-editing positions are
discussed in Section 6.3.7.

6.3.7 Character-Editing Procedures

Besides providing a way to edit a function definition line by 1line,
APL allows you to edit a function definition character by character.
Character editing is a multiple-step process. The first step involves
deleting characters no longer needed and inserting blanks in the line

DEFINING AND EXECUTING FUNCTIONS

to allow additional desired text to be typed. The second step in-
volves typing in the new text. Repetition of these steps is often
necessary. The final appearance of the line should be identical to a
function line just entered from the keyboard.

To modify a line, specify (1) the line number followed by (2) a quad
character ([0) followed by (3) the estimated character position at
which editing is to begin.

For example:
SR A ¥

77 LLrLo
12 BeF X GAMMA- |

APL displays the line, performs a carriage return/line feed, and then
positions the cursor or terminal head at the position you specified.
In the example above, the caret (A) indicates the position specified;
it does not print on the terminal. If you specify position 0, APL
places you at the end of the line. Once you are in the desired posi-
tion, you can do any of the following:

1. Delete a character by typing a slash(/) beneath each
character you want to delete.

2. 1Insert a space by typing a digit or letter beneath each
character before which you want to insert a space. Typing
the digit 1 beneath a character inserts one space before that
character. A 2 inserts two spaces, and so forth. You can
insert multiples of five spaces by using letters. Typing an
4 inserts five spaces; typing a B inserts ten spaces and so
forth. If the number of spaces you specify plus the current
line length exceeds the length of the terminal line (the
value of [PW) you will receive a 5 DEFN ERROR error message.

All other characters you type are ignored.

When you press the RETURN key after inserting spaces and deleting
characters, APL displays the line with the inserted spaces and without
the deleted characters. It then performs a carriage return and
positions you at the first inserted space on the line to be edited.

If you did not insert spaces, APL positions you at the end of the
line. You can enter new text in the spaces or make further modifi-
cations to the existing text. On APL terminals, you can backspace

to insert new characters and can create illegal overstrikes to aid

in retyping the line.

If you change the line number while you are editing the line, any
edits you make correspond to the new line number. The original line
remains unchanged.

DEFINING AND EXECUTING FUNCTIONS

The following example illustrates the use of character-editing in
correcting the line:

" T (LETTR S TRING V0F $TRIMG
L1l Sy

There are several errors in this line:
1. LETTER is misspelled LETTR.
2. The right parenthesis is missing after STRING.
3. The "8" should not appear at all.
4. The "P" should be p.

Because the first error occurs in LETTR, you could edit the line this
way :

VEUNG

[147

L1 Te(LETTRESTRIMG/\H 1, STRING
1 17 7

i Te(LETTERzGTRING) /\F 3 STEIMNG

2 v

The cursor or terminal head is now positioned at the space between T
and R. You can now enter the new characters, spacing over the text
you want to preserve. To do so, type the following:

1. F in the space between LETT and R
2.) in the space between STRING and /
3. p in the space between 1 and ,

The new line looks like this:

VEURCE L
[T (LETTERzSTRIMNG) /3y py S TRIMG

When you press the RETURN key, this line replaces the existing func-
tion line [1] in your function definition.

You can type a deliberate character error, for example, an illegal
overstrike, after a character-editing display to cancel the revision
of the function line. When APL encounters a character error, it
displays both an error message and the line up to the point at which
the error occurred. However, you cannot escape from character-editing
mode except by completing the line.

DEFINING AND EXECUTING FUNCTIONS

6.3.8 Performing Immediate-Mode Editing

You can edit lines during immediate mode as well as function-definition
mode. In immediate mode, line edits affect the last immediate line
entered from the keyboard. Because immediate-mode lines do not have
line numbers, type (1) any arbitrary legal line number (that is a num-
ber less than 1000) followed by (2) a quad character ([0) followed by
(3) the character position at which editing is to begin. For example:

ACFOHEIHIT] yIRETPLIHETS
7 STHTAM ERFOR

ACKROMHEIHIT] y THITRLEMHETS
A
10231
ACEQOMeETRIT] , INITOLIHITS
/1

ACHROMeEIHMIT] ¢y THET2y IHITY

Immediate-mode editing proceeds exactly as in function-definition
mode. However, after you press RETURN to conclude the final edits,
APL executes the line. Note that the DELETE key (RUBOUT), CTRL/U,
and CTRL/R also work in immediate mode.

6.4 EXECUTING THE FUNCTION

The process of defining a function associates the function header
provided by you with the statements you enter as the function body.
When you decide to execute the function, you use the function name as
you would use a primitive APL function. The information provided in
the function header specifies the number of arguments to be supplied
in the function call and determines whether or not a value will be
returned. Section 6.2.5 provides examples of defined functions and
their corresponding function calls.

It is also possible to issue function calls from within other func-
tions. You can nest functions to any depth.

The following sections provide information on function execution.

They focus on branching, suspending, tracing, stopping, and locking
functions, using the state indicator, and trapping errors.

6.4.1 Branching Within a Function

APL statements in a function definition normally execute in the order
determined by their line numbers. Execution begins at the first
statement following the function header, terminates after the last
statement in the definition, and executes only once. You can modify
this standard order of execution by including branch statements in the
function definition. A branch statement changes the sequence of exe-
cution by transferring control to another line in the function defin-
ition. Branching allows you to execute loops within the body of the
function.

DEFINING AND EXECUTING FUNCTIONS

There are two types of branch statements: unconditional and condi-
tional. An unconditional branch statement consists of a branch symbol
(=), followed by the number of the function line or label to which
you want to transfer control. For example:

G5 31

This statement causes an unconditional branch from line [5] to line
[1]. Line [1] is thus the next statement to execute.

The line number you specify after the » can be in the form of a con-
stant, a variable, or an expression. It must be equivalent to an
integer line number within the current function definition to allow
execution to continue. If the integer does not reference a line num-
ber in the current function, the branch statement closes the function
and returns you to immediate mode or to the caller. (APL users often
deliberately specify an out-of-range number to stop execution.) Line
number [0], the function header, is not a legitimate reference for a
branch statement. Therefore, specifying »0 also closes the function
and returns you to immediate mode or to the caller.

If the object of the branch is a nonempty vector, control passes to
the line number referenced by the first element of the vector. If the
vector is empty, the branch statement is not meaningful and the normal
order of execution continues.

You can include a branch statement in the middle of a multi-statement
line. However, if the branch executes, the rest of the expression to
the left of it is ignored. If the branch does not execute, the result
of the statement scanned so far is considered the empty vector. There-
fore, the expression to the left of the branch is executed.

APL also allows you to include conditional branches in a function
definition. A conditional branch executes as the result of evaluating
a logical expression, not in response to any specific IF logic. There
are two popular ways of doing a conditional branch. The first format
is:

+ line number x logical expression

For example:

YN E L

APL evaluates the logical expression to the right of the line number
specification (+9). Logical expressions return either a 1 (true) or a
0 (false). Therefore, if I is greater than B, the value of the ex-
pression is 9x1 and control passes to line number [9]. In the ex-
pression »(A<B)/13, if the logical expression A<B evaluates to 1,
(1/13), then control passes to line number [13]. (If the logical
expression evaluates to 0, (0/13) returns a null so control passes to
the next line.)

DEFINING AND EXECUTING FUNCTIONS

You can include more than one line number in a conditional branch but
each line number must have a corresponding logical expression. Only
one expression can evaluate to 1. Both the line numbers and the ex-
pressions are separated by commas. For example:

APL transfers control to the line number whose expression evaluates to
1.

Note that you should use labels instead of line numbers in branch

statements because APL renumbers when lines are added or deleted. See
Section 6.4.2 for a description of labels.

6.4.2 Statement Labels

Because APL automatically renumbers function lines as consecutive
integers when exiting from function-definition mode, problems can
occur when you refer to explicit line numbers in branch statements.
Instead, you can associate a line number with a label and reference
the label, not the line number, as the object of the branch. For
example:

(151 INCR: I~>I+1

£27]1 > INCRxI<IMAX

As shown above, a statement label consists of a distinct identifier,
followed by a colon(:). When you specify the label in the branch
statement, you do not include the colon. The internal value of the
label identifier is the line number with which it is associated.

A label acts like a local variable in that its value is local to the
function in which it appears. Label values are internally respecified
upon each exit from function-definition mode. You cannot explicitly
define a value for a statement label, and you cannot place a statement
label in the function header.

DEFINING AND EXECUTING FUNCTIONS

Following are two examples of defined functions that use branching and
statement-labeling techniques. "Note that APL prints lines containing
labels or comments one character to the left of the rest of the text.

YFACTORLIALL[TY
v FeFACTORIAL M

L1l Fel
L2 20X 0=
L31 ReRxn
£41 Here]
£E1 a2

v

FACTORIAL 5
120

vEACIITe
v OEeFAC M
[| SHEEROX M)
[B Mg FAC e
a3y AMOTEQE THOY RECURSEVE DEFIREITIOMNS
471 aARE FERMITED
[+Q

L& USRI $ e,
\‘;I
B 5
120

6.4.3 Suspending Function Execution

Function execution can be suspended before normal completion by means
of:

l. An error report

2. An attention signal, two CTRL/Cs
3. The stop control vector

4. The [BREAK system function

When an error occurs, APL suspends function execution and displays an
error message and the line number where the error occurred. Appendix
A lists possible errors you may encounter. The attention signal, two
CTRL/Cs, is described in Section 1.4.4. The stop vector is described
in Section 6.4.6. The [BREAK system function is discussed in Section
4.3.1.

When function execution is suspended, APL displays the name of the
suspended function and the line number of the statement that would
have been executed next. APL then begins a new line, indents six
spaces, and awaits input in immediate mode. You can perform any
operation at this time, including erasing the suspended function (see
the)ERASE system command, Section 5.4.2).

The suspended function remains active until you terminate it, erase
it, or clear the currently active workspace. You can resume execution
at any time by typing:

-+ line

DEFINING AND EXECUTING FUNCTIONS

where line identifies the line number at which execution is to be
continued. You can terminate a suspended function by typing:

+0 or just -

When a function is suspended, its local variables remain active. You
can examine these variables and can specify their values by using an
immediate-mode assignment.

[JL¢ contains the line number of the line where execution was sus-

pended. Therefore, »[LC restarts the suspended function at the
beginning of the line that was interrupted.

6.4.4 Examining the State Indicator

The state indicator is a status vector that resides in your active
workspace. You can examine the state indicator to determine the
status of all active functions by specifying an)SI system command
(Section 5.4.8). The)SI system command lists active functions as in
the following example:

YHI
TERL %
HL7
Y

The listing displays functions in the order in which they were most
recently active. The example included above indicates that execution
was suspended during execution of statement [3] of function 7, which
was called during line [7] of function §, which was called during line
[6] of function R. (Before this sequence of calls, execution was
suspended during execution of line [2] of function 7.)

In the)SI display, an asterisk (*) following the name and line number
indicates a suspended function. The other functions in the list are
pendent. A pendent function is one which is awaiting return from
another function - possibly a suspended one - which it called. You
can edit a suspended function but not a pendent one. Although you can
erase both suspended and pendent functions, you can cause considerable
confusion by erasing a pendent function and then resuming execution of
a suspended function that was called by that pendent function. Fol-
lowing is an example of an operation of this kind:

yHIE

A3 X

El1 4

L I X
YERASE A
Yy

%
EL40]
crsl

DEFINING AND EXECUTING FUNCTIONS

You can resume execution of ¢ at this point but not B. In the)SI
display, an asterisk without a line number indicates an erased
suspended function. Whenever you erase a pendent function, APL
displays:

1% FOSSIELE ST DaMAGE

to warn you to consider the status of existing functions before you
resume execution.

From the)SI listing you can also determine when quad-input requests
are pending
Local funct Pp
An example of both of these special conditions is shown below:

ing.

Y&
FLR1 O x
AL

T[]

You can clear the state indicator by terminating the execution of each
suspended function in the list. There are several ways to accomplish
this:

1. You can type a right arrow (») for each function marked by an
asterisk.

2. You can issue the I-beam function 130 to clear the state
indicator completely (Appendix C).

3. You can clear the state indicator by saving the active
workspace, then clearing and copying it again (see the)COPY
system command, Section 5.4.1).

If the state indicator is clear, APL outputs a blank line in response
to)SI.

You can use the)SIV system command (Section 5.4.9) to obtain a more
extensive display of the state indicator. In addition to the infor-
mation accessible to)SI,)SIV returns a list of local and dummy

DEFINING AND EXECUTING FUNCTIONS

variables for each function displayed. The current line being exe-
cuted by the execute function is also displayed. The following is
an example of an)SIV display:

YEIY
SL61 X u v
FLa2l x T
AL T w W
TL3
PEEN M OEINIOQR
L1 [JEFEEAK VLAMHE | OF Mt
221 7

1 M 2
LIME | OF M

yH LY
M1 x fed «Q o i I
s X v u

This indicates that the variable T, local to function F is currently
dominant, and that the variable T local to function 4, as well as the
function named T, are currently inaccessible.

6.4.5 The Trace Vector

You may find it helpful for debugging purposes to obtain an automatic
printout of intermediate results of function execution. As a program
tracing aid, you can output the values computed by one or more func-
tion statements each time those statements execute.

To set the trace vector, use the following format:

TAfunction name<line number (s)

where function name is the name of the function you want to trace and
the line number (s) are the lines you want information on.

You can set the trace vector in either immediate mode or within a
function definition. For each execution of the line numbers you
specify, the trace vector causes the following information to be
displayed in the order shown:

function name

bracketed statement line number
final value returned by each statement on the line

6-20

DEFINING AND EXECUTING FUNCTIONS

An example of a trace operation is shown below:

TaFes & 7
-
FLAT 3205 37,9
e I
FEPT 16 1.7

If the statement being traced is a branch statement, then the value
printed is the line number tc which control is passed by the branch.
In the example above, line [6] was -9.

To trace all the statements of a function, for example F, you can
supply the following specification:

TAF<1N

where N is a number at least as large as the number of statements in
F.

To disable the trace vector, type the following:

TAFUNCTION NAME<10

For example:

Tal e 0

The trace control vector can be set within a function to aid in
selective tracing or setting breakpoints. For example, you may want
to initiate tracing if certain conditions are in effect and disable it
as soon as a specified value has exceeded a defined maximum.

If you edit a function for which you have defined a trace control
vector, you clear the trace vector. Also, when you lock a function,
you automatically clear the trace vector. The trace vector setting is
saved with your workspace.

Note that APL identifiers cannot start with TA because this is re-
served for the trace vector syntax.

DEFINING AND EXECUTING FUNCTIONS

6.4.6 The Stop Vector

APL allows you to suspend execution of a function at predetermined
points. A stop control vector is available with a syntax similar to
that of the trace vector. To cause statement execution to stop before
executing a particular line, you can type the following:

SAfunction name<line number (s)

where function name is the name of the function you want to suspend
and line number (s) specify where you want to suspend execution. You
can set the stop vector either in immediate mode or within a function
definition. When you execute the function, the stop vector suspends
execution at the first line number you specify. It displays the
function name and the line number. You can resume execution by typing
a branch to the desired line number (+5) or continue by typing -[0LC.
The stop vector will then suspend execution at the next line you
specified.

When you edit a function for which you have defined a stop control
vector, you automatically clear the stop vector. Also, when you lock
a function, you automatically clear the stop vector. The stop vector
setting is saved with your workspace.

Note that APL identifiers cannot start with SA because this is re-
served for the stop vector syntax.

6.4.7 Locking a Function

APL allows you to lock a function definition to protect it from
unauthorized use, to maintain security, or to treat a function as a
proprietary program. To create a locked function, or to lock an
existing function, you open or close the function with a del-tilde
(®) character (protected del) rather than a simple del (V). The
del-tilde (#) is created by overstriking (V) and (~).

The following example illustrates the locking of a previously unlocked
function definition:

GTEL G
1ol w

A locked function cannot be edited in any way; if you try to edit a
locked function, you will receive the error message, 5 DEFN ERROR.

You cannot add, change, delete, or display a function line. Trace and
stop vectors cannot be defined or changed for the function. Any trace
or stop settings in effect at the time you lock the function are
automatically cleared.

If an error occurs during execution of a locked function, the function
name and line number at which the error occurred are displayed, but
the contents of the line are not displayed. APL then causes an exit
from all pendent functions that are locked until the function on the

DEFINING AND EXECUTING FUNCTIONS

top of the SI stack is not locked. If all functions on the SI stack
are locked, APL clears the SI stack and enters immediate mode. Note
that you cannot unlock a function once it is locked. However, you can
delete a locked function by using)ERASE.

CAUTION

If a locked function calls an unlocked
function and the unlocked function
becomes suspended, the environment of
the locked function is available for
examination.

DEFINING AND EXECUTING FUNCTIONS

DEFINING AND EXECUTING FUNCTIONS

e

- .».;@ .

. . *ﬁ@x ,

- B - “., X%@ b@»ﬁéﬁ%

o 5%@;%%%@%%@5
- .

e

L -

. %i%ﬁ%

=
L

g »vg;g %5%&3’@@%@@%0 .
L

- L ;:;w?’am%%ﬁ&%é .
o s ol - -
%‘? v m”}éﬁ:gg'i@g%? ;zi §ﬁ§§2§4!§6 %ﬁ§m““mm

i
i&%im i

- ?‘E&:mﬁ
- i 1

. Ng%“@“ ey - i
[v e = o e
. mw‘mmmm! - g@;ﬁgggw & i - . .
: i o . ﬁ:ﬁ . g:@j?‘mxwzsﬁ:ggg
. R;}E&%E’&;ﬁggmp G - g -
. o ;, J : i
o
- S

o
. ﬁﬁ%ﬁg :
o

i - ﬂ
”sm'“ﬁ'wf L mm"ﬂﬁf%ﬁﬁ%
»m«w;« .
g J
o e o o
i ;g«x..ggﬁgmwwémw o

. m% o W&W s %;&%mgﬁw‘ -

. i = il G e
b o i b) i
. e

%H@E%%x:‘m&%é

i -
: L
*m«;uga : e '131%“ i
"vmuﬂ%mg@yw a‘éﬁ‘%m G

DEFINING AND EXECUTING FUNCTIONS

DEFINING AND EXECUTING FUNCTIONS

-
G

L

= .
.“‘gzaré—i%g%‘“’g%
e
e
o

-
.

.

.

-
-

-
@g%gﬁg%g:«m

L
.

.
.

o
S
o
s
e
MOy

6-27

DEFINING AND EXECUTING FUNCTIONS

.
L 5@%&%@ i

SR

CHAPTER 7

THE FILE SYSTEM

7.1 INTRODUCTION

]
The file system is an integral part of the APLSF language itself. It
allows you to store data files on a number of system devices.

APL can create and handle a variety of file types. You determine the
size and content of the records and the structure and access proper-
ties of the file. You can write records into a file in either immedi-
ate mode or function-execution mode and subsequently retrieve them.
One of the most significant extensions of this implementation of APL
is the inclusion of a powerful data-file capability.

APL allows you to create and store four types of files:

1. ASCII sequential

2. Internal sequential

3. Direct access

4, Binary access
ASCII sequential files allow you to create and/or read any standard
ASCII file while at APL level. You can read and work with an ASCII
file created by another language, or you can create an ASCII sequen-
tial file to be passed to a program in another language such as
FORTRAN or COBOL. Internal sequential files and direct-access files
can be created and read only by APL functions (or by you in immediate
mode). Binary-access files can be accessed in any format as random-
access memory, and can be read and written in almost any language.

The file system has three distinct components:

1l. File functions that allow you to read from a file (H) and
write to a file (H)

2. System functions that allow you to assign, deassign, close,
rename, and append files

3. System commands that create a direct-access file and divert
terminal input and output to other devices

THE FILE SYSTEM

This chapter focuses on the following:
1. Access methods
2. APL file input and output functions
3. Basic file system functions
4, Sequential files
5. Random-Access files
6. Utility system functions
7. Synchronizing shared-file access

8. Handling I/0 from non-terminal devices

7.2 ACCESS METHODS

The methods that you use to store or retrieve data in a file are
determined by the file's organization. The organization of a file is
fixed at the time you create it, but, depending on the access allowed,
an access method can change each time the file is opened. In some
cases, you can vary the access during function execution or during
immediate mode. You can use two types of record access: sequential
or random. Sequential indicates that the records are accessed in a
serial order; random indicates that records can be accessed directly
at any point in the file.

Table 7-1 shows the relationships between file organization and record
access.

Table 7-1
Access Methods
File Organization Access Method Allowed
ASCII sequential Sequential only
Internal sequential Sequential only
Direct access Sequential and random
Binary access Sequential and random

The following sections discuss each type of record access.

7.2.1 Sequential Access

All file organizations allow you to access records sequentially.
Sequential record access is employed when you issue a series of
requests for the next record. The record operations are performed
in terms of a predecessor-successor record relationship. For each
successfully accessed record (except the last) there is a succeeding
record somewhere in the file.

THE FILE SYSTEM

Sequentially organized files (ASCII sequential, internal sequential,
and binary-access sequential) allow only sequential access. In these
files, each record except the last is physically adjacent to the next
record. Sequential access to a sequential file means that records are
accessed in the order of their insertion into the file. A particular
record can be read only after each preceding record has been success-
fully read. Similarly, once a record has been read or written, you
must reposition the file to the beginning before preceding records

can be accessed.

When you assign a sequential file with either the /A4S switch (ASCII
sequential) or the /IS switch (internal sequential), APL positions the
file pointer at the beginning of the file. You must then do sequen-
tial reads to get to the particular record you want. If you do a
write operation at the beginning of the file, you overwrite the exist-
ing file, not just the existing record.

When you assign a sequential file with either the /4AS* switch or the
/IS* switch, APL positions the file pointer at the end of the file.
You can then append records to the end-of-file with a write operation;
a read gets an end-of-file.

Direct-access and binary-access files can be accessed sequentially.
Sequential access to a direct-access or binary-access file means that
records are accessed in ascending order according to record number
(for direct-access) or word number (for binary-access). A sequential
read from one of these files finds the next record by adding 1 to the
value of the record/word number used in the previous I/O operation.

Binary-access files allow the writing of data based on word position.
Empty words are assigned a value of integer 0. Direct—access files
allow empty record positions that can be caused by a record deletion
or by your purposely leaving positions empty. APL maintains the
predecessor-successor relationship through its ability to recognize a
record position as either empty or occupied.

7.2.2 Random Access

Random access allows you to control the order of record access. The
predecessor-successor relationship has no effect on random access.

You identify each record of interest in each operation. This pro-
cedure allows you to access records in any order at any point in the
file. Random access is not permitted on ASCII and internal sequential
files because of the strict physical relationship maintained among
records. Direct-access and binary-access files do allow random access.

By specifying a record number in a direct-access file or by specifying
a word number in a binary-access file, you can access any record in
the respective file. You can also alternate the type of access to
these files, sequential or random.

Records in APL random-access files are called components. There is no
restriction that all records in these files be the same length.

THE FILE SYSTEM

7.3 FILE INPUT/OUTPUT FUNCTIONS M AND B OR .IQ AND .0Q

You can initiate input and output to and from a file either in immedi-
ate mode or during function execution. When you perform a read oper-
ation, you are requesting input data from the file. When you perform
a write operation, you are outputting data to the file.

APL provides two quad functions for files, one to perform file input
and one to perform file output: & (.IQ) and B (.0Q). These functions
work in much the same way as the basic quad input and output functions
described in Section 2.5. The file input and output characters are
formed by overstriking the quad () with either the left arrow (<) or
the right arrow (=).

The syntax of the I/O functions is explained with each file organiza-
tion.

7.4 BASIC FILE SYSTEM FUNCTIONS

The following sections describe four basic system functions that per-
form the following file operations:

1. Assigning a file 0458

2, Deassigning a file [DAS

3. Closing a file 0OCLS

4, Renaming a file [RENAME
The names of these system functions, like those described in Chapter
4, begin with a quad (0) character and are considered to be distin-

guished names. That is, you cannot use them for user-defined function
names, and you cannot copy, erase, or collect them in a group.

7.4.1 [JASS - Assigning a File

Format
g4ss? ﬂ?hannelﬂ filename Hpasswordﬂﬂkfile orgﬂﬂ?shareﬂﬂ/dumpﬂ '
where

channel is an integer scalar in the range 1 through 12 inclusive.
If you do not specify a channel number, APL assigns you one.

filename identifies the name of the file to be read or written on
the specified channel. The filename has the same format as a
workspace filename. See Section 5.1.3.1.

password is optional. The default is (-).

/file org is one of the file organizations listed in Table 7-2.
If you do not specify this switch, the default is /DA.

THE FILE SYSTEM

/share is a switch that allows you to extend multiple-user char-
acteristics., It is relevant to direct-access and binary-access
files only (Sections 7.6.2 and 7.6.5).

/dump is a switch used for magnetic tape I/0. It is relevant
only to binary-access files (Section 7.6.8.1). The single
quotation marks are required.

The [AS8S system function assigns a file to a specified channel number.
In this way, you can refer to the channel number rather than the
filename specification when performing I/O. You can also use {455 to
return information concerning a file. By specifying the channel as
the argument, you receive the name of the file currently assigned to
that number plus any other characteristics you may have specified
previously.

For example:

v pass 2
DIRACE EXM [4y2041/00

If the channel you specify is currently unassigned, APL returns a null
vector.

The [ASS system function operates in the same manner as any other (APL
function. [455 returns the value that is the channel number you
assigned. Therefore, you can specify a variable to receive the value
of the channel number.

For example:

CHAME[ASE VTEST /0%
CHAN
12

Because the range of channels is 1 through 12 inclusive, you cannot
access more than 12 files simultaneously. If you do not specify a
channel, APL assigns an available channel in the system and returns
this number as the function result. If you assign a channel number
(for example 12) that has already been assigned to a file, APL closes
the first file and deassigns it from the channel, then assigns the new
file to that channel number. If a syntax error is encountered in the
0JASS function or if there are no available channels, APL returns a
function result of 0, which means your assign failed.

The 455 system function does not cause input or output to be per-
formed. It establishes a connection between a filename and a specified
channel.

THE FILE SYSTEM

Table 7-2
File Organization Switches
File org Default .
Switch File Extension Type of File
/A4S JAAS ASCII sequential
/AS* JAAS ASCII sequential; file is posi-
tioned at end of file to allow
appending
/IS JAIS Internal sequential
/IS* LAIS Internal sequential; file is
positioned at end of file to
allow appending
/DA .ADA Direct-access which supports
reading and writing
/DI .ADA Direct-access which supports
reading only
/BS ABT Binary-access which supports
reading or writing, but not both;
file can be read by multiple
users, but written by only one
user at a time
/BS* ABT Binary access; file is posi-
tioned at end of file to allow
appending and same user capa-
bility as /BS
/BU .ABT Binary-access which supports
reading and writing; file can be
used by only one user at a time

7.4.2 [D4AS - Deassigning a File

Format
0DAS channel (s)
where

channel(s) is either a numeric scalar or vector, or a null
vector.

The [ODAS system function deassigns the files on one or more channels
in the system. In general, [D4S reverses the operations performed by
the [J45S5 system function. It disassociates the channel number (s) with
the file(s). If the files associated with the channel numbers being
deassigned have not been closed ([ICLS), 0ODAS closes these files
automatically.

THE FILE SYSTEM

Like the 0455 system function, [ODAS returns a function result. In all
cases, this result is a null vector.

For example:

puas 1

This example outputs a blank line and deassigns the file associated
with channel 1. The following example deassigns files from three
channels:

[npas 2% 3§

You can deassign the files on all channels by specifying a null vector
as the argument (or 112).

For example:
[Las 10

ABOME AH
[lems 12

7.4.3 (0CLS - Closing a File

Format

0crs channel(s)

where

channel(s) is either a numeric scalar or vector, or a null
vector. .

The (OCLS system function closes the files on one or more channels in
the system. However, [OCLS does not deassign the channel from the
file. This capability is useful when you want to return to the be-
ginning of a sequential file after performing an operation. After
you close the file, the next read operation reads the first record in
the file; the first write truncates the file. There is no need to
reassign the file to the channel.

THE FILE SYSTEM
The following example closes the file associated with channel 2:

aeLs

The [OCLS system function always returns a null vector as a result.
You can specify more than one file or all files.

For example:
[jocns 203
[eLs 10

ABAME A8
[ens 112

7.4.4 [ORENAME - Changing the File Specification

Format

tfilespec' [ORENAME channel

where

filespec is the new file specification. You can specify all or
part of a new file spec. Every element except the name is
optional. The single quotation marks are required.

channel is the number associated with the file.

Specifying elements of the filespec—a new device name, extension or
filetype, protection code, or directory- is optional. The old value
is the default.

The ORENAME system function renames a currently assigned file. There-
fore, before you can use [RENAME, you must assign the file with [A4SS.
When you execute ORENAME, you also close the file if it is open.

If other users have the file open when you issue a [RENAME, the
ORENAME will fail, but the close will be done in any case. Also, if
other users have the file assigned but not opened (have not performed
a read or write) they cannot use the file until they reassign it under
the new name. However, you, the user performing the [ORENAME, will
automatically have the file reassigned on the same channel under its
new name.

THE FILE SYSTEM

For example:

[IAGS Y TEST /08

10
THEW! [IRENAME

WS TEST, 008 [4,2041/06

Oess 10
MEW, ARG [4y 2047 /06

7.5 SEQUENTIAL FILES

APL supports three types of sequential files: ASCII sequential inter-
nal sequential, and binary-access sequential files (/BS and /BSx).

The first type, ASCII sequential, is a standard operating system ASCII
sequential file that can be read or written by APL or by other lan-
guages. This file format is line-oriented; a record is delimited by

a carriage return. Therefore, each line is considered a record in the
file, and records in the file can be of different lengths. You can
display ASCII sequential files on terminals and high-speed printers.
To display an ASCII sequential file on the terminal, return to oper-
ating system command level and type a standard system command:

TYPE filename

To display such a file on a line printer, type the operating system
command :

PRINT filename

The second type of sequential file, internal sequential, is a file
that can be read or written only by APL. In this file format, infor-
mation is read and written in internal binary format. In internal-
sequential files, a record is all the data written to the file in a
single output operation, rather than a single line in an ASCII sequen-
tial file.

The third type, binary-access sequential, is a file that can be read
or written by a file in another language such as FORTRAN, as well as
APL.

APL does not open a sequential file for input or output until the
moment when the first read or write request is made. APL does not
normally close the file until you direct it to do so with a [0DAS or
0C¢LS system function, or a)LOAD,)CLEAR,)YOFF, or)CONTINUE system
command. This implies that if user 4 is writing a sequential file and
user B subsequently starts to read the same file, user B will read the
copy of the file that does not have the updates just made by user 4.

If your first reference to a sequential file is an input request (read)
all subsequent I/0 requests to that file must be input requests, until
you close the file. Similarly, if the first file reference is an
output request, all subsequent I/O requests must be output requests.
Note that you can store sequential files on many types of system
devices.

THE FILE SYSTEM

The following subsections describe the way in which I/0 functions for
ASCII sequential and internal sequential file organizations are for-
matted. The description of binary-access files begins at Section 7.6.4.

7.5.1 ASCII Sequential I/0

The following format requests input from an ASCII sequential file:
3] u[modejﬂ channel

where
M. is the input quad function.
[mode] is one of the integer scalars listed in Table 7-3. It
specifies both the type of data and the character set of the data
being read. mode is optional but, if present, you must enclose
it in square brackets.

channel is the channel number associated with the file. The
value of the [function is the data read.

The following format requests that output be written to a file:
data H ﬂ[mode]ﬂ channel

where
data is the information you want to write to the file.
B is the output quad function.

[mode] is one of the integer scalars listed in Table 7-3. It
specifies both the type of data and the character set of the data
being written. mode is optional, but if present, you must en-
close it in square brackets.

channel is the channel number associated with the file. The
value of B is data.

Because you can write different types of data to a file, you must tell
APL how to read the data by specifying an input mode. When reading,

you also specify whether the record was written with mnemonics or with
the APL character set. Table 7-3 lists input modes and their meaning.

~
1

10

THE FILE SYSTEM

Table 7-3
Input Modes
Input Type Character Set Mode
0 TTY 1
] TTY 2
[TTY 3
0 APL 4
M APL 5
Y APL 6

The default input mode for TTY is 1; the default input mode for APL

is 4. For more information on input quad types, refer to Section 2.5.
For B, modes 1, 2, and 3 are equivalent and modes 4, 5, and 6 are
equivalent. When accessing APL, you have the option of specifying a
particular APL character set on output when you respond to TERMINAL..
‘with TTY. The modes 4, 5, and 6 use the setting you specified at
access time. See Section 1.2 for terminal designators and Section 7.9
for)INPUT and)OUTPUT to non-terminal devices.

When you are reading or writing to an ASCII sequential file, the first
thing to do is to assign the file to a channel. If you want to append
to the file, specify /AS*. For example:

[1AEs 9 FLILE/O%))

When you are writing to a file, using the output quad B is the same

as using [«4, except that the output is written to a file and not the
terminal. A record is a string of ASCIT characters terminated by a
carriage return. APL inserts the carriage return/line feed into the
data. The current width value associated with the active workspace

is used to determine the maximum length of the line to be output.

This means that the current page width determines the length of the
record if the data is longer than the |maximum. APL inserts a carriage
return/line feed when you reach the maximum setting. You can change
the setting with the [0PWKF system variable (Section 4.2.15). You can
also divert output to devices other than your terminal with the)INPUT
and)OUTPUT commands, Section 7.9. If you output to a line printer,
you should change the width value to 130.

THE FILE SYSTEM

The following example illustrates the writing and reading of an ASCII
sequential file. 1If data is an expression, you must enclose it within
parentheses.

[1ASS 2 OQUTFUT /A%

Al UESES THE AFL CHOFROOTER HET
A TERMINAOL IS AM LAJY

TFIRST BRECORD ‘RO
i g 0 O F
OME RECOFRD 3
HECOHD SO X
(2 4, 8@
2 3 4

B RS T

BL4012

s 78
SRS 2 FA)
£

In the previous example, the first two records are strings and the
third record is a numeric expression. To read the output, you first
close the file because you cannot do both input and output at the same
time. You do not need to assign the channel; [OCLS does not deassign
the channel.

Notice that, because the numeric expression is a matrix, APL had to
insert a carriage return/line feed to format it properly. Therefore,
even though you write an array as one record, it resides in the file
as more than one record. For example, the above matrix had two re-
cords when read.

The expression A«@[4]2 requests input and assigns the value to 4.
Since the file pointer was at the end-of-file, the value was a null
array. The p4 returns the null array of shape 0 75: the error number
is 75. (See Appendix A for error messages). This error message means
end-of-file. A blank line in a file is ignored in mode [1] and is a
null vector in modes [2] and [3]. A blank line is ignored in mode [u]
and is a null vector in modes [5] and [6].

To write to the end of an ASCII sequential file, assign the file with
the /48* switch. This positions the file pointer at the end of the
file so you can append to it with write operations without overwriting
current records. A read to a /4Sx file gives an EOF.

THE FILE SYSTEM

7.5.2 Internal Sequential Files

The following format performs a read from an internal sequential file:

@ channel

where
B is the input gquad function.

channel is the channel number assigned to the file. The value of
g is the data read.

The following format writes a record to an internal sequential file:

data B channel

where
data is the information you want to write into the file.
B is the output quad function.

channel is the channel number assigned to the file. The value of
B is data.

When performing I/O on internal sequential files, you need not specify
an input mode as you do with ASCII sequential files. Information in
an internal sequential file is stored in the internal format of APL,
which is very different from ASCII format. No conversion effort is
incurred by using internal sequential files; compared with ASCIT
sequential files, there is practically no overhead involved in reading
and writing internal sequential files.

When you are reading or writing an internal sequential file, the first
thing to do is to assign the file to a channel. If you want to append
to the file, use the /IS* switch. For example:

[ASS CIHT/LSx"

In an internal sequential file, a record is all the information pre-
viously written in a single output operation. A single read will
retrieve all information output at a single write rather than a single
line that would be retrieved by an ASCII sequential operation. Also,
when you write an array to an internal sequential file, APL includes
the shape of the array along with the array itself. Therefore, you
need only a single read to retrieve the array. The array is stored in
one record.

THE FILE SYSTEM

Another comparison between ASCII sequential and internal sequential is
that 0 75 indicates end-of-file in internal sequential as well as ASCII
sequential. A blank record in /IS returns blanks. For example:

[Oss 'IHTLE
4
CTOFS.. 1 O\NAFL 14
TOF G] ONAFL.
PTORS-2ONAFL Y
TOF &S 20NAF L.
(2 4arviHrad
12 3 4
o6 7008
[eLs 4

k4
TOE S)AL
K4
TOFS2ON\OF L
B4
12 3 4
5 46 78
k4

Aek4
X2l

Note that internal sequential files can reside on many system devices.

7.6 RANDOM ACCESS FILES

The following sections describe the characteristics of files that you
can access randomly as well as sequentially: direct-access files and
binary-access files.

7.6.1 Direct-Access Files

A direct~access file is structured as a collection of variable-length
records with a directory containing pointers to each record. A record
can be any size. A direct-access file can reside only on disk but the
only limit imposed on the size of the file is the amount of disk space
available. You must specify the number of records you plan to write
to the file when you first create the file. Unlike the procedure for
creating ASCII sequential, internal sequential, and binary-access
files, the procedure for creating a new direct-access file requires
that you use a system command,)CRFATE.

THE FILE SYSTEM

The)CREATE command has the following format:
YCREATE filesize filespec Hpasswordﬂﬂblocking factorﬂ
where

filesize is an integer that specifies the number of records you
plan to write. You are only limited by the amount of disk space
you have available.

filespec is the device name, filename, extension or type, direc-
tory, and protection code. See Section 2.l1.4. Everything but
the filename is optional.

password is optional. The default is a hyphen (-). (Direct
access is the only file type with a password.)

blocking factor is one of the following values: 8, 16, 32, 64,
and 128 words. The default is 16 words.

When you specify the)CREATE command, APL sets up the parameters of
the new file according to your specifications. It creates a directory
that acts as an index for the file. The filesize determines how many
records the directory, and subsequently the file, will contain. For
every record you write, there is an entry one word long (36 bits) in
the directory. This entry contains information about the record such
as its file position and its size. This directory allows you to
access records randomly by the number position in the file. The
directory keeps track of where the records are.

Because you can delete records in direct-access, there is another area
in the file called the free-space area. The free-space area keeps
track of where the holes are in the file. When you delete a record,
an entry is made in the free-space area.

The blocking factor you specify with the)CREATE command allows you to
allocate space more efficiently in your file. By specifying a block-
ing factor you actually set up a fixed length for each record. If the
data you enter is less than the number of words you need to block it,
APL fills the rest of the record with nulls. For example, if you
specify a blocking factor of 16 words and the data you enter is 35
words, the record will occupy 48 words of space. By specifying a
smaller blocking factor, this type of waste can be minimized but
writing records with smaller blocking factor takes longer if the
record lengths are bigger than the blocking factor.

Note that you do not need to use the)CREATE command for direct-access
files that already exist. Once you create a direct-access file, its
characteristics remain until you delete the entire file.

THE FILE SYSTEM

7.6.2 Sharing Direct-Access Files

Before you do any I/0 on a direct-access file, you must assign it to a
channel with [04SS. Because you can share direct-access files, you
have the option of specifying one of three switches with the [45S
operation. They are:

/DT multiple-user access; file can only be read.

/DA single-user access; file can be read and
written only by one user at a time.

/DA/SHARE multiple-user access; file can be read and
written.

If one user opens a file in /DA mode and another user attempts to
access the same file in /DA or /DA/SHARE mode, the operation will fail
and the error message 32 FILE BEING MODIFIED will be displayed.

Sharing of direct-access files is synchronized by the OENQ and [DEQ
system functions described in Section 7.8.

7.6.3 Direct-Access I/0

The following format performs a read from a direct-access file:
d UErecord]H channel

where
d is the input quad function. The value of B is the data read.
[record] is the component number of the record you want to access.
If [record] is not specified, the default is the next record.
If [record] is specified, you must enclose it in sgquare brackets.
channel is the channel number of the file.

The following format writes a record to a direct-access file:
data H “[record]ﬂ channel

where
data is the information you want to write to the file.
B is the output quad operator.
[record] is the component number you want associated with the
record. The default is the next record position after the last

operation.

channel is the channel number associated with the file. The
value of the B is data.

THE FILE SYSTEM

The following format writes the recofd at the end:
data [APPEND channel
where
data is the information you want to write to the end of the file.

OAPPEND is the system function that allows you to write to the
end-of-file.

channel is the channel number associated with the file.
The value of JAPPEND is data.

JAPPEND acts like Bl except for where the new record is logged into the
directory. [JAPPEND finds the highest record number used and adds one
to that number. This becomes the record number of the new record.

The new record is logged into the directory and the record is written
for random access. If you proceed to do a read, you will find you are
at the end-of-file. If you then do another write B, you perform the
same operation. [JAPPEND will not enlarge the maximum number specified
in)CREATE.

When you write a record to a direct-access file, you or APL, associate
a record number with the data written. For input, you specify the
number of the record you want to read. Because the directory keeps
track of the record numbers, you can read and write records in any
order. For example, you can write record 10 before you write record
9. If you try to read a record that does not exist, the value of the
read is a null array. The shape of this array is 0 75, where 75 in-
dicates an end-of-file.

To delete a record, write a null array of shape 0 75 in its place.
For example:

(O 7UrQrHLEIC

You can access records both randomly and sequentially. If you do not
specify a record number in your read or write operation, APL uses as
the record number, 1 plus the value of the record position used in the
previous I/O operation. If the current H is the first I/O operation
on the channel, record one, the first record in the file is used as
the default.

The following is an example of creating and accessing a direct-access
file:

YOREATE 00 DIRACO EXNM
[IAGE 13 DIROCE , EMM DN

el 4 B8IYRESRIZ

PEECORD QL8R
FEGCORD §

FLeH Y812

2 4

THE FILE SYSTEM

pHEXNT OFERATION WEITES TO RECORD Q9
(V4YER
123 4
HLH12
BEQORD
HE99 12
123 4

[ees o

For the sake of efficiency, APL will not write a. record across a block
boundary (128 words) unless the record is larger than 128 words. Be-
cause of this limitation, it is very inefficient to have files where
all records are between 65 and 100 words. It is more efficient to
write fixed-length records. For example, if you realize that all
records will be between 10 and 32 words, you can specify a blocking
factor of 32. This will reduce CPU time and the real time involved in
I/0 operations. The file size will, however, be larger than if you
had specified a blocking factor of 8 or 16. If most of your records
are larger than 128 words, you should set the blocking factor to 128.

You can also reduce processing time by updating the file in order of
record numbers - for example, by writing records 5, 9, and 200 in
order instead of 5, 200, and 9. When updating a file, you should
perform deletions first and then replacements and additions.

The formula for determining the number of words that data (for ex-
ample, the letter 4) will take up, is:

FHCFFOY T (X/FA) S

where
L is 0.5 to indicate floating-point
1 for integer
4 for character
36 for Boolean

Note that direct-access files can reside only on disk or drum devices.

7.6.4 Binary-Access Files

APL treats a binary-access file as random-access memory. By using a
binary-access mode, you can access a file of any format or character-
istics. For example, you can read and write FORTRAN or COBOL random-
access files with an APL binary-access function.
To read or write this type of file, you specify the following:

l. The word of the file at which reading or writing is to begin

2. The type of values to be found beginning at the specified
word (for example, integer, ASCII)

3. The number of values to be read or written

THE FILE SYSTEM

Data is stored in variable-length records that you can access randomly
or sequentially by specifying a word position, rather than record
position as in direct-access files.

Because you specify data type when performing I/O (see Sections 7.6.6
and 7.6.7), you can read or write any type of file organization in-
cluding ASCII sequential, internalfsequential, and direct-access files.

For magnetic tapes in binary-access mode, you can perform a variety of
magnetic tape operations with the [OMTP system function. Refer to
Section 7.6.8.2 for more information on [OMTP.

Binary-access files can be shared with other users. See Section 7.6.5
for file sharing information.

7.6.5 Sharing Binary-Access Files

Before you can perform I/O on a binary-access file, you must assign it
to a channel number with [JASS. You have the option of sharing binary-
access files with other users. You control the extent of the sharing
by specifying certain switches with [0A4S8S. They are:

/BS File can be read or written but not both;
file can be read by multiple users but
written only by one user at a time.
Sequential access only.

/BS* Same access privileges as /BS, except
sequential output begins at end-of-file.
Sequential access only.

/BU File can be read and written; only one user
can have a /BU file open at any time. If
another user attempts to read or write a /BU
file that is already in use, an error message
32 FILF BEING MODIFIED will be returned.

/BU/SHARE File can be read and written; multiple users
can simultaneously have the file open. A
user cannot access a file in /BU/SHARE mode
if another user has already opened the file
in /BU mode.

Note that in the case of /BS and /BS*, on output, if you specify a
word position that is less than the last word output, you erase the
entire file and create a new file with your output written at that
word position.

The 0JENQ and ODEQ system functions, described in detail in Section 7.8,
synchronize the sharing of binary-access files.

7.6.6

THE FILE SYSTEM

Binary-Access 1/0

The £
as /B

where

ollowing format performs a read from a binary-access file opened
U, /BU/SHARE, /BS, or /BS*:

d ﬂ[word]ﬂ channel H,header ﬂ,type H,lengthﬂiﬂﬂ

d is the input-quad function. The value of H is the data read.

[word] is an integer specifying the word position at which read-
ing is to begin. The default is 1 (first word). The file pointer
is at either the beginning of the file, or at the next word after
the previous I/O operation.

channel is the channel number assigned to the file.

header is either the value 0 for no header, or 1 if a header is
available. The default is 1. If you specify header, you must

specify type and length. If header is 0, APL takes the correct
type and length from the data.

type is an integer from 1 to 6, specifying the type of data being
read. See Table 7-4 for data type values. If a header exists,
you need not specify type.

length is an integer indicating the number of values to be read;
not the number of words. If a header exists, you need not
specify the length.

Table 7-4
Data Types

Type Data Value Size
1 integer 1 per word
2 Boolean 36 per word
3 single-precision 1 per word

floating-point

4 double-precision 1 per 2 words
floating-point

5 APL 9-bit 4 per word

6 ASCII 7-bit 5 per word

THE FILE SYSTEM

The following format writes a recora to a binary-access file.
data H ﬂ[word]ﬂ channel ﬂ,header [,type ﬂ}lengthﬂiﬂﬂ
where
data is the information you want to write to the file.
B is the output-quad function. The value of B is data.

[word] is an integer specifying where you want the write to
begin. The default is 1 if the file pointer is at the beginning
of the file or the next word after the previous operation.

channel is the channel number associated with the file.

header is either 0 if the header does not exist, or 1 if the
header is available. The default is 1.

type is an integer from 1 to 6 specifying data type. See Table
7-4. If you do not specify type, APL attempts to write the data
in the proper type.

length is an integer indicating the number of values to be
written. When you specify a header, the length specification is
ignored.

The following format writes a record to the end of a binary-access
file opened as /BU or /BU/SHARE:

MmDMMMCMMaHmwkrmeﬂmeﬂﬂﬂ
where
data is the information you want to append to the end-of-file.
channel is the channel number associated with the file.
header is either 0 or 1.
type is one of the data types listed in Table 7-4.

length is an integer indicating the number of values to be
written. The value of OAPPEND is data.

OAPPEND writes to the physical end-of-file. The default word number
for the next read or write to the file is now the end-of-file. 1In
other words, the sequence [JAPPEND, then H with no word specification
always gives an end-of-file, while the sequence [OAPPEND then B with
no word specification appends a second record to the end-of-file.

To write to the end of a binary sequential file, use the /BS* switch
when assigning a channel number. Then, the first write operation
opens the file at the end to prevent overwriting.

When you write a record with a header, APL sets up the record with the
header information first. The header size is two words plus one word
for every dimension in your data. The data type and length make up
the first word of the header (one half-word each). The rank of the
data is in the second word, the number of rows in the third word, the
number of columns in the fourth word, and so on.

THE FILE SYSTEM

Figure 7-1 illustrates the format of the header.

Bit 0 17{18 35
Word 1 type (1-6) ff"%?ug';nﬁvf L‘ii’der
Word 2 Rank (Number of dimensions in data)
Word 3 rho 1
Word 4 rho 2

Figure 7-1 Format of Header in a Binary-Access File

If you do not specify a header when performing I/0, you must specify
the type and length of the data for input and output.

When reading a record with a header, you have the option of actually
accessing the header information itself or going right to the data.

If you specify no header (0) on a read of a record with a header, you
will access the header information when requesting word 1, 2 and so

on. APL views the header as data in this case. If you specify header,
APL goes right to the values you input instead. Because APL creates

a header as the default, if you read the end-of-file without specify-
ing 0 in the header position, you will receive a 15 DOMAIN ERROR.

The following example illustrates the writing then reading of a
character matrix whose shape is 3 by 2. A header is specified along
with ASCII data type (6) and length (number of values (6)). Figure
7-2 illustrates the format of the header and the data.

[lassE 1] FLLE 8L

(3 2p ' ARCHEFIYR]L Ly S b

FELILs0sl el
L3L07246
KL

JLe001 41
BE31L 0wl vl
FEATL e Q01w

BESTL s OotSed
PR

[Jee.s |

THE FILE SYSTEM

The data is stored as follows:

type 5 6

length in words

rank

rho 1

rho 2

values read

Figure 7-2 Record Format of a Binary-Access File

Note that the final value word is right-filled with zeroes.

In the previous example, the first read produced an integer value for
the entire word 1310726. To break this down into type and length, use

the encode function as in the following example:

(Qu2x18)+ 1310726

G

The following examples illustrate the use of the file input and output

functions for binary-access files:

[IAGE 10 EM /R

AWELTES REQUEST §HmQ e 1O HEODEF , Yol , THTEGER

(VEXH2Y0u)
123 405
AWE L TES FEQUEST § SIEQUENT AL
(G582, 00 1
g % 10 11 12 13
AREAD BEGLHMIMNG AT STH WORD Y VALUES
BLEB8TI2:0¢1 04
g 9 10 11

FEN
~

AFEOD S SEQUEMTEOL LY « MEMT WOFRD G2 YOLLES

H2s 09152
12 13

AWRETE XEGIMMEIMNG AT L XTH WORIGAECEL NaTo

LT O
TOF G| () F [
AFEAT { WORD EEGLIMMING AT 13TH WORD

BEL3T2,09690

10 AFLESFYRITIEIZ 008

TOF e

AFEOY O WORDS)0 VALLESY (AT REXT WO

oS

129 Qeée 10O

10 AFL
AWELTE BEGLMMIMGE AT 50TH WOk

THE FILE SYSTEM

AHEADER EMISTS
(3 2r20+06ACE0IR
21 22

23 24
25 26
AREAD 10 VALUES BEGIHMHIMG AT 50 (MO HEOADER)
HLS0029041 410
262154 2 X 2 21 22 2% 24 28 26
ATEAMSLATE 18T WORD THTO DECTMAL
(Qv2x1BI)+262154

AFEAL BEGIMHIMG AT 50
HEHEOAR

22

24

26

AMULL VECTOR ITHDICOTES EMD-OF o F LLE
AeRI2y0olvil

£

If you open a binary-access file with /BS, you can access the file
only sequentially. Because you can also specify a word number when
writing to the file, you could destroy the file by specifying a word
number that is less than the last word number written. For example,
if the last output was written in word 40, and you specify word 15,
the data will be written in word 15 but all data before and after that
word 1is erased.

You can, however, write to a word number greater than the last word
number in the file (41 in this case). APL considers this preserving
the sequence. Note the following example:

CHAMLITAS S VBT B

C110YHCHAOM

L2345 67 89 10
(10+ L0y HEHAN

L1213 14 15 16 17 18 19 20
{40+ V1O YRIGOICHAN

41 42 43 44 45 446 47 48 49 G0
(LOO+ VL OYELIICHAN

1oL 102 103 1G4 105 108 107 108 109 110
[1eL.g CHam

CHAM IS S R M /RS
LSO IeMHan
18 GOMALM EREOR
LSO eHan
A
HEZjeran
LOT 102 103 104 108 1046 107 108 109 110
A A
15 DOMARM RO
EI 2 e
M

As in direct-access files, to delete a record in binary-access,
specify a null vector in its place (0 75)p0. Also, an end-of-file is
indicated by the null vector (0 75),p0 and the error message 75.

THE FILE SYSTEM

With binary-access files, you can also input and output mixed data in
one logical record. See Section 7.6.7 for the [CIQ and [C0¢ system
functions.

7.6.7 [0CIQ and [1C0Q - Accumulating Data

The 0OCIQ and [C0Q system functions allow you to accumulate data of
different types into a variable for storage as one logical record.

For output, use the following férmat:
data [cC0Q Hheader ﬂ,typeﬂ ﬂ
where
data is the value of [0C04Q.
0co@ is the system function that packs data for output.

header is either 0 or 1, with the same meaning as in Section
7.6.6.

type is a data type listed in Table 7-4. The value of [C0Q is
the packed data.

The following format unpacks data:
variable 0CIQ ﬂheader ﬂ,typeﬂjﬂ
where
variable is the name where the value being read is stored.
0crqQ is the system function that unpacks the data.
header is either 0 or 1.

type is a data type listed in Table 7-4. The value of [OCIQ is
the packed data.

The [0C0¢ system function takes any data type and turns it into an
integer vector. In this way you can assign [0C0Q packed ASCII char-
acters to a variable and assign floating-point or APL 9-bit to another
variable and catenate them. Then you can write the record to a file
with B using the integer data type.

For example:

Ae 5
Fem [ooe
"
262152 1 5 L 2 3 48
(O 2x18)+FI1]
18

To retrieve it and
H,

For example:

-

[eIe

G

VAFACK
FeaFac
AFACK
()
AF
L L&Y
2]

L1l
221
31
41
-5
L&)
71
gl
rel

233D D

2101
L1
i

21

.
NI
AURF £y
X

EeplinT

W)

PR

I

[V

ALEF L HE
A(‘.l
Anel 1
ANAe] 1

aLEF L HE
Eeg. VY
Etkrg R

THE FILE SYSTEM

translate the data back,

then use [JCIQ to unpack the data types.

1

e

K LISBTHL

USEYS oo TO FACK A
FLOELE, THE VOLUES CAM X
ACK WHEN QOTEROTE WOMH'T W
s 0 CHARACTEFR MOATRELN, B
AME OF O VARIAKLE WHOSE v
THE FRESULTAMT FOCKED VALY

HET

0K
K

[
T
ra n

TEYFOATOSL §.J50
EQROTO UMFACK
OF VAR i3

Iy BT
&}

L)

2}

Py C KEXS
CH ROV IR

OOV O VA
VL LE G

E A Eeh B4R

ATED
B £y

2]

”
BATAHL
NESTRRY:

LT A

SOME HMHUMEFRLICQ VARIARLES

SOME CQHARMAQTER VAR LOELES

first read the data with

QF VALL
EOOF 00X
QOFK
CHEOW OF WHICH COMTOLIMS THE
ALUE T8 TO EE FOCKED

K L7 NS Ar LTHTEGESR

EHTO A
Y

ST MHGLE
TTFES,

USE

(21030120 g

Fy
VAL XL E
G LG
AFACK
FOW OF

CREMNTED BY
EYE G GHMERT

HAFACK

'y
g 2}

THE

WL CH CORTOLMHS
THE FACK
ORRTO

THE FILE SYSTEM

AMOKE 6 LIST OF IHFUT VARIAKLE MAMES
Ll1¢% Zp'a Y A Fexe
11

AR

AN

T

Kt ke
AFACK THESE VAREORLES THTO OME LTTEM
ACATEMOTE WELL MHOT WORK

FeaFACK L
e
24291 0 TI43E97IRILE H24292 1 02 2170869184 ¥ 292
I TREEYVIAESD 1310723F O TRL206401024 1310724 1 02
TR21L134602048

AMAKE A LEST OF OQUTFWUT VORLAERLE MNAMES

oy o

gURFACK THE FREYEOUS DaTa ERTO THE

PUEW NV AYF XL

B aUMEFACK L

A THE BESTORED DOTH L8 THE SAME S8 THE X070
ATHOT WA FOCKED

HMom A

X m EYAY A

T o Bk

7.6.8 Binary-Access Magnetic Tape Files

Binary-access mode is often used to read magnetic tape files that have
been created on other systems. The following sections, Sections
7.6.8.1, and 7.6.8.2, describe the use of the /BS/DUMP switches and
the [MTP system function for magnetic tape.

THE FILE SYSTEM

7.6.8.1 /BS/DUMP Switches - If you plan to read or write a binary-

access file on magnetic tape, you should specify the /BS switch when

assigning the file to a channel (0ASS). Output is then written to a

binary-access magnetic tape file in fixed-length blocks. The size of
these blocks is determined by the operating system; the default size

is 128 words. You can override the setting with the SET BLOCKSIZE or
SET TAPE RECORD-LENGTH monitor commands. !

If your file consists of variable-length blocks, you should also in-
clude the /DUMP switch. When you specify /BS/DUMP, each read or write
request reads or writes one magnetic tape block.

When you perform a read, the size of each input request must be at
least as large as the block to be read or you will receive the message
74 BLOCK T00 BIG. If the length specification in the input request is
larger than the input block, the value read will reflect the actual
block size. You should specify length with @ because APL cannot know
the length of the data before reading the tape.

NOTE

The primary use for /BS/DUMP is to read
magnetic tapes generated on other
systems. It is not recommended for
general use.

7.6.8.2 [IMTP - Operating on Magnetic Tape - The [MTP system function
performs a variety of magnetic tape operations including rewinding,
setting density, and returning data modes.

Format
channel [MTP operation(s)
where
channel is the channel number associated with the file,
OMTP is the system function for magnetic tape operations.
operation(s) is a vector containing one or more codes indicating
the particular magnetic tape operations to be performed. See
Table 7-5.
Some of the operations read characteristics of the tape. For each
read operation the result of that operation is placed into a result
vector. In other words, if there are 3 read operations in the oper-
ations array, the result array will be 3 elements long. If there are
no read operations, the result array will be null.
There are four basic types of magnetic tape operations.
1. Tape positioning operations - These operations do such things
as rewind the tape and move it forward and backward. They

have codes in the range 0-511.

2. Read operations - These operations read characteristics of
the tape such as density and track status. The results of

!See the TOPS-20 Monitor Calls Manual (version 3A or later) or the
TOPS-10 Monitor Calls Manual (version 6.03A or later).

7-28

THE FILE SYSTEM

these read operations are placed in the result array, as
explained above. They have codes in the range 512-1023.

3. Write operations - These operations set characteristics of
the tape. The value which is written is taken from the next
element of the operations array. For example:

12 OMTFE 1025
This example sets the density of the tape to 1600 bpi, the 4
is the value written as the tape's density. These operations
have codes in the range 1024-1535.

4, Reserved for user definition - These must be defined by the
user. Since APL does not know whether these are read or
write operations it assumes they are both. In other words,
it passes the next element of the operations array to the
operation and puts the result of the operation in the result
array. These operations have codes in the range 1536-2047.

On TOPS-10 the operation codes and results returned are identical to
those for the TAPOP UUO. (See the TOPS-10 Monitor Calls Manual.) On
TOPS-20 the operations listed in Table 7-5 are available.
Table 7-5
Operation Codes
1 - Wait for I/O to stop
2 - Rewind the tape to the load point
3 - Rewind and unload the tape
4 - Skip forward one block
5 - Skip forward one file
6 - Skip to the logical end of the tape
7 - Skip backward one block
8 - Skip backward one file
9 - Write a tape mark
513 - Read density, possible values are
0 - unit default bits/inch
1 - 200 bits/inch
2 - 556 bits/inch
3 - 800 bits/inch
4 - 1600 bits/inch
5 = 6250 bits/inch
6-17 - reserved for DIGITAL
519 - Read data mode, possible values are
0 - DEC-compatible core dump format (7-track and
9-track)
1 - DEC-compatible dump format (9-track)
2 - Industry-compatible, 8-bit mode (4 bytes/word)
3 - 6-bit mode (9-track, TU70 only)
4 - 7-bit mode (TU70 only)
5 - DEC-compatible 7-track core dump (SIXBIT)
520 - Read track status, l=7-track, 0=9-track
521 - Read write-lock bit; returns 1 if set, 0 if not set
1025 - Set density (same values as read)
1031 - Set data mode, same values as read

THE FILE SYSTEM

On success, [MTP returns a l-dimensional array with one element for
each read or user-defined operation. If any of the operations returns
an error, [OMTP returns an integer indicating the cause of the error.
For TOPS-10 the errors are the same as for the TAPOP UUO. For TOPS-20
the following errors can be returned:

-2 Unknown error

-1 Address check while storing answer

CoOoONDWRFEO

Illegal function code specified

Function code requires privileges

Value is not in legal range

Address check while reading arguments, or too few arguments
Tape has not been initialized

Termination code error

Job number associated with unit is incorrect

In addition, for both TOPS-10 and TOPS-20, the following errors can be

generated:
12 RANGE ERROR -
64 CHANNEL NOT ASSIGNED
9 RANK ERROR -

15 DOMAIN ERROR -
10 LENGTH ERROR -

62 NOT A PROPER DEVICE -

CHANNEL < 1 or CHANNEL > 12

CHANNEL not assigned

Rank of argument array NEQ 1 and length
of argument array NEQ 1

Operation code LSS 0

Write operation specified but there is
no argument to write.

Device is not a magtape

NOTE

When you specify OMTP, APL first writes
out any in-core buffers before perform-
ing the [MTP operations. You should
therefore issue this function with
great caution, and you should use it
only between magnetic tape files.

7.7 UTILITY SYSTEM FUNCTIONS

The following sections describe four utility system functions that
return file organization, device characteristics, record size, and
other information about files that are in the system.

THE FILE SYSTEM

7.7.1 [OCHS - Returning File Organization and Status

Format

OcHS channel(s)

where
(cHS is the system function.

channel (s) is one or more channel numbers associated with the
files.

The 0OCHS system function returns the file organization and the open
status of the files on one or more channels in the system. The
channel argument can be a numeric scalar, vector, or a null vector.

For example:

[jeHs 8

This expression returns information about the file associated with
channel number 8. If the channel number is a vector, APL returns
information on all channels specified. One row containing two values
is returned for ¢ach channel specified. The first value identifies
the file organization, and the second value identifies the open status
of the file.

Tables 7-6 and 7-7 list the meanings of the values.

Table 7-6

File Organization
Code Organization

0 channel free

1 /AS

2 /IS

3 /DI

4 /DA

5 /BS

6 /BU

THE FILE SYSTEM

Table 7-7
Open Status

Code Status

channel free

file assigned but not open
file open for output

file open for- input

file open for input and output

S WNhhHFO

If you specify a single channel number, the result of the function is
a 2-element vector. If the function contains N arguments, the result
is an array of shape N by 2. For example, the following function

results in a 3-by-2 array:

NeFILS&NICHS (3
4 1
Sl
G 0

PFILS

&L

APL returns information on all channels in the APL system. This
specification is the same as [OCHS 112.

THE FILE SYSTEM

7.7.2 [ODVC - Returning Device Characteristics

Format

Opvc channel(s)

where
0pve is the system function.

channel(s) is one or more channel numbers associated with files.
This argument can be a numeric scalar, vector, or a null vector.

The 0ODVC system function returns a device-characteristics word and
block size for the files on one or more channels in the system. The
device-characteristics word returned by [0ODVC has the same format and
meaning as that interpreted by the DEVCHR UUO!.

The syntax is identical to that of [OCHS: one row containing two values
is returned for each channel specified. The first value is the device-
characteristics word, and the second value represents the block size
for the device, in words. [ODVC returns a 2-element vector if a single
channel is specified. If the function contains ¥ arguments, the re-
sult is an array of shape N by 2. If the argument is a null vector,
APL returns information on all channels, and the result is an array

of shape 12 by 2.

It is usually helpful to convert the device-characteristics word to
binary format before examining it. The following example illustrates
the conversion of the word returned in the example included at the
beginning of this section with the APL encode function (T1).

For example:
OeHS f
Aefpove |
L2 W B
17324376063

OL LA (3SR A1)
010000001L000100111001 3131123111 13111

LPT: MTA: Device can do output
DSK: TTY : Device can do input

!See the TOPS-20 Monitor Calls Manual (version 3A or later) or the
TOPS-10 Monitor Calls Manual (version 6.03A or later).

7-33

THE FILE SYSTEM

7.7.3 [OFLS - Returning File Sharing Information

Format

OFLS channel(s)

where
OFLS is the system function.

channel(s) is one or more channel numbers associated with files.
The argument can be a numeric scalar, vector, or null vector.

The [OFLS system function returns the sharing status and other infor-
mation about files on one or more channels in the system. The syntax
of OFLS is similar to that of [CHS and [DVC except that one row con-
taining four values is returned for each channel specified. The mean-
ing of the values differs according to the file organization. 0OFLS

is meaningful only for direct-access and binary-access files. If the
channel number you specify is associated with an ASCII sequential or
internal sequential file, the values returned are all zeros.

The values returned for direct-access files (/DA and /DI) have certain
meanings depending on their position in the vector. Starting from-
left to right:

First value Share bit: 0 means no sharing, 1 means
sharing
Second value Value of the next record number to be used

for reading or writing (if subscript record
in the file I/O request is defaulted)

Third value Maximum record number permitted
Fourth value Blocking factor

Starting from left to right, the values for binary-access files have
the following meaning:

First value Share bit: 0 means no sharing; 1 means
sharing
Second value File-word pointer to the next word to be

read or written (if subscript word in the
file I/0 request is defaulted)

Third value Length of file in words (cannot be deter-
mined for magnetic tape device)

Fourth value Size of last read or write request in words
(Not for magnetic tapes)

THE FILE SYSTEM

For example:

[FLs
0 20 2082 S0

There is another important difference between [OFLS and OCHS. The file
on the channel must be open to return values. In the case of a /BS
file in which only reading or writing can be in effect at any one time,
there must be a way of specifying which type of access you intend to
perform on the next operation if the file has not already been accessed.
APL allows you to include a special channel number specification for
/BS files that have not already been accessed. A channel number in

the range 1 through 12 indicates that you will be reading the file.

A channel number in the range 101 through 112 indicates that you will
be writing the file.

OFLS returns a 4-element vector if a single channel number is speci-
fied. 1If the function contains N channels, the result is an array of
shape ¥ by 4. If you specify a null vector, APL returns information
on all channels, and the result is an array of shape 12 by 4.

7.7.4 [OFCM - Returning File Information

Format

JFcM channel

where
OFcM is the system function.
channel is the channel number associated with the file.

The 0OFCM system function returns information about the records in a
direct-access file. Unlike [CHS and the other utility function, the
OFCM function requires that the channel number be an integer scalar,
not a vector. [OFCM is meaningful only for direct-access files (/DA
and /DI files). TIf the channel number is associated with another file
organization, the result will be a null array of shape 0 by 2.

For direct-access files, [(JFCM returns one row containing two values,
one row for every record in the file. The first value is the record
number; the second value is the number of blocks in the record. If
the file contains N records, the result is an array of shape N by 2.

For example:

[IFcem %
1 1
4 &3
T 7
P 7
98 1
s 1

THE FILE SYSTEM

7.8 [0OENQ AND [IDF@ - SYNCHRONIZING SHARED FILE ACCESS

Format

JENQ channel lock number share bit
ODEFQ channel lock number share bit

The [OENQ and [ODEQ system functions allow you to synchronize access to
shared direct-access and binary-access files. These functions should
be used only by advanced APL users familiar with the ENQ and DEQ moni-
tor calls.! 1In addition, the issuing of [0ENQ and ODEQ functions
should be restricted to a cooperating group of users who require
shared access to common files and who have decided upon a mutual pro-
tocol for synchronizing file usage.

Synchronization of file access proceeds as follows: A user assigns a
file and specifies that it is to be available for shared access
(/SHARE). However, to protect the file while a read or write is being
performed, some method is needed for temporarily locking the file from
access by other users. [ENQ performs this lock function. The file
remains under the control of the user who issued [ENQ until that user
releases it for continued shared access with the [DEQ function. The
arguments to both functions specify the degree to which the file is
locked against other users.

The first two arguments, channel number and lock number, are con-
sidered a lock pair. The first element identifies the channel number
on which the file to be shared is assigned. The second element repre-
sents the particular type of lock being performed. Depending on the
conventions adopted by file users, this number might be a file record
number, a range of record numbers, or some other representation. The
lock number must be in the range 0 through 2%33-1, It has no inher-
ent meaning to APL; its only significance is that agreed upon by
cooperating users. The share bit is discussed later in Section 7.8.3.

The channel number is not particularly significant. The file to be
shared must be associated with the specified channel, but several
users can have the same file assigned to several different channels.
This is illustrated in the next example. The chronological order in
which operations are performed is significant and proceeds from top to
bottom.

USER[4,204] USER[4,2051]
0A8S '12 FRT/BU/SHARE' (A8S '11 FRT[55,121/BU/SHARE
12 11
OENG 12 99
0

FILE OPERATIONS ON 12 OENG 11 989
. USER ENTERS A WAIT STATE

OpEQ 12 99

FILE OPERATIONS ON 11

ODEQ 11 99
0

!See the TOPS-20 Monitor Calls Manual (version 3A or later) or the
TOPS-10 Monitor Calls Manual (version 6.03A or later).

7-36

THE FILE SYSTEM

You issue [OENQ and 0ODEQ on lock numbers as well as on channel numbers.
An [JENQ succeeds if another user is not already enqueued on the speci-
fied lock. If the lock is currently enqueued, the second user enters
the wait state until the first user issues a [ODEQ to free the locked
file. When you close a file, all locks on the channel associated with
the file are dequeued.

A successful [0ENQ or [IDEQ returns a 0 as the function result. If an
error is encountered, a scalar value representing the error condition
is returned.! A return code of ~1 means that the system does not
support the use of [ENQ and [DEQ.

Only the channel number is required in an 0ENQ or [DEQ specification.
The function:

CHEMG &

is equal to:

[ERG & O
0

You can specify a matrix as an argument.

For example:

[E MR M

M is a matrix in which each row specifies a lock pair. APL engqueues
on all locks specified in this matrix. All locks must be successful
for an 0OENQ to succeed.

If you include only a channel number with [DE@, APL clears all locks

on the file. If you include a null vector as a channel number, APL
clears all locks on all channels. For example, the [DEQ expression:

[loEe F e 5 & ¥
0

clears all locks on channels 5, 6, and 7.

!See the TOPS-10 Monitor Calls Manual (version 6.03A or later) for
an explanation of value errors returned under TOPS-10.

THE FILE SYSTEM

7.8.1 File Locks

The lock pair:

0OFNQ@ channel O
(0DEQ channel 0

has special significance in APL. This lock pair is considered to be
the file lock and is used primarily by the file system itself to
control access to shared files. APL automatically issues internal
DENQ and ODEQ functions on the file lock for the following organiza-
tions:

/DA and /DA/SHARE
/DI
/BU/SHARE

These functions are performed to ensure efficient access to the in-
core disk buffers maintained by APL.

When you specify a /DA file without sharing, APL issues an [JENQ on the
file lock. When the file is closed, an automatic [DEQ is performed.

If /DA/SHARE, /DI, or /BU/SHARE is specified, APL issues an [ENG on the
file lock when the file access is first issued. It issues an auto-
matic ODEQ on the file lock whenever a terminal input request is
expected. Before performing the ODFQ function, APL writes out all
output buffers and clears all input buffers.

You can explicitly issue an [OENQ function on the file lock. If you do
this, APL will not issue an automatic [0ODE@ until you issue a corres-
ponding explicit ODEQ on the file lock or until the file is closed.
You can issue an explicit [DFQ function on the file lock at any time,
thus causing APL to clear all in-core buffers for the corresponding
file. For certain applications, it is more efficient to issue expli-
cit OENQ's and [ODEQ's.

7.8.2 Determining Lock Numbers

The group of APL users who will be sharing files and issuing [ENQ and
ODEQ functions for these files should agree upon the significance of
the lock-number arguments included in the function lock pairs. As
previously mentioned, this argument can be any number in the range 0
through 2x33-1, where 0 has a special meaning. The only meaning
associated with a particular lock number is that agreed upon by the
group of cooperating file users. The following function provides an
example of users cooperating in sharing a file. This function can be
executed by several users simultaneously. It controls access to the
file by locking individual records of the file while they are being
accessed by file users. A lock-number specification here refers to a
file record number.

wF LI
v HOMEEOMEFHUM F CHOAM§ CME
L1 FOFPIENR CHAM,, CMERUM) JEMRFALL
o CME R OMP UM O HON

R FOORPIDER CHOAM) /DEQREFATLL
47 HOMFEPROCESS CMP

£ PG M @ MO MF [CMFHUM T CHAR
L& S (OX[DER CHOM) /IERIFOTL.
L7 40

THE FILE SYSTEM

el BRI L.
el O RE AL L.
v

CEME FATLED [JSTGHAL 501
VRER FATLEDD []8LGHAL 500

[F [IA8s FOATYROLL , FEE FK0 /8@

12

7.8.3 Specifying a Share Bit

The third argument in the [ENQ and [ODEQ system function, the share
bit, can be specified if you are willing to share access to a lock.

If the share bit is set to 1, sharing of a lock is established; if it
is set to 0, you have exclusive use of the lock. The default share
bit is 0. If several users specify a share bit 1 in an 0OENQ function,
it is possible for all of the OEN@s to succeed at the same time. Only
one user can have exclusive access to a lock at any one time.

The following example illustrates the interaction of four users access-
ing the same file. The chronology of the functions issued and executed

is shown in the time component. Note that requests are queued in a
first-in-first-out fashion.

Time User 1 User 2 User 3 User 4

12:00...0ENQ 12 1 O©
12:00...0btains

exclusive

access
12:02.ceevcnceccenenass JENG 12 1 1
12:04.00eeeeeessevsassssWaitseeeeeee . JOJENG 12 1 1
12:06.eeecescesnscsosorsesccancsecoasecceeWalitSeeeeaeaaoo .JENQ 12 1 O
12108 .t eeeeeesecoanceesososcoasossssscssssssensnsacsesssssWaits

12:10

12:12...0pEQ 12 1.......0btains........0btains
shared access shared access

12:14. .00 eieeeeeneeess DEQ 12 1

12:16...0ENQ 12 1 1ueeeeeoossoesenaesesdDEQ 12 1 0......0btains
waits exclusive
access

12:18...0btAIlNS.eserecescccossseocsessssssscscccnsscssss JDEQ 12 1
exclusive
access

THE FILE SYSTEM

7.9)INPUT AND)OUTPUT HANDLING I/O FROM NON-TERMINAL DEVICES

Format

)INPUTﬂfilespecH /character setn
)OUTPUTﬂfilespec ﬂ/character setﬂ

The)INPUT and)OUTPUT system commands allow you to divert immediate
mode and quad I/0 to devices other than your terminal. A file speci-
fication can be included in the command to indicate the device and
filename to be used for input or output. The file specification has
the same format as a workspace name, and, as with a workspace name,
you need not include all five parts of the file specification. See
Section 2.1.4. When you omit parts of the name, the default values
in Table 7-8 are assumed. If you omit the file specification, APL
defaults to the terminal.

Table 7-8
File Specification Defaults

Component Default
Device name DSK:
Filename Input for)INPUT
Output for)OUTPUT
File extension or type LAAS
File protection Installation dependent
File owner ID User's directory

You can specify an optional parameter (the character-set switch) to be
used in handling the data being read or written. Legal values are
/APL for the APL character set and /7TTY for the TTY character set.

The default is the character set of the user's terminal.

For TTY terminals, /APL means use the APL character set specified when
you first accessed APL. When APL prompts with TERMINAL.., you have
the option of specifying a particular APL terminal, for example,
TTY/4013. The default is LA36. See Table 1-1.

YJINPUT and)OUTPUT are typically used to divert input and output
requests to devices other than the terminal.

For example:

YOLIYELWT LYY

THE FILE SYSTEM

This response intercepts all output normally directed to the terminal
and routes it instead to the line printer. For example:

YORITFUT NEK AL

This command causes all normal terminal input requests to come from a
disk file named APL.AAS.

If you use an)OUTPUT command to divert output from the terminal,
input is echoed to the output file as well, so that the output file
has the appearance of a normal terminal sheet. This alleviates the
potential confusion involved in trying to match up input and output
requests. Special processing is also performed to help you synchro-
nize input and output in the following two cases:

1. dinput from the terminal and output to another device
2. input from another device and output to the terminal

In the first case, APL displays the usual six spaces at the terminal
to signal the completion of the last output request. In the second
case, the names of the functions whose definitions appear in the input
file are listed on the terminal upon successful closing of the
function.

If errors occur in a function definition, the number of errors en-
countered is displayed along with the function name. If the APL

system encounters an I/0 error when)INPUT and)OUTPUT commands have
diverted both input and output from the terminal, I/O in the direction
of the error reverts to the terminal. For example, if an error occurs
on input, subsequent input is directed to the terminal, but output con-
tinues to be sent to the output device.

APPENDIX A

ERROR MESSAGES

If an error is detected during the evaluation of an expression, APL
(1) displays an appropriate error message from the list included below

and (2)

the line in which the error occurred. A null array with the

shape 0 ERROR NUMBER is returned as the value of the expression that
produced the error when executed with €. The following example of a
null array indicates an end-of-file error condition:

11 Ve

£y 4 X

RN

A
Cgog ' OB
VAL UE EFRROR

£ ¥

M

Fe

The meaning of error-number values is summarized below.

Error
Number

0

Meaning/Explanation/Action

IMPROPER LIBRARY REFERENCE
Attempt to)SAVE a disk area that is not your own and not
a public library area.

WS NOT FOUND
No workspace or file with the name found in the disk area
specified.

SYSTEM ERROR
Internal APL system error. Please report this error to
your software specialist.

WS FULL

The active workspace cannot retain all the information
requested, nor can it expand further. Erase unneeded
objects, issue a)MAXCORE command to enlarge the workspace,
or do a)SAVE,)CLEAR and)COPY sequence on the needed
information.

NOT A VALID SV IDENTIFIER
Attempt to use a shared variable not supported by this APL
implementation.

ERROR MESSAGES

Error
Number Meaning/Explanation/Action
5 DEFN ERROR
Improper function definition syntax (function name may have
been defined elsewhere) or improper edit request syntax.
Function may be locked.
6 LABEL ERROR
Improper use of a colon or improper variable name.
7 SYNTAX ERROR
Invalid syntax, such as two variables without an interven-
ing operator, a function call with missing arguments, or
an unmatched parenthesis.
8 INDEX ERROR
Index value out of range, for example trying to reference
the tenth item of a 9-element vector.
9 RANK ERROR
Ranks of two operands are not conformable.
10 LENGTH ERROR
Shapes of two operands are not conformable.
11 VALUE ERROR
Value for the variable in question has not been previously
specified, or a function with an explicit result did not
return a value.
12 RANGE ERROR
Value of result exceeds capacity of machine word.
13 POSSIBLE SI DAMAGE
A function in the state indicator has been erased or edited.
14 DEPTH ERROR
Too many right brackets or parentheses on a line.
15 DOMAIN ERROR
Function not defined for given values of arguments.
16 UNBALANCED DELIMITER
Execute string does not contain a closing quote or, function
definition does not contain a closing 'del' character.
17 EDIT ERROR
Improper line editing request.
18 ATTENTION SIGNALED
Attention signal detected during function execution (not
all attention signals produce this message). Attention is
signaled on ASCII terminals by two CTRL/C characters and
by the ATTN key on 2741l-style terminals.
19 DEVICE DOES NOT EXIST
Improper device specification.
20 DEVICE NOT AVAILABLE

The desired device is already assigned to another job.

Error
Number

21
22

23

24

25

32

33

35

39

41

42

43

44

45

46

ERROR MESSAGES

Meaning/Explanation/Action

INCORRECT COMMAND
A system command is incorrectly spelled.

INCORRECT PARAMETER
Improper command syntax for a recognized system command.

WS LOCKED
An improper password (or none at all) has been given to
access a workspace with a)LOAD,)COPY, etc., command.

NOT GROUPED, NAME IN USE
The group-name specified has been defined elsewhere. The
objects in the group-member-list have not been grouped.

EXECUTE ERROR

PROTECTION FAILURE
Attempt to)LOAD or)SAVE a read-protected workspace from
disk area other than your own, or a directory is full.

FILE BEING MODIFIED

Two users are trying to)SAVE the same workspace simulta-
neously, or a file is already in use (by another user)
during direct-access file I/O.

UNEXPECTED FILE ERROR

DIRECT I/0 ERROR
An error has occurred during a directory read or write.

NO SUCH DIRECTORY

NO ROOM ON THIS FILE STRUCTURE OR QUOTA EXCEEDED

File structure is full or disk allocation is exceeded. 1In
the latter case, files must be deleted from the user's disk
area before more files can be added.

WRITE-LOCK ERROR
Device is physically write~protected (usually a magnetic
tape). Write-enable the device.

NOT ENOUGH TABLE SPACE IN MONITOR

The system has run out of space to perform certain functions
for the user. See the systems programmer at your install-
ation.

PARTIAL ALLOCATION ONLY

Entire space request for a disk file allocation could not
be fulfilled. The space that was available has been
allocated.

BLOCK NOT FREE ON ALLOCATED POSITION

A disk block that the monitor allocated to APL as free is
not available. See the systems programmer at your install-
ation.

MESSAGE TOO LONG
The maximum message length for the HI message has been
exceeded. Maximum length is 384 characters.

Error
Number

47

48
49

50

51

52

53

54

55

56

57

58

59

ERROR MESSAGES

Meaning/Explanation/Action

LINE TOO LONG TO EDIT

Line editing is not permitted on multiple-line statements
(such as statements that overflow to the following line or
multiple-line quoted strings). It is sometimes possible
to edit the line by changing the)WIDTH parameter, to set
the whole statement on one single line.

INPUT LINE TOO LONG
FILE CONTAINS A DAMAGED WS

ERROR IN GARBAGE COLLECTION
Internal APL system error. Please report this error to
your software specialist. Workspace damage is probable.

ERROR IN COPY

An error has occurred during a)COPY command. Please re-
port this error to your software specialist. Workspace
damage is probable.

LINKAGE ERROR
Internal APL error. Workspace damage has been detected.
Please report this error to your software specialist.

NOT ENOUGH CORE AVAILABLE

Not enough memory is available for the task requested. This
error results when the user is within the limit specified
by the)MAXCORE command, but the system itself does not
have enough memory to allow the workspace to expand. Re-
vise your needs for memory, use virtual storage facilities,
or try to run at a time when more memory is available.

STACK OVERFLOW

Internal APL error. There is not enough room on the stack
for APL operations to continue. Please report this error

to your software specialist. Workspace damage is probable.

LOGICAL NAME DSK DOES NOT REFER TO PHYSICAL DISK

APL has determined that the logical name DSK does not refer
to a physical disk structure. Reassign the name DSK to a
disk (necessary for direct access I/0).

INCORRECT MODE FOR DEVICE
The I/0 mode for the action requested is improper for the
chosen device (e.g., trying to)SAVE to a terminal).

FILE DOES NOT CONTAIN A WORKSPACE
Attempt to)LOAD or)COPY a file that does not contain an
APL workspace.

I/0 ERROR

A data-transmission error was detected during input or
output. This message is usually associated with a non-
recoverable device error.

FILE ALREADY EXISTS WITH GIVEN NAME

Attempt to)SAVE a workspace with the same filename as an
existing file that is not a workspace. Either rename the
existing file on disk or change the)WSID of the APL
workspace.

Error
Number

60

61

62

64

65

66

67

68

69

70

71

72

73

ERROR MESSAGES

Meaning/Explanation/Action

WS NOT SAVED, THIS WS IS

Attempt to)SAVE a workspace with the same filename as an
existing workspace, without specifying the)WSID first.
This error message is to prevent inadvertent overwriting
of previously saved workspace.

RENAME ERROR

An error has occurred during file deletion or protection
alteration. This frequently occurs when a file or work-
space is already protected and cannot be renamed.

NOT A PROPER DEVICE
Improper device selection, for example trying a)SAVE to a
device which supports dump-mode I/O but which is not a DSK.

CHANNEL NOT ASSIGNED

The channel specified in a file operation has not been
previously associated with a file via a [4SS system
function.

CANNOT DO BOTH INPUT AND OUTPUT

Either input or output, but not a combination of both, is
allowed to a sequential file. Close the file and reopen
it to perform the desired operation.

CANNOT INPUT FROM FILE
The user has tried to input from an output-only device,
such as a line printer.

CANNOT QUTPUT TO FILFE
The user has attempted to output to an input-only device,
such as a card reader.

FILE LOCKED
An improper password has been given for a direct-access
file.

FILE FORMAT NOT DIRECT ACCESS
An attempt has been made to perform direct-access I/0 to a
non-direct access file.

FILE FORMAT NOT INTERNAL SEQUENTIAL
An attempt has been made to perform internal sequential I/O
to an non-internal sequential access file.

IMPROPER MODE OR SOFTWARE CHECKSUM ERROR

A file operation is attempting to use a mode that is im-
proper for the device specified in an [J45S system function.
Issue an [455 to a device that supports the necessary mode.

DEVICE ERROR
Physical device error during file I/O. Report this error
to your operations staff.

DEVICE DATA ERROR

A checksum or parity error during file I/O has occurred.
The file is possibly recorded incorrectly on the specified
device.

Error

Number

74

75

78

79

ERROR MESSAGES

Meaning/Explanation/Action

BLOCK T0O BIG

A data-transfer error has occurred during I/0. Specifi-
cally, the last user has attempted to read a block of data
that is too large.

End-of-file (EOF) detected (no message is printed;
execution continues).

END OF TAPE
End-of~reel on a magnetic tape (MTA) detected.

SYSTEM FUNCTION ILLEGAL IN EXECUTE OR IMMEDIATE MODE

APPENDIX B

SUMMARY

This appendix contains the following items in the form of tables:

Primitive Scalar Functions Table B-1
The Dyadic Circle Function Table B-2
Relational and Logical Functions Table B-3

Primitive Mixed Functions Table B-4

o e

Operators Table B-6
System Variables Table B-7
System Functions Table B-8

Keyboard I/0 Functions Table B-9

o

System Commands Table B~11

SUMMARY

Table B-1
Primitive Scalar Functions
(Section 3.2)

Monadic Dyadic
Function Meaning Function Meaning

+Y Y X+Y Add X to Y

Y Negative of Y X-Y Subtract Y from X

xY Sign of ¥! XxY Multiply X and Y

Y Reciprocal of Y XY Divide X by Y

*Y E to the Yth power X*xY X to the Yth power

| Y Magnitude of Y x|y X residue of Y

[y Ceiling of Y Xy Maximum of X and Y

LY Floor of Y XLY Minimum of X and Y

®Y Natural logarithm of Y XeYy Log of Y to the
base X

'Y Factorial of Y Xty Binomial
coefficient
(number of com-
binations of Y
things taken X at
a time)

?Y A random integer of 1Y xX?yY X number of random
integers in the
range 1 through Y

oYy Pi times Y Xoy Trigonometric
operators (Y is in
radians. See
Table B-2.)

‘pPefinition: xY is -1 if Y<o0

xY is 0 if Y=0
xY is 1 if Y>0

SUMMARY

Table B-2
The Dyadic Circle Function
Expression Result Expression Result

ooX (1-X*x2)*%.5

10X sine X -10X arcsin X
20X cosine X -20X arccos X
30X tangent X -30X arctan X
LoX (1+X*2)*.5 -4ox (-1+X%2)%.5
50X sinh X -50X arcsinh X
60X cosh X -60X arccosh X
70X tanh X -70X arctanh X

The functions in Table B-3 return 1 if the relationship is true, and 0

if it is false.

Table B-3

Relational and Logical Functions

(Sections 3.2.1 and 3.2.2)

Function Meaning

X<Y X less than Y

X<y X less than or equal to Y

X=Y X equal to Y

XzY X greater than or equal to Y

X>Y X greater than Y

X=Y X not equal to Y

XAY X and Y

XvY X or Y

XnY X nand Y (not both X and Y)

XwY neither X nor Y

~Y not Y

SUMMARY

Table B-4
Primitive Mixed Functions

Function Section Meaning

X,Y 3.3.1 Catenate X to Y along the last dimension
of X

X/Y 3.3.2 X (logical) compression along the last

dimension of Y

X/N]1Y 3.3.2 X (logical) compression along the Nth
dimension of Y

XY 3.3.2 X (logical) compression along the first
dimension of Y

X7y 3.3.3 Deal X integers selected randomly in
range 1 through Y without duplication

X1y 3.3.4 Decode the representation of Y in number
system X

X+Y 3.3.5 For X>0, drop first X elements of Y - for
X<0, drop last |X elements of Y

XTY 3.3.6 Encode Y in number system X

X\Y 3.3.7 X (logical) expansion along the last

dimension Y

X\N[N]1Y 3.3.7 X (logical) expansion along the Nth
dimension of Y

X\Y 3.3.7 X (logical) expansion along the first
dimension of Y

Xvy 3.3.8 Generate an index vector such that
X[¥Y] is in descending order

XAY 3.3.9 Generate an index vector such that
X[AdY] is in ascending order

SUMMARY

Table B-4 (Cont.)
Primitive Mixed Functions

Function Section Meaning

1Y 3.3.10 Generate the first Y consecutive integers
from current origin

XY 3.3.11 ?ind the first occurrence of Y in vector

X,[Nly 3.3.12 Laminate X to Y along the Nth dimension
of X

Xe¥ 3.3.13 Determine the membership of X in array Y

oY 3.3.14 Return the ravel of Y (make Y a vector)

¢Y 3.3.16 Reverse along the last dimension of Y

SLN]Y 3.3.16 Reverse along the Nth dimension of Y

ey 3.3.16 Reverse along the first dimension of Y

pX 3.3.18 Return the shape of X

XpY 3.3.15 Reshape Y to make dimension X

XoY 3.3.17 Rotate by X along the last dimension of Y

XoLN1Y 3.3.17 Rotate by X along the Nth dimension of Y

XoY 3.3.17 ?otate by X along the first dimension of

X+yY 3.3.19 For X>0, take first X elements of Y - for

X<0, take last |X elements of Y

Y 3.3.20 Transpose the dimensions of Y (for a
matrix, exchange the rows and columns)

XQY 3.3.21 Transpose array Y according to X

SUMMARY

. ;?a'égéiégéiw‘f

L

i
i
L

SUMMARY

In the following table, f and g stand for any primitive scalar dyadic
function.

Table B-6
Operators
Operator Section Meaning
Xf.qgY 3.5.1 Inner product
XofY 3.5.2 Outer product
£f/y 3.5.3 The £ reduction along the last dimension
of Y
£f/IN]Y 3.5.3 The £ reduction along the Nth dimension
of Y
£y 3.5.3 The £ reduction along the first
dimension of Y
£\Y 3.5.4 The f scan along the last dimension of Y
E\[N]Y 3.5.4 The f scan along the ~Nth dimension of Y
£\Y 3.5.4 The f scan along the first dimension of
Y

The format function is used with the following syntax:

FMT § V:V2;...VN
or
FMT $ V

where
V can be any variable or expression

FMT must be a character vector containing one or more format
fields chosen from the following list:

Format Meaning

'MAW! Character data; cannot be used with
numeric values

'MEW.D! Floating-point numeric data with
exponent

"MQFW.D! Fixed-point numeric data

TMQIW? Integer numeric data with automatic
rounding

'MXW?! Blanks inserted in edited line

'MMtextM! Literal text inserted in edited line

where

LA I

Qualifier

B

Cc

L

Z
MMtext[
NMtext["

PMtext[

QMtext(l

RMtextM

SUMMARY

is the optional repetition factor.
is the field width.
is the number of decimal positions.

is any number of qualifiers chosen from the following list:

Meaning
Blank field if value is 0
Insert commas
Left-justify
Zero-fill
Insert text left of negative result
Insert text right of negative result
Insert text left of nonnegative result

Insert text right of nonnegative
result

Insert text in background

You must separate format fields with commas. Up to eight signi-
ficant digits can be specified.

The symbol e can be used instead of M (" for TTY terminals).

SUMMARY

Table B-7
System Variables

Variable Section Meaning

Can be reset:

04Us 4,2.5 Automatically backs up the active
workspace if value is 1.

gcr 4.2,7 Sets the degree of tolerance or relative
fuzz to be applied in performing
comparisons, value must be in exponent
form; range 0 through 1E 8.

OERROR 4.2.9 Contains three lines describing the error
that occurred.

OGaaG 4.2.10 Inhibits messages sent from other users.
aro 4.2.11 Changes the setting of the index origin
to 0 or 1.

4.2.15

Legal values are integers in range 1
through 18.

apw 4.2.16 Sets the maximum number of characters
that can appear in an output line. Legal
values are integers in range 30 through
390.

ORL 4,2,17 Determines a link in the chain of random
numbers used in the roll and deal
functions.

OsrF 4.2.18 Sets a new prompt or signal message for
evaluated input.

OTIMELIMIT 4.2.19 Sets a limit to the amount of time you
have to respond to a quote-quad input
request.

SUMMARY

Table B-7 (Cont.)
System Variables

Variable Section

Meaning

Retain system-specified values:

0AT 4.2.1
OALPHA 4.2.2
DALPHAU 4.2.3
0ASCIT 4.2.4
0av 4.2.6
OCTRL 4.2.8
gLe 4.2.12
OnvuM 4,2.14
OrIMEOUT 4.2.20
ars 4.2.22
orr 4.2.23
ouvL 4.2.24
Owa 4.2.25

Stores account information on the current
APL session, including user identifi-
cation and CPU connect, and keying time.

Contains a vector of 27 characters A and
A4 through 7.

Contains a vector of 27 underlined
characters A and 4 through Z.

Contains 128 ASCII characters.

Contains a vector of every character in
APL.

Contains a vector of 32 characters listed
in Table 4-3.

Stores a vector of line numbers in the
APL workspace state indicator, arranged
in order of most recently suspended
function first.

Contains a vector of the 10 digits 0, 1,
2, 3, 4, 5, 6, 7, 8, 9.

Reports whether a user ran out of time
during a quote-quad input request.

Stores the current data and time in base
format.

Determines the time of terminal being
used in current session.

Stores the system job number associated
with the current APL session in base 10
format.

Determines the maximum amount that the
active workspace can increase.

SUMMARY

Table B-8
System Functions

Function Section Meaning

(0BREAK 4.3.1 Suspends function execution and returns
you to immediate mode.

OpL 4.3.3 Delays the execution of the function in
which it is included by the number of
seconds specified.

OrXx 4.3.4 Erases an existing use of a name in the
workspace. It will not erase a label, a
group, a suspended or pendent function,
or a system variable.

Orr 4.3.5 Takes a character argument and converts
it to a numeric, placing zeroes in each
position that does not correspond to a
valid number.

Owce 4.3.7 Returns the classification of a name or
list of names.

ONL 4.3.8 Constructs a list of named objects
residing in the active workspace.

derLp 4,3.9 Loads a workspace.

bqco 4.3.9 Copies a workspace.

aerpc 4.3.9 Copies a workspace with certain
protection.

avr 4,.3.11 Converts a character vector into a
numeric vector.

L

i

o
“"i@“ﬁaﬁgﬁm L

e
%%s”%&?ﬁ

S o

aze

e ity -

4 - : ° G
. . e G L
| - - . o
G i % : &)

SUMMARY

SUMMARY

Table B-10
Keyboard I/O Functions

Function Section Meaning
X< 2.5.1 Quad (evaluated) input from keyboard
X< 2.5.2 Quote-quad (character) input from

keyboard, up to but not including
carriage return

X< 2.5.3 Quad-del (unedited) input from keyboard

O«Xx 2.5.5 Quad output (display value of X)

SUMMARY

Table B-12
System Commands

Command Section Meaning

)BLOTI[nH 5.7.1 Generates a mask in a random
pattern of length n for con-
cealing confidential input.
If n is not specified, the
default length is 25.

)¢ Hnﬂ file spec. 5.6.1 Ends current session after saving
active workspace; returns you to
operating system command level
and runs program specified. The
default device searched is S5YS:.

JCALL ﬂn] file spec. 5.6.1 Same as)C except the default
device searched is DSK:.

YCHARGE 5.7.2 Displays a record of activity
during the current APL session.
Information is installation-
dependent, but includes connect
time, CPU time, and the number
of APIL statements and operations
executed.

YCLEAR 5.2.1 Replaces the active workspace
with the clear workspace.

YCONTINUE HHOLDH 5.6.2 Saves the currently active
workspace as the continue
workspace and exits from APL.
Unless HOLD is specified, the job
is logged off the system. On
disk, the workspace appears with
the name CONTIN.APL in your disk
area.

SUMMARY

Table B-

12 (Cont.)

System Commands

Command

Section

Meaning

} COPY wsname
password]
[named-object-1list]|

5.4.1

Copies objects identified in
the named-object-list from
username into the current
workspace. If the list is
omitted, variables, functions
and groups are copied.

yDIGITS ﬂnﬂ

yDROP wsname
[[switchlist]]

YECHO {ON
H.OFF:”
YERASE name-list

YEFNS uletterﬂ

) GROUP group-name
[[group-number-1ist]]

)GRP group-name

) GRPS ﬂletterﬂ

Displays or changes the number of
significant digits displayed on
output. The maximum number is
18. The default is 10.

Deletes the workspace username
from your disk area. Information
specified by switch-list is dis-
played as the files are deleted.

Allows or suppresses the display
of error lines. The default
setting is ON.

Erases the objects identified in
name~list from the active
workspace.

Displays an alphabetical list of
function names in the current
workspace. If letter is included,
the list begins at the specified
letter.

Collects named objects in the
group-member-1list into the groups
specified by the group-name. If
you omit the list, the group-name
is dispersed.

Lists the members of the group
identified by the group-name.

Displays an alphabetical list of
group-names. If letter is in-
cluded, the list begins at the
specified letter.

SUMMARY

Table B-12 (Cont.)
System Commands

Command Section

Meaning

JLIB wsname 5.2.3
uswitch—listﬂ

YLOAD 5.2.4
Hmagtape—position
wsname Hpasswordﬂ

)MAXCOREH P-of-memory 5.3.1
K-of-memory H

)MINCOREH{P-of-memory H 5.3.2
K—of-memory}

YMODE [[{KEYWORD}I] 5.5.3
ESCAPE

YMON 5.6.3

YOFF [[HOLDI] 5.6.4

Displays the names of workspaces.
If you omit wsname, all workspaces
in your disk area are listed.

The switch-list argument controls
the display of additional
information about the workspaces.

Retrieves a workspace from a
secondary storage device. If you
include a password, it must match
the password of the file.

Displays or changes the current
setting for the maximum workspace
size. The standard default is
20K words on TOPS-10 and 40P
words on TOPS-20 for the data
segment. The maximum value for
K-of-memory is the smaller of
176K words or the system memory
limit. For P-of-memory, the
maximum value is 352P.

Displays or changes the current
setting for the minimum workspace
size. The minimum and standard
default on both systems is 0.

Displays or changes the current
mode of output for terminals that
do not have an APL character set.
The default is XKEYWORD. The mode
setting does not affect input
from the keyboard and either mode
is acceptable on input.

Returns you to operating system
command level, leaving your
workspace intact. While at
command level, you can issue any
command that does not alter your
memory image. You can subse-
quently return to APL by typing
the CONTINUE monitor command.

Ends the current APL session.
Unless you specify HOLD, your job
is also logged off the system.

SUMMARY

Table B-

12 (Cont.)

System Commands

Command

Section

Meaning

YORIGIN ﬂn]

5.5.4

Displays or changes the index
origin for the currently active
workspace. n can be 0 or 1. The
default setting is 1. The origin
is preserved with the workspace
when it is saved

YOWNER

)PASSWORD [[password]

YPCOPY wsname
password]]
named—object—listﬂ

=

)R Hnﬂ file spec.

YRUN Hnﬂ file spec

)SAVE [[magtape
position][wsname]]
[[password]]

Displays the directory of the
user who created the currently
active workspace, the date on
which it was created, and the
terminal number of the device at
which it was created.

Displays or changes the password
of the currently active
workspace.

Copies objects identified in the
named-object-list from wsname

to the current workspace,
protecting names already in use.
If you omit the list, all
variables, functions, and groups
are copied.

Ends the current APL session and
runs the specified program. If n
is specified, the value is added
to the starting address of the
program to be run. The file
specified must contain a ready-
to-run program (that is, an .EXF
file). The default device
searched is 5YS:.

Same as)R except that the
default device searched is DSK:.

Saves a copy of the currently
active workspace on a secondary
storage device, under the name
and password specified. If you
omit the password, the current
password is assumed. If you omit
both wsname and password, the
current workspace is used
()WSID) .

SUMMARY

Table B-12 (Cont.)
System Commands

Command Section Meaning
)SEALH{ON }H 5.3.4 Displays the current setting of
OFF the workspace seal or turns the

seal on or off. When the seal is
on, only the user who turned the
seal on can copy objects from the
workspace or can turn the seal
off. The default is off. This
command has no effect on the
YJLOAD command.

)ST 5.4.8 Displays the workspace state
indicator which reports on the
progress of function execution.

YSIV 5.4.9 Displays the workspace state
indicator, along with local
variable names at each level.

VSIZE 5.3.5 Displays the size of the currently
active workspace, in P-of-memory on
TOPS-20 and K-of-memory on TOPS-10.
It also displays the number of
pages (TOPS-20) or the number of
blocks (TOPS-10) the workspace
would occupy if saved on disk.

YTABS ﬂnﬂ 5.5.5 Displays or changes the increment
between tab settings for APL
output. The default tab setting
is 0. This command is designed to
be used with terminals that have
physical tab stops.

YTIME 5.3.6 Displays connect and CPU time
accumulated while the current
workspace has been active.

YVARS ﬁletterﬂ 5.4.10 Displays an alphabetical list of
global variables in the currently
active workspace. If you include
letter, the list begins at the
specified letter.

YVERSION 5.3.7 Displays the APL version number
with which the currently active
workspace was saved.

)WIDTH’Hrlu 5.5.6 Displays or changes the maximum
width of the output line; n must
be an integer in the range 30
through 390.

YWSID stnameﬂ 5.2.7 Displays or changes the name of
Hpasswordﬂ the currently active workspace;
optionally changes the password

associated with the workspace but
does not display it.

B-20

Argument

SUMMARY

Arguments

Meaning

Character set

filename

file size

file spec

group-name

group-member-1list

identifier

K-of-memory

letter

magtape-position

n

name-list

named-object-list

number

password

P-of-memory

The identifier APL or TTY, representing the
character set of a user's terminal.

Same format as wsname, except that the name
itself has no default and the default
extension depends on the type of file.

An integer specifying the maximum number of
records that a direct-access file can have.

Same format as filename.

An identifier that names a group of
variables, functions, or other groups.

A list of wvariables, functions, or
group-names separated by spaces.

Any sequence of letters or numbers
beginning with a letter. Only the first 31
characters in an identifier are
significant.

An integer value representing the number of
1K-word blocks of memory. Users of virtual
memory systems should note that 1K is equal
to two pages of memory.

One of the characters 4-Z, A, or the
understruck characters 4-Z, or A.

An integer that specifies that the action
of the command is to take place following
the nth end-of-file mark on the magnetic
tape. If no position is specified, the
action takes place with the tape in its
current position,

An integer wvalue.

A list of identifiers that name variables
and/or functions, separated by spaces.

A list of identifiers that name variables,
functions, and/or groups, separated by
spaces.

One of the digits, 0, 1, 2, 3, 4, 5, 6, 7,
8, 9.

Up to eight characters preceded by a hyphen
(-). The null and default password is the
hyphen (-).

An integer value representing the number of
pages of memory.

B-21

Argument

switch-list

wsname

SUMMARY

Arguments
Meaning

A list of switches in which each switch
consists of a slash(/) followed by one of
the letters 4, B, ¢, L, M, N, P, or T.
Valid switches include:

/A Access: the date the file was last
read (disk only)

/B Blocks: the number of blocks required
for the file

/C Creation: the creation date of the
file

/L Long: equal to typing /B/P/C

/M Mode: the mode in which the file was
written (disk only)

/N No header: suppresses the printing of
the display header line

/P Protection: the protection code
associated with the file (disk only)

/T Time: the creation time of the file
(disk only)

A standard name in the following format:
device:name.extension<prot>[directory]

All fields are optional. If you specify a
protection, also type the angle brackets.
If you specify a directory, enclose it in
square brackets. Names are a maximum of
six letters and/or numbers. An extension
(or filetype) consists of a period (or
comma in TTY mode) followed by a maximum of
three letters and/or numbers. Defaults are
the following:

Component Default

device DSK:

name name of active workspace (from
YWSID)

extension .APL
protection installation-dependent

directory user's project-programmer number

APPENDIX C

1-BEAMS

I-beams are another aid for reporting statistics about the system. The
following list shows the type of information returned by the 17 1-beams
described in this section:

1. Time of day or date
2, CPU time, APL sign-on time, or keying time
3. State indicator line numbers

4, System job jumber of user's project-programmer number

Some I-beams report on general system characteristics (for example,
date) and others return information relevant only to a particular user
and session (for example, number of APL operations performed). Some
of the 1-beams have the same functionality as the system variables

and system functions described in Chapter 4. This redundancy is pre-
served in the current version of APL to promote the compatibility of
APL programs written under previous versions of the language. However,
where there are equivalent r-beams and system functions, we recommend
that you use the system functions.

An 1-beam consists of the 1 character and an integer scalar. You type
the 1 character by overprinting the encode character (T1) with the
decode character (.1).

The following paragraphs list 117 through 133 along with the type of
information they return:

117 Returning Symbol Table Information

exl?
146 3

The 117 returns information about the symbol table associated with
your workspace. This I-beam returns a 2-element vector in which the
first element is the symbol table size in words and the second is the
number of symbol table entries in use in the workspace.

I-BEAMS

118 Returning the Condition of the Workspace

18

The 118 returns the condition of the active workspace. It returns a
value of 0 to indicate that the workspace is intact or a nonzero
number to indicate that the workspace has suffered some kind of damage.
If 1-beam 18 returns a nonzero value, APL attempts to correct the
damage.

119 Returning the Keying Time

xl®

1321181

The 119 calculates the amount of time that the keyboard has been
unlocked awaiting input during the current APL session. Time is
expressed in 60ths of a second. 1I-beam 19 is useful for instructional
programs that time the response of students' answers. It returns one
component of the information available from the [J4I system variable
(Section 4.2.1).

120 Returning the Time of Day

20

F4A658 L

The 120 returns the current time of day. It returns the time from
midnight in 60ths of a second. To request this number in hours, min-
utes, and seconds, specify the following:

Jr24 460 60 HO0vx20
L G740

120 returns one component of the information available from the QOTS
system variable (Section 4.2.22).

121 Returning the CPU Time

a2l

34948

The 121 returns the CPU time used since you signed on in the current
APL session. Time is expressed in 60ths of a second. 1I-beam 21 is
useful in comparing the execution times of different programs. You
can include 121 in a function and make the execution of that function
dependent on the compute time used so far in the session. 121 returns
one component of the information available from the (JAI system vari-
able (Section 4.2.1).

I-BEAMS

122 Returning Workspace Availability

oy
e

18219

The 122 returns the maximum amount to which the active workspace can
increase. The size is given in words and is obtained by subtracting
the current data segment size from the maximum data segment size.
I-beam 22 can be used in a function whose execution is dependent on
the space available in the workspace. It is similar to the [OWA system
variable (Section 4.2.25); however, 122 returns the number of words
available, instead of the number of bytes (where 4 bytes = 1 word).

123 Returning the System Job Number

23

17

The 123 returns the system job number associated with the current APL
session. The job number is returned in base 10 notation. To request
this number in octal, specify:

1O EPE) w23

I-beam 23 is equal to the UL system variable (Section 4.2.20).
124 Returning the APIL Sign-on Time

[1¢x 224
2058400

The 124 returns the time when you began the current APL session. It
returns the time from midnight in 60ths of a second. 1I-beam 24 re-
turns one component of the information available from the [J4I system
variable (Section 4.2.1).

125 Returning the Current Date
PR]

70579

The 125 returns the current date. The date is displayed in the form
MMDDYY in base 10 notation. To format a 3-element vector represent-
ing the date, specify the following:
(31000 vedS
7s 7Y

I-beam 25 returns one component of the information available from the
07S system variable (Section 4.2.22).

I-BEAMS

126 Returning a Line Number

S

The 126 returns the line number of the statement currently being
executed or about to be executed. The scalar returned by I-beam 26
is the first element of the vector returned by 127 and is the first
line number in the state indicator. This number represents the line
at which the innermost function in the state indicator was suspended
or is currently executing.

I26 is a particularly helpful function when used in branch statements.
You resume execution by specifying +~I26 rather than entering the line
number displayed at the time the last function was suspended. 126
returns one component of the information available from the [OLC system
variable (Section 4.2.12).

127 Returning a Vector of Line Numbers

The 127 returns a vector of function line numbers currently in the
state indicator. The first element of the vector is the line number
returned by 126 and represents the line at which the innermost func-
tion was suspended or is currently executing. If an empty vector is
returned, this indicates that no functions are suspended or executing.

127 can be used as an aid in resuming function execution without in-
cluding a specific line number at which the function was suspended.
For example, you can define function RES as follows:

[

ey W

ECLYLEOM WY

SRR

127 returns the same information available from the [(LC system vari-~-
able (Section 4.2.12).

128 Returning the Terminal Character Set

a8

0

The 128 returns the character set of the output device associated with
the workspace. This device is the user's terminal unless otherwise

I-BEAMS

specified by the)OUTPUT system command (Section 7.9). The integer
scalar returned by 1I-beam 28 is one of the following:

Value Meaning
0 APL character set
1 TTY character set

128 is related to the [7TT system variable (Section 4.2.22).

129 Returning the User's Project-Programmer Number

a9

4 132

The 129 returns the project-programmer number associated with the
current session. The number is returned as a 2-element vector in base
10 notation. To format this number in octal, specify the following:

LOACEHFPE) vad9
4 204

129 returns one component of the information now available from the
JAI system variable (Section 4.2.1).

130 Clearing the State Indicator

30
yalx

The 130 clears the state indicator. It has the same effect as typing
a series of right arrows (»), one for each suspended function. See
Section 5.4.9 for a description of state indicator clearing techniques.
130 removes from the system all pendent and suspended functions calls.
As the above example indicates, an)SI command issued after the clear
request results in the display of a blank line.

131 Returning the Number of APL Statements

31
G519

The 131 returns the number of APL statements that have been executed
since the current session began. This function is useful in evaluating
the performance of programs in the workspace.

I-BEAMS

132 Returning the Number of APIL Operations

x32

837

The 132 returns the number of APL operations that have been executed
since the current session began. There may be several operations
performed in each APL statement. For example:

AeFag

This statement contains two operations: addition and assignment. Like
I-beam 31, this function is useful in evaluating program performance.

133 Returning the Time Used

33

On TOPS-10, the 133 returns the number of kilo-core-seconds since
sign-on. If the GETTAB UUO is privileged in the system, 133 returns
a value of zero. On TOPS-20, 133 also returns 0.

APPENDIX D

SPECIFYING TOPS~20 DIRECTORIES

TOPS-20 provides two ways for you to access another user's directory.
The first way is with a logical name in place of the device name; the
second way is with a project-programmer number instead of a directory
name. You can use either method with APL; however, the use of logical

names is recommended.

NOTE

When you see a project-programmer number

(for example, [4,204] in this manual or

in an error message, use the TRANSL com-

mand to find out its corresponding di-

rectory name. Refer to Section D.2.1.
For more information about referencing other users' files, refer to
the TOPS-20 User's Guide.

D.,1 USING LOGICAL NAMES

To use a logical name in accessing another user's directory:

1. Give the DEFINE SYSTEM command to define a logical name (of
no more than six characters) as the other user's directory

name.

2. Use the logical name in place of the device name when typing
the file specification.

D.1.1 Giving the DEFINE Command

To give the DEFINE command:

1. Type DEFINE and press the ESC key; the system prints
(LOGICAL NAME) .

@UEFINE | ngroal NAME)

2. Type the logical name (an ending colon is optional) and press
the ESC key. The system prints (AS).

@REFINE ¢ ooroal. NaME) BARD cag)

SPECIFYING TOPS-20 DIRECTORIES

3. Type the structure and the directory name (enclosed in angle
brackets) and press the RETURN key. The system prints an @.

BREFINE (L.OGICAL NAME) RAK: (AS) DATAI<SCHULERT:

To check the logical name, specify the INFORMATION (ABOUT) LOGICAL-
NAMES system command.

RINFORMATION (AROUT) LOGICAL-NAMES (OF)
BAKS =3 DATAICSCHULERT»

D.1.2 Using the Logical Name

Once you define a logical name, you can then include it in an APL
expression in place of a device name.

The following example shows how to load a workspace from the directory
named DATA:<SCHULERT>. (Remember, you have already defined the logical
name BAK: as DATA:<SCHULERT>.)

FLOALD BAK L TEST
SAVED 15145103 24-00T.78 5E

D.2 USING PROJECT-PROGRAMMER NUMBERS

To use a project-programmer number in accessing another user's
directory:

1. Give the TRANSL command to find the corresponding project-
programmer number for the desired directory name.

2. Include the project-programmer number after the file type.
You do not have to define a logical name when using a project-

programmer number. However, project-programmer numbers may not remain
constant over time; therefore, use logical names whenever possible.

D.2.1 Using the TRANSL Command

To run the TRANSL command:

1. Type TRANSL and press the ESC key. The system prints
TRANSLATE (DIRECTORY) .

BYRAONSLATE (DIRECTORY)D

SPECIFYING TOPS-20 DIRECTORIES

2. Type the structure, the directory name, and press the RETURN
key. The default structure is your currently connected
structure. The system prints the corresponding project-
programmer number.

BTRANSLATE (DIRECTORYY PSI<SCHULERT
FECSCHULERT: (1I8) PSEIL4, 28]
@

You can also use TRANSL to verify that a project-programmer number is
correct. To do this, replace the directory name with the project-
programmer number.

BTRANSLATE (DIRECTORY)
BRAGICILAy 750 (18) RBAGLIC-T
@

D.2.2 Using the Project-Programmer Number

To use a project-programmer number in APIL, include it in an expression
after the file type.

The following example shows how to load an APL workspace from the
directory named SCHULERT, using a project-programmer number. (Remem-
ber, you have already translated the directory name.)

YLOAL TEST[4y P57
SAVEL 13I5RIRF 2V-FEE-79 5F

APPENDIX E

TERMINAL SESSION

The following is a sample APL terminal session., The sign-on and sign-
off may be different at each installation, but the APL statements will
be the same.

CapL F

terminal o

AF L0 DECSTETEM-20 AFLSE 2(407)

TYTRR) PL4Z339 WEDMESDHAT 27w JUM-70 MOGELLA L4s20470
CLEAK WS

A s FAGE WINTH TO 20
[IFWe 7
[1Fw

e

wa

ALTMMEDLIATE BEVAOLULATION

243

LY WS MO ERDEMTED
LURTEOM FREOM FREGHT TO LEFT

14

AELEMENT - B BELEMENT AT EOR
6 7 4 F+2 4
Y
ASCALAR AFFLIED TO O VECTOR
x4 9 2
10

ALV

20 4%
IHLS FLOATERG FOLMT

G322
Lebb6LLEHET
AMOTE Xl

L8 -3 29
5 o6 "l

AMOMALLC DEVIDE 19 FRECLFROOAL

2.8 1

(TR

0.2

TERMINAL SESSION

AFLOOR FUNCTIONM
L3.2 74,2 7.6 71846

3 U5 7 UL

AFRELATIONAL LESS THAMN FUMCTION
8 19 27418

100
ACOMFRESS FUMCTION
(8 19 2741878 19 27
8

ARBSTENS VECTOR TO M
He24e17
A
ABELECTS ELEMEMTS
101 01 0 1/

3G 709
Al SELECTS
172

*

a0 FEJECTS
0/2

AMULL VECTOR FRIMTS AS ELAMNK LIME
AMUMEEFR OF ELEMEMNTS InM MULL VECTOR T4 ()
FO/2

ARESIDUE H MOD 3
I
0120120
AMUMEERS MOT DIVISIELE ET 3
0#Z M
0110110
AMUMEERS OF M = TO 3 OF MOYT DIVISIRLE EBY X
(3= vOAT | M) /M

34578
ALEAST IHDEX OF FUMCTIONM
37 9 119 6 11
35 4
AFIFTH AHD SEVEMTH ELEMEMTS OF M
MLE 71
79

ACATEMNATE FUMCTION
L3 4 71420 12 13
U6 09 20 12 13
ADEFLHE FUHCTION WITH o RESULT
AWITH] DUMMT ARGUMEMNT AMHD 9 LOCAL VARIOK
ALQOF AND EHD ARE LOEBELS
AFUMCTION IS TO FIMD ALL FRIMES WP TO
AOMHD THOLUDIMNG M
CReFRIMES M3 DOME ;D
£1] De3

£L21 DOME ¢ M § -2
L33 Fe 142X LMD
4] LOOF ¢ 3 (DOME (D) FEMD
[Fe ((Db) vQeD | By /1
L& DeR[]+F 0]

71 3L.O0F

£ea EMDRe] 2y

91 v

AFUMCTION 1% COLLED
FRIMES 15
12357 11 13

WETH 1%

TERMINAL SESSION

ATRTIMNG AMOTHER FAKAMETEFR

FRIMES 31
12337 11 13 17 19 23 29

ARMHEWER I8 WROMG SIMCE 31 I6 FRIME

ASET TRACE OM ALL LIMHES OF FUNCTLION

TAFRIMES ¢ 8

FRIMES 39
FRIMES] L] 3
FRIMES[2Y §5,567764363
FRIMESIZ] 3 5 7 9 11 13 1S 17 19 21 23 2% 27 29
FRIMES] 4]
FRIMES[5]
FRIMEST &
FRIMES] 7]
FRIMES] 47
FRIMES[S]
FRIMES] &
FRIMES] 7]
FRIMES[4]
FRIMES[8] 2389 7 11 13 17 19 23 29
12357 11 13 17 19 23 29

ATEACE CAUSED THE FRINCIFAL VALL THE

ATEACED LIME TO BE FRIMTED EOCH TIME THE

ALIHE WAS EMECUTED

97 11 13 17 19 23 25 29

E R

97 11 13 17 19 23 29

= 00D N O

AMOW SET STOF AT LIMHE 4
SAFFRLMES ¢4

FRIMES 31

3

Ge567764363

385 79 11 13 15 17 19 21 23 20 229

FRIMES[47
ARLEFLAT VOLUE OF
F

385 7 9 11 13 1%
Ak SHOULD EHOLUXE THE FOLLOWIMG
FiogoFiy 34

17 1% 21 238 28 27 2%

TRAOCE AMD STOF VECTORS

ANHECK STATE THDIECHAOTOR

EMEQUTION AT LIME 4

1235 7 11 13 172 19 23 29 31
AOFEMN FUMCTION AMD EXLT LIME 3

VR MES
Lol CEIEeL 22 0L 7L ¢t

TERMINAL SESSION

QFRLME S
£97 X111 4
c37 DERALh L penen

/1 ‘
31 Fe]+ 2% UL
£41 o
f COLL, FUMOTIONM
FRIMES R ey evea
12 3% 7 11 13 17 19 23 29 31
nWF.'I'Y’E.' THE TIME FUMCTEOM
T IME
C11 o
VEETIMEST
L1 2e60 60 60v(TexRl)
21 T MEF T
£31 o

"~

-

EOTO CUREENT CFU T LIME

AFIHD FRIMES ¢ 10000
FeFRIMES 10000
T ME

0 7 32

pHUMEERFR: OF FFRLIME
£ F

L10000
1230
ALTST THE LAST 5 PFEIMES (10000
9931 99%§H9949 PRET 9973
DEFIMED YORTARLES LM THIS WORKSFOCE

T LML

¥
11 VALUE B
Fi
A

AVALUE EFFQF
al.lHT VAR LA
pLEST VAR T AL

) VAR
&) TLMER:

EOF M) LLOMGE R

pl WAS OMEITTED
ASAVE THIS WORIKCEAFCE WHIER YRE HOME MTYWE , OFL,
ATHEM LOG OFF

] e A 4

COMNMECTE Q144115 CFU TIME 000208

B1H STATEMEHTS 9864 OFERATIONS

RILLED JOR 19y USER MASELLAy ACCOUNT APFLy TTY 22y
AT 227-JUN-7¢ 10327154y USED 010319 IN 03144149

$R7154

INDEX

l-dimensional array, 2-4 /AS switch, 7-6, 7-10
JAAS file extension, 7-6 /AS* switch, 7-6, 7-10
.ABI file extension, 7-6 ASCII character set, 4-3, 4-4
Absolute fuzz, 2-15 ASCII sequential file, 7-3
Access, ASCII sequential I/O, 7-10
multiple-user, 7-16 ASCII system variable, 4-3,
random, 7-3 4-4
sequential, 7-2 0458 system function, 7-4
shared file, 7-36 Assigning a file, 7-4
single-user, 7-16 Assignment (<) function, 2-7
synchronizing, 7-36 Assignment statement, 2-7
Access file, Atomic vector, 4-9
random, 7-14 JAUS system variable, 4-7
Access methods, Auto-save, 4-7
file, 7-2 Automatic save, 4-7
Account information, Automatically,
storing, 4-2 saving a workspace, 4-7
Action commands, 5-2 0AV system variable, 4-8, 4-9
Active workspace, 1-1, 5-3 Availability,
Active workspace, workspace, C-3
clearing the, 5-8 Available work area, 4-28

identifying the, 5-15
saving, 5-13

.ADA file extension, 7-6
Add (+), 1-6 Bare output, 2-16

Bare-output mode, 2-22
Binary-access file, 7-18
Binary-access files,

sharing, 7-19
Binary-access I/0, 7-20
Binary-access sequential file,

7-3

Blocking factor, 7-15
)BLOT system command, 5-36
Body,

interacting with, 1-8 function, 6-1, 6-2

i Box (0O), 2-17
returning to, 5-32 ’) _
starting, 1-8 Branch (+) function, 2-7

APL character set, 1-5, 1-6 grancﬁ statement, 2-7, 6-14
APL libraries, 5-7 ranch statement,

APL termination commands, 5-32 cond1§+opa1, 6-15
APL-keyboard terminals, 1-3 uncgp 1t10nai, 6-15
DAPPEND system function, 7-17, Branching, 6-1

Adding function lines, 6-8
(JAI system variable, 4-2
LAIS file extension, 7-
OALPHA system variable, 4-3
Alphabetic characters, 4-3
Alphabetics,

underlined, 4-3
OALPHAU system variable, 4-3
AND (A) function, 3-6
APL,

_ UBREAK system function, 4-29,
7-21 6-23
Argu"-‘“e;tsé_z /BS switch, 7-6, 7-19, 7-28
mmy , :
Array, /BS* switch, 7-6, 7-19

/BU switch, 7-19

l-dimensional, 2-4 Building an array, 3-45

building an, 3-45
constructing an, 3-37
reshaping an, 3-37

rotating an, 3-41)C system command, 5-32
Array indexing, 2-~-11 YJCALL system command, 5-32
Array output, 2-9 Canonical representation, 4-30
Arrays, 2-5 Catenate (,) function, 3-12
subscripting, 2-11 Ceiling (I') function, 3-3

Index-1

INDEX (CONT.)

Changing the file
specification, 7-8
Channel, 7-4, 7-20, 7-21
Character,
escape,
Character
Character
Character

1-5
constant,
conversion,
data, 2-3
Character input, 2-16
Character set,
APL, 1-5, 1-6
ASCII, 4-3, 4-4
terminal, C-4
Character vector, 2-4
Character-editing procedures,
6-11, 6-13
Character-input mode,
Characteristics,
workspace, 5-3
Characters,
alphabetic, 4-3
control, 4-~15
converting numerics to,
3-64, 3-68
editing, 1-11
overstrike, 1-7
single strike, 1-6
)JCHARGE system command, 5-36
[OCHS system function, 7-31
0crQ@ system function, 7-25
Circle (o) functions,
dyadic, 3-4, B-3
Classification,
name, 4-34
symbol, 6-3
YCLEAR system command,
Clear workspace, 1l-1
Clearing the active
workspace, 5-8
Clearing the state indicator,
6-19, C-5
Closing a file, 7-7
OCcLS system function,
Colon (:), 1-6
Comma (,), 3-33,
Command,
)BLOT system, 5-36
)C system, 5-32
JCALL system, 5-32
JCHARGE system, 5-36
JCLEAR system, 5-8
CONTINUE, 1-10
JCONTINUE system,
5-33
YCOPY system,
YJCREATE system,
DEFINE, D-1
)DIGITS system, 5-27
)DROP system, 5-9

2-3
4-32

2-17

5-8

7-7

3-36

1-9, 5-5,

5-21
7-15

Index-2

Command (Cont.)
YJECHO system, 5-28
YERASE system, 5-22
YENS system, 5-23
YGROUP system, 5-23
YGRP system, 5-24
JGRPS system, 5-24
)INPUT system, 7-40
JLIB system, 5-10
YLOAD, 5-12
YJMAXCORE system, 5-16
YMINCORE system, 5-17
JMODE system, 5-=29
YMON system, 1-9, 5-34
JOFF system, 1-9, 5-34
JORIGIN system, 5-30
YOUTPUT system, 7-40
)OWNER system, 5-18
YPASSWORD system, 5-13
YPCOPY system, 5-25
)R system, 5-35
REENTER, 1~10
JRUN system,
YSAVE system, 5-13
YSEAL system, 5-18
SET TTY WIDTH, 5-32
)SI system, 5-6, 5-25,
6-19
)SIV system,
6-19
)SIZE system,
)TABS system, 5-30
TERMINAI, WIDTH, 5-32
YTIME system, 5-19
TRANSL, D=2
)VARS system, 5-27
YVERSION system, 5-20
JWIDTH system, 5-31
YWSID system, 5-15
Command format,
system, 5-2
Command level,
operating system,
Command lines, 6-6
Commands,
action, 5-2
APL termination,
inquiry, 5-2
miscellaneous, 5-36
system, 5-1, B-16
workspace-content, 5-20
workspace-control, 5-7
workspace-environment,
Comments, 2-5
Communication,
system, 4-1
Comparison tolerance, 2-15,
4-14
Component,

5-35

6-18,

5-6, 5-26,

5-19

5-34

5-32

5-27

7-16

INDEX (CONT.)

Components,
expression, 2-2
Compression (/) function,
3-15
Computer time, 4-2
Conditional branch statement,
6~15
Connect time, 5-19
Considerations,
error handling, 6-23
Constant,
character, 2-3
numeric, 2-3
Constants, 2-3
Constructing an array, 3-37
CONTIN workspace, 5-5
CONTINUE command, 1-10
JCONTINUE system command,
1-9, 5-5, 5-33
CONTINUE workspace, 5-5
Control characters, 4-15
Conversion,
character, 4-32
Converting numerics to
characters, 3-64, 3-68
Copy,
protected, 4-36, 5-25
Copy lock, 5-18
)COPY system command, 5-21
Copying a workspace, 4-36
Copying objects, 5-21
JcoqQ system function, 7-25
Correcting a line, 1-10
CPU time, 4-2, 5-19, C-2
OCrR system function, 4-30,
4-33
JCREATE system command,
7-15
fcT system variable, 2-15,
4-14
CTRL system variable, 4-15
CTRL/C, 1-11
CTRL/R, 1-11
CTRL/U, 1-11
Current date, 4-27, C-3
Current time, 4-27

/DA switch, 7-6, 7-16
0DAS system function, 7-6
Data,
character, 2-3
numeric, 2-3
Data files, 1-2
Data types, 7-20
Date,
current, 4-27, C-3
Deal (?) function, 3-17

Deassigning a file, 7-6
Decode (1) function, 3-18
DEFINE command, D-1
Defined functions, 6-6
Defining a function, 6-1
Defining a group, 5-23
Definition,

function, 6-1
Delay, 4-31
Delaying execution, 4-31
Delete, 5-22
DELETE, 1-11
Delete a record, 7-17
Deleting function lines, 6-9
Deleting stored files, 5-9
Deleting stored workspaces,

5-9

Delta (A), 1-6

ODEQ system function, 7-36
Description,
inner product, 3-71
outer product, 3-74
Designators,
terminal, 1-2, 1-3
Despersing a group, 5-23
Dev:, 2-6
Device characteristics,
returning, 7-33
/DI switch, 7-6, 7-16
Diamond (¢), 1-6
Dieresis (), 1-6
Digits, 4-21
significant, 5-27
J)DIGITS system command, 5-27
Dimensions,
transposing, 3-46
Direct-access file, 7-3, 7-14
Direct-access files,
sharing, 7-16
Direct-access I/0, 7-16
Directories,
specifying TOPS-20, D-1
Directory, 5-10
Directory name, D-2
[directoryl, 2-6
Displaying a group list,
5-24
Displaying a variable list,
5-27
Displaying function lines,
6-10
Displaying function names,
5-23
Displaying group members,
5-24
Displaying session
information, 5-36
Displaying the state
indicator, 5-26

Divide,
quad, 3-50, 3-52
Divide (B) function,
matrix, 3-52

Divide (%) function, 3-3

OpL system function, 4-31

Dollar format (§) function,
3-59

Domino, 3-50,

Down arrow (+), 3-19

Drop (+) function, 3-19

)DROP system command, 5-9

Dummy arguments, 6-2

/DUMP switch, 7-4, 7-28

gpvc system function, 7-33

Dyadic, 3-1

Dyadic circle (o) functions,
3-4, B-3

Dyadic format (¥) function,
3-65

Dyadic function, 6-7

Dyadic functions, 6-2

Dyadic transpose ()
function, 3-48

Dynamic localization,

3-52

6-4

YECHO system command, 5-28
Echoing,
error line,
Editing,
function, 6-11,
immediate mode,
immediate-mode,
keyboard, 1-10
Editing characters, 1-11
Editing the function, 6-7
Editing the function header,
6-11
Encode (1) function, 3-22
Ending the session, 1-9,
5-33
O0ENQ system function, 7-36
Epsilon, 3-35
Equal to (=)
Equivalents,
mnemonic, 1-5
YJERASE system command,
Erasing a named object,
4-31
Erasing global names,
Error handling, 2-10
Error handling
considerations,
Error line echoing,
Error messages, A-1
storing, 4-16
Error numbers,

5-28

6-13
1-11
6-14

function, 3-5
5-22

5-22

6-23
5-28

A-1

INDEX (CONT.)

Index-4

OERROR system variable, 4-16,

6-23
Error trapping, 6-23
Error trapping examples,

6-24
Errors,

signalling, 4-39
trapping, 4-25
Escape character, 1-5
Escaping from input mode,

2-19
Evaluated input, 2-16
Evaluated input prompt,

4-23
Evaluated-input mode,
Evaluation, 2-8
OEX system function,
Examining the state

indicator, 6-18
Examples,

error trapping, 6-24
Execute (e) function,
Execute function, 5-37
Execute (¢) function,

extended, 3-57
Executing a function, 6-1
Executing functions,

reporting on, 4-20
Executing the function,

6-14
Execution,

delaying, 4-31

interrupting, 6-17

suspending, 4-29

suspending function, 6-17
Execution modes, 2-1
Exit, 5-32, 5-34
Expansion (\) function,
Explicit result, 6-2, 6
Exponentiate function,
Expression,

latent, 4-20
Expression components,
.ext, 2-6
Extended execute (2)

function, 3-57
Extended functions,

B-6
External interface,

5=-35

2-17

4-31

3-54

3-25
-3

3-3

2-2

3-50,

5-32,

Factorial (!) function, 3-3
OFCcM system function, 7-35
OFI system function, 4-32,
4-40
File,
ASCIT sequential, 7-3

File (Cont.)
assigning a, 7-4
binary-access, 7-18
binary-access sequential,
7-3
closing a, 7-7
deassigning a, 7-6
direct-access, 7-3,
internal sequential,
7-13
random access,
sequential, 7-9
.TMP, 4-8
File access,
shared, 7-36
File access methods,
File extension,
LAAS, T7-6
.ABI, 7-6
.ADA, 7-6
JAIS, 7-6
File I/0 functions, B-15
File information,
returning, 7-35
File input, 2-16,
File input modes,
File locks, 7-38
/file org switch, 7-4
File organization, 7-2

7-14
7-3,

7-14

7-2

7-4
7-11

returning, 7-31
File organization switches,
7-6
File output, 2-16, 7-4

File sharing information,
7-34
File specification,
changing the, 7-8
File specifications,
File system, 7-1
File system functions, B-12
Filename, 2-6
Files,
data, 1-2
deleting stored, 5-9
sharing binary-access,
7-19
sharing direct-access,
7-16
Fix, 4-33
Floor (L) function, 3-3
OFLS system function, 7-34
YFNS system command, 5-23
Format,
system command, 5-2
Format (§) function,
dollar, 3-59
Format (¥) function,
dyadic, 3-65
monadic, 3-64

2-6

INDEX (CONT.)

Index-5

Formatting tables, 3-65
Function, 3-1
AND (A), 3-6
O4PPEND system, 7-17, 7-21
Assignment (<), 2-7
0458 system, 7-4
Branch (=), 2-7
OBREAK system,
catenate (,),
ceiling (),
OCHS system,
0crqQ system, 7-25
crs system, 7-7
compression (/),
0coqQ system, 7-25
OCR system, 4-30,
ODAS system, 7-6
deal (?), 3-17
decode (L), 3-18
defining a, 6-1
ODEQ system, 7-36
divide (%), 3-3
0OpL system, 4-31
dollar format (§),
drop (¥), 3-19
Opve system, 7-33
dyadic, 6-7
dyadic circle (0),
dyadic format (v¥),
dyadic transpose (&),
editing the, 6-7
encode (1), 3-22
OENQ system, 7-36
equal to (=), 3-5
OEX system, 4-31
execute, 5-37
execute (¢),
executing a,
executing the,
expansion (\), 3-25
exponentiate (*), 3-3
extended execute (1),
3-57
factorial (!), 3-3
OrFcu system, 7-35
OFI system, 4-32,
floor (L), 3-3
OFLS system, 7-34
OFX system, 4-33
grade down (V), 3-27
grade up (4), 3-28
greater than (»), 3-5
greater than or equal to
(z), 3-5
index generator (?),
index of (?), 3-31
input quad (H), 7-16,
7-20, 7-4, 7-10, 7-13
laminate, 3-33

4-29, 6-23

3-12
3-3
7-31
3-15

4-33

3-59

B-3
3-65
3-48

3-54
6-1
6-14

4-40

3-30

Function (Cont.)
less than (<), 3-5
less than or equal to (<),

3-5

locking a, 6-22
logarithm (e®), 3-3
magnitude (|), 3-3
matrix divide (B),
matrix inverse (H),
membership (e), 3-35
minus (-), 3-3
monadic, 6-6
monadic format (¥), 3-64
monadic transpose (%),

3-52
3-50

3-46
[MTP system, 7-28
multiply, 3-3
NAND (#), 3-6
Onc system, 4-34
ONL system, 4-35
NOR ('V)l 3_6
NOT (~), 3-6
not equal to (=), 3-5
OR (Vv), 3-6
output quad (#), 7-16,

7-4, 7-10, 7-21
pendent, 6-18
pl (O)I 3-3
plus (+), 3-3
0Qco system, 4-36, 5-21
0QLD system, 4-36, 5-12
Jgpc system, 4-36, 5-25
quad, 2-17
quad-del (@), 2-18
question (?), 3-3
quote (T1), 3-68

quote-quad (M), 2~-17
ravel (,), 3-36
ORENAME system, 7-8
reshape (p), 3-37
residue ([|), 3-7
reverse (¢ and o),
roll (?), 3-9
rotate (¢), 3-41
shape (p), 3-43
OSIGNAL system,
suspended, 5-26,
take (+), 3-45
unquote (1), 3-54
user-defined, 6-1
OvI system, 4-40
writing a, 6-1
Function body, 6-1, 6-2
Function definition, 6-1
Function editing, 6-11,
Function execution,
suspending, 6-17
Function header, 6-1,

3-39

4-39,
6-18

6-23

6-13

6-2

INDEX (CONT.)

Index-6

Function header,
editing the, 6-11
Function input, 6-5
Function lines,
adding, 6-8
deleting, 6-9
displaying, 6-10
inserting, 6-8,
replacing, 6-8
Function list, 5-23
Function name, 6-3
Function names,
displaying, 5-23
Function output, 6-5
Function representation,
4-30
Function-execution mode,
2-1
Functions,
defined, 6-6
dyadic, 6-2
dyadic circle, 3-4
extended, 3-50, B-6
file 1/0, B-15
file system, B-12
keyboard I/0, B-15
logical, 3-6, B-3
monadic, 6-2
niladic, 6-2
pendent, 5-26
primitive mixed,
B-4
primitive scalar,
3-3, B-2
relational, 3-5, B-3
reporting on executing,

6-9

3-10,

3-2,

4-20
system, 4-1, 4-28, B-1l1
Fuzz,
absolute, 2-15
relative, 2-15, 4-14

0Fx system function, 4-33

GAG,

TTY NO, 4-18
JGAG system variable, 4-18
Generating a mask, 5-36

Generator,
random number,
Global names,
erasing, 5-22
Global symbols,
Go to (=), 2-7
Grade down function (V), 2-7
Grade up function (4), 3-28
Greater than (») function,

4-23

6-4

3-5

Greater than or equal to (=)
function, 3-5

Group,
defining a,
despersing a,

Group list,
displaying a,

Group members,
displaying, 5-24

Group name, 6-3

JGROUP system command,

Groups, 5-6

YGRP system command,

)GRPS system command,

5-23
5-23

5-23

5-23

5-24
5-24

Handling,
error,

Header,

Header,
editing the function,
function, 6-1, 6-2

Help, 1-8

High minus (7)), 2-3

Histogram (1), 1-7

2-10

7-20, 7-21, 7-25

6-11

I-beam
I-beam
I-beam
I-beam
I-beam
I-beam
I-beam
I-beam
I-beam
I-beam
I-beam
I-beam
I-beam
I-beam
I-beam
I-beam
I-beam
I-beams,
I.D.,

workspace,
1/0,

ASCII sequential, 7-10

binary-access, 7-20

direct-access, 7-16

internal sequential, 7-13

terminal, 2-16
I/0 functions,

file, B-15

keyboard, B-15

HOOOOOOOO?OOOOOOOO
AUV BRBRWWWWNNNDNDE

5-15

INDEX (CONT.)

Index-7

Identifiers,
illegal, 2-2
legal, 2-2
Identifying the active
workspace, 5-15

Identity elements, 3-75

Illegal identifiers, 2-2

Immediate mode, 2-1

Immediate mode editing,
1-11

Immediate-mode editing,
6-14

Inactive workspace, 1-1

Index generator (?) function,
3=-30

Index of (?) function,

3-31
Index origin,
5-30

Indexing,
array, 2-11
Indicator,
state, 5-6
time limit,
Information,
displaying session,
file sharing, 7-34
returning file, 7-35
storing account, 4-2
symbol table, C-1
Inner product description,
3-71
Inner product operator,
3=70
Input,
character,
evaluated, 2-16
file, 2-16, 7-4
function, 6-5
quad, 2-16
quad=-del, 2-16
quote-quad, 2-16
unedited, 2-16
validating, 4-40
Input mode,
escaping from,
Input modes,
file, 7-11
Input prompt,
evaluated, 4-23

2-15, 4-19,

4-24

5-36

2-16

2-19

Input quad (E) function,
7-16, 7-20, 7-4, 7-10
7-13

7-40

~

YINPUT system command,

Inquiry commands, 5-2

Inserting function lines,
6-8, 6-9

Interacting with APL, 1-8

Interface,
external, 5-32, 5-35
Internal sequential file,

7-3, 7-13
Internal sequential I1I/0,
7-13
Interrupting execution,
1-10, 6-17
Interruptions,
preventing, 4-18
Inverse () function,
matrix, 3-50
Inversion, 3-50
Inverting a matrix, 3-50
070 system variable, 4-19
Iota, 3-30, 3-31
/IS switch, 7-6,
/IS8* switch, 7-6,

7-13
7-13

Job number, 4-28, C-3

Jot (o), 1-7

Keyboard editing, 1-10

Keyboard I/0 functions,
B-15

Keying time, C-2

Keyword mnemonics, 1-2

Labels,

statement, 6-16
Laminate (,) function,
Lamp (n), 3-59, 6-6
Language syntax, 2-1
Latent expression, 4-21
0L¢ system variable, 4-20,

6-18

Legal identifiers,
Length, 7-20, 7-21
Length,

line, 5-31
Less than (<) function,
Less than or equal to (<

3-5

JLIB switches, 5-11
JLIB system command,
Libraries,

APL, 5-7
Limit,

time,
Line,

correcting a, 1-10
Line length, 5-31
Line number, C-4

3-33

2-2

3-5
)y
5-10

4-24

INDEX (CON

Index-8

T.)

Line width,
output, 4-22
LINEFEED, 1-11
Lines,
multi-statement,
List,
displaying a group, 5-24
displaying a variable,
5-27
function,
name, 4-35
Listing workspace names,
5-10
Literal vector, 2-4
YLOAD command, 5-12
Loading a workspace, 4-36
Local symbols, 6-4
Localization,
dynamic, 6-4
Lock,
copy, 5-18
Lock numbers,

2-7

5-23

7-38

Locking a function, 6-22
Locks, 7-37

file, 7-38
Logarithm (®) function, 3-3
Logical expression, 6-15
Logical functions, 3-6, B-3
ILogical names, D-1
Logout, 5-34
OLX system variable, 4-21
Magnetic tape, 7-27
Magnitude (|) function, 3-3

Mask,
generating a,

Matrix, 2-5
inverting a, 3-50

Matrix divide (B) function,

5-36

3-52

Matrix inverse (B)
function, 3-50

YMAXCORE system command,
5-16

Maximum workspace size,
5-16

Members,

displaying group, 5-24
Membership (e) function,
3-35
Messages,
error, A-1
JMINCORE system command,
5-17
Minimum workspace size,
Minus (7),
high, 2-3

5-17

Minus (-) function, 3-3
Miscellaneous commands,
Mixed, 3-1
Mixed functions,
primitive, 3-10,
Mixed output, 2-16
Mixed-output mode, 2-21
Mnemonic equivalents, 1-5
Mnemonics,
keyword, 1-2
Mod, 3-7, 3-22
Mode,
bare-output, 2-22
character-input, 2-17
escaping from input,
evaluated-input, 2-17
function-execution, 2-1
immediate, 2-1
mixed-output, 2-21
normal, 2-19
output, 5-29
quad-~del, 2-18,
quad-input, 2-17
quad-output, 2-19
quote—-quad, 2-17,
terminal, 5-29
unedited-input, 2-18
YMODE system command,
Modes,
file input, 7-11
Modulo representation,
3-22
JMON system command, 1-9,
5=34
Monadic, 3-1
Monadic format (¥) function,
3-64
Monadic functions, 6-2,
Monadic transpose (&)
function, 3-46
Monitor level, 1-9,
5-34
OMTP system function, 7-28
Multi-statement lines, 2-7
Multiple-user access, 7-16

5-36

B-4

2-19

2-22

2-22

5-29

3-7,

6-6

5-33,

Multiply (x) function, 3-3
Name, 5-15

directory, D-2

function, 6-3

group, 6-3

variable, 6-3

Name classification, 4-34
Name list, 4-35
Named object,

erasing a, 4-31

Index-9

INDEX (CONT.)

Names,
displaying function,
erasing global, 5-22
listing workspace, 5-10
logical, D-1
workspace, 5-4
NAND («) function,
gNCc system function,
Negative number, 2-3
Negative sign (-), 2-3
Niladic functions, 6-2
ONL system function, 4-35
No explicit result, 6-2,
6-3
NOR (») function,
Normal mode, 2-19
Normal output, 2-16
Not equal to (%) function,
NOT (~) function, 3-6
ONVUM system variable,
Number,
job, C-3
line, C-4
negative, 2-3
project-programmer, C-5,
D-2
Number generator,
random, 4-23
Number precision, 2-9
Numbers,
error, A-1
lock, 7-38
Numeric constant,
Numeric data, 2-3
Numeric vector, 2-4
Numerics to characters,

3-6
4-34

3-6

4-21

2-3

converting, 3-64, 3-68
Object,

erasing a named, 4-31
Objects,

copying, 5-21

JOFF system command, 1-9,
5-34

Operating system command

level, 5-34

Operator, 3-1
inner product, 3-70
outer product (o),
reduction (/), 3-75
scan (\), 3-77

Operators, 3-70,

OR (v) function,

Organization,
file, 7-2
returning file, 7-31

3-73

B-7
3-6

5-23

3-5

Organization switches,
file, 7-6
Origin,
index, 2-15, 4-19, 5-30
JORIGIN system command,
5-30
.0U, 4-26, 6-5
Outer product description,
3-74
Outer product (¢) operator,
3-73
Output,
array,
bare, 2-16
file, 2-16, 7-4
function, 6-5
mixed, 2-16
normal, 2-16
quad, 2-16
Output line width,
Output mode, 5-29
Output precision, 4-22, 5-27
Output quad (EH) function,
7-16, 7-4, 7-10, 7-21
YJOUTPUT system command,
7-40
Overstrike characters,
Owner,
workspace, 5-18
JOWNER system command,

2-9

4-22

1-7

5-18

Pack, 7-25
Password,
workspace, 5-13
Password setting, 5-15
YJPASSWORD system command,
5-13
passwords,
workspace, 5-6
YPCOPY system command,
Pendent function, 6-18
Pendent functions, 5-26
Pi (o) function, 3-3
Plus (+) function, 3-3
O0PP system variable, 4-22
Precision,
number, 2-9
output, 4-22, 5-27
Preventing interruptions,
4-18
Primitive mixed functions,
3-10, B-4
Primitive scalar functions,
3-2, 3-3, B-2
Print precision, 4-22

5-25

INDEX (CONT.)

Index~-10

Procedures,
character-editing,
6-13
Product description,
inner, 3-71
outer, 3-74
Product operator,
inner, 3-70
Product (¢) operator,
outer, 3-73
Program,
running a, 5-35
Project-programmer number,
c-5, D-2
Prompt,
evaluated input,
quad, 4-23
Prompt same line,
<prot>, 2-6
Protected copy,
Protection, 2-6
workspace, 5-6
OPW system variable, 2-20,
4-22, 5-32

6-11,

4-23
2-22

4-36, 5-25

0QCo system function,
4-36, 5-21

0QLD system function, 4-36
0QrC system function,

4-36, 5-25
Quad-divide (H), 3-50, 3-52
Quad () function, 2-17

Quad input, 2-16
Quad (@) function,
input, 7-4, 7-10, 7-13,
7-16, 7-20
Quad (B) function,
output, 7-4, 7-10,
7-16
Quad output, 2-16
Quad prompt, 4-23
Quad-del (M) function,
Quad-del input, 2-16
Quad~del mode, 2-18,
Quad-input mode, 2-17
Quad-output mode, 2-19
Question (?) function, 3-3
Quote (T) function, 3-68
Quote-quad function (M), 2-17
Quote-quad input, 2-16
Quote-quad mode, 2-17,

7-21,

2-18

2-22

2-22

)R system command, 5-35

Random access, 7-3

INDEX (CONT.)

Random access file, 7-14
Random link,
setting a, 4-23
Random number, 3-9
Random number generator,
Random seed, 4-23
Rank, 3-43
Ravel (,) function,
Record,
delete a, 7-17
Reduction (/) operator,
REENTER command, 1-10
REFUSE LINKS, 4-18
Relational functions,
B-3
Relative fuzz,
Remainder, 3-7
ORENAME system function, 7-8
Replacing function lines,
6-8
Reporting on executing
functions, 4-20
Representation,
canonical, 4-30
Reshape (p) function, 3-37
Reshaping an array, 3-37
Residue function, 3-7
Result,
explicit, 6-2, 6-3
no explicit, 6-2, 6-3
Retrieving a workspace,
5-12
Returning device
characteristics, 7-33
Returning file information,
7-35
Returning file organization,
7-31
Returning to APL, 5-32
Reverse (¢ and e) function,
3-39
Rho (p), 2-5, 3-37, 3-43
ORL system variable, 4-23
Roll (?) function, 3-9
Rotate (¢) function, 3-41
Rotating an array, 3-41
RUBOUT, 1-11
YRUN system command, 5-35
Running a program, 5-35

4-23

3-36

3-75

3-5,

2-15, 4-14

SA, 4-26
Same line,
prompt,

Save,
automatic, 4-7
)SAVE system command, 5-13

2-22

Index-11

Saving a workspace
automatically, 4-7
Saving active workspace,
5-13
Scalar, 2-4, 3-1
Scalar functions,
primitive, 3-2,
Scan (\) operator,
Seal,
workspace, 5-18
JSEAL system command,
Seed,
random, 4-23
Sequential access,
Sequential file, 7
ASCII, 7-3
binary-access,
internal, 7-3,
Sequential I/0,

3-3, B-2

3-77

5-18
7-2

-9

7-3
7-13

ASCII, 7-10
internal, 7-13
Session,

ending the, 1-9, 5-33

starting the, 1-8

terminating the, 5-34
Session information,

displaying, 5-36
SET TTY WIDTH command, 5-32
Setting,

password, 5-15
Setting a random link, 4-23
(JSF system variable, 4-23
Shape (p) function, 3-43
Share bit, 7-39
/SHARE switch, 7-4, 7-16,
Shared file access, 7-36

Sharing binary-access files,
7-19
Sharing direct-access files,
7-16
Sharing information,
file, 7-34
Shriek (!), 1-7
)SI system command,
6-18, 6-19
Slgn (_) ’
negative, 2-3
Sign-on time, C-3
OSIGNAL system function,
4-39, 6-23
Signalling errors, 4-39
Significant digits, 5-27
Single strike characters, 1-6
Single-user access, 7-16
)SIV system command, 5-6,
5-26, 6-19
Size,
maximum workspace,

5-6,

5-16

7-19

5-25,

Size (Cont.)
minimum workspace,
workspace, 5-19
)SIZE system command,
Sleep, 4-31
Sort, 3-27,
Spaces, 2-5
Specifications,
file, 2-6
Specifying TOPS-20
directories, D-1
Starting APL, 1-8
Starting the session,
State indicator, 5-6,
State indicator,
clearing the,
displaying the,
examining the,
Statement,
assignment, 2-7
branch, 2-7, 6-14
conditional branch,
unconditional branch,
Statement labels, 6-16
Statement type, 2-7
Status vector, 5-6
Stop vector, 6-22
Stored files,
deleting, 5-9
Stored workspaces,
deleting, 5-9
Storing account information,
4-2
Storing error messages,
4-16
Subscripting arrays,
Subtraction, 2-3
Summary, B-1
Supplying values, 6-3
Suspended function, 5-26
6-18
Suspending execution, 4-29
Suspending function
execution, 6-17
Switch,
/AS, 7-6,
/AS* 7-6,
/BS, 7-6,
/BS8%, 7-6,
/BU, 7-19
/DA, 7-6, 7-16
/DI, 7-6, 7-16
/DUMP, 7-4, 7-28
/file org, 7-4
/18, 7-6, 7-13
/IS8x, 7-6, 7-13
/SHARE, 7-4, 7-16,
Switches,
file organization,

5-17
5-19

3-28

1-8
5-25
6-19, C-5
5-26
6-18

6-15
6-15

2-11

7-10

7-10

7-19,
7-19

7-28

7-19

7-6

INDEX (CONT.)

Index~-12

Switches (Cont.),
JLIB, 5-11

Symbol classification,

Symbol table, 6-3

Symbol table information, C-1

Symbols,
global, 6-4
local, 6-4
Synchronizing access,
Syntax,
language,
System,
file, 7-1
System command,
YBLOT, 5-36
)¢, 5-32
YJCALL, 5-32
YCHARGE, 5-36
JCLEAR, 5-8
JCONTINUE, 1-9,
ycory, 5-=21
JCREATE, 7-15
)DIGITS, 5-27
JDROP, 5-9
YJECHO, 5-28
YERASE, 5-22
JFNS, 5-23
YGROUP, 5-23
YGRP, 5-24
JGRPS, 5-24
YINPUT, 7-40
YLIB, 5-10
YMAXCORE, 5-16
YMINCORE, 5-17
YMODE, 5-29 :
yMon, 1-9, 5-34
JOFF, 1-9, 5-34
JORIGIN, 5-30
YOUTPUT, 7-40
YOWNER, 5-18
YPASSWORD, 5-13
)PCOPY, 5-25
JR, 5-35
JRUN, 5-35
)SAVE, 5-13
)SEAL, 5-18
)sIr, 5-6, 5-25,
6-19
)SIvV,
)SIZE,
YTABS,
YTIME, 5-19
YVARS, 5-27
JVERSION, 5-=20
YWIDTH, 5-31
YWSID, 5-15
System command format,
System command level,
operating, 5-34

2-1

5-5,

5-6,
5-19
5-30

5-26,

6-3

7-36

5-33

6-18,

6-19

5-2
1-9

System commands,

5-1, B-16

System communication, 4-1

System function,
OJAPPEND, 7-17,
04ss, 7-4

7-21

OBREAK, 4-29, 6-23

Ocas, 7-31
Ocre, 7-25
ocrs, 7-7

fcoq, 7-25

Ocr, 4-30, 4-33

ODAsS, 7-6
OpE@, 7-36
apr, 4-31
Opve, 7-33
Ozve, 7-36
Oex, 4-31
arcuM, 7-35

Orr, 4-32, 4-40

OrLs, 7-34
OrFx, 4-33
OmTP, 7-28
Owc, 4-34
avn, 4-35

0gco, 4-36, 5-21
ogrp, 4-36, 5-12
Ogpc, 4-36, 5-25

ORENAME, 7-8
OSIGNAL, 4-39,
gvri, 4-40

System functions,

B-11

System functions,
file, B-=12

System variable,
04z, 4-2
OALPHA, 4-3
OALPHAU, 4-3

6-23

4-1, 4-28,

0Ascrr, 4-3, 4-4

O4vs, 4-7
0Aav, 4-8, 4-9

gcr, 2-15, 4-14

OcrrL, 4-15

LUERROR, 4-16, 6-23

0cAG, 4-18
0ro, 4-19°

rc, 4-20, 6-18

Orx, 4-20
voM, 4-21
gpp, 4-21

Oopw, 2-20, 4-22, 5-32

ORL, 4-23
OSF, 4-23

OTIMELIMIT, 4-24

QriMeourT, 4-24

O0TrRAP, 4-25, 6-

ars, 4-27
grr, 4-27
Our, 4-28

23

INDEX (CONT.)

System variable (Cont.),
Owa, 4-28

System variables, 4-1, 4-2,
B-9

TA, 4-26
Tab stops, 5-30
Table,
symbol, 6-3
Tables,
formatting, 3-65
)TABS system command, 5-30
Take (+) function, 3-45
Terminal character set, C-4
/terminal, 1-3, 7-40
Terminal designators, 1-2,
1-3
Terminal I/0, 2-16
Terminal mode, 5-29
Terminal time out, 4-24
Terminal type, 4-27
TERMINAL WIDTH command,
5-32
Terminals,
APL-keyboard, 1-3
TTY, 1-5
Terminating the session,
5-34
Termination commands,
APIL, 5-32
Tinme,
connect, 5-19
CcpU, 4-2, 5-19, C-2
current, 4-27
keying, C-2
sign-on, C-3
Time limit, 4-24
Time limit indicator, 4-24
Time of day, C-2
Time out,
terminal, 4-24
)JTIME system command, 5-19
Time used, 5-19, C-6
OTIMELIMIT system variable,
4-24
OTIMEOUT system variable,
4-24
.TMP file, 4-8
Tolerance,
comparison, 2-15, 4-14
TOPS-20 directories,
specifying, D-1
Trace vector, 6-20
TRANSIL command, D-2
Transpose definitions, 3-48
Transpose (&) function,
dyadic, 3-48

Transpose (&) function, (Cont.)

monadic, 3-46
Transposing dimensions,
3-46
OTRAP system variable, 4-25,
6-23
Trapping,
error, 6-23
Trapping errors, 4-25
Trapping examples,
error, 6-24
075 system variable, 4-27
07T system variable, 4-27
TTY NO GAG, 4-18
TTY set, 1-6
TTY terminals, 1-5
.typ, 2-6
Type, 7-20, 7-21, 7-25
Type,
statement, 2-7

Qv system variable, 4-28
Unconditional branch
statement, 6-15
Underlined alphabetics, 4-3
Underscore (_), 1-7
Unedited input, 2-16
Unedited-input mode, 2-18
Unpack, 7-25
Unquote (L) function, 3-54
Up union (u), 1-7
User Identification, 4-2
User-defined function, 6-1

Validating input, 4-40
Values,
supplying, 6-3
Variable,
04 system, 4-2
OALPHA system, 4-
OALPHAU system, 4
OASCII system, 4-
04US system, 4-7
0AV system, 4-8, 4-9
Ocr system, 2-15, 4-14
OCTRL system, 4-15
OERROR system, 4-16, 6-23
0GAG system, 4-18
0710 system, 4-19
(Jr¢ system, 4-20, 6-18
OLX system, 4-21
ONUM system, 4-21
0ppP system, 4-22

3
-3
3, 4-4

0PW system, 2-20, 4-22, 5-32

ORL system, 4-23

INDEX (CONT.)

Variable {(Cont.),
0SF system, 4-23
OTIMELIMIT system, 4-24
OTIMEOUT system, 4-24
OTRAP system, 4-25, 6-23
grs system, 4-27
OrT system, 4-27
OUL system, 4-28
OwWwA system, 4-28
Variable list,
displaying a, 5-27
Variable name, 6-3
Variables,
system, 4-1, 4-2, B-9
)VARS system command, 5-27
Vector, 2-4
atomic, 4-9
character,
literal, 2-
numeric, 2-
status, 5-6
stop, 6-22
trace, 6-20
Version number, 5-20
)JVERSION system command,
5-20
OvI system function, 4-40

2-4
4
4

OWA system variable, 4-28
wWidth,
output line, 4-22
YWIDTH system command, 5-31
Work area,
available, 4-28
Workspace,
active, 1-1, 5-3
clear, 1-1
clearing the active, 5-8
CONTIN, 5-5
CONTINUE, 5-=5
copying a, 4-36
identifying the active,
5-~15
inactive, 1-1
loading a, 4-36
retrieving a, 5-12
saving active, 5-13
Workspace automatically,
saving a, 4-7
Workspace availability, C-3
Workspace characteristics,
5-3
Workspace I.D., 5-15
Workspace names, 5-4
listing, 5-10
Workspace owner, 5-18
Workspace password, 5-13

Workspace passwords, 5-6
Workspace protection, 5-6
Workspace seal, 5-18
Workspace size, 5-19
maximum, 5-16
minimum, 5-17
Workspace-content commands,
5-=20

INDEX (CONT.)

Workspace-control commands,
5-7

Workspace-environment
commands, 5-27

Workspaces,

deleting stored, 5-9
Writing a function, 6-1
JWSID system command, 5-15

Index-15

APLSF Language Manual
AA-H200A-TK

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. 1If you require a written reply and are
eligible to receive one under Software Performance

Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

ooooof

Other (please specify)

Name Date
Organization Telephone
Street

City. State Zip Code

or
Country

No Postage
Necessary
if Mailed in the

United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS
200 FOREST STREET MR1-2/E37
MARLBOROUGH, MASSACHUSETTS 01752

Cut Along Dotted Line

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	index-15
	replyA
	replyB

