
TOPS-10/TOPS-20
Batch Reference Manual
AA-H374B-TK

November 1988

This document describes user procedures for the TOPS-10
and TOPS-20 batch systems.

This manual supersedes the manual of the same name
and order numbers, AA-H374A-TK, AO-H374A-T1 and
replaces the manuals Getting Started With Batch (TOPS-20) ,
AA-C781 B-TM and Getting Started With Batch (TOPS-10),
AA-0303A-TB.

Change bars in margins indicate material that has been added
or changed since the previous printing of this manual.

Operating System:

Software:

TOPS-10 Version 7.04
TOPS-20 Version 7.0

TOPS-20 GALAXY Version 6.0
TOPS-10 GALAXY Version 5.1

digital equipment corporation
maynard, massachusetts

First Printing, January 1980
Updated, July 1982
Revised, November 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1980, 1986, 1988 Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The Reader's Comments form on the last page of this document requests the
user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CI
DDCMP
DEC
DECmaii
DECnat
DECnat-VAX
DECserver
DECserver 100
DECserver 200
DECsystem-10
DECSYSTEM-20

DECtape
DECUS
DECwriter
DELNI
DELUA
HSC
HSC-50
KA10
KI
KL10
KS10

LA50
LN01
LN03
MASSBUS
~DP
PDP-11/24
PrintServer
PrintServer 40
Q-bus
ReGIS
RSX

SITGO-10
TOPS-10
TOPS-20
TOPS-20AN
UNIBUS
UETP
VAX
VAXNMS
VT50

~BmBDmDTM
IBM is a registered trademark of International Business Machines Corporation.

PREFACE

CHAPTER 1

1.1
1.1.1
1.2
1.3
1.3.1
1.3.1.1
1.3.1.2
1.3.2
1.3.3
1.3.4
1.3.5
1.4

CHAPTER 2

2.1
2.2
2.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.3.1
2.5.3.2
2.5.3.3
2.5.3.4
2.6
2.7
2.7.1
2.7.1.1
2.7.1.2
2.7.2
2.7.3
2.8
2.9

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.3.2.1
3.3.2.2
3.4
3.5

CONTENTS

INTRODUCTION

JOBS . 1-2
Running Multiple Jobs from the Same Directory . 1-2

BATCH COMPONENTS
CONTROLLING THE BATCH ENVIRONMENT

· 1-3
.. 1-4
.. 1-5 The Control File . . .

Control Cards
Batch Commands . .

· 1-5
· 1-5

Job Control Commands
Running Your Job

· 1-6
· 1-6

Receiving Your Output
Recovering from Errors

SUMMARY

THE BATCH CONTROL FILE

· 1-6
..... 1-7

· 1-7

INTRODUCTION 2-1
LINE IDENTIFIERS 2-2
LABELS 2-6
COMMENTS 2-6
ERROR PROCESSING 2-7

Specifying Error Recovery in the Control File . 2-8
Line Identifiers and Error Processing 2-10
Reserved Labels 2-10

%RERR (TOPS-20 systems only) . . 2-11
%CERR and %ERR - Error Packets . 2-11
%TERR 2-13
%FIN 2-14

BATCH COMMANDS 2-14
JOB-OPERATOR COMMUNICATION 2-37

Dialogue Mode 2-37
The OPERATOR Command . . 2-38
The NOOPERATOR Command . 2-41

Using the Double Quote (") 2-41
Using the PLEASE Command 2-43

MOUNTING DISKS AND TAPES (TOPS-10) 2-44
NORMAL PROCESSING OF THE BATCH CONTROL FILE 2-48

JOB CONTROL

INTRODUCTION
JOB CONTROL WITH TOPS-10 . . .

TOPS-10 Batch Input Queue
Modifying Jobs under TOPS-10 . .
TOPS-10 Print Queue

JOB CONTROL WITH TOPS-20
Examining the Queues under TOPS-20
Modifying Jobs under TOPS-20

Modifying Batch Jobs
Modifying Print Jobs . .

CANCELLING OR KILLING JOBS
SUBMITTING RELATED JOBS

iii

· 3-1
· 3-1

...... 3-2

...... 3-4
..... 3-5

· 3-5
· 3-5
· 3-7

..... 3-8
· 3-8

.. 3-8
· 3-9

CHAPTER 4

4.1
4.1.1

4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4

4.4.5
4.4.6
4.4.7

CHAPTER 5

5.1
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.4
5.4.1
5.4.2
5.4.2.1
5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.5.5
5.5.6
5.5.7
5.5.8

5.5.9

5.5.10
5.5.11
5.5.12
5.5.13

CHAPTER 6

6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2
6.2.3

SUBMITTING A JOB FROM A TERMINAL

INTRODUCTION 4-1
Submitting a Card Job from a Timesharing
Terminal 4-1

CREATING AND SUBMITTING BATCH JOBS FROM A TERMINAL 4-2
THE SUBMIT COMMAND 4-3

The SUBMIT Command with TOPS-10 4-4
The SUBMIT Command with TOPS-20 . . 4-5
Switches for the SUBMIT Command 4-6

SAMPLE JOBS '. . 4 -11
Reading from or Writing to a Disk File . 4-12
Reading from or Writing to a Tape File . 4-13
Reading Data from the Control File . 4-14
Using an Interpretive Language (APL, BASIC,
CPL, SNOBOL)
Using a System Program or Utility (TOPS-20)
Printing a File
Suppressing Printing of the Log File

SUBMITTING A JOB FROM CARDS

4-15
4-16
4-16
4-17

INTRODUCTION 5-1
SPRINT 5-2
CONTROL CARDS . . . 5-2

File Cards 5-3
Abbreviations 5-4
Comments 5-:4
Continuation of Operative Information . 5-4
Parameter Defaults 5-5
End-Of-File Card 5-5
Control Card Descriptions 5-5

SYSTEM-INDEPENDENT JOBS 5-32
Creating a System-Independent Job 5-32
System-Independent Processing 5-33

$IF and System-Independent Processing 5-34
SAMPLE JOBS 5-34

Listing Cards on a Line Printer 5-34
Producing a MACRO CREF Listing . . 5-35
Using Error Processing Commands 5-36
Creating a Complex Card Job 5-36
Loading a FORTRAN Program with a System Library 5-37
Reading from or Writing to a Disk File . . 5-37
Reading from or Writing to a Tape File 5-37
Compiling and Running a Program that Reads Data
from Cards 5-38
Using an Interpretive Language (APL, BASIC,
CPL, or SNOBOL)
Running a System Program or Utility
Saving Cards in a Disk File
Suppressing Printing of the Log File
"Stacking" Card Decks

BATCH SYSTEM OUTPUT

THE LOG FILE
BATCON Log-File Output
SPRINT Log-File Output

FATAL ERROR MESSAGES, WARNINGS, COMMENTS .
BATCON Messages
LPTSPL Messages
QUEUE Messages -- TOPS-10 Only

iv'

5-39
5-39
5-40
5-40
5-41

6-1
· 6-2
· 6-3
· 6-4

6-5
· 6-8
6-10

6.2.4 SPRINT Messages .. ". 6-13

APPENDIX A COMMANDS

A.1
A.2
A.3
A.3.1
A.3.1.1
A.3.1.2
A.3.1.3
A.3.1.4
A.3.2
A.3.3

BATCH COMMANDS A-1
SPRINT COMMANDS A-1
SYSTEM COMMANDS A-4

Job Control Commands A-4
SUBMIT Command A-4
Modify Commands A-S
Cancel Commands A-6
PRINT Command A-6

Information Commands A-6
Tape Control Command Formats A-7

APPENDIX B SWITCHES

B.1 SWITCH DEFAULTS B-1
B.2 TIME AND DATE SWITCHES B-3
B.3 SWITCH DESCRIPTIONS B-4

APPENDIX C CARD CODES

APPENDIX D BATCH COMPONENTS

INDEX

FIGURES

D.1
D.2
D.3
D.4
D.S
D.6
D.7
0.8
D.9
0.10
D.11
0.12
0.13

CDRlVE
BATCON
SPRINT
EXEC (TOPS-20)
GLXLIB
QUASAR
LPTSPL, SPROUT .
aPR, ORION ...
QUEUE (TOPS-10)
PULSAR (TOPS-10)
MOUNTR (TOPS-20)
NEBULA
CATLOG (TOPS-10)

· D-1
. 0-1

· D-1
· 0-2

....... 0-2
......... D-2

. D-2
..... 0-3

. . 0-3
· D-3

.... D-3
· D-4
· D-4

1-1 The Batch System 1-4
2-1 Normal Processing ~ 2-48
B-1 Layout of Card Data That is Transferred to Disk

Using the /IMAGE Switch with $CREATE or $OATA B-21

v

PREFACE

The TOPS-IO/TOPS-20 Batch Reference Manual describes the commands for
controlling jobs operating under the batch system. As a reader of
this manual, you are expected to be familiar with the operating system
commands available to timesharing jobs and with the commands to the
various system programs that you will use. That reference material is
not included in this manual. Therefore, it is recommended that you
use this manual with the system commands manual for your particular
operating system. The REFERENCES section at the end of this preface
lists all referenced documents.

SYNOPSIS

Chapter I briefly introduces the batch system.

Chapter 2 describes the batch control file, the file you create
(directly at the terminal or indirectly with cards) that determines

how the system processes your job. This chapter also gives a detailed
description of the batch controller and its associated commands.

Chapter 3 discusses the monitor commands available to you for
controlling your batch job. Among other things, the chapter shows how
to examine the batch input queue and the print queue and how to modify
or cancel a job.

Chapter 4 illustrates methods for submitting a batch
timesharing terminal and discusses the SUBMIT command in

job from
depth.

a

Chapter 5 explains how to submit a job from cards and gives a detailed
description of batch control cards.

Chapter 6 describes batch system output.

TOPS-IO/TOPS-20 INFORMATION

The batch system operates in the same way under TOPS-IO and TOPS-20,
employing the same set of batch commands and control cards for both
systems. However, because of operating system differences, portions
of this manual are described separately for TOPS-IO and TOPS-20.
Chapter 3, for example, provides two sets of job control commands:
one for TOPS-IO, another for TOPS-20.

vii

The system prompt character is different on the two systems. This
character (. for TOPS-IOi @ for TOPS-20) precedes all operating system
and batch commands. Many examples throughout this manual include
these commands; but, unless stated otherwise, these examples can apply
to either system. Simply substitute the applicable prompt character
for the existing one when necessary. You can usually take this same
action when batch or system commands appear within the text.

CONVENTIONS

The following is a list of the symbols and conventions used in this
manual:

$

n

o

x

?

litem
litem
litem

A dollar sign.

A decimal number.

An octal number.

An alphabetic character.

An alphanumeric character.

A symbol indicating that one of the items must be
selected.

[] A symbol indicating that items within the brackets are
optional.

[I] Therefore, the effect of a lined list of items enclosed
within brackets is that it is acceptable to have any or
none of the elements.

@ A symbol indicating that either the TOPS-IO (.)
TOPS-20 (@) system prompt character is applicable.

or

command line/switches

REFERENCES

A notation indicating that one or more run-time options
[switches] from a nearby list can be specified with the
command. Switches sometimes appear in the middle of a
command line, as indicated in this manual. Each switch
must be preceded by a slash (/).

As stated earlier, this manual chiefly describes the commands for
controlling jobs operating under the batch system. If you wish more
information about commands to the system, refer to the operating
system commands reference manual for your system (referred to within
this document as the system commands manual) .

Error messages from system programs that your job invokes are
explained in the appropriate manuals. For example, you can find the
descriptions of the error messages you receive from the FORTRAN
compiler in the FORTRAN reference manual.

viii

other documents referenced in this manual or that might prove useful
to you are:

TOPS-IO:

o ALGOL Programmer's Guide

o APLSF Language Manual

o BASIC Conversational Language Manual

o BLISS-IO Programmer's Reference Manual

o COBOL-68 Language Manual

o COBOL-74 Language Manual

o FORTRAN-IO Programmer's Reference Manual

o Introduction to DECsystem-10 Software

o TOPS-IO MACRO Assembler Reference Manual

o SOS Reference Manual

o TECO Reference Manual

TOPS-20:

o ALGOL Programmer's Guide

o AFLSF Language Manual

o BASIC-PLUS-2 Language Reference Manual

o COBOL-68 Language Reference Manual

o COBOL-74 Language Reference Manual

o EDIT Reference Manual

o FORTRAN Reference Manual

o TOPS-20 MACRO Assembler Reference Manual

o TOPS-20 User's Guide

ix

CHAPTER 1

INTRODUCTION

The batch system is a group of programs that allows you to
job to the TOPS-10 or TOPS-20 system on a leave-it basis.
Appendix D, Batch Components, for a complete description of
that constitute the batch system.)

You may build and submit your job in one of two ways:

submit a
(Refer to
programs

1. By entering your data directly to an interactive computer
system by means of a timesharing terminal.

2. By entering your data from punched-cards to the interactive
system. The cards are given to an operator, who, at an
appropriate time in his schedule, enters them into the
computer through a card reader.

After preparing the job, you are free to leave the system. Upon
accepting the job, the system classifies it in terms of size, running
time, the need for peripherals, and so forth. This classification is
used as the basis for determining when the job is to be run. Large
jobs may, therefore, be set aside until smaller or more urgent jobs
are finished.

Some of the jobs that are commonly processed through the TOPS-10 or
TOPS-20 batch system are those that:

1. Are frequently run for production

2. Are large and long running

3. Require large amounts of data

4. Need no actions by you when the jobs are running

Batch allows you to submit your job to the computer through either an
operator or a timesharing terminal, and to receive your output from
the operator when the job has finished. Output is never returned to
your timesharing terminal even if your job is entered from one.
Instead, it is sent to a peripheral device (normally the line printer)
at the computer site and returned to you in the manner designated by
the installation manager.

1-1

INTRODUCTION

1.1 JOBS

In timesharing, the term "job" generally refers to your allotment of
computer time from login ·to logout. You create a job when you
successfully log in. After you create a job, you can access any
system resource to which you are entitled and execute any number of
commands or run any number of programs. Actions that you initiate
after login denote a job.

In batch processing, the term "job" generally refers to the entire
stream (or list) of commands contained in a batch control file,
commands that you would type on the terminal under timesharing. When
you submit this file for processing, the batch system:

1. Creates a timesharing job for you.

2. Connects the job to the directory (-20) or project-programmer
number (-10) where you are connected (-20) or logged-in (-10)
at the time you submit the control file.

3. Sets defaults for switches if you have so specified (refer to
Section B.1, SWITCH DEFAULTS) .

4. Executes the commands stored in your control file,
the results of its processing in a log file.

Upon completion, the batch system logs out the batch job.

storing

In summary, this manual refers to "job" in all of the followi.Qg
senses:

1. As the batch control file.

2. As the system time available to you between the time you log
in and log out.

3. As a unit consisting of one action or a group of actions that
you initiate with the system; that is, as:

a. A single user program and its related data, or several
user programs and their data.

b. A utility program or system program and its related data.

c. The system, batch, and program-level commands that are
required to control the execution of the job. These
commands, when read into the batch system, constitute the
control file for the associated job.

1.1.1 Running Multiple Jobs from the Same Directory

When working at a terminal, you can run batch and timesharing jobs at
the same time from the same directory. However, this practice exposes
your files to certain dangers. To avoid these dangers, remember that
a batch job functions as a timesharing job, affecting system
operations similarly. The following sections discuss the more common
difficulties you might encounter when running multiple jobs from the
same directory. Problems may arise when more than one batch job is
run from the same directory (SUBMIT/UNIQUE:NO) or with timesharing
jobs. Problem situations are not limited to batch and timesharing
combinations, as these sections describe.

1-2

INTRODUCTION

TOPS-20

Recall that a batch job is logged in and out as if it were a
timesharing job. But whereas you log a timesharing job in and
out, the system automatically logs each batch job in and out. To
do this, the system executes LOGIN and LOGOUT, the same commands
you use to log timesharing jobs in and out.

The LOGOUT command, whether executed from a batch or timesharing
job, expunges all deleted files from your connected directory.
This action could cause you problems. Suppose you are working
with files under timesharing while at the same time running a
batch job. When the batch job terminates, the system will
expunge any files you deleted. The UNDELETE system command is
ineffective for these files, just as it is for any expunged file.

TOPS-10 and TOPS-20

Exercise care in creating files when
timesharing jobs from the same directory.

running batch and

The system overwrites the contents of an existing file when you
create another file (with the COpy command, for example) of the
same name. In overwriting a file, the system assumes that you
are keeping track of the files entered into your directory by
batch and timesharing jobs, and that therefore the overwrite is
desirable. Because you might not think of batch mode when
operating in timesharing mode, and vice versa, you could
unintentionally create a file with the same name as one created·
in the other mode. This would destroy the contents of the
original file.

On a TOPS-20 system, the RENAME command also will destroy an
original file as described above.

1.2 BATCH COMPONENTS

The batch system consists of a group of programs. Some of these
programs are used for batch operations only; others are available for
various operations of the total computing system. Three programs are
strictly batch components: CDRlVE, BATCON, and SPRINT. The remaining
programs belong to the whole system: EXEC (-20), NEBULA, GLXLIB,
LPTSPL, MOUNTR (-20), CATLOG (-10), OPR, ORION, PULSAR (-10), QUASAR,
QUEUE (-10), and SPROUT. Figure 1-1 shows the relationship among the
components; they are described in Appendix D.

1-3

MONITOR

INTRODUCTION

I
IQUEUE (-10) I
I EXEC (-20) I IMOUNTR (-20),
, I /1 I

These Components I I I /
Don't Use GLXLIB I I I /
-------------------1-------------------1---1---------/-----------------
These Components I I I /
Use GLXLIB 1 I I /

I I I / I
1 , I / /--1
I 11// -----

LPTSPL

OPR
___ I I I / / __ _

----I
BATCON

ORION ------- QUASAR I
1 ___ - SPROUT

-:---:---:---:----:--;- I
I I

OPR I 1 ____ _ SPRINT
I
I
I
I
I
I
I

I NEBULA (-10) I
I I

,NEBULA (-20) I
I I -I-

I
I PULSAR (-10) I I ICATLOG (-10) I
, 1---- I I

--===-1--=-
CDRlVE

Figure 1-1: The Batch System

1 . 3 CONTROLLING THE BATCH ENVIRONMENT

You may take any of several actions to control the batch environment.
These actions -- some required, others optional -- let the system know
what programs and data it needs to process your job; guide the system
in its operation; and affect the job as a whole in such ways that
determine the day and hour (after you submit the job to the system)
that processing is to begin, the directory under which the job is to
run, and so forth.

You control the batch environment by issuing commands from either a
control file or the terminal. Batch commands (described in Section
1.3.1.2), control card switches (described in Section 1.3.1.1.) and
monitor command switches (contained in the control file and/or issued
from the terminal) provide you with various run-time options.

1-4

I

INTRODUCTION

A control file consists of commands that tell the TOPS-10 or TOPS-20
system what you want to process. The control file commands can be
created as a disk file or as card input and can consist of:

1. System commands (See the TOPS-20 User's Guide or the TOPS-10
Operating System Commands Manual.)

2. System program commands to system programs

3. Batch commands (See Chapters 4 and 5.)

These commands, when submitted to the operating system, must be in a
particular order so that your batch job will execute correctly.

The steps that you must take to create a control file from a
timesharing terminal are described in Chapter 4. The steps to take to
create a control file from cards are described in Chapter 5.

The following sections describe how you can control the batch
environment.

1.3.1 The Control File

The control file consists of system and batch commands, and, if
needed, program commands or program data. The control file you submit
from the terminal, called the batch control file, is read directly ~y
the batch system. A card deck containing control cards ~s
preprocessed and a batch control file is created from the card input.

NOTE

You can submit a card deck stored on disk using the
/READER switch with the SUBMIT command. Refer to
Section 4.1.1, Submitting a Card Job from a
Timesharing Terminal, for a description of /READER.

The control file specifies the programs and data required for your job
and, through the batch commands, directs the job's activities. A
control file must exist for every batch job.

1.3.1.1 Control Cards - Batch jobs that you submit on cards contain
control cards indicating where your programs and data files are stored
(possibly within the card deck) and how they should be processed.
SPRINT interprets the control cards, writes card-resident data and
program files to the devices you specify, and creates a batch control
file. The batch control file is passed to the batch processor, also
known as the batch controller (BATCON).

1.3.1.2 Batch Commands - The batch commands give you control over the
batch run-time environment by allowing, among other options: error
recognition and recovery, program-like functions within the control
file (GOTO, BACKTO, IF), sending messages to the operator, and
dialogue between the operator and the job. Batch commands do not
corrupt your core image. Chapter 2, THE BATCH CONTROL FILE, describes
the batch commands in detail.

1-5

INTRODUCTION

1.3.2 Job Contro1 Commands

You can use the job control commands to control the entire job as a
unit: to submit batch jobs to the system for processing, to submit
jobs to output devices, to modify the parameters for these jobs, and
to cancel or kill the execution of batch or output jobs. The job
control commands, SUBMIT, PRINT, MODIFY (-20)" and CANCEL, are
discussed in Chapter 3, JOB CONTROL.

1.3.3 Running Your Job

After you submit the job, it waits in a queue with other jobs until
the batch system schedules ~t to run under guidelines estaplished by
the installation manager. Several factors affect how long your job
waits in the queue: for example, its estimated execution time and the
priority of your job compared with other waiting jobs.

When the job is started, batch reads the control file to determine
what actions are necessary to complete the job. For example, if there
are commands to the system programs, batch issues the commands to
those programs. Any output produced as a result of those commands is
stored in a log file for listing later. with adequate planning, the
control file can also provide for corrective actions in the event of
errors.

As each step in the control file is performed, batch records it in a
log file. For example, if a syst.em command such as COMPILE is
executed, batch passes it to the system and writes it in the log file.
The system response is also written in the log file. Batch writes in
the log file any response from your job that would have been written
on the terminal if the job were run interactively.

1.3.4 Receiving Your Output

Your program output will be returned to you in the form that you
specified by the commands in your control file. This is normally the
line-printer listing, but may also be output on magnetic tape or disk.
When your output is directed to the line-printer, you may specify, in
the SUBMIT command to the batch process, the approximate number of
pages (/PAGES: switch) that you require. This will help batch
restrain runaway programs.

If your batch job is submitted through a timesharing terminal, the log
file is written and saved on disk in your directory and printed on the
line printer. If your batch job is submitted on card input, the log
file is written on disk in your directory, printed on the line
printer, and then deleted from your directory.

1-6

INTRODUCTION

1.3.5 Recovering from Errors

If an error occurs in your job, either within a program that is
executing or within the control file, batch writes the error message
in the log file and usually terminates.the job. You can, however,
include commands in the control file to direct batch to branch to
recovery sequences in the event of an error ,and thereby allow
completion of the job. The effectiveness of error recovery is
dependent on your ability to predict potential trouble spots within
the program or within commands used in the control file. (Refer to
Section 2.5, ERROR PROCESSING, for detailed descriptions on error
recovery for batch jobs.)

1.4 SUMMARY

To enter a batch job:

1. Create a control file either on cards or from a terminal.

2. Submit the job to batch, either indirectly via the operator
(for a card job) or directly from a terminal.

Afterwards, obtain and examine the log file listing and the job output
to determine if the desired results were obtained.

Sample jobs run through batch from cards and from a terminal are shown
in Sections 4.4 and 5.5, SAMPLE JOBS .

. 1-7

CHAPTER 2

THE BATCH CONTROL FILE

2.1 INTRODUCTION

From a user point of view, a batch job is just like a timesharing job.
A batch job logs in to the system, types commands, runs programs, and
logs out. The major difference between batch and timesharing is that,
in a batch job, the batch processing commands that are typed come from
a disk file rather than from a timesharing terminal and the typeout
from the system and programs is written to a disk file rather than to
a timesharing terminal. The disk file that is used to provide
'terminal' input to a batch job is called the control file, and the
file used to record the 'terminal' output is called the log file
(described in Chapter 6, BATCH SYSTEM OUTPUT) .

The control file contains all of the system commands and program
commands that you would normally type to perform the same task from a
terminal. For example, if you wanted to compile and execute a program
called MYPROG.CBL, the type-out on a timesharing terminal would appear
as follows:

.COMPILE MYPROG.CBL
CBL74: MYPROG [MYPROG.CBL]

EXIT

.EXECUTE MYPROG.CBL
LINK: Loading
[LNKXCT] MYPROG Execution]

EXIT

(Your request)

(The system's reply)

(Your request)

(The system's reply)

To create a control file on a TOPS-20 system to tell batch to run the
same, you would type the following:

@CREATE
INPUT:
00100
00200
00300

*E<RET>

MYFILE.CTL<RET>
MYFILE.CTL.1
@COMPILE MYPROG.CBL<RET>
@EXECUTE MYPROG.CBL<RET>
<ESC>

[MYFILE.CTL.1]
@

When the job is run, the commands are passed to the system to be
executed. The commands and their replies from the system are written
in the log file so that the entire dialogue shown in the first example
above appears in the log file.

2-1

THE BATCH CONTROL FILE

NOTE

You must not place the LOGIN command in the control
file; it is handled by the batch system. The LOGIN
command will produce an error message.

LOGOUT (-20) and KJOB (-10) are also handled by the
system, but can be used, for example, in error
recovery procedures.

There are a number of differences, however, between the contents of a
control file and what you would type at a timesharing terminal. One
difference is that lineB in the control file may have labels (or tags)
on them. Also, there are additional commands (called batch commands)
available to provide control ov~r the batch job that are not needed
during a timesharing session. These additional commands direct the
system to test for errors, branch to various lines in the control
file, initiate and control messages to the operator, and provide a
number of other functions.

This chapter describes
Chapters 4 and 5 for
control file.

2.2 LINE IDENTIFIERS

these control file facilities. Refer to
an explanation of how to create and submit a

In a timesharing environment, commands that you type at system command
level are~ interpreted by the system command processor. Similarly,
when you type commands at program level, the commands are interpreted
by the program. For example, when you type the LOGIN system command,
it is interpreted by the system command processor. However, when you
type the EXIT command to TECO/EDIT, that command is interpreted by the
TECO/EDIT program.

Since the batch system attempts to simulate the timesharing
environment, each line of the control file is destined for
interpretation by either the system command processor or the running
program. To unambiguously specify the destination of a particular
line in the control file, you may prefix the line with a single
character called a 'line-identifier.'

A line identifier is the first character that occurs after a
carriage-return/line-feed (CR/LF) in the control file. The batch
system determines the destination of a line by interpreting the first
character as follows:

Identifier

* (asterisk)

Interpretation

The batch controller interprets lines
beginning with * as user data or as data
to a system program, that is, as a
program-level command. However, if the
job is at system command level, the line
is treated as a comment.

2-2

THE BATCH· CONTROL FILE

NOTE

TOPS-20:

Certain commands, such as COPY, leave your job at
system command level. You should precede data lines
for these commands with the at sign (@) rather than
the asterisk, because these lines will be interpreted
by the system command processor (EXEC). For example,
in the control file lines

@COPY TTY: TEST.TST
@This is data for TEST.TST
@"'Z

"This is data for TEST.TST" serves as data to the COpy
command. This line is copied to the file TEST.TST
from TTY:.

Other commands, such as EDIT, place your job at
program level. Here, you should precede data lines
with the asterisk so that the controlling program can
interpret the lines appropriately.

(equal sign)

(period)
@ (at sign)

The batch controller interprets this
character in the same manner as it does
the asterisk. However, the equal sign
indicates that you want to inhibit the
batch controller from transmitting the
carriage-return/line-feed terminating
this line. For example, in the DDT
sequence

=FILE/

the "I" is a terminator to DDT. The "="
prevents an unwanted carriage return or
line feed from being sent to DDT.

These characters represent the system
prompt characters for TOPS-10 and
TOPS-20, respectively. The
interpretation of these characters
depends on the next nonblank, nontab
character.

If that character is numeric, the line,
including the line identifier, is
treated as user data. If the job is at
system command level, the line is
treated as a comment.

If the character following the system
prompt character is an alphabetic or
special character (CTRL/C, CTRL/G,
CTRL/Z, ALTmode or ESC, form feed, line
feed, vertical tab), the line is treated
either as a system command or a batch
command as defined in Section 2.6, BATCH
COMMANDS. If it is a system command,
the job is placed at system command
level, the line identifier is ignored,
and the line is sent to the system. If
it is a batch command, it is processed
by the batch controller.

2-3

THE BATCH CONTROL FILE

(exclamation point)
(semicolon)

% (percent sign)

FF (form feed)
VT (vertical tab)

NOTE

TOPS-20:

If you are an enabled operator
or an enabled wheel, precede
privileged commands with an at
sign (@) rather than a dollar
sign ($). (A line beginning
with a dollar sign is treated as
a comment line.)

To specify subcommand level (for
instance for the SYSTAT
command), use a single at sign.
Do not use a double at sign
(@@). This produces an error.

See NOTE under the asterisk (*)
line identifier for information
about the at sign and system
command data lines.

A line beginning with an exclamation
point or semicolon is treated as a
comment line. Comment lines are sent to
the log file only; they do not affect
the running job.

This character identifies
reserved for use in the
error occurrence. (Refer
2.5, ERROR PROCESSING,
Reserved Labels.)

the labels
event of an
to Section
and 2.5.3,

These characters are treated as comments
when they appear as the first character
1n a line of a control file. The
character immediately following an FF or
VT is then treated as if it were the
first character of the line.

Form feed and vertical tab do
the character that follows
occur in any position other
first character position in a
control file.

NOTE

not affect
when they
than the
line in a

This interpretation enables you to enter form feed and
vertical tab into the control file to format the log
file output.

Lines in the control file that begin with any other special character
(including blank and tab) are treated in two ways:

1. If the job is at user level, the line is treated as user
data, with the first character considered to be part of that
data.

2. If the job is at system command level, the line is treated as
a comment.

2-4

THE BATCH CONTROL FILE

Any line in the control file that begins with an alphabetic character
(and that is not a label; refer to Section 2.3, LABELS) is interpreted
as follows:

1. If the job is running a program, the line is passed to the
program.

2. If the job is at system command level, the line is treated as
a batch or system command as defined in Section 2.6, BATCH
COMMANDS.

NOTE

Because of the two possible interpretations, it is
recommended that you begin all lines with the
appropriate identifier to clarify their meaning.

The circumflex (A) is a special character that denotes control
characters. Unlike the special characters described above, the
circumflex is not necessarily in the first character position of a
line. The batch controller interprets the circumflex as follows:

o

o

o

If the character following the circumflex is
circumflex and the digit are passed to the job.

numeric, the
For example:

A2 remains A2

If the character following the circumflex is alphabetic,
result is the corresponding control character (that is,
character formed by taking the six least significant bits
the binary representation of the alphabetic character) .
example:

AC becomes CTRL/C

the
the
of

For

If the character following the circumflex
circumflex, the result is a single circumflex.

is another
For example:

AAC becomes AC
AAAC becomes ACTRL/C

o Some of the special characters are also affected by the
circumflex and result in the corresponding control character.
They are:

Reverse slant(\).
Closing bracket(]).
Underscore (_) .

o A[results in ESCape.

NOTE

The circumflex itself is not among the listed special
characters and CTRL/ A cannot be generated with the
above-mentioned method.

2-5

THE BATCH CONTROL FILE

2.3 LABELS

The control file can contain labeled lines. Labels identify
particular lines in the control file so the lines can be referenced by
such commands as GOTO.

The label, from one to six characters long, must begin with an
alphabetic character and can be followed by up to five alphanumeric
characters. Two colons (::) must terminate the label. A single line
in a control file cannot contain more than one label. However, you
may use the same label more than once in the control file.

START: :@PRINT FlLA.LST is an example of a labeled line using START as
the label.

Also, a line may contain nothing but a label. For example,

ERROR: :

The character following the two colons is treated as if it were in the
"first character" position as described in the preceding section.
During processing, the label itself is skipped (it does not affect
processing, but is merely a reference point), and the remainder of the
line is treated as if the label were not there. Spaces between the
label and the first character are ignored.

Five labels, %CERR (TOPS-IO systems only), %ERR, %RERR (TOPS-20
systems only), %FIN, and %TERR are predefined by the system for use in
special cases. %CERR, %ERR, and %TERR mark special error recovery
procedures for the batch job. %RERR marks special restart procedures.
Although %FIN functions in several ways, BATCON also references it
when performing error recovery. None of these labels can be
referenced by such batch commands as GOTO. These five labels are
called reserved labels and are described in Section 2.5.3.

2.4 COMMENTS

You may place comments in a control file. They may appear on lines
containing batch or system commands, or as lines by themselves.

On command lines, the system identifies comments by an exclamation
point (!) or semicolon (;) appearing after the command and before the
text to be treated as a comment. For example, in the lines below:

@IF (ERROR)
@R FILCOM

!Proceed if error occurs
!Compare

"Proceed" and "Compare" begin the comments.

You can write a purely comment line into the control file as follows:

;This begins part 2 of the job.

2-6

THE BATCH CONTROL FILE

2.5 ERROR PROCESSING

The batch controller tests for error indications in lines of output
sent from user programs, from system programs, and from the monitor.
The error signal is the question mark (?) appearing as the first
character of an output line. (Note that the percent sign (%) is the
error signal for the DELETE, DIRECTORY, FDIRECTORY (-20), VDIRECTORY
(-20), and DISCARD (-20) commands.) You can declare a single
additional (not alternate) error-signaling character by using the
batch command ERROR. Use the NOERROR batch command to suppress error
processing. (Refer to Section 2.6, BATCH COMMANDS for a description
of ERROR and NOERROR.)

When the batch controller detects an error, it waits for the job to
request more input. That is, any additional error messages or job
output are written into the log file until the job is ready for
another command. At this point, error processing begins.

If the error was ?TIME LIMIT EXCEEDED, special handling is involved
(see Section 2.5.3.3, "%TERR IJ

). For all other errors detected, the
batch controller bypasses all lines indicated to be user-level input
until it arrives at a line in the control file to be interpreted as
either a system or batch command (that is, a system-level command).
If this line contains an IF batch command, it is processed and
execution of the control file resumes. (Refer to Section 2.6 for a
description of the IF command.) If the batch controller encounters the
appropriate reserved label (described below in Section 2.5.3) while
searching for IF, it continues processing from the label. Also, if IF
is not the next system-level command in the control file, the search
begins for a reserved label.

NOTE

The batch controller does not search past the next
executable system command in the control file for the
IF batch command. Therefore, if you use the IF
command, there must be no intervening system commands
and it must be the next batch command in the control
file.

It is important to note that once an error has occurred, your job goes
into an error state and remains there until the batch controller finds
the appropriate reserved label or the IF command and thereupon clears
the condition. If the error condition cannot be cleared, that is, if
your control file does not contain a reserved label or the IF command,
the job is terminated.

2-7

THE BATCH CONTROL FILE

2.5.1 Specifying Error Recovery in the Control File

You can specify error recovery in the control file by means of the
batch commands, especially the IF batch command. You must put the IF
command at the point in the control file where an error may occur.
When an error occurs, batch skips over all lines in the control file
until it encounters a line beginning with a system-level command. If
this line contains an IF command, the IF command is processed and the
job continues. If this line does not contain an IF command or the
appropriate reserved label, then the job is terminated. Therefore, if
a batch job is to recover from an error successfully, the IF command
must be placed in the control file where the error is expected to
occur but before any other system-level commands. Thus, if you have a
program that you are not sure is error free, you can include an IF
command to tell batch what to do if an error occurs, as shown in the
following example:

COMPILE MYPROG.FOR
IF (ERROR) statement

In either the IF (ERROR) or the IF (NOERROR) command, you should
include a statement that tells batch what to do. You can use any
monitor command or batch command. If you wish to simply ignore the
error without taking any special action, you may use a comment as the
statement. The GOTO and BACKTO commands are also commonly used for
this purpose. Refer to Section 2.6 for descriptions of these
commands. Be sure, if you use GOTO or BACKTO in the IF command, that
you supply a line in the control file that has the label that you
specified in the GOTO or BACKTO command.

Two sample jobs are shown below. The first shows the IF (ERROR)
command and the GO TO command to specify error recovery. The second
example shows the use of the IF (NOERROR) and GOTO commands.

If you have a program that you are not sure will compile without
errors, you can include another version of the same program in your
job and tell batch to compile the second program if the first has an
error. You write the control file as follows:

CREATE
INPUT:
00100
00200
00300
00400
00500
00600
00700
00800
00900

*E<RET>

MYFILE.CTL<RET>
MYFILE.CTL.1
COMPILE /COMPILE MYPROG.FOR/LIST<RET>
IF (ERROR) GOTO A<RET>
EXECUTE MYPROG.FOR<RET>
GOTO B<RET>
A:: !CONTINUE<RET>
COMPILE /COMPILE PROG2.FOR/LIST<RET>
EXECUTE PROG2.FOR<RET>
B:: !CONTINUE<RET>
$

[MYFILE.CTL.1]

2-8

THE BATCH CONTROL FILE

When the job is run, batch reads the control file and passes commands
to the system. If an error occurs in the compilation of the first
program, batch finds the IF (ERROR) command and executes the GOTO
command contained in it. The GOTO command tells batch to look for the
line labeled A::. Thus, batch skips lines in the control file until
it finds label A and then passes commands to the batch job from that
point. If an error does not occur while compiling MYPROG, the GOTO A
statement is not executed. Instead, MYPROG is executed and then batch
skips to the line labeled B::.

A variation of the above procedure is shown below using the IF
(NOERROR) command and the GOTO command. The difference is that batch
skips the IF (NOERROR) command if an error does occur, and performs it
if an error does not occur. The following is the control file that
you would create:

CREATE
INPUT:
00100
00200
00300
00400
00500
00600
00700
00800
00900

*E<RET>

MYFILE.CTL<RET>
MYFILE.CTL
COMPILE /COMPILE MYPROG.FOR/LIST<RET>
IF (NOERROR) GOTO A<RET>
COMPILE /COMPILE PROG2.FOR/LIST<RET>
EXECUTE PROG2.FOR<RET>
GOTO B<RET>
A: : !CONTINUE<RET>
EXECUTE MYPROG.FOR<RET>
B:: !CONTINUE<RET>
$

[MYFILE.CTL.l]

When the job is run, batch passes the COMPILE command to the system to
compile the first program. If an error does not occur, the IF
(NOERROR) command and the GOTO command are executed, batch skips to
line labeled A, which is a comment, and passes commands to the batch
job from that point. The program MYPROG.FOR is executed and the end
of the job is reached. If an error occurs while compiling MYPROG,
batch skips the IF (NOERROR) command and continues reading the control
file. PROG2.FOR is compiled and then executed. Batch is then told to
go to the line labeled B, which is a comment line. The end of the job
follows.

The examples shown above illustrate only two ways that you can use the
IF commands to specify error recovery in the control file. You can
use any of the batch commands or any system command to recover from
errors in your job.

However, you do not have to attempt to recover from errors while your
job is running. You can correct your errors according to the error
messages in the log file when your job is returned to you, and run
your job again.

2-9

THE BATCH CONTROL FILE

2.5.2 Line Identifiers and Error Processing

Recall from Section 2.2, LINE IDENTIFIERS, that the batch controller
sends a line to the appropriate destination by referring to the first
characteri thus it is important to follow the conventions for
identifying lines. The following example illustrates the importance
of including line identifiers in the control file.

R PROG1
line 1 of input
line 2 of input
line 3 of input
IF (ERROR)
R PROG2

If an error occurs at line 2 of the control file above, the system
ignores the IF batch command even though it is the next ba'tch command
in the file and there are no intervening system commands. The batch
controller, in searching for an IF batch command, assumes by default
that line 3 is a system or batch command because in addition to
lacking an identifier, the line begins with an alphabetic character
and is unlabelled. Upon closer examination, the batch controller
finds that the line is neither a batch nor system command, and it
begins looking for reserved labels in the control file.

For correct interpretation under TOPS-lO, this control file should be
written as follows:

.PROG1
*line 1 of input
*line p 2 of input
*line 3 of input
.IF (ERROR)
.R PROG2

On TOPS-20 systems, substitute an at sign (@) for the period (.).

2.5.3 Reserved Labels

The reserved labels, %CERR (TOPS-10 systems only), %ERR, %RERR
(TOPS-20 systems only), %FIN, and %TERR indicate lines of code to be
executed when various errors occur during processing of the batch
control file. Like the ordinary labels discussed previously, the
reserved labels serve as reference points in your control file.

If the IF batch command is not the next system-level command in the
control file after a user- or system-program error occurs, the batch
controller searches for one of the reserved labels. On TOPS-10
systems, the batch controller searches for %CERR if the error occurred
in a system program (a program residing on the physical device SYS:)i
it searches for %ERR on a user-program error. On TOPS-20 systems the
search is for %ERR when processing both user and system programs.
%FIN satisfies the search for these labels; thus, the batch controller
will continue processing from a %FIN label if it encounters the label
while searching for %CERR or %ERR.

,2-10

TIIE BATCH CONTROL FILE

When a time-limit error occurs (?TIME LIMIT EXCEEDED message), the
batch controller begins looking for %TERR in your control file. The
IF batch command is ineffective for this error; that is, the batch
controller does not process an IF command line. As with the other
reserved labels, %FIN satisfies the search for %TERR and is the point
from which processing continues if it appears before %TERR after a
time limit error occurs. (Other uses for %FIN are discussed in the
following sections.)

2.5.3.1 %RERR (TOPS-20 systems only) - In the event of a system
failure, the batch controller searches for %RERR if the job is
submitted with /RESTART:NO and there are no checkpoints in the control
file or the first checkpoint has not been reached. If %RERR is not
present, the search is for %FIN.

2.5.3.2 %CERR and %ERR - Error Packets - The reserved labels %CERR
and %ERR are si,tuated at the beginning line of their respective error
packets. A packet, beginning with one of these labels and ending with
%FIN, consists of as few or as many commands as you wish to execute
for a particular error. Place packets at points in the control file
where you think it is important to have an error-recovery routine.

Important to note is that the batch controller bypasses a packet when
no error has occurred. During normal processing, the batch controller
skips the %CERR and %ERR labels and all lines following them until it
reaches %FIN. Then it executes the %FIN labeled line and continues
processing the control file from that point. (A %FIN labeled line is
always executed, regardless of an error or nonerror condition.) In
this way, lines designated for error recovery are bypassed under
normal conditions.

The batch controller does not read backwards over sections of the
control file that it may have skipped during its search for error
packets.

Example

The following TOPS-10 example shows the use of a %ERR error packet.
You can apply th~ example to TOPS-20 by remembering that %ERR serves
the same function as the TOPS-10 %CERR label and by noting that some
of the commands may differ between the systems. The general control
file format and system behavior, as explained below, agree between
TOPS-10 and TOPS-20 systems .

. COMPILE SAMPLE/LIST

. MOUNT MTA:TAPE:/REMARK:42936/VOLID:42936

. EXECUTE

. DISMOUNT TAPE

. R SORT
*MUMP.SRT=FOR04.DAT/KEY:1:10/RECORD:80
. PRINT MUMP.SRT
%ERR: : . CLOSE
. DUMP
. DIRECTORY
%FIN::.DELETE FOR04.DAT

1 .
2.
3 .
4 •
5 .
6.
7 •
8.
9 •
10 .
11.

Depending on the type of error it finds in the preceding control file
the batch controller performs the following operations. The numbers
to the left of the operation correspond to the line of the control
file being discussed.

2-11

THE BATCH CONTROL FILE

If a compilation (system) error occurs:

1. Compilation begins.
1. An error occurs.
2. The batch controller searches for %CERR or %FIN in the

absence of an IF batch command on this line.
11. %FIN is found so the file FOR04.DAT is deleted.

If an execution (user) error occurs:

1. The program is compiled.
2. The tape is mounted.
3. Execution begins.
3. An execution error occurs.
4. The batch controller searches for %ERR or %FIN in the absence

of an IF batch command on this line.
8. %ERR is found.
8. The output is closed.
9. The DUMP batch command is executed.

10. A directory listing of the user's disk area is produced.
11. The file FOR04.DAT is deleted.

If a SORT (system) error occurs:

1. The program is compiled.
2. The tape is mounted.
3. The program is executed.
4. The tape is dismounted.
5. The SORT program begins.
6. A command to SORT is given.
6. A SORT error occurs.
7. The ·batch controller searches for %CERR or %FIN in the

absence of an IF batch command on this line.
11. %FIN is found so the file FOR04.DAT is deleted.

A SORT error could occur on line 5. It is an unlikely event, but it
can be used here to further illustrate the batch controller's actions.
When an error occurs on line 5, the batch controller examines line 6
in search of the IF batch command. Because line 6's identifier (first
character) shows that the line serves as input to the SORT program,
the search moves to line 7 where processing continues as in the SORT
error described above. (Refer to section 2.5.2, Line Identifiers and
Error Processing, for related information.)

If no errors result:

1.
2.
3.
4.
5.
6.
7.
8.

11.

The program is compiled.
The tape is mounted.
The program is executed.
The tape is dismounted.
The SORT program begins.
The command to SORT is executed.
MUMP.SRT is queued for printing.
%ERR is encountered, and therefore
searches for %FIN to bypass the error
%FIN is found, and the file FOR04.DAT

the batch
packet.
is deleted.

controller

Finally, if at any time during processing, a ?TIME
error occurs, control is transferred to line 11.
2.5.3.3, %TERR.

LIMIT EXCEEDED
Refer to Section

2-12

THE BATCH CONTROL FILE

User-Error Processing - If an error occurs in a user program and you
did not include an IF batch command to handle the error, the batch
controller searches for %ERR. Further processing depends on the
success or failure of the search as follows.

1. If %ERR is found, the error packet is processed.

2. If %FIN is found before %ERR is reached, the batch controller
issues an error message and continues processing from %FIN.

3. If the end of the control file is reached before either %ERR
or %FIN is encountered, the batch controller issues an error
message and terminates the job.

NOTE

In cases 2 and 3 above, the batch controller executes
the DUMP batch command.

System-Error Processing - If an error occurs in a system program and
you did not include an IF batch command to handle the error, the batch
controller acts exactly as described above for user errors with two
differences:

1. with TOPS-10, %CERR is used instead of %ERR.
resides on the physical device SYS:.)

2. No dump is initiated.

(The program

with TOPS-IO or TOPS-20 systems, BATCON issues an error message when
it encounters %FIN or reaches the end of the control file in its
search for %CERR or %ERR. See Chapter 6 for explanations of the
BATCON error messages.

2.5.3.3 %TERR - You can use the %TERR reserved label to handle
time-limit errors. When the ?TIME LIMIT EXCEEDED message is issued,
indicating a time-limit error, the batch controller gives the job an
additional amount of time so that processing can terminate gracefully.
This extra time is normally 10% of the job's original allotted time,
that is, the time specified on the $JOB card or with the SUBMIT
command. (The 10% value is an installation option.) Next, the batch
controller searches for %TERR. Further processing depends on the
results of this search:

1. If %TERR is found, processing is continued from that point.

2. If %FIN is encountered before %TERR is reached, an error
message is issued and processing is continued from %FIN.

3. If the end of the control file is reached before %TERR or
%FIN is found, an error message is issued and the job is
terminated ..

See Chapter 6 for explanations of the BATCON error messages.

If the job exceeds the time limit again during the 10% extra time, no
further time is allotted and the job is terminated.

2-13

THE BATCH CONTROL FILE

,2.5.3.4 %FIN - There are several uses for the %FIN label. When the
batch controller detects an error in the batch conunands in your
control file, it issues an error message and transfers control to the
next %FIN label it encounters. In addition, the batch controller
skips to %FIN if a batch job is continued after a system crash and it
was neither restartable nor checkpointed. (Refer to the description
of the CHKPNT batch conunand in Section 2.6 for details.) Also, as
described earlier, %FIN terminates an error packet and acts as a
default error label when the batch controller does not find %CERR,
%ERR, or %TERR.

with card jobs, SPRINT automatically inserts %FIN in the control file
fc)r its own cleanup purposes. Toward this end, SPRINT relies upon
%FIN's role as default error label. As mentioned previously, %FIN
satisfies the search for %CERR, %ERR, and %TERR. Thus, if you do not
include the IF batch conunand or any of these reserved labels in the
control file and an error occurs, the job is processed from the next
%FIN encountered.

By placing %FIN at the end of a card input deck, SPRINT ensures that
input files are deleted and that other cleanup activities are
performed under both normal and error conditions. (A %FIN labeled
line is executed whenever it is encountered, even when no error has
occurred.) That is, if an error occurs and you have not provided for
recovery, the job will not be terminated in, an unknown state; rather
BATCON transfers control to the %FIN that SPRINT inserted and cleans
up the job before terminating it. Also, the system cleans up the job
when no error has occurred.

You can also place %FIN near the end of the control file when you
create your own at the terminal. Or you can scatter %FINs throughout
the file for per£odic cleanup. But be careful in your placement of
the label because it could interfere with the batch controller's
search for another reserved label as discussed above. Also, a label
specified in the GOTO batch conunand cannot follow a %FIN. (That is,
the batch controller abandons its search for user labels as well as
for reserved labels when it encounters %FIN. See NOTE for the BACKTO,
CHKPNT, and REQUEUE conunands described in Section 2.6 for the
exceptions to this rule.) Therefore, it may be best for you to put the
%FIN near the end of the control file. However, if you desire
periodic cleanup and have not inserted any of the other reserved
labels and have not used the GOTO conunand, you need not worry in this
regard.

2.6 BATCH COMMANDS

The batch conunands, preceded by the system prompt character, are an
extension of the timesharing conunand language. As such, they must be
distinguishable from system conunands (also preceded by the system
prompt character) as well as from other batch conunands. Thus, when
you abbreviate a batch conunand you must use as many letters (minimum
of two) as are necessary to differentiate it from these other
conunands.

The batch controller examines lines beginning with the system prompt
character to determine whether the line is a batch conunand or a system
conunand. It considers any conunand that is an ambiguous abbreviation,
a single letter, or not one of the batch conunands to be a system
conunand and passes it to the system. If it is not a valid system
conunand, the system issues an error message and the batch controller
initiates error processing.

2-14

THE BATCH CONTROL FILE

It is a good idea to spell out all commands to prevent possible
problems with future releases of the system that introduce new batch
or system commands. A new command could render one of your
abbreviated commands ambiguous.

An important difference between the batch and system commands is that
batch commands do not affect the running job; rather, they control the
batch system environment in which the job runs. For example, you can
use such batch commands as GOTO and BACKTO to alter the batch
controller's sequence of operations.

The remainder of this section describes the batch commands in
alphabetical order.

2-15

THE BATCH CONTROL FILE

@ BACKTO

Function

The BACKTO command directs the batch controller to search the
previous lines in the control file for a line beginning with the
specified label.

Characteristics

The search starts at the first line of the control file and
continues until the batch controller finds either the specified
label or the BACKTO command that initiated the search. In the
former case the batch con~roller continues execution at the
label; in the latter, the batch controller issues an error
message and terminates the job.

Command Fonnat

@ BACKTO label

Where:

Comment

label is a 1- to 6-character label as defined in Section
2.3.

Normally, the batch system reads the control file line by line
and passes the commands and data to the system and your program.
When you put a BACKTO command into the control file, you tell
batch to interrupt the normal reading sequence and to search back
in the control file to find a line containing the label specified
in the BACKTO command. The BACKTO command searches for the label
you specified, starting from the beginning of the file and ending
at the place the command was given. When the labeled line is
reached, batch executes the line and continues from that point.

If batch cannot find the labeled line, batch terminates your job.

NOTE

If a BACKTO command occurs after a %FIN label in
the control file, the label specified in the
BACKTO command may also be after. the %FIN.
(Recall from Section 2.5.3.4, %FIN, that %FIN
satisfies the search for reserved labels and for
labels specified in the GOTO command.)

2-16

THE BATCH CONTROL FILE

Example

The following example demonstrates use of the BACKTO command.
Note that it introduces the CHKPNT, PLEASE, IF, and GOTO batch
commands and makes use of a reserved label.

BLKC::.CHKPNT BLKC
.PLEASE BLKCON - ENTERING BLKC DIRECTORY ROUTINE A[
.MOUNT BLKC: /REMARK: "BLACK PACK PROCEDURES"
!TRAP TO %CERR:: ON FAILURE
.RUN NEW:SPACE
.IF (ERROR) .R SPACE
*BLKC.SPC=BLKC:
.DIRECT @BLKC.CCL
!TRAP TO %CERR:: ON FAILURE
.DISMOUNT BLKC:
.IF (ERROR) !OK, MAYBE SOMEONE ELSE NEEDS THE PACK
.PLEASE BLKCON - BLKC DIRECTORY ROUTINE SUCCESSFUL A[

.GOTO BCEND
%CERR: :
.PLEASE BLKCON - ERROR IN BLKC DIRECTORY ROUTINE <TRY AGAIN?>
.BACKTO BLKC
BCEND: :

If %CERR:: is reached, a 2-way PLEASE command message will be
sent to the operator. At this point, the operator has the option
of killing the job or allowing it to continue. If the job is
continued, the BACKTO command will be executed and the procedure
will be retried.

NOTE

Since the system has a BACKSPACE command, the
only abbreviation of BACKTO that will be
recognized is BACKT; that is, "BACK label" will
be considered a BACKSPACE command and it will be
passed to the system.

2-17

THE BATCH CONTROL FILE

@ CIIKPNT

Function

The CHKPNT
potential
failure.

command
restart

directs
point to

the
be

batch
used

controller to save a
in the event of a system

Characteristics

You can place as many CHKPNT commands as you desire in your
control file. If you restart the job, processing begins at the
first occurrence of the label specified in the most recently
executed CHKPNT command. Before this, however, if a step header
(lines between $STEP and $ENDHDR) exists, BATCON reexecutes the
step header.

Command Format

@ CHKPNT label

Where:

Comment

label is a 1- to 6-character label as defined in Section
2.3.

The CHKPNT command and the /RESTART switch (specified with the
$JOB card or the SUBMIT system command) are interrelated.
Consider the actions that the batch controller would perform
after a system crash for all combinations of this switch and
command:

1. No CHKPNTs /RESTART:NO

In this instance, after the system logs in the job, the
system restarts the job even though no CHKPNT commands are
specified and the argument to /RESTART is NO. But the batch
controller skips everything in the control file up to the
first %FIN label it finds and continues processing from
there. On TOPS-20 systems, the search is for %RERR. If
%RERR is not present the search is for %FIN.

2. No CHKPNTs /RESTART:YES

The batch controller resumes processing at the first line of
the control file.

3. CHKPNTs /RESTART:YES

The batch controller resumes processing at the first
occurrence of the label specified in the most recently
executed CHKPNT command. If the batch controller did not
execute a CHKPNT command before the system failed, it would
resume processing at the first line of the control file.
(This latter action is the same as in number 2 above.)

, 2-18

THE BATCH CONTROL FILE

4. CHKPNTs iRESTART:NO

As in the previous case, the batch controller resumes
processing at the first occurrence of the label specified in
the most recently executed CHKPNT command. But, if the batch
controller did not execute a CHKPNT command before the system
failed, it would resume processing at the first %FIN label in
the control file, not at the first line; On TOPS-20 systems,
processing would resume at the first %RERR label. If %RERR
is not present, the search is for %FIN.

Use this combination of the CHKPNT command and the /RE S TART
switch for a job that requires uninterrupted service up to a
point, but that later can be safely interrupted and
restarted. For example,

START: :

.CHKPNT LABEL
LABEL: :

%FIN

If an error occurs before
system resumes processing
from the line labeled LABEL.

NOTE

!!!Uninterruptible section!!!

!Interruptible section

!Transfer control here after
!a failure occurs within the
!uninterruptible section

the line, "CHKPNT LABEL", the
at %FIN; otherwise, it continues

The label specified for a CHKPNT command may occur
after a %FIN:: label. (Recall from Section 2.5.3.4,
%FIN, that %FIN satisfies the search for most types of
labels.)

2-19

THE BATCH CONTROL FILE

• DUMP (TOPS-IO)

Function

The DUMP command causes the system to display a variety of
information relating to your batch job.

Characteristics

The batch controller invokes this command whenever a fatal
error occurs and error recovery procedures are lacking. The
batch controller then c~oses the control file. Thisautomatic
action is unrelated to your use of the command.

The DUMP command, unlike the IF command and the reserved
labels, does not clear errors, even though it can be executed
after an error occurs.

Command Format

. DUMP

NOTE

The DUMP batch command is different from the DUMP
system program. To run the program, enter

.R DUMP

in the control file.

Example

The following example shows the use of the DUMP command in a
TOPS-IO batch control file. Note that step processing is
introduced here.

$STEP TEST
$MOUNT DSKB
$ENDHDR
.CHKPNT START
.PLEASE ** BATCH ** Starting Batch demo~[
.ERROR ?
.OPERATOR $
.PRINT SAMPLE.FIL
. DUMP
.SYSTAT .

; Error trapping

%ERR: :
.PLEASE ** BATCH ** User program error~[
.GOTO EXIT
%CERR: :
.PLEASE ** BATCH ** System program error~[
.GOTO EXIT
%TERR: :
.PLEASE ** BATCH ** Time limit exceeded~[
EXIT: :

[End of DUMPX.CTL]

2-20

THE BATCH CONTROL FILE

The following is the resulting log file:

2l-Jul-88 16:29:25

BATCON Version 104(4570) GLXLIB version 1(613)

Job DUMPX Req #1619 for MORRILL,E [27,5342] in Stream 2

OUTPUT: Nolog
UNIQUE: Yes
RESTART: No

Input from => DSKC:DUMPX.CTL[27,5342]
Output to => DSKC:DUMPX.LOG[27,5342]

TIME-LIMIT: 0:05:00
BATCH-LOG: Supersede
ASSISTANCE: Yes
SEQUENCE: 1291

16: 29: 25 MONITR
16:29:25 MONITR .AC
16:29:25 MONITR
16:29:25 MONITR .LOGIN [27,5342] /ACCOUNT:""/BATINT:YES/BATNAM:"DUMPX"
/BATSEQ:1291/BATSTR:2/NAME:"MORRILL,E"/REQID:1619/DEFER/LOCATE:26
/SPOOL:ALL/TIME:300
16:29:27
16:29:32
16:29:32
16:29:33
16:29:33
16:29:33
16:29:33
16:29:33
16:29:45
16:29:45
16:29:45
16:29:45
16:29:45
16:29:45
16:29:45
16:29:45
16:29:45
16:29:45
16:29:45
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48

USER
USER
USER
MONITR
MONITR
HEADER
HEADER
BATCH
USER
USER
MONITR
MONITR
HEADER
HEADER
BATCH
BATCH
BATCH
BATCH
BATCH
USER
USER
USER
USER
USER
MONITR
MONITR
BATCH
DUMP
DUMP
DUMP
DUMP
DUMP
DUMP
DUMP
DUMP
DUMP
DUMP
DUMP
DUMP
DUMP

JOB 17
[LGNJSP
16:29

RZ062A KL #1026/1042 TTY476
Other jobs same PPN:69]
21-Jul-88 Mon

$STEP TEST
$MOUNT DSKB
.MOUNT DSKB
[Mount Request DSKB Queued,
[structure DSKB Mounted]

Request-ID #1621]

$ENDHDR
[3 lines processed in step TEST header]
.CHKPNT START
.PLEASE ** BATCH ** Starting Batch demoA[
.ERROR ?
.OPERATOR $
.PRINT SAMPLE.FIL

%WLDLKE Non-existent file DSK:SAMPLE.FIL

?QUENFI No files in request

. DUMP

Stream:
-- Batch Stream and Job Data --

Job in error
Error:? Operator: $ Silenced: No
Processing node: KL1026(26)
Last step: TEST
Last label: START
Last CHKPNT: START
Last line to job: .DUMP
Last line from job:

Last line to OPR: *** BATCH ** Starting Batch demo A[
Last line from OPR:
Last Batch command: DUMP

2-21

16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:48
16:29:49
16:29:49
16:29:51
16:29:51
16:29:51
16:29:51

DUMP
DUMP
DUMP
DUMP
DUMP
DUMP
DUMP
IGNORE
IGNORE
IGNORE
IGNORE
LABEL
BATCH
BATCH
LABEL
COMENT
COMENT
BATCH
USER
USER
USER
USER
USER
USER

.-

Job:

THE BATCH CONTROL FILE

Job: 17
TTY476
User: [27,5342]
Program: QUEUE
Located at: KL1026(26)

-- End of Dump
.SYSTAT .

; Error trapping

%ERR: :
.PLEASE ** BATCH ** User program error A

[

.GOTO EXIT
EXIT: :

[End of DUMPX.CTL]
.KJOB/BATCH

[LGTOUL Other users logged-in under [27,5342],
Job 17 User MORRILL,E [27,5342]
Logged-off TTY476 at 16:29:51 on 21-Jul-88
Runtime: 0:00:00, KCS:9, Connect time: 0:00:25
Disk Reads:183, Writes:7

Jobs:69]

In the example, the user issued the DUMP command to cover a possible
PRINT error (which occurred). Note that all lines following the DUMP
command were skipped until the batch controller encountered the %ERR
label. This label cleared the error condition, allowing normai
processing to continue.

Most of the dump lines are self-explanatory, indicating, for example,
the characters specified for the ERROR and OPERATOR batch commands and
the last lines sent to and from the job. However, the following dump
lines may need clarification: the third line indicates the network
node on which the job was processed; similarly, the last line
indicates the network node to which the job's output was sent.

, 2-22

THE BATCH CONTROL FILE

@ ERROR

Function

The ERROR command causes the batch controller to interpret a
specified character as an error signal.

Characteristics

The batch controller examines each line of output that is sent
from your job to the log file. If any of these lines begins with
a question mark or with the character you specified with the
ERROR command, the batch controller begins error processing.
(Section 2.5, ERROR PROCESSING, discusses this topic.) The
question mark (1) is a.lways recognized as an error indicator
irrespective of your use of the ERROR command. (See the NOERROR
command in this section for related information.)

Command Format

@ ERROR character

Where:

character

Restrictions

is the beginning character of the line that is to be
recognized as an error. If omitted, only the
question mark (?) will be recognized as an error
signal.

NOTE

You must not specify a control character, an
exclamation point (!) or a semicolon (;).
The exclamation point and semicolon will be
interpreted as the comment signal character
and not as the error signal character. The
control character is limited to its specific
function.

You can specify only one additional (besides the question mark)
character as an error indicator.

2-23

THE BATCH CONTROL FILE

Comment

You could use the ERROR command to flag warnings, indicated by
lines of system program output beginning with the percent
character (%), in addition to fatal errors, which are denoted by
the question mark (?). For example:

.ERROR % !FLAG WARNINGS

.OIR FILB.CTL !SEE IF FILB.CTL EXISTS

.IF (ERROR) .GOTO A !SKIP THE FOLLOWING IF FILE MISSING

A·· .ERROR !NOW FLAG ONLY FATAL ERRORS

Here, a fatal error occurs if FILB.CTL is missing when a
directory of it is requested. Ordinarily, the system merely
issues a warning message under these circumstances, but in the
example above, the first line (.ERROR %) directs the system to
treat warnings as fatal errors.

You could also use the ERROR command to flag any condition that
the system ignores. In this case, you would specify a character
of your choice with the ERROR command, then place that character
at the beginning of an output line in a program. You would issue
this line from the program when the condition occurs.

2-24

THE BATCH CONTROL FILE

@ GOTO

Function

The GOTO command directs the batch controller to search the
control file in a forward direction for a specified label.

Characteristics

When the label is found, control is transferred to the statement
associated with the label. If the batch controller encounters a
%FIN label before it reaches the label specified in the GOTO
command, it will transfer control to this %FIN label. If neither
the label nor a %FIN is found before the end of the control file
is reached, the batch controller will issue an error message
(refer to Chapter 6 for the batch controller messages) and the
job will be terminated.

Command Format

@ GOTO label

Where:

label is a 1- to 6-character label as defined in section 2.3.

Restrictions

The search initiated by the GOTO command cannot bypass a %FIN
label.

Comment

You can use the GOTO command as the statement in an IF command to
aid you in error processing. For example:

IF (ERROR) GOTO ABC

ABC: : TYPE MYPROG

When batch encounters a GOTO command in the control file, it
searches forward in the control file to find the label specified
in the GOTO command. Batch then resumes processing of the
control file at the line that has the specified label. If the
label is not found, batch issues the message

? BTNCNF Could not find label xxxxxx (TOPS-20)
I

hh:mm:ss BATECF ?End of control file while searching
for label xxxxxx (TOPS-10)

and the job is terminated.

If you do not include a GOTO pommand in the control file, batch
reads the control file sequentially from the first statement to
the last.

2-25

THE BATCH CONTROL FILE

@ IF

Function

The IF command directs the batch controller to test for the
condition specified in the command string.

Characteristics

If the condition specified in the IF command string is true, the
statement is executed. Otherwise, this command and its statement
are treated as comments and the batch controller proceeds to the
next line in the control file.

Command Format

@ IF (condition) statement

Where:

(condition) is (ERROR) Directs
execute
occurred.

the batch controller to
the statement if an error has

or

(NOERROR) - Directs
execute
occurred.

the batch controller to
the statement if no error has

The parentheses must be included.

statement can be a batch or system command, use"r or system
program data, or a comment. This parameter is
optional.

Comment

The batch controller recognizes the existence of an error when it
encounters an output line beginning with a question mark or with
the character you specified in the ERROR command. As described
in Section 2.5, ERROR PROCESSING, when an error occurs, the IF
command must be the next system-level command in the control
file.

If you omit the statement parameter while specifying (ERROR) as
the condition parameter and an error occurs, the batch controller
clears the error and continues to process the control file. In
this situation the batch controller acts in the same manner as it
does when you use the NOERROR batch command. That is, it
overlooks the error, proceeding with normal operations.

NOTE

You cannot use the IF command to intercept a
time-limit error (?TIME LIMIT EXCEEDED message) .
(Refer to Sect~on 2.5.3.3, %TERR, for information
on time-limit errors.)

2-26

THE BATCH· CONTROL FILE

Related Items

Reserved labels

The reserved labels provide fo·r the execution of multiple
control-file lines (called error packets) in the event of an
error. The batch controller bypasses these lines under normal
circumstances. (Refer to Section 2.5.3.2, %CERR and %ERR, for a
description of error packets.)

If an IF command does not follow the line that produced the
error, the batch controller searches for the appropriate reserved
label and transfers control to it. (See Section 2.5.3, Reserved
Labels, for more information.)

Examples

1. Include the IF (ERROR) command in your control file at a
place where you suspect an error may occur. Note that the IF
(ERROR) command must be the next command in your control file
(that is, the next line that begins with a system prompt
after an error occurs); otherwise, batch terminates your job.

!DO A DIRECTORY IF AN ERROR OCCURS
@IF (E'RROR) @VDIRECTORY

2. Use the IF (NOERROR) command to direct batch or the system to
perform tasks for you when an error does not occur at the
point in your control file where you place the IF (NOERROR)
command.

!IF NO ERROR OCCURS, GIVE A SECOND LINE OF INPUT
@IF (NO ERROR) *FILE.SCM=A.TXT,B.TXT

Refer to Section 2.5 for more examples of using IF (NOERROR) and
IF (ERROR).

If an error occurs and batch does not find an IF command as the
next command line in the control file, batch terminates the job.

2-27

THE BATCH CONTROL FILE

@ MESSAGE

Function

The MESSAGE command has the same function as the PLEASE command.

Comment

Direct use
(because of
of the batch
command is
instead.

of the MESSAGE command is strongly discouraged
possible compatibility problems with future versions
system) and for this reason, the syntax for the
not specified here. Use the PLEASE batch command

2-28

THE BATCH CONTROL FILE

@ NOERROR

Function

The NOERROR command instructs the batch controller to ignore all
error messages except those that indicate a time-limit error
(?TIME L.IMIT EXCEEDED message) and those issued by the batch
controller itself. (Refer to Chapter 6 for batch controller
messages.)

Command Format

@ NOERROR

Comment

When batch reads the NOERROR command, it ignores any error
messages that would normally cause it to terminate your job. The
only exception is the message ?TIME LIMIT EXCEEDED. Batch always
recognizes this as an error message, gives you an extra 10% of
your allotted time, and terminates your job.

You can use NOERROR commands in conjunction with ERROR commands
in the control file to control error reporting. For example, if
you wish to ignore errors at the beginning and end but not in the
middle of the control file, place ERROR and NOERROR commands at
the appropriate places in the control file. In addition, you can
also specify which messages must be treated as fatal errors.

NOERROR

ERROR %

ERROR

NOERROR

The first command tells batch to ignore all errors in your job.
The second command tells batch to recognize as errors any message
that starts with a question mark (?) or a percent sign (%). You
change the error reporting with the next command to tell batch to
go back to recognizing only messages that begin with a question
mark as fatal. The second NOERROR command tells batch to ignore
all error messages again. If the ?TIME LIMIT EXCEEDED message is
issued at any time, batch will print the message, extend the time
by 10%, and then terminate the job.

2-29

THE BATCH CONTROL FILE

@ NOOPERATOR

Function

The NOOPERATOR command directs the batch controller to terminate
dialogue mode between your job and the system operator. (Refer
to Section 2.7, JOB-OPERATOR COMMUNICATION, for information on
dialogue mode.)

Command Format

@ NOOPERATOR

2-30

THE BATCH CONTROL FILE

@ OPERATOR

Function

The OPERATOR command directs the batch controller to enable
dialogue mode between your job and the system operator. (Refer
to Section 2.7, JOB-OPERATOR COMMUNICATION, for information on
dialogue mode.)

Command Format

@ OPERATOR character

Where:

character

Re1ated Command

@ PLEASE

is the character that begins the message to be sent
to the operator (such as t). Specification of the
character is optional and if it is omitted, the
dollar sign ($) will be assumed to be the operator
signal character.

NOTE

You must not specify a control character, a
semicolon (;), or an exclamation point (!).
The exclamation point and semicolon will be
interpreted as comment signal characters,
not as communication signal characters. A
control character is limited to its specific
function.

Refer to the Related Command section of the PLEASE command
description.

2-31

THE BATCH CONTROL FILE

@ PLEASE

Function

The PLEASE command directs the batch controller to type a
specified message to the system operator.

Command Format

@ PLEASE messageA[<RET>

or

@ PLEASE message<RET>

Where:

message

<RET>

Example

is the message to be typed to the operator.

generates the ESCape character. If this character is
present, processing continues normally after the
message has been sent to the operator. If the
character is omitted, the job will wait for a response
from the operator before resuming its normal
processing.

means the carriage-return/line-feed is required.

Refer to the example given with the BACKTO or REQUEUE batch
command.

Related Command

@ OPERATOR

The OPERATOR command allows you to send multiple lines of output
to the operator, not only from a running system or user program
but also from a data file; whereas the PLEASE command permits
only a one-line message to be sent from the control file to the
operator. Both commands allow for response from the operator;
however, the operator response to PLEASE simply goes to the log
file. with OPERATOR in effect, the response goes to the
requesting system program, user program, or to the monitor.

The OPERATOR command does not affect operation of the PLEASE
command. The two commands are completely independent.

Refer to Section 2.7 for details on the OPERATOR command and for
a more complete comparison of these two commands.

2-32

THE BATCH CONTROL FILE

@ REQUEUE

FWlction

The REQUEUE command indicates to the batch controller that the
job is to be requeued for processing at a later time.

Characteristics

When the job is requeued, the previous step header (if one
exists) is reexecuted before processing continues at the
specified label. If you omit the label, the job will be requeued
at the label specified in the last CHKPNT command executed before
the REQUEUE. If you omit the label and the batch controller did
not execute a CHKPNT command, the job will be restarted at the
beginning of the control file.

After the batch controller requeues the job, QUASAR waits five
minutes before scheduling the job to run (making it available to
the batch controller). The job then must compete with other jobs
in the batch input queue".

NOTE

The label specified for a REQUEUE may be after a
%FIN label.

Command Format

@ REQUEUE label

Where:

label is a 1- to 6-character label as defined in Section 2.3.

2-33

TIlE BATCH CONTROL FILE

Example

Assume you want to save a disk file on tape and need an error
recovery routine to cover possible tape mount failures. You
could write your control file as follows, using the @REQUEUE
command:

LABEL: :
@CHKPNT LABEL !Checkpoint in case system crashes while

!waiting for mount
!Ask for a tape mount to save a disk data file created at
!beginning of job:
@MOUNT TAPE ABC: /VOLID:DEF/LABEL-TYPE:ANSI
@IF (NOERROR) @GOTO DUMP
!Job proceeds from this point if mount failed
@PLEASE hold job until a tape drive is available A[
!No operator response required
!Data file is still on disk; restart job at tape mount:
@REQUEUE LABEL
DUMP: :
@R DUMPER !Save file

Here, the REQUEUE command causes the batch controller to defer
processing a section of the control file until the error
condition is eliminated.

2-34

THE BATCH CONTROL FILE

@ REVIVE

Function

The REVIVE command directs the batch controller to resume normal
listing in the log file (that is, all output from the job is
placed in the log file) .

Command Format

@ REVIVE

Rel.ated Command

@ SILENCE

In its initial state, the batch controller sends all output to
the log file; thus, the REVIVE command reinstates this initial
condition, clearing the effect of the SILENCE command.

2-35

THE BATCH CONTROL FILE

@ SILENCE

Function

The SILENCE command directs the batch controller to suppress all
output normally sent to the log file. After a SILENCE command
has been issued, the batch controller will still write all error
messages and batch commands to the log file.

Command Format

@ SILENCE

Related Command

@ REVIVE

This suppression of output is cleared by the REVIVE command.

2-36

THE BATCH CONTROL FILE

2.7 JOB-OPERATOR COMMUNICATION

The batch controller provides for communication between your job and
the operator. Three methods of communication are available.

with the first method it is possible for the batch controller to enter
dialogue mode, allowing your job to communicate in a two-way fashion
with the operator. The second method provides a means for your job to
communicate only in a one-way fashion with the operator. The third
method provides for two-way communication; however, this method
differs from the first one in that the operator's response goes to the
log file rather than to your job as data to be processed.

These three communication methods, referred to respectively as
"dialogue mode", the "double quote" facility, and using the PLEASE
batch command, are described in detail below in Sections 2.7.1, 2.7.2,
and 2.7.3.

2.7.1 Dialogue Mode

Under timesharing, it may be common for your jobs to request data that
you supply at your terminal. System and user programs as well as the
monitor can request input. (When your job is at monitor command
level, the monitor is requesting input.)

Such requests for input can be satisfied while your job is running in
batch mode; however, while this mode is in effect, the data comes from
either the control file or the system operator.

Data that your job requests and receives from you at your terminal
during timesharing ordinarily comes from the control file during batch
processing. Dialogue mode extends your job's ability to communicate
during batch processing by allowing the operator to provide data upon
the job's request.

Two commands are associated with dialogue mode: OPERATOR, used to
open dialogue mode and NOOPERATOR, used to terminate dialogue mode.

When dialogue mode is active, it is possible for your job to
"converse" with the operator. "Conversation" takes place in this
manner: the batch controller sends specified lines of output from
user and system programs and from data files to the operator as well
as to the log file. The operator's response to the message satisfies
the job's current request (from any running program or from the
monitor) for data.

Input entered by the operator is interpreted at either monitor or user
level depending upon the level at which input is requested. For
example, if the monitor is waiting for data, the input ~s interpreted
at monitor level; if a program is waiting for data, the operator's
response is interpreted at user level. Note that even batch commands
such as GOTO would be interpreted at one of these two levels; thus,
the operator cannot effectively enter a batch command to alter the
sequence of your control file.

The following section,
dialogue mode.

The OPERATOR Command,

2-37

further describes

THE BATCH CONTROL FILE

2.7.1.1 The OPERATOR Command - As stated above, the OPERATOR command
activates dialogue mode. (Refer to Section 2.6 for a description of
the command format.)

While dialogue mode is in effect, the batch controller checks to see
if any output line from your job begins with the character specified
in the OPERATOR command. When the batch controller encounters such a
line it sends that line along with all subsequent output lines,
regardless of their initial character, to the operator's terminal and
to the log file.

After copying text in the above manner, the batch controller suspends
the job until the operator responds to the sent text. That is,the
batch controller does not read the next line in the control file as it
would if dialogue mode had not been activated.

When the operator responds, the batch controller resumes its
processing of the job, sending the response to the requesti~g
software. It sends the response to the log file also, where it ~s
identified as an operator response. (That is, "OPERAT" precedes the
response. See Section 6.1, THE LOG FILE7 for details.) Output to the
operator is discontinued until the job issues another line beginning
with the character specified in the OPERATOR command. The batch
controller then repeats the process described above.

Input provided by the operator is limited to one line per message. If
you anticipate more than one line for the operator's response, you
should issue another message beginning with the specified dialogue
character.

NOTE

Several system software components use the foregoing
method to communicate with the operator, particularly
when reading or writing a multivolume tape file.
Among these components are the BACKUP (-10), DUMPER
(-20), and SORT utilities, and part of the run-time
system for COBOL. For example, the COBOL run-time
system issues the message

$MOUNT SCRATCH TAPE ON LOGICAL DEVICE TAP1:;
PHYSICAL DEVICE MTA3:

$TYPE CONTINUE TO PROCEED

when writing to multiple tape reels.

Activate dialogue mode through
whenever you include one of
batch control file and you:

the OPERATOR command
these components in a

1. Specify a multivolume tape file to be read or
written.

2. Suspect that a file to be created and written to
tape will require more than one reel.

Also, for compatibility with
define the dialogue prompt
sign ($).

.2-38

this system software,
character as the dollar

THE BATCH CONTROL FILE

Example

The following example shows the use of dialogue mode with the
OPERATOR batch command:

@OPERATOR
!TEST OF @OPERATOR USING FILE DEM03.DAT
@TY DEM03.DAT

NOW WE WILL SET UP A PIP COMMAND TO
ACCEPT OPERATOR COMMANDS

@R PIP
*TTY:=DEM04.DAT

@NOOPER
!
!END OF OPERATOR MODE
!
@TY DEM05.DAT
!THE ABOVE MESSAGE SHOULD NOT GO TO OPERATOR

The control file above produces the following log file. (Refer
to Chapter 6, BATCH SYSTEM OUTPUT, for an explanation of the log
file.) The log file shows how a line from DEM03.DAT beginning
with a dollar sign causes subsequent lines from the file to type
out at the operator's terminal. The system then waits for the
operator's response. Next, a similar technique of sending lines
from a data file to the operator is used, and the operator
responds accordingly. After the system executes the NOOPERATOR
batch command, the line from file DEM05.DAT, beginning with a
dollar sign, is treated as an ordinary line sent to the terminal;
it is sent to the log file only.

8-Nov-88 8:35:06

BATCON Version 104(4127) GLXLIB Version 1(525)

8:35:07
8:35:07
8:35:07
8:35:07
8:35:10
8:35:10
8:35:10
8:35:10
8:35:10

8:35:10
8:35:11
8:35:11

Job OPER Req #101 for MORRILL in Stream 0

OUTPUT: Log
UNIQUE: Yes
RESTART: No

TIME-LIMIT: 0:05:00
BATCH-LOG: Append
ASSISTANCE: Yes
SEQUENCE: 1690

Input from => MISC:<MORRILL>OPER.TST.2
Output to => MISC:<MORRILL>OPER.LOG

MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
BATCH
!TEST
MONTR
MONTR
MONTR

2102 Development System, TOPS-20 Monitor 4(3212)
@SET TIME-LIMIT 300
@LOGIN MORRILL 341
@ Job 27 on TTY217 8-Nov-88 08:35:10
@
[MISC Mounted]

[CONNECTED TO MISC:<MORRILL>]
@OPERATOR

OF @OPERATOR USING FILE DEM03.DAT
TY DEM03.DAT
$Now we are in OPERATOR mode where you can
type any command you wish and have it processed

2-39

8:35:11 MONTR
8:35:11 MONTR
8:35:11 MONTR
8:35:11 MONTR
8:35:11 MONTR
8:35:32 BAOPR
8:35:32 MONTR
8:35:32 MONTR
8:35:32 MONTR
8:35:32 MONTR

8:35:32 MONTR
8:35:32 MONTR
8:35:34 USER
8:35:34 USER
8:35:34 USER
8:35:34 USER
8:35:34 USER
8:35:34 USER
8:35:34 USER
8:36:03 BAOPR
8: 36: 03 USER
8:36:03 USER
8:36:03 BATCH

8:36:03 MONTR
8 : 36 : 03 MONTR
8:36:03 MONTR
8:36:03 MONTR

8:36:03 MONTR
8:36:04 MONTR
8:36:04 MONTR

THE BATCH CONTROL FILE

by the job. So try:

SYS SYS

This will provide a SYSTAT summary for the job.
From Operator: SYS SYS
@ Thu 8-Nov-88 08:35:32 Up 15:21:28

16+10 Jobs Load av (class 1) 0.06 0.05 0.16

NOW WE WILL SET UP A PIP COMMAND TO
! ACCEPT OPERATOR COMMANDS
!
@R PIP
@**TTY:=DEM04.DAT
$Please type a valid PIP command or "'z to exit.
For example, you could type:

TTY:=DEM04.DAT

This command will produce this text message.
*
From Operator: "'z
"'z
**
@NOOPER
!
!END OF OPERATOR MODE

*"'C
@TY DEM05.DAT
@$This line should appear only in the log file, not at
the operator's terminal.
!THE ABOVE MESSAGE SHOULD NOT GO TO OPERATOR

@Killed Job 27, User MORRILL, Account 341, TTY 217,
at 8-Nov-88 08:36:04, Used 0:00:00 in 0:00:54

Communication with the operator takes place in the following manner,
as the operator's log file shows:

8:35:06

8:35:11 <14>

Batch-Stream 0 --Begin--
Job OPER Req #101 for MORRILL

Batch-Stream 0 JOB #27 --Message from Batch User-
Job OPER Req #101 for MORRILL
$Now we are in OPERATOR mode where you can
type any command you wish and have it processed
by the job. So try:

SYS SYS

This will provide a SYSTAT summary for the job.

2-40

THE BATCH CONTROL FILE

OPR>RESP 14 SYS SYS
OPR>
8:35:34 <15> Batch-Stream 0 JOB #27 --Message from Batch User-

Job OPER Req #101 for MORRILL

OPR>RESP 15 AZ
OPR>
8:36:05

$Please type a valid PIP command or AZ to exit.
For example, you could type:

TTY:=DEM04.DAT

This command will produce this text message.
*

Batch-Stream 0 --End--
Job OPER Req #101 for MORRILL

2.7.1.2 The NOOPERATOR Command - This command terminates dialogue
mode; that is" the batch controller no longer acknowledges in any
special way the character specified with the OPERATOR command. (Refer
to Section 2.6 for a description of the command format.) The
NOOPERATOR command is in effect at the time the batch job is
initialized.

2.7.2 Using the Doub1e Quote (ft)

It is possible to send a one-line comment from a running program or
data file to the operator without using the dialogue mode described
above. Any line of output whose first character is a double quote (")
is printed on the operator's console as a comment and has no other
effects. The line also is placed in the log file as normal user
output.

Remember that this facility provides for one-line messages only; thus,
if subsequent comment lines are to be typed at the operator's console,
they too must begin with a double quote.

Using the double quote facility does not affect dialogue mode.
However, if you specify a double quote with the OPERATOR command
(which is permissible), the double quote is treated as a portion of
the message sent to the operator.

2-41

THE BATCH CONTROL FILE

Example

The following demonstrates use of the double quote communication
facility. The control file consisting of the line, @TYPE QUOTE,
produces the following log file:

8-Nov-88 8:33:53

BATCON Version 104(4127) GLXLIB Version 1(525)

Job TEST Req #99 for MORRILL in Stream 0

OUTPUT: Log
UNIQUE: Yes
RESTART: No

TIME-LIMIT: 0:05:00
BATCH-LOG: Append
ASSISTANCE: Yes
SEQUENCE: 1688

Input from => MISC:<MORRILL>TEST.CTL.11
Output to => MISC:<MORRILL>TEST.LOG

8:33:53 MONTR
8:33:53 MONTR
8:33:53 MONTR
8:33:53 MONTR
8:33:56 MONTR
8:33:56 MONTR
8:33:56 MONTR
8:33:56 MONTR
8:33:56 MONTR
8:33:57 MONTR
8:33:57 MONTR
8:33:57 MONTR
8:33:59 MONTR
8:33:59 MONTR

2102 Development System, TOPS-20 Monitor 4(3212)
@SET TIME-LIMIT 300
@LOGIN MORRILL 341
@ Job 18 on TTY217 8-Nov-88 08:33:56
@
[MISC Mounted]

[CONNECTED TO MISC:<MORRILL>]
@TYPE QUOTE
"Send this line to the operator.
"These lines test the 'double quote' facility.
@
Killed Job 18, User MORRILL, Account 341, TTY 217,

at 8-Nov-88 08:33:59, Used 0:00:00 in 0:00:02

and causes the messages below to appear on the operator's terminal.

8:33:53

8:33:57

8:33:58

8:33:59

Batch-Stream 0 --Begin-
Job TEST Req #99 for MORRILL

Batch-Stream 0 JOB #18 --Message from Batch User-
Job TEST Req #99 for MORRILL
"Send this line to the operator.

Batch-Stream 0 JOB #18 --Message from Batch User-
Job TEST Req #99 for MORRILL
"These lines test the 'double quote' facility.

Batch-Stream 0 --End--
Job TEST Req #99 for MORRILL

2-42

THE BATCH CONTROL FILE

2.7.3 Using the PLEASE Command

The PLEASE command, like the communication methods described above,
allows you to send messages to the system operator (Refer to Section
2.6, BATCH COMMANDS, for a description of the command function and
format) . Although this command shares several characteristics with
these methods, it differs from each in fundamental areas. The PLEASE
command is different from both methods in that a message can go to the
operator's terminal only from the control file, not from a running
program or from a data file.

Like dialogue mode, the PLEASE command permits two-way communication
between the job and the system operator; however the communication is
dead-end. with the PLEASE command, the operator's response has no
bearing upon the way in ~hich the job is processed. Rather, the
response serves mere informational purposes, going only to the log
file.

You can also use the PLEASE command for one-way communication from
your job to the operator. Like the double quote (n) facility, which
too is for one-way communication, PLEASE permits a one-line only
message to be sent to the operator. But, as mentioned above, with the
PLEASE command, the line comes from the control file rather than from
a running program.

Example

The following respectively demonstrates one-way and two-way
job-operator communication using the PLEASE command. The control
file consisting of the lines,

@PLEASE send this line to the operator's terminal A[
@PLEASE send this line to the operator's terminal

produces the following log file:

8-Nov-88 8:33:04

BATCON Version 104(4127) GLXLIB Version 1(525)

Job PLEASE Req #97 for MORRILL in Stream 0

OUTPUT: Log
UNIQUE: Yes
RESTART: No

TIME-LIMIT: 0:05:00
BATCH-LOG: Append
ASSISTANCE: Yes
SEQUENCE: 1686

Input from => MISC:<MORRILL>PLEASE.CTL.6
Output to => MISC:<MORRILL>PLEASE.LOG

8:33:05 MONTR
8:33:05 MONTR
8:33:05 MONTR
8:33:05 MONTR
8:33:08 MONTR
8:33:08 MONTR
8:33:08 MONTR
8:33:08 MONTR
8:33:08 BATCH
8:33:08 BATCH
8:33:35 BAOPR
8:33:35 MONTR
8:33:36 MONTR
8:33:36 MONTR

2102 Dev~lopment System, TOPS-2Q Monitor 4(3212)
@SET TIME~LIMIT 300
@LOGIN MO~ILL 341
@ Job 18 on TTY217 8-Nov-88 08:33:08
@
[MISe Mounted]

[CONNECTED TO MISC:<MORRILL>]
@PLEASE send this line to the operator's terminal A [

@PLEASE send this line to the operator's terminal
From Operator: OK

Killed Job 18, User MORRILL, Account 341, TTY 217,
at 8-Nov-88 08:33:36, Used 0:00:00 in 0:00:27

2-43

THE BATCH CONTROL FILE

Communication with the operator takes place in the following manner,
as the operator's log file shows:

8:33:04 Batch-stream 0 --Begin--
Job PLEASE Req 197 for MORRILL

8:33:09 Batch-Stream 0 JOB 118 --Message from Batch User-
Job PLEASE Req 197 for MORRILL
PLEASE send this line to the operator's terminal$

8:33:09 <13> Batch-Stream 0 JOB 118 --Message from Batch User-
Job PLEASE Req 197 for MORRILL
PLEASE send this line to the operator's terminal

OPR>RESP 13 OK
OPR>

8:33:36 Batch-Stream 0 --End--
Job PLEASE Req 197-for MORRILL

2.8 MOUNTING DISKS AND TAPES (TOPS-IO)

With a limited number of disk and tape drives at a computer site, and
with many users competing for these mountable resources, conflicts and
delays can arise during the processing of jobs. Consider the
following:

1. One job has resource A and needs resource B, while another
job has resource B and needs resource A.

2. A job mounts a resource but does not use it, causing other
jobs to wait for the resource indefinitely.

With batch jobs, these conditions are particularly troublesome because
they tie up batch streams.

To alleviate these problems, place the ALLOCATE and
commands (described in your operating system commands
beginning of the control file in what is referred to as
This restart able section of the control file begins
command and ends with the $ENDHDR command, as shown in
example:

$STEP SAMPLE
$ALLOCATE BLKX
$MOUNT BLKY
$ENDHDR
.SHOW ALLOCATION
.REQUEUE CONTIN::
CONTIN::

;THE STEP NAME IS SAMPLE

MOUNT system
manual) at the
a step header.
with the $STEP
the following

In a step header, you precede the ALLOCATE and MOUNT commands with a
dollar sign ($) rather than the system prompt.

2-44

THE BATCH CONTROL FILE

A step is the set of control file lines from one step header to the
next. As of the latest version of GALAXY, only one step is allowed in
the control file. Thus, the whole control file represents a step.
Note that the step name is specified with the $STEP command. After a
job is submitted, the system prescans the control file before
scheduling the job to run. During this preliminary examination, the
file is checked for ALLOCATE and MOUNT commands contained in the step
header. If the ALLOCATE command is present, the operator is notified
of your job's device needs; if the MOUNT command is present, the
devices are actually assigned to your job. Then the job is scheduled.
If, during the prescan, the batch job is unable to secure the devices
it requested in the MOUNT command, the operator cancels the request;
and the job is terminated with a fatal error message. This activity
is recorded in the log file.

Thus, when you use step header commands, the job does not start before
obtaining ownership of the devices it needs.

NOTE

Step header processing is optional. You are not
required to specify step header commands every time
you use mountable devices. But if you do not, your
job may encounter the problems discussed above.

The control file above produces the following log files:

I-Dec-88 17:14:53

BATCON Version 104(4656) GLXLIB Version 1(1067)

Job LOCK Req #283 for MORRILL,E [27,5342] in stream 1

OUTPUT: Log
UNIQUE: Yes
RESTART: No
CORE: 512 pages

TIME-LIMIT: 0:05:00
BATCH-LOG: Append
ASSISTANCE: Yes
SEQUENCE: 616

Control file: DSKC:LOCK.CTL[27,5342,BATCH]
Log file: DSKC:LOCK.LOG[27,5342,BATCH)

17:14:53 MONITR
17:14:53 MONITR .AC
17:14:55 MONITR
17:14:55 MONITR .LOGIN [27,5342,BATCH]/ACCOUNT:""/BATINT:YES
/BATNAM: "LOCK"/BATSEQ: 616/BATSTR:l/NAME: "MORRILL,E"/REQID:2 83/CORE:512P
/DEFER/LOCATE:26/SPOOL:ALL/TIME:300
17:14:55 USER JOB 3 RZ117A KL #1026/1042 TTY367
17:15:00 USER [LGNJSP Other jobs same PPN:50]
17:15:00 USER 17:14 1-Dec-88 Tue
17:15:00 MONITR
17:15:00 MONITR .
17:15:00 HEADER $STEP SAMPLE
17:15:00 HEADER $ALLOCATE BLKX
17:15:00 BATCH .ALLOCATE BLKX

;THE STEP NAME IS SAMPLE

17:15:01 USER [Allocate request BLKX queued, request #285]
17:15:01 MONITR
17:15:01 MONITR
17:15:01 HEADER
17:15:01 BATCH
17:15:03 USER
17:15:03 USER
17:15:03 USER

$MOUNT BLKY
.MOUNT BLKY
[Mount request BLKY queued,
% No UFD created
[Structure BLKY mounted]

2-45

request #288]

MONITR
MONITR
HEADER
HEADER
BATCH
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
MONITR
MONITR

THE BATCH CONTROL FILE

$ENDHDR
[4 lines processed in step SAMPLE header]
. SHOW ALLOCATION

Allocation for job 3 MORRILL,E [27,5342]

BLKY
BLKX
DSKC
DSKB

Volume set Resource Type

RP04
RP20
BLKY
BLKX
DSKC
DSKB

Disk unit
Disk unit
Structure
Structure
Structure
Structure

BATCH .REQUEUE CONTIN::
BATJRQ [Job requeued by user]
BATCH .KJOB/BATCH
MONITR

All

2
1
1
1
1
1

Own

1
1
1
o
1
1

17:15:03
17:15:03
17:15:03
17:15:03
17:15:03
17:15:04
17:15:04
17:15:04
17:15:04
17:15:04
17:15:04
17:15:04
17:15:04
17:15:04
17:15:04
17:15:05
17:15:05
17:15:05
17:15:05
17:15:05
17:15:05
17:15:06
17:15:06
17:15:09
17:15:09
17:15:09
17:15:09

USER
USER
USER
USER
USER
USER

[LGTOUL Other users logged-in under [27,5342], Jobs: 50]
Job 3 User MORRILL,E [27,5342]
Logged-off TTY367 at 17:15:09 on I-Dec-88
Runtime: 0:00:01, KCS:14, Connect time: 0:00:13
Disk Reads:136, writes:l1

2-Dec-88 8:22:02

BATCON Version 104(4656)

Job
OUTPUT:
UNIQUE:
RES'l'ART:
CORE:

LOCK Req #12 for MORRILL,E
Log
Yes
Yes
512 pages

GLXLIB Version 1(1067)

[27,5342] in stream 0
TIME-LIMIT: 0:05:00
BATCH-LOG: Append
ASSISTANCE: Yes
SEQUENCE: 616

Control file: DSKC:LOCK.CTL[27,5342,BATCH]
Log file: DSKC: LOCK. LOG [27, 5342, BATCH]

8:22:02 MONITR AC
8:22:02 MONITR
8:22:02 MONITR .LOGIN [27,5342,BATCH]/ACCOUNT:""/BATINT:YES

/BATNAM:"LOCK"/BATSEQ:616/BATSTR:0/NAME:"MORRILL,E"/REQID:12
/CORE:512P/DEFER/LOCATE:26/SPOOL:ALL/TIME:300
8:22:02 USER JOB 23 RZ120A KL #1026/1042 TTY370
8:22:04 USER 08:22 2-Dec-88 Wed
8:22:04 MONITR
8:22:04 MONITR .
8:22:04 HEADER $STEP SAMPLE
8:22:04 HEADER $ALLOCATE BLKX
8:22:04 BATCH .ALLOCATE BLKX

;THE STEP NAME IS SAMPLE

8:22:04 USER [Allocate request BLKX queued, request #105]
8:22:04 MONITR
8:22:04 MONITR
8:22:04 HEADER
8:22:04 BATCH
8:22:05 USER
8:22:05 USER
8:22:05 USER
8:22:05 MONITR
8:22:05 MONITR

$MOUNT BLKY
.MOUNT BLKY
[Mount request BLKY queued,
% No UFD created
[Structure BLKY mounted]

, 2-46

request #108]

8:22:05
8:22:05
8:22:05
8:22:05
8:22:05
8:22:05
8:22:07
8:22:07
8:22:07
8:22:07

HEADER
HEADER
BATBLA
LABEL
BATCH
MONITR
USER
USER
USER
USER

THE BATCH CONTROL FILE

$ENDHDR
[4 lines processed in step SAMPLE header]
[Beginning processing at label CONTIN]
CONTIN: :
.KJOB/BATCH

Job 23 User MORRILL,E [27,5342]
Logged-off TTY370 at 8:22:08 on 2-Dec-88
Runtime: 0:00:00, KCS:l0, Connect time: 0:00:05
Disk Reads:128, Writes:13, Blocks saved:3875

2-47

THE BATCH CONTROL FILE

2.9 NORMAL PROCESSING OF THE BATCH CONTROL FILE

Figure 2-1 shows the paths taken with normal batch processing.

I START I
I I

I
I A NEW:----=""L=I=-=N=E-
lIN THE CTL
I FILE IS
I EXAMINED
1_--:--_-

1

END =O=F---I YES 1
CTL FILE 1-------->1 EOJ

? I I
1 ------

'-:--I---::c":N'-"=O-
~ I I~I

rsITAI I 1
LABELED 1 NO I
LINE? 1------------>1

1 1
1 YES 1
I V

%-TYPE I NO 1 EXEC=U=T=E-I 1
LABEL I-----~-->I THE LINE 1-------------->1 START

? I I 1 1 I A ----

---=-I-=Y=-ES
I

I %FIN--:-:I YES 1
, ? 1--------------
1 I

I NO
I

I--=S=EAR~-=CH·-=F-=-O=R--

1 NEXT LABEL
-->1 IN CTL FILE

1 OR EOF
1

1--=_-
END OF I YES I ERROR 1 1
CTL FILE 1------------>1 MESSAGE 1---------->1 EOJ

? 1 1 ISSUED 1 1
1 1 1 --

---=-I--=-=N=O--
I

1 %FIN--:-:I YES
I ? I------------>I-X-I
I I I I -----NO

Figure 2-1: Normal Processing

2-48

CHAPTER 3

JOB CONTROL

3.1 INTRODUCTION

Job control refers to your ability to manipulate a job as an entire
unit. Manipulation of a job includes such actions as sending a job to
or removing it from a queue, modifying certain job parameters after a
job has ~ntered a queue, and killing a job that has begun execution.
The job control commands differ slightly between TOPS-10 and TOPS-20;
but with both operating systems, the commands allow you to submit jobs
to the system and handle them thereafter.

The commands associated with job control differ from the batch and
SPRINT commands. As system commands, the job control commands refer
to and affect your job as a whole; they are not concerned with the
internals of your control file as are the batch and SPRINT' commands.

Whenever you submit a batch job, the system places it in a queue or
hopper where it waits for the batch controller to select it for
execution. Once the job has executed, an entry for it is made in one
of the output queues. There is one input queue for jobs: the batch
input queue. There are several output queues: the card punch,
plotter, paper tape, and print queues. Your particular system may not
have devices associated with all of these output queues, however.

The following sections describe the commands that give you access to
jobs you have submitted to either the batch input queue or the printer
output queue. Chapter 4, SUBMITTING A JOB FROM A TERMINAL, discusses
how to enter a job into the batch input queue, and Section A.3.l.4
describes the PRINT command, the command that allows you to enter jobs
into the printer output queue.

3.2 JOB CONTROL WITH TOPS-10

Under TOPS-10, the QUEUE-class commands are your primary interface to
the batch input queue and to the various output queues on the system.
The following sections focus upon the batch input queue and the print
output queue. with these queues, you can substitute the SUBMIT and
PRINT commands for any applicable form of the QUEUE command. Refer to
the TOPS-10 Operating System Commands Manual for complete information
on the QUEUE command and the QUEUE-class commands, SUBMIT and PRINT.

The CANCEL and SHOW commands also provide you access to the input and
output queues. Refer to the TOPS~lO Operating System Commands Manual
for information on these commands.

3-1

JOB CONTROL

3.2.1 TOPS-I0 Batch Input Queue

Use the SUBMIT command to examine, modify, and delete jobs in the
batch input queue as well as to enter jobs into the queue.

It is a good idea to examine the batch input queue entry for batch
jobs being processed and those waiting to be processed before deleting
those jobs or modifying their parameters. To examine the batch input
queue, use the following form of the SUBMIT command:

SUBMIT/switch

Where /switch represents one of the following switches:

/CHECK

/FAST

/LIST:arg

ALL

FAST

JOBS

/STREAM:n

This switch displays only those entries in the
batch input queue associated with your
project-programmer number.

This switch eliminates the display of column
headings and of parameter settings for jobs.

This switch also displays queue entries. If you
do not specify an argument, a standard report is
generated, as shown below. Use the following
arguments to modify this standard format:

Lists characteristics of the queue entries in
detail, reporting the settings for most of the
parameters that apply to jobs.

Same as /FAST

Same as /LIST without an argument.

This switch displays queue entries only for the
batch stream specified by n.

You can cause the display to be written to your disk area by giving
the following form of the SUBMIT command:

SUBMIT jobname = /LIST

The resulting file is called a queue listing file.

3-2

JOB CONTROL

The switches above provide varying amounts of information about jobs
submitted to the batch system. The /LIST:ALL switch gives the most
comprehensive report on jobs:

.SUBMIT/LIST:ALL

Batch Queue:
Job Name Req# Run Time User

* SIRUS 72 00:05:00 PCO [30,4033] In Stream:O /Uniq:Yes
/Restart:Yes /Assist:Yes /Seq:2098

Job#
* GALO

59 Running DIRECT Runtime 0:00:40
73 00:10:00 ALEC CARLSON [50,5227] In Stream:1 /Uniq:No

/Restart:Yes /Assist:Yes /Seq:2099
Job#

* BREN7
61 Running UMOUNT Runtime 0:00:00

81 00:05:00 TUCKER,B [27,5342] In Stream:2 /Uniq:Yes

Job#
TEST

TEST9

/Restart:No /Assist:Yes /Seq:2101
60 Runtime 0:00:00

83 00:05:00 TUCKER,B [27,5342] /After: 8-Nov-88 23:00
LUniq:Yes /Restart:No /Assist:Yes /Seq:2103

2 00:05:00 TUCKER,B [27,5342]/Dep:8 /Uniq:Yes/Restart:No
/Assist:Yes /Seq:884

There are 5 Jobs in the Queue (3 in Progress)

Note that the listing is divided into columns, displaying:

o Job name.

o Request id number. You may use this system-assigned number in
identifying a job to be modified or killed. To do this,
include /REQUESTID: with /MODIFY or /KILL, and give the
request id number as an argument to the switch.

o Maximum amount of time allotted for the job.

o User name with associated project-programmer number.

o Parameter settings for the job. These appear in the last
column and continue, if necessary, on the next line.

SUBMIT/LIST provides this type of listing:

. SUBMIT/LIST

Batch Queue:
Job Name Req# Run Time User

* SIRUS 72 00:05:00 PCO [30,4033] In Stream: 0
Job# 59 Running DIRECT Runtime 0:00:40

* GAL 0 73 00:10:00 ALEC CARLSON [50,5227]In Stream: 1
Job# 61 Running UMOUNT Runtime 0:00:00

* BREN7 81 00:05:00 TUCKER,B [27,5342] In Stream: 2
Job# 60 Runtime 0:00:00

TEST 83 00:05:00 TUCKER,B [27,5342] /After: 8-Nov-88 23:00
TEST9 2 00:05:00 TUCKER,B [27,5342] /Dep:8

There are 5 Jobs in the Queue (3 in Progress)

3-3

JOB CONTROL

And SUBMIT/FAST provides the following listing:

. SUBMIT/FAST

Batch Queue:
* SIRUS 72
* GALO 73
* BREN7 81

TEST 83
TEST9 2

00:05:00
00:10:00
00:05:00
00:05:00
00:05:00

PCO [30,4033]
ALEC CARLSON [50,5227]
TUCKER,B [27,5342]
TUCKER,B [27,5342]
TUCKER,B [27,5342]

If no arguments appear in the command string (that is, if you give
only the command name SUBMIT), all entries in the batch input queue
are listed as with SUBMIT/LIST. If you give the command name QUEUE by
itself, all entries for all the queues are listed.

3.2.2 Modifying Jobs under TOPS-IO

To add or modify parameters for jobs waiting in the batch input queue,
use the following form of SUBMIT:

SUBMIT jobname=/MODIFY/switch(es)

where jobname is the name of the job as specified in the original
SUBMIT command (refer to Chapter 4, SUBMITTING A JOB FROM THE
TERMINAL, for a description of the SUBMIT command forma't), /MODIFY
indicates that at least one of the job's parameters is to be changed
or that a parameter is to be added for the job, and /switch(es)
specifies the parameters to be changed or added. Refer to Section
A.3.1.2, Modify Commands, for a list of the switches you can use with
/MODIFY.

The following command modifies the /AFTER parameter that is displayed
for job TEST in the first queue listing above:

.SUBMIT TEST=/MODIFY/AFTER:19:00
[1 Job Modified]

The listing below shows that the /AFTER parameter for job TEST is
changed to 19:00 .

. SUBMIT/LIST

Batch Queue:
Job Name Req# Run Time User

* SIRUS 72 00:05:00 PCO [30,4033] In Stream: 0
Job# 59 Running DIRECT Runtime 0:00:40

* GALO 73 00:10:00 ALEC CARLSON [50,5227]In Stream: 1
Job# 61 Running UMOUNT Runtime 0:00:00

* BREN7 81 00:05:00 TUCKER,B [27,5342] In Stream: 2
Job# 60 Runtime 0:00:00

TEST 83 00:05:00 TUCKER,B [27,5342] /After: 8-Nov-88 19:00
TEST9 2 00:05:00 TUCKER,B [27 ,5342] /Dep:8

There are 5 Jobs in the Queue (3 in Progress)

3-4

JOB CONTROL

3.2.3 TOPS-10 Print Queue

Use the PRINT command to examine, modify, and delete jobs in the print
queue as well as to enter jobs into the queue. To perform the first
three functions, use the same forms of the PRINT command that were
specified for the SUBMIT command, above. For example,

1. PRINT/CHECK, /LIST:, or /FAST provides a listing of the print
queue entries.

NOTE

The print queue listing displays the maximum
number of pages, not time (as the input queue
listing shows), allowed for the job. This
maximum reflects the value specified with the
/LIMIT switch.

2. paINT jobname=/MODIFY/switch(es) modifies the parameters for
a print job.

NOTE

To distinguish between duplicate job names, include
/REQUESTID switch in the command line when modifying
or killing jobs in the print or batch input queue.
You can use this switch in place of jobname.

3.3 JOB CONTROL WITH TOPS-20

The following sections describe how to examine the batch input queue
and the print queue and how to cancel or modify a job in these queues.
For complete information on the commands discussed below, refer to the
TOPS-20 Commands Reference Manual.

3.3.1 Examining the Queues under TOPS-20

You may want to examine a job's parameters before modifying them, or
before killing the job. This section explains how to do this.

The INFORMATION command reports on job and system parameters. To
check the status of batch jobs being processed and those waiting in
the input queue, give the following form of the INFORMATION command:

@INFORMATION (ABOUT) BATCH-REQUESTS

(You may abbreviate this command to "I B")

To examine jobs in the print queue, give the following form of the
INFORMATION command:

INFORMATION (ABOUT) OUTPUT-REQUESTS

(You may abbreviate this command to "I 0")

3-5

JOB CONTROL

You may specify the following switches with the INFORMATION command
when examining the queues:

/USER:user name

/ALL

/FAST

/DESTINATION-NODE:

This switch, when followed by a valid
user name, causes the INFORMATION command
to display only the queue entries for the
user named.

This switch lists characteristics of the
queue entries in detail, reporting the
settings -for most of the parameters that
apply to your job.

This switch eliminates the display of all
switch values and column headings.

This switch shows the
the specified Common
node.

output queues on
File System (CFS)

The following examples illustrate the use of these switches with the
INFORMATION command. Note that the listings are divided into columns
displaying:

o Jobname.

o Request id number. You may specify this unique
system-assigned number in response to the 1D prompt when using
the CANCEL and MODIFY commands.

o Maximum runtime allotted for a batch job as specified with
/T1ME.

or

Maximum number of pages allotted for a print job as specified
with /LIM1T.

o User name.

o Parameter settings for the job. These appear in the last
column and, if necessary, continue on "the next line.

3-6

JOB CONTROL

INFORMATION (ABOUT) BATCH-REQUEST/ALL provides a comprehensive report
of jobs in the batch input queue:

@INFORMATION (ABOUT) BATCH-REQUESTS /ALL

Batch Queue:
Job Name Req# Run Time User

* LINK 109 01:00:00 DNEFF.BUILD In Stream:2 /Uniq:No
/Restart:No /Assist:Yes /Seq:3773

Job# 72 Running EXEC Last Label: LINK Runtime 0:00:00
AVC020 2 00:05:00 JENNESS /Proc:AVCO /Uniq:No

/Restart:No /Assist:Yes /Seq:2923
AVC020 4 00:05:00 JENNESS /Proc:AVCO /Uniq:No

/Restart:No /Assist:Yes /Seq:2924
SOURCE 1 00:05:00 BLOUNT /After: 8-Nov-88 0:00

/Uniq:Yes /Restart:No /Assist:Yes /Seq:3099
SYSERR ~ 8 00:05:00 BLOUNT /After: 7-Nov-88 23:59

/Uniq:Yes /Restart:Yes /Assist:Yes /Seq:3102
SAVE 35 00:05:00 FICHE /After:13-Nov-88 10:00

/Uniq:Yes /Restart:No /Assist:Yes /Seq:3709
QAR 58 00:05:00 BLOUNT /After:14-Nov-88 11:34

/Uniq:Yes /Restart:No /Assist:Yes /Seq:3730
SAMPLE 110 00:05:00 TUCKER /Dep:3/Uniq:Yes/Restart:No

/Assist:Yes /Seq:3774
There are 8 Jobs in the Queue (1 in Progress)

INFORMATION (ABOUT) OUTPUT-REQUESTS/USER:TUCKER provides the following
listing:

@INFORMATION (ABOUT) OUTPUT-REQUESTS /USER:TUCKER

Printer Queue:
Job Name Reqi Limit User

SAMPLE 110 27 TUCKER
There is 1 Job in the Queue (None in Progress)

I B/FAST gives the following information:

@I B/FAST

Batch Queue:
AVC020 2
AVC020 4
SOURCE 1
SYSERR 8
SAVE 35
QAR 58
SAMPLE 110

00:05:00
00:05:00
00:05:00
00:05:00
00:05:00
00:05:00
00:05:00

JENNESS
JENNESS
BLOUNT
BLOUNT
FICHE
BLOUNT
TUCKER

3.3.2 Modifying Jobs under TOPS-20

/Forms:NARROW

The MODIFY command adds or changes switch values for a job waiting in
the batch or print queue. In response to the REQUEST TYPE prompt,
specify the argument BATCH to modify batch jobs; specify the PRINT
argument to modify print jobs. For both types of jobs, you can
specify jobname or request id number for the ID prompt .

. 3-7

JOB CONTROL

3.3.2.1 Modifying Batch Jobs - Modify a batch job with the MODIFY
command, the BATCH argument, and one or more of the switches listed in
Section A.3.1.2, Modify Commands.

The following command modifies the dependency count that is displayed
for job SAMPLE in the first queue listing above:

@MODIFY (REQUEST TYPE) BATCH (ID). SAMPLE/DEPENDENCY-COUNT: 7
[1 Job Modified]

The listing below shows that SAMPLE's dependency count is now 7.

@I B

Batch Queue:
Job Name Req# Run Time User

AVC020 2 00:05:00 JENNESS /Proc:AVCO
AVC020 4 00:05:00 JENNESS /Proc:AVCO
SOURCE 1 00:05:00 BLOUNT /After: 8-Nov-88 0:00
SYSERR 8 00:05:00 BLOUNT /After: 7-Nov-88 23:59
SAVE 35 00:05:00 FICHE /After:13-Nov-88 10:00
QAR 58 00:05:00 BLOUNT /After:14-Nov-88 11:34
SAMPLE 110 00:05:00 TUCKER /Dep:7

There are 7 Jobs in the Queue (None in Progress)

3.3.2.2
command,
switches.
job.

Modifying Print Jobs - Modify a print job with the MODIFY
the PRINT argument, and one or more of the PRINT command

The command format is the same as for modifying a batch

3.4 CANCELLING OR KILLING JOBS

The CANCEL command withdraws requests made with a previous PRINT or
SUBMIT command. Use CANCEL to stop jobs tha·t are currently running or
that are waiting in the queues.

The following command kills job SAMPLE that is shown in the queue
listing above:

CANCEL BATCH 110
[1 Job Canceled]

On a TOPS-20 system, you can give the following command to see that
job SAMPLE is no longer in the batch input queue:

@I B

Batch Queue:
Job Name Req# Run Time User

AVC020 2 00:05:00 JENNESS /Proc:AVCO
AVC020 4 00:05:00 JENNESS /Proc:AVCO
SOURCE 1 00:05:00 BLOUNT /After: 8-Nov-88 0:00
SYSERR 8 00:05:00 BLOUNT /After: 7-Nov-88 23:59
SAVE 35 00:05:00 FICHE /After:13-Nov-88 10:00
QAR 58 00:05:00 BLOUNT /After:14-Nov-88 11:34

There are 6 Jobs in the Queue (None in Progress)

3-8

JOB CONTROL

(NOTES)

1. To distinguish between duplicate job names in the
input and output queues, specify the request id
number for the ID prompt in the MODIFY or CANCEL
command line.

2. To cancel all jobs in the queue under your name,
specify * as the jobname. For example, the
commands

CANCEL BATCH *
and

CANCEL PRINT *
cancel all jobs under your name in the batch input
and print queues respectively.

On TOPS-10 systems, you can also cancel a batch job with the SUBMIT
command:

.SUBMIT jobname=/KILL

And if you are logged in under [1,2], you can cancel a job for a
particular user:

.SUBMIT jobname [P,PN]=/KILL

where [P,PN] is the project-programmer number of the desired user.

3.5 SUBMITTING RELATED JOBS

The system does not necessarily run jobs in the order in which you
submit them. It dynamically computes a number of parameters to
determine the running order of jobs. These parameters include those
established during batch system installation, those that the operator
sets, and those that you specify on the $JOB card or with the SUBMIT
command. One parameter that you specify is particularly important for
ensuring that jobs run in a certain order. Give this parameter with
the /DEPEND: switch.

It is often useful to submit several jobs that must run in a specified
order; for example, one job updates a master file before another job
processes it. In such cases, the running of one job is dependent upon
the completed execution of the other. Although these jobs could be
combined into one large job, it may be more convenient (or necessary)
to keep them distinct. For instance, different people might submit
them at different times.

To coordinate the running of distinct jobs, specify the /DEPEND:
switch with either the $JOB card or the SUBMIT command. The priority
that /DEPEND: establishes, called the initial dependency count,
becomes part of the queue entry for the job. If an input queue entry
has a dependency count greater than zero, the system will not schedule
the associated job to run. When the count becomes zero, the job is
eligible to be run by the batch controller. In this way, the job does
not run until another job or you set its dependency count to zero.
This technique ensures that dependent jobs do not run out of sequence.

3-9

JOB CONTROL

Alter the dependency count for a job in this manner:

TOPS-IO:

SUBMIT jobname=/MODIFY/DEPEND:n

TOPS-20:

MODIFY (REQUEST TYPE)
id/DEPENDENCY-COUNT:n

BATCH (ID) jobname or request

Where jobname is the name of the batch job and n represents the new
dependency count value. If you place a plus or minus sign before the
new value (n), that value is added to or subtracted from the
dependency count. If the subtraction results in a negative number,
the system-treats. the number as if it were zero. If you do not
specify a sign, the dependency count is changed to the value you give
for n.

NOTE

To distinguish between jobs with the same name, use
the /REQUESTID switch along with the switches above on
a TOPS-I0 system. On a TOPS-20 system, use the
request id number for ID.

The priority established with the /DEPEND: switch overrides the
priority you set with the /PRIORITY: switch. That is, a job will
never run unless its dependency count is less than or equal to zero(
regardless of the value you give for /PRIORITY:.

The following examples show how you can control the scheduling of
related jobs using the /DEPEND: switch.

1. Assume that your company has a three-phase payroll processor
consisting of a salary-calculating program, a check-writing
program, and a final report-writing program. All three
programs are submitted to the batch queue at the same time,
but by different people. To make sure the programs do not
run out of this sequence, the people would submit the jobs to
the system as follows (with TOPS-I0) :

.SUBMIT Jl

.SUBMIT J2/DEPEND:l

.SUBMIT J3/DEPEND:l

Where: Jl is the salary-calculating program
J2 is the check-writing program
J3 is the final report-writing program

, 3-10

JOB CONTROJ,

The control files for these jobs would look like this:

a. START:: ! !!Beginning of Jl!!!

END: : .SUBMIT J2=/MODIFY/DEPEND:O

b. START:: !! !Beginning of J2!!!

END: : .SUBMIT J3=/MODIFY/DEPEND:O

In this example, each job sets a dependent job's dependency
count to zero, making the dependent job eligible for
execution. Note that it is a good idea to place the /DEPEND:
switch at the end of a control file to ensure that the system
has completed processing the file before a dependent job
becomes eligible for execution.

2. Suppose you have seven interrelated jobs to run. You do not
care about the execution order of six of the jobs, but one
job must run after all of the other six. Submit the jobs as
follows (with TOPS-20) :

@SUBMIT J7/DEPENDENCY-COUNT:6
@SUBMIT Jl
@SUBMIT J2

@SUBMIT J6

Where J7 is the job that must run last.

At the end of the control files for jobs Jl through J6 insert
the line:

@MODIFY BATCH J7/DEPENDENCY-COUNT:-1

These six lines, in random fashion, will reduce
dependency count to zero, making it eligible to run.

3-11

J7's

CHAPTER 4

SUBMITTING A JOB FROM A TERMINAL

4.1 INTRODUCTION

To submit a job, defined in Section 1.1, JOBS, is to give 'it to the
system for processing. When you submit a batch job from the terminal,
it goes to the batch input queue, where it waits to be processed.
This chapter discusses how to prepare a job for submittal from the
terminal (as opposed to the card 'reader) and how to submit the job.
In describing the effects of switches available with the SUBMIT system
command, the chapter also explains what can happen to your job when it
is in the batch input queue and after the batch controller selects it
for processing.

4.1.1 Submitting a Card Job from a Timesharing Termina1

NOTE

Refer to Chapter 5, SUBMITTING A JOB FROM CARDS, for
information on SPRINT, the input spooler for card
jobs, and on the control cards you use to direct
SPRINT.

Normally you punch a card job on cards then submit the job from the
card reader. However, you can submit a card job from the terminal as
well as from the card reader. Evert though you have access to a
timesharing terminal, you may want to submit a card job, which
contains an extra set of commands for the SPRINT program, for such
reasons as the following:

1. The card facility allows you to append card jobs to one
another to form one large job.

2. The card facility allows you to create system-independent
jobs. These types of jobs, described in Section 5.4,
SYSTEM-INDEPENDENT JOBS, run under both TOPS-10 and TOPS-20
systems.

3. You may be responsible for creating and debugging batch jobs
that others will submit from a card reader. You could use
the terminal to do your job on-line, then punch the files on
cards.

For you to submit a card job from a timesharing terminal, your disk
directory must contain a file for the job. You submit the file
directly to SPRINT by issuing the SUBMIT command with the /READER
switch.

4-1

SUBMITTING A JOB FROM A TERMINAL

To create the disk file, use one of your system's on-line editors as
described in Section 4.2. You may place commands, programs, and data
in your disk file as well as card images of the control cards for
SPRINT. Each card image may be up to 80 characters long, exclusive of
any line terminators you use with the editor. The disk file should
look like a card job you would submit from the card reader. However,
you do not need the $PASSWORD card if the directory on the $JOB card
matches the directory under which you are logged in.

4.2 CREATING AND SUBMITTING BATCH JOBS FROM A TERMINAL

You can submit batch jobs from the card reader (see Chapter 5,
SUBMITTING A JOB FROM CARDS) or from the terminal. For you to submit
a job from a timesharing terminal, your disk directory (or ersatz
device CTL: for TOPS-10) must contain a control file for the job.
When you issue the SUBMIT command, the control file is then submitted
directly to the batch controller (by way of the batch input queue)
from the disk.

Create the control file using one of the on-line editors available on
your system. You may place any system or batch command in the control
file as well as system and user program commands and data. The
following illustrates the technique for using an editor to create a
simple control file:

TOPS-IO:

.MAKE JOB.CTL
*I.EXECUTE/COMPILE DATA.FOR/LIST
$$ the system echoes the $ signs
*EX$$ on these two lines when you type ESCape.

Above, the MAKE command is given under TOPS-10 to let the system know
that a new file is to be created using the TECO program. The control
file name follows the MAKE command. 'I' tells TECO you want to insert
information, and the EX command tells TECO to end this editing
session. (See the TECO Reference Manual for details on TECO.)

After this one-line control file is created, it can then be submitted
with the following abbreviated form of the SUBMIT command:

.SUBMIT JOB

The control file, JOB.CTL, compiles and executes DATA.FOR and produces
a program listing. The system assumes that the extension for the
control file name is .CTL unless specified otherwise with the SUBMIT
command.

TOPS-20:

@CREATE
INPUT:
00100
00200
00300

*E

BATCH.CTL
BATCH.CTL.6

@COMPILE PROG.FOR/LIST
@EXECUTE PROG
$ This $ sign echoes when you

type ESCape during the edit session

[BATCH.CTL.7]

@

4-2

SUBMITTING A JOB FRQ~ A TERMINAL

Above, the CREATE command is given under TOPS-20 to let the system
know that a new file is to be created using the EDIT program. The
control file name follows the command. After EDIT types the second
line, INPUT: BATCH.CTL.6, and the first input line number, 00100,
control file lines are entered. The E command ends the edit session.
(Refer to the EDIT Reference Manual for information on EDIT.)

The control file is then submitted with the command:

@SUBMIT (BATCH JOB) BATCH

The control file, BATCH.CTL, causes the compilation and execution of
PROG.FOR. It also produces a program listing. The system assumes
that the control file type is .CTL unless specified otherwise with the
SUBMIT command.

If an error occurs in your job, batch terminates the job. To avoid
having your job terminated because an error occurs, you can specify
error recovery in the control file using special batch commands.
Error recovery is described in Section 2.5.

Any system command that you can use in a timesharing job can be used
in a batch job with the following exceptions. The ATTACH and SET
TIME-LIMIT commands are illegal in a batch job. If you include either
of these commands in your job, batch processes the command and the
TOPS-10/TOPS-20 command processor places an error message into your
log file. Your batch job terminates unless you specify error
recovery.

Do not include a LOGIN command in your control file since batch logs
in the job for you. If you put in a LOGIN command, your job
terminates. In addition, you do not need to include a LOGOUT command.
Batch logs out your job automatically when it reaches the end of your
control file.

4 . 3 THE SUBMIT COMMAND

The previous section introduced you to the SUBMIT command; this
section gives you a more detailed description of the command and
discusses the switches that you may specify with it. Use the SUBMIT
command to submit files to be run as batch jobs. The submitted files,
called control files, contain, in addition to batch commands, the
system commands, program commands, and program data that you would
type if you were to type the job at a terminal.

NOTE

TOPS-20

The SUBMIT command is an EXEC command that will not
destroy your core image; you can CTRL/C out of a
program, submit a batch job, and return to the
program. Also, you may use command recognition with
the SUBMIT command. (Refer to the TOPS-20 User's
Guide for a description of command recognition.)

4-3

SUBMITTING A JOB FROM A TERMINAL

All programs and data that are to be processed when the job is run
must be made up in advance or be generated during the running of the
job. You can have the programs and data on magnetic tape, but if you
do, you must include the TOPS-10/TOPS-20 commands MOUNT and DISMOUNT
in your control file so that the operator will mount and dismount the
tape(s) to be read. (Refer to Section 4.4.2, Reading from or Writing
to a Tape File, for an example of a control file with these two
commands.)

If your programs and data reside on an on-line disk, you need not
include the MOUNT and DISMOUNT commands, as there is no action
required by the operator.

The SUBMIT command format varies between TOPS-10 and TOPS-20. The
switches that apply to SUBMIT are virtually identical for both
systems, however. Section 4.3.1 covers the SUBMIT command for
TOPS-10; Section 4.3.2 covers the SUBMIT command for TOPS-20. Section
4.3.3 describes all of the switches applicable to SUBMIT for both
systems. Refer to your commands reference manual for complete details
on the SUBMIT command.

4.3.1 The SUBMIT Command with TOPS-10

The SUBMIT command:

Leaves the terminal in monitor mode.

Does not require LOGIN when you wish to only examine the queues.

Runs the QUEUE program.

The SUBMIT command is equivalent to the following form of the QUEUE
command:

.QUEUE INP:jobname=contro1 file, log file

Command Format

.SUBMIT jobname/switches=/switch(es) control file/switch(es),
log file/switch(es)

Where:

jobname

/switch(es)

is the name of the job being entered into the
queue.

are keywords chosen from section 4.3.3,
indicating your choice of SUBMIT command
options. They have different effects
according to their position in the command
line. Placed before the equal sign (=) they
serve as queue-operation switches (such as
/DEPEND), affecting the job as a unit.
Placed before the control file name they
apply to both the control file and the log
file; otherwise they act only on the nearest
preceding filename:

4-4

SUBMITTING A JOB FROM A TERMINAL

.SUBMIT JOB=/switchl/switch2,file.ctl/switch3,file.log/switch4

control file

log file

In the line above, switchl and switch2 apply
to both the control file and the log file.
Switch3 applies only to the control file and
switch4 applies only to the log file.

is the name of the control file. This file
contains all monitor-level and user-level
commands for processing by the batch
controller. If you do not include a device
in the control file specification, and if the
file is not found in your search list, the
SUBMIT command searches ersatz devic~ CTL:
for the control file.

is the name of the log file. This file is
used by the batch controller to record its
processing of the job.

Only the two files mentioned above can be specified in a request
to the batch input queue under TOPS-lO. The name of the control
file is required; the log file name is optional and, if omitted,
will automatically be named the same as the control file but with
the .LOG filename extension. If the job name is omitted, it
defaults to the name of the log file, if present, or the name of
the control file. If an extension is omitted, the following are
assumed:

.CTL for the control file

.LOG for the log file

4.3.2 The SUBMIT Command with TOPS-20

Command Format:

@SUBMIT (BATCH JOB) /switch(es) control file/switch(es), ...

Where:

switch (es) are keywords chosen from Section 4.3.3,
indicating your choice of SUBMIT command
options. They have different effects
according to their position in the command
line: placed before all names of control
files, they apply as defaults for all files
specified in the command, otherwise they act
only on the nearest preceding filename:

@SUBMIT/switchl/switch2 namel.CTL/switch3,name2.CTL/switch4

control file

, ...

In the line above, switchl and switch2 apply
to both control files. Switch3 applies only
to the first control file and switch4 applies
only to the second control file.

is the name of the control file. The default
file type is .CTL.

means that after a comma you can give more
arguments (control file and switches) of the
form already shown.

4-5

SUBMITTING A JOB FROM A TERMINAL

NOTE

The SUBMIT command with TOPS-20 allows an arbitrary
number of file specifications, all of which are
interpreted as batch control files. For example, the
command SUBMIT FILE.CTL, FILE.LOG submits two batch
jobs, one with control file FILE.CTL and one with
control file FILE. LOG. To specify a log file for a
batch job, use the /LOGNAME switch as described below.

4.3.3 Switches for the SUBMIT Command

The following is a brief description of each of the switches you can
use with SUBMIT. You use the switches to define limits for your job.
Such limits as pages of output and the time that your job will run can
be specified as switches. If a switch is specified more than once,
the input specified in the last switch is used. You can put a switch
anywhere in a command string. Appendix B explains these switches in
detail.

If you repeatedly use the same switches and the same switch values,
then you may wish to set default values for those switches with the
SWITCH.INI file (TOPS-IO). Under TOPS-20, you can set the switch
values with the SET DEFAULT command. Appendix B discusses this topic.

Switch

/ACCOUNT:name

/AFTER:date-time

/AFTER:+hh:mm

/ASSISTANCE:arg

/BATCH-LOG:arg (-20)
/BATLOG:arg (-lO)

Meaning

The job's CPU time will be charged
to the account specified. Name can
have a maximum of 39 characters.

The job cannot be run until after
the specified date and time.

The job cannot be run until after
the time the job is submitted plus
the amount of time specified. To
run the job after a given amount of
time has elapsed, specify the time
in the form +hh:mm (for example,
/AFTER:+l:OO to run the job an hour
from now). If you omit the switch,
batch schedules your job as it
normally would using its defaults.
If you omit the colon and/or value,
the monitor responds with an error
message and terminates the SUBMIT
command.

This switch specifies that the job
needs or does not need operator
assistance. The arguments are YES
and NO.

The log file is written according
to the arguments you specify with
this switch: APPEND causes the
file to be appended to an existing
one of the same name; SPOOL causes
the file to be written to the
system spooling area; SUPERSEDE
causes the file to overwrite
another one of the same name.

4-6

SUBMITTING A JOB FROM A TERMINAL

/BATOPT:name (-10)

/BEGIN:n

/CARDS:nn

/CHECK (-10)

/CONNECTED
DIRECTORY:<directory>
(-20)

/CORE: (-10)
nnK,nnP,
nnB, or nnW

/DELETE

/DEPEND:nn

/DEPENDENCY-COUNT:nn (-20)

/DESTINATION:node(-10)
/DESTINATION-NODE:node(-20)

Specifies a LOGIN option line to
read for LOGIN switches to apply to
the batch job. The option name
that you specify with the /BATOPT
switch must match a line in the
SWITCH.INI file that appears as:

LOGIN: option-name/switches

Processing will begin on the nth
line of the control file. If you
do not specify this switch,
processing starts at the first
line.

The job can punch a maximum of nn
cards (up to 10,000 in decimal).

This switch lists all the jobs that
are in the batch input queue under
your project-programmer number.

This switch allows your job to run
under a directory different from
the directory under which you
submitted the job. This switch is
valid for an enabled wheel or an
enabled operator only.

The job can use a maximum of nnK
words of memory, or the specified
number of memory pages (nnP), words
(nnW), or blocks (nnB). These
values are expressed in decimal.
The default is usually 32K.

This switch deletes the file after
the job has finished execution.
with TOPS-10, if the file. is the
batch log file, it will not be
deleted until it has been printed.

This switch specifies the initial
interjob dependency count (in
decimal) for the job. Refer to
Section 3.5, SUBMITTING RELATED
JOBS, for details about this
switch.

Same as /DEPEND.

These switches specify the DECnet
network node or IBM remote job
entry station to whose line printer
the log file and all spooled output
are to be sent. The node name must
be of six or fewer characters. On
TOPS-20 systems, this switch has no
effect if the node name specified
is a DECnet node name. On TOPS-10
systems, you can use this switch to
get a queue listing of batch jobs
whose output is being sent to the
specified node.

4-7

SUBMITTING A JOB FROM A TERMINAL

/DISTRIBUTION: "text" (-10)

/ERPROTECTION (-10)

/FAST (-10)

/FEET:nn

/JOBNAME:name

/KILL (-10)

/LIST:arg (-10)

/LOGDISPOSITION:arg (-20)

/LOGNAME:name (-20)

/METERS:n (-10)

/MODIFY (-10)

Specifies text to place in the
distribution field on the banner
page of output listings. For batch
input requests, the distribution
text is printed on the banner pages
of the log file listing. You can
use this field to include mailing
information or the location where
the operator should leave the
listing. The text field may be up
to 39 alphanumeric characters,
including punctuation and spaces if
the text is placed in quotation
marks.

This switch produces an error
message if processing the job
requires a violation of protection
codes. This is the default
function.

This switch displays
queue entries in an
format.

batch input
abbreviated

The job can punch a maximum of nn
(decimal) feet of paper tape.

This switch assigns a 1- to
6-character name to the job.

This switch allows you to cancel or
kill the running of a job. (Refer
to Section 3.4, CANCELLING OR
KILLING JOBS, for details.)

This switch lists the entries
the batch input queue on
terminal. The arguments are
JOBS, and FAST. (See Section
JOB CONTROL with TOPS-IO
details.)

for
your
ALL,
3.2,
for

This switch specifies the
disposition of the log file after
the batch job has been processed.
The arguments are DELETE and KEEP
(default) .

This switch specifies a 1- to
6-character alphanumeric name for
the log file. The filename can be
followed by a 3-character filename
type. /LOGNAME has no effect when
you also specify the /READER
switch.

This switch specifies the maximum
number of meters of paper tape the
job can punch.

This switch allows you to modify a
job's parameters. (Refer to
Section 3.2.2, Modifying Jobs Under
TOPS-lO, for details.)

4-8

SUBMITTING A JOB FROM A TERMINAL

/NEW (-10)

/NONEW (-10)

/NONOTIFY (-10)

/NOTIFY:arg

/OKPROTECTION (-10)

/OPTION:option (-10)

/OUTPUT:arg

/PAGES:nn

/PATH: [dir] (-10)

/PHYSICAL (-10)

/PRESERVE

This switch allows the system to
accept your request even if the
file does not yet exist. Use this
switch, for example, if the disk
structure containing the file is
not yet mounted.

opposite of /NEW.

Same as /NOTIFY:NO.

This switch directs the system to
print a message at your terminal
letting you know when your job has
completed. The arguments are YES
and NO.

This switch suppresses the error
message when a protection code
violation occurs.

This switch executes the line
beginning with 'SUBMIT: option' in
the SWITCH.INI file. 'Option' is
the identifier you supply for this
line in the SWITCH.INI file. Refer
to the discussion of SWITCH.INI in
your system commands manual for
details.

This switch determines whether the
log file is printed. The arguments
are: LOG (TOPS-10 only; print the
file), NOLOG (suppress printing),
ERROR (TOPS-10)/ERRORS
(TOPS-20) (print only if an error
occurs), and ALWAYS (TOPS-20 only;
equivalent to LOG). LOG or ALWAYS
is the default.

This switch specifies the maximum
number of pages (in decimal) that
the job can print. The default
limit is 200 pages; however, the
system administrator may change
this value at batch system
generation time.

This switch allows your job to run
under the directory you specify.

This switch
device names
file.

suppresses logical
for the specified

This switch causes the system to
save the control file after
completion of the job. With
TOPS-10, you can use this switch to
save the log file.

4-9

SUBMITTING A JOB FROM A TERMINAL

/PRIORITY:nn

/PROCESSING: (-10)
/PROCESSING-NODE: (-20)

/PROTECTION:arg (-10)

/READER

/RESTART:arg (-10)
/RESTARTABLE:arg (-20)

/NORESTART (-10)

/SEQUENCE:n

/SITGO (-10)

/STREAM:n (-10)

This switch assigns the job a
priority value that determines when
the job will run relative to other
jobs in the specific queue. This
priority is called the external
priority. See Appendix B for more
information on this switch.

These switches specify the IBM
host system on whose CPU the JCL
batch job is to be run. The node
name must be of six or fewer
characters. On TOPS-20 systems, if
the local node name is specified,
then the batch job is processed
locally. However, if any other
DECnet node name is specified, then
the batch job is queued by QUASAR
but never executed. You can also
use this switch to obtain a batch
queue listing for the specified
node.

This switch specifies a protection
code for the log file or for a
batch queue listing file that is
written to the disk.

This switch causes a file of card
images on disk to be processed as·
if you had punched the file on
cards and submitted it by way of
the card reader.

This switch specifies whether the
job should be restarted after a
crash has occurred. The arguments
are YES and NO. NO is the default.
YES is the default if you use this
switch without an argument. (Refer
to the description of the CHKPNT
batch command in Section 2.6, BATCH
COMMANDS, for details on these
switches.)

Same as /RESTART:NO

This switch allows you to specify
an identifying decimal number for
the job. If you omit this switch,
the system assigns a unique
"sequence" number to the job. The
system also assigns a request id
number to each job. It is
recommended that you use the
request id number when modifying or
killing jobs with duplicate names.

This switch causes your job to be
processed by the SITGO compiler.

This switch lists queue entries for
the specified batch stream.

4-10

SUBMITTING A JOB FROM A TERMINAL

/TAG:label

/TIME:hh:mm:ss

/TPLOT:mm

/UNIQUE:arg

IUSER: name (-2 0)
/USERNAME:name (-10)

4.4 SAMPLE JOBS

This switch causes processing to
begin at the specified label.
Label is a 1- to 6-character label
for a command line in the control
file.

This switch sets specific limits
upon the amount of CPU time allowed
the job. The default is 5 minutes.
If you need more than 5 minutes of
CPU time, you must include the
/TIME switch in the SUBMIT command
to indicate the approximate amount
of time that you will need. If you
specify the switch without the
colon and a value, batch assumes
that you need one hour of CPU time.
If you do not specify enough time,
batch terminates your job when the
time is up.

The value in the /TIME
given in the form
(hours:minutes:seconds) .
Section B.2 for
information on time
switches.

switch is
hh:mm:ss

Refer to
additional
and date

This switch specifies the maximum
amount of plotter time that the job
can use (in minutes) .

This switch gives a "uniqueness"
value for the associated job. If
the argument is either YES or 1
(default), then no other job can
run concurrently (if submitted from
the same connected directory) with
this job. If the argument is NO or
0, then other jobs can run
concurrently with this job.

This switch allows an enabled
operator or an enabled wheel to run
a job under a user name different
from the name under which the job
was submitted. Name is a valid
user name.

The following examples show how to perform various functions from a
batch control file. The examples offer methods for compiling and
running user programs, for transferring data, and for using system
programs and utilities.

Unless noted, the examples' apply to both TOPS-10 and TOPS-20. Simply
substitute the appropriate system prompt character for the existing
one where necessary.

4-11

SUBMITTING A JOB FROM A TERMINAL

4.4.1 Reading from or Writing to a Disk File

To compile and run a program, store the following system commands in
your control file:

COMPILE name/language Causes the program to be compiled
or assembled by the appropriate
compiler or assembler. 'Name' is
the name of the disk file
containing the program. 'Language'
can be the name of any language
supported by the COMPILE command,
for example:

EXECUTE name

ALGOL COBOL FORTRAN MACRO

Executes the previously compiled or
assembled program.

For example, this control file

@TYPE BATCH.CTL
00010 @COMPILE TEST1.FOR/LIST
00020 @EXECUTE TEST1

will compile and execute the FORTRAN program below. The program reads
a file of numbers (DATA.FIL) from your disk area, computes their
squares, and records the results in the log file.

@TYPE TEST1.FOR
00010
00020 3
00030
00040 4
00050
00060
00070
00080
00090 5
00100
00110
00120

INTEGER*4 A,B
FORMAT (I3)
OPEN (UNIT=Ol,FILE='DATA.FIL')
FORMAT (lX, I3)
DO 5 A = 1,5
READ (01,3) B
B = B**2
TYPE 4,B
CONTINUE
CLOSE (UNIT=Ol)
STOP
END

Note that the program provides instructions for the system to read
from and write to the disk file. Choose similar instructions from the
particular programming language you are using.

After the control file to compile and execute the FORTRAN program is
created and saved, submit the job to batch.

@SUBMIT BATCH/JOBNAME:MYJOB/TIME:20/PAGES:750/AFTER:10:00<RET>

When the monitor reads this request, it assumes the following:

1. The name of the job is MYJOB.

2. The name of the control file is BATCH.CTL.

3. The log file will be named BATCH. LOG.

4. The log file will be left in your disk area after it is
printed.

5. The control file will be left in your disk area.

4-12

SUBMITTING A JOB FROM A TERMINAL

6. The maximum number of pages that can be printed is 750.

7. The maximum amount of CPU time that the job can use is 20
minutes on TOPS-20 systems and 20 seconds with TOPS-10.
(Refer to Section B.2 for information on time and date
switches.)

8. The job will process only after 10:00 A.M.

If you make an error in the SUBMIT command when you submit this job,
the monitor displays an error message on your terminal to explain your
error so that you can correct it.

NOTE

An alternative to
the /language
extensions/types
example, COMPILE
TEST.FOR.

identifying the program type with
switch is to use the file

.ALG, .CBL, .FOR, or .MAC. For
TEST/FORTRAN is equivalent to COMPILE

4.4.2 Reading from or Writing to a Tape File

To read from or write to a tape file, use the following system
commands in addition to the COMPILE and EXECUTE commands discussed in
the previous example:

MOUNT

DISMOUNT

Causes a tape mount message to be
sent to the system operator. The
batch job will not be processed
beyond this command until the
operator has mounted the
appropriate tape. If you use this
command, be sure to give your tape
to the operator before you submit
your job.

Rewinds the magnetic tape onto one
reel and deassigns the tape drive
from your job. The tape drive is
now available for use by other
jobs.

Your program should provide the necessary tape read/write statements.
Choose these statements from the particular programming language you
are using. For example, the following FORTRAN program reads a file of
numbers (DATA.FIL) from a tape file, computes their squares, and
records the result in the log file:

@TYPE TEST2
00010
00020 3
00030
00040 4
00050
00060
00070
00080
00090 5
00100
00110
00120

INTEGER*4 A,B
FORMAT (13)
OPEN (UNIT=16,DEVICE='TAPE',FILE='DATA.FIL')
FORMAT (lX,I3)
DO 5 A = 1,5
ACCEPT 3,B
B = B**2
TYPE 4,B
CONTINUE
CLOSE (UNIT 16)
STOP
END

4-13

SUBMITTING A JOB FROM A TERMINAL

This is the control file for a job that will compile and execute the
program above:

BATCH1.CTL @TYPE
00010
00020
00030
00040

@MOUNT TAPE: REEL1
@COMPILE TEST2/FORTRAN
@EXECUTE
DISMOUNT TAPE:

4.4.3 Reading Data from the Control File

A program is able to read data from the input stream (from the control
file) because the batch controller makes the input stream appear as a
timesharing terminal to the program. Therefore, to read data from the
input stream, the program must use a terminal read statement. For
example, a FORTRAN program would use an ACCEPT statement. Also, if
the program uses a terminal write statement (such as TYPE in FORTRAN),
the output is written to the log file.

The following FORTRAN program reads a list of numbers from the job's
control file. The program calculates the square of each number and
records the result in the log file:

@TYPE TEST1
00100
00200 3
00300 4
00400
00500
00600
00700
00800 5
00900
01000

This control file:

BATCH2.CTL

INTEGER*4 A,B
FORMAT (13)
FORMAT (lX,I3)
DO 5 A = 1,5
ACCEPT 3,B
B = B**2
TYPE 4,B
CONTINUE
STOP
END

@TYPE
00010
00020
00030
00040
00050
00060
00070

@COMPILE TEST1/FORTRAN
EXECUTE TEST1
*3
*5
*7
*8
*9

will compile and execute the program above. The COMPILE and EXECUTE
system commands perform these functions as in previous examples. Note
that the control file also contains the data for the program. Each
data line begins with an asterisk (*). (Refer to Sections 2.2, LINE
IDENTIFIERS, and 2.5.2, Line Identifiers and Error Processing, for
supplementary information.)

4-14

SUBMITTING A JOB FROM A TERMINAL

4.4.4 Using an Interpretive Language (APL, BASIC, CPL, SNOBOL)

When using an interpretive language, place the following commands in
the control file:

@ name

*statement
*statement
*statement

*monitor statement

Statement

MONITOR

) MONITOR

system prompt
character (use
without an asterisk)

·Names the interpreter (APL, BASIC,
CPL, SNOBOL) for the language you
wish to use.

Specifies program statements
interpreter commands.

or

Returns control from the
interpreter to the system. The
monitor statement format varies
according to the language you use
as follows:

Language

BASIC, CPL

APL

SNOBOL

The following CPL program reads numbers from the batch control file,
calculates the square root of each number, and prints the result in
the log file:

@TYPE
10.
20.
30.
40.
50.
60.

TEST.CPL
DCL X FLOAT;
DO I = 1 TO 5;
GET LIST (X);
X = X**(1./2);
PUT SKIP LIST (X);
END;

This ·is the control file for the job that will run the program above:

@TYPE
00010
00020
00030
00040
00050

BATCH3.CTL
@CPL
*LOAD 'TEST.CPL' NUMBER 10
*XEQ
*256,4,64,65,9
*MONITOR

4-15

SUBMITTING A JOB FROM A TERMINAL

4.4.5 Using a System Program or utility (TOPS-20)

When using a system program or utility, place the following in your
control file:

@ name Names the system program or utility
you wish to run. If a compiled and
linked program (one with a .EXE
file extension/type) is stored in
your disk area, you may run it by
specifying:

*conunand

@ RUN name

Specifies
required)
program.

conunands
to be

or data
read by

(if
the

For example, the following illustrates a control file for a job that
uses the SORT/MERGE program:

@TYPE BATCH4.CTL
00010 @SORT
00020 *OUT.FIL=IN.FIL/RECORD:80/ALPHA/ASCII/KEY:7:10:A

. NOTE

TOPS-20:

A TOPS-20 system conunand (one of the conunands
discussed in the TOPS-20 Conunands Reference Manual,
such as COPY) differs from a system program or utility
in that you must precede input lines for a conunand
with an at sign (@) rather than an asterisk. (See
Section 2.2,LINE IDENTIFIERS, for details.)

4.4.6 Printing a File

You need not submit a print request to the batch input queue. You can
submit it directly to the print queue with the PRINT system conunand.
For example, typing the following conunand on a timesharing terminal
would produce a printout of the file TEST.FOR:

PRINT TEST.FOR

However, your batch job can also submit a print request to the batch
queue. For example, the following conunand, when placed in a batch
control file will print the file TEST.FOR:

@ PRINT TEST.FOR

Many switches are available for use with the print conunand.
them are described in Appendix B.

4-16

Some of

SUBMITTING A JOB FROM A TERMINAL

4.4.7 Suppressing Printing of the Log File

As a paper-saving measure, it is often desirable to suppress printing
of the log file. Accomplish this by using the following switch with
the SUBMIT command:

SUBMIT name/OUTPUT:NOLOG

The /OUTPUT:NOLOG switch suppresses printing of the log file. Since a
batch job submitted from a timesharing terminal always writes (by
default) a copy of the log file in your disk area, you can examine
that copy of the log file rather than the printed copy.

Alternatively, you may have the log file
occurs during execution of the job.
following switch with the SUBMIT command:

SUBMIT name/OUTPUT:ERRORS (TOPS-20)

SUBMIT name/OUTPUT:ERROR (TOPS-10)

printed only if an error
Accomplish this by using the

Again, whether the log file is printed or not, a copy of it is stored
in your disk area.

4-17

CHAPTER 5

SUBMITTING A JOB FROM CARDS

5.1 INTRODUCTION

A card job is one whose storage medium is generally a deck of
80-column cards. A file of card images on disk can also constitute a
card job. (For information on creating and submitting this type of
job, refer to Section 4.1.1, Submitting a Card Job from a Timesharing
Terminal.)

The CDRIVE program reads the cards that you submit to the card reader
and writes them on the disk. SPRINT, the input spooler, processes the
cards, creating a batch control file, then enters the job into the
batch input queue (or the print queue if it is a print job), where it
waits to be selected for processing. BATCON processes the job by
acting upon the statements contained in the batch control file.

Your control-card input to batch may contain any combination of
commands. These commands are in four groups as follows:

1. System commands, which consist of commands in a format
similar to what you would issue for the same command on a
timesharing terminal. Examples of these commands are COPY,
DEASSIGN, PRINT, and RENAME.

2. System program commands,
pertain to a system or
command to the FILCOM
compared.

which
user

program

consist of commands that
program. An example is the
to specify files to be

3. Batch commands, as described in Section 2.6.

4. Batch control-card commands, some of which are listed below:

$JOB card

$PASSWORD card

$EOJ card

identifies your project-programmer
number (TOPS-10) or user name (TOPS-20).

gives your password (not needed if
submitting a card job from the terminal
and the directory under which you are
logged in matches the directory on the
$JOB card) .

marks the end of the card deck.

This chapter describes SPRINT's activities, introduces the control
cards you use to control SPRINT, and explains how you can create
system independent jobs that will run under either TOPS-10 or TOPS-20.
Refer to sections 5.2, 5.3 and 5.4 for information on these topics.
Sample card jobs are provided at the end of the chapter.

5-1

SUBMITTING A JOB FROM CARDS

5.2 SPRINT

After CDRIVE reads your sequential input stream and places the card
images in a disk file, SPRINT separates the input into appropriate
files, according to the control cards that you supply. In this way,
SPRINT prepares your job for batch processing, but it does not
initiate any batch processing itself. This processing is done by the
batch controller.

SPRINT creates three types of files during its operations:

1. Files containing information that the batch controller passes
to the running job.

2. The batch control file.

3. The job's log file.

All three files are placed into the disk directory you specify with
the $JOB card.

The first type of file is either a data file or a source program.
SPRINT creates these files according to the control cards in the input
stream. The File Cards, described in the following section, are the
specific control cards that cause SPRI.NT to create and copy
information into these files. Commands in the batch control file
determine how the system acts upon programs and data.

The second type of file that SPRINT creates, a batch control file,
contains all the monitor, user, and batch controller commands from the
original card file. It also may hold some additional batch controller
and/or monitor commands that SPRINT entered as a result of its
operations. For example, when SPRINT reads the $GOTO command, it
places the GOTO batch command into the control file; $MACRO causes
SPRINT to insert the COMPILE monitor command into the control file.
This file is subsequently processed by the batch controller.

The t!iird type of file that SPRINT creates is a log file for the job.
Into this file goes a report of SPRINT's and BATCON's activities along
with a report of any operator intervention during processing of the
job. The log file is automatically printed unless you subnlitted the
job using the NOLOG or ERROR options with the /OUTPUT: switch. The
system usually deletes the log file after printing it. Chapter 6,
BATCH SYSTEM OUTPUT, further discusses the log file.

5.3 CONTROL CARDS

SPRINT enters commands into the control file when you use certain
control cards. You intersperse control cards through the input stream
to direct SPRINT in separating the input into the appropriate files.
The control cards contain a dollar sign ($) in column 1 and an
alphabetic character in column 2. The command must be followed by at
least one space, which can then be followed by other information.
These are the only cards that SPRINT reads and interprets; the
remainder of the input goes to a data file, a source program file, or
to the batch control file.

A batch job can do almost anything a timesharing job can do. If you
wish to perform complicated tasks, you may include system commands in
your.deck to direct batch to execute these tasks. Section 5.4
describes the way to include system commands for the desired control.

5-2

SUBMITTING A JOB FROM CARDS

The $JOB card, the $PASSWORD oard, and the $EOJ card are required for
all jobs. The $JOB card must be the first card in the deck and must
be immediately followed by the $PASSWORD card. The $EOJ card must be
the last card in the deck.

comments can also be included either on separate cards or on cards
containing other information. If the entire card is to contain a
comment, the card should contain a dollar sign ($) in column 1 and an
exclamation point (!) in column 2. The exclamation point (!) is
called the comment character. If the card contains a command followed
by a comment, only the exclamation point (!) should precede the
comment. If the comment is too long to be contained on a single card,
begin the next card with a dollar sign ($) in column 1 and the
exclamation point (!) in column 2 and then continue the comment.

Note that if you create your own batch control file at a terminal, you
bypass SPRINT and, therefore, cannot use control cards. Recall that
you can create a card job at the terminal, however, and submit that
file from the terminal using the SUBMIT command with the /READER
switch. (See Section 4.1.1 for information on the topic.)

5.3.1 File Cards

Of the control cards, the $CREATE, $DATA, $DECK (-10), $language
(without a filename specified), and $RELOCATABLE (-10) cards are also
referred to collectively as File Cards. The File Cards cause
subsequent cards up to the next control card to be placed into a disk
file.

The typical card deck includes a language card ($ALGOL, $COBOL, and so
forth) immediately prior to the source program. This language card
informs batch of the system program to be employed for processing
(compiling) the succeeding cards. The $DATA card likewise immediately
precedes the data cards to inform batch that the succeeding cards
contain data for the program. In both cases, the information is
stored (on a spooled card reader file) to establish program files and
data files. The $DATA card also causes batch to execute the program,
using the data cards as input. The $EOJ card informs batch that all
cards pertaining to the job have been entered. At this time batch has
access to the program to be compiled and the data to be used by the
program; it knows what compiler or assembler is to be used, and h~s
built a control file containing the EXECUTE command so that the
program will be run.

By using system commands and the $CREATE control card, you can process
any program that does not have special control cards. You put a
$CREATE card in front of a program, data, or any other group of cards
to make batch copy the cards into a disk file and, if you request, to
print the file on the line printer. You put the $TOPSIO/$TOPS20 card
in front of monitor and batch commands to cause batch to copy these
commands into the control file. The $ CREATE card and the
$TOPS10/$TOPS20 card are described in detail in Section 5.3.7

For example, a BASIC program does not have a specific control card.
To run a BASIC program under batch from cards, you can combine the
$CREATE card and the $TOPS10/$TOPS20 card with system commands. You
can also use a $CREATE card to copy the data which a BASIC program
will use. The $DATA card cannot be used, because the $DATA card puts
an EXECUTE command into the control file, and BASIC does not use the
EXECUTE command to run. The $TOPS10/$TOPS20 card causes batch to copy
the monitor commands into the control file.

5-3

SUBMITTING A JOB FROM CARDS

5.3.2 Abbreviations

You need specify only the first few letters of a command or switch
name; as long as the name is unique within its class, the system
accepts it. The first characters are generally sufficient to ensure
uniqueness. However, it is recommended that you completely spell out
command and switch names because future releases of the batch system
could introduce new commands or switches that conflict with your
abbreviations. As a result, many of your card decks could become
invalid.

5.3.3 Comments

You can use the system's
cards. The exclamation
beginning of a comment.

standard comment conventions on control
point (!) or semicolon (;) indicates the

The system treats all the characters following the exclamation point
or semicolon through the end of the card as a comment. While a
comment field cannot actually be continued, you can accomplish the
same effect by using an additional card that contains only the rest of
the comment.

Below is an example showing how you can use comments.

$DECK MYFILE.FOR !Beginning of source file

$EOD
$FORTRAN MYFILE.FOR
$!Begin compilation

iEnd of source file

5.3.4 Continuation of Operative Information

You may continue operative information from one control card to the
next by placing a hyphen as the last non-TAB, non-space character
before the end-of-card or before the beginning of a comment (if
present) . That is, the hyphen indicates continuation onto the next
card if it immediately precedes one of the following:

1. The end of the card.

2. A string of spaces and/or TABs followed by the end of card.

3. An exclamation point or semicolon followed by a comment.

4. A string of spaces and/or TABs followed by a comment.

The following two examples illustrate the
information, first without comments
respectively.

1. $DEC MYFILE.ONE/ASCII
/SUPPRESS

continuation of
and then with

2. $DECK MYFILE.ONE-!This is a comment
/ASCII/SUPPRESS

5-4

operative
comments,

SUBMITTING A JOB FROM CARDS

5.3.5 Parameter Defau1ts

All defaults for control card parameters are established during system
installation.

5.3.6 End-Of-Fi1e Card

When you submit your job from the card reader, you can use the
standard end-of-file card or the end-of-job control card ($EOJ) to
signal the end of the job. Columns 1 and 80 of the end-of-file card
have punches in rows 12, 11, 0, 1, 6, 7, 8, and 9, with rows 2, 3, 4,
and 5 blank. These punches are necessary only in column 1, but it is
suggested that you punch both columns 1 and 80 so that the card reader
will recognize the card in any orientation.

5.3.7 Contro1 Card Descriptions

This section lists and describes all of the control cards/SPRINT
commands in alphabetical order.

$ALGOL

$BACKTO

$BLISS

$CHKPNT

$ COBOL

NOTE

While processing the control file, SPRINT replaces the
dollar sign ($) that precedes the following SPRINT
commands with the system prompt character (. for
TOPS-10, @ for TOPS-20). By this conversion, these
SPRINT commands become batch commands capable of being
processed directly by the batch controller. Thus, for
instance, $ERROR and $NOERROR become the batch
commands .ERROR or @ERROR and .NOERROR or @NOERROR.
Refer to the corresponding batch commands in Section
2.6 for complete descriptions of these commands:

$BACKTO
$CHKPNT
$ ERROR
$GOTO

$ NOERROR
$NOOPERATOR
$OPERATOR
$OU.MP

$REQUEUE
$ REVIVE
$SILENCE

See the $language card description.

See the BACKTO batch command
Section 2.6. Refer also
beginning of this section.

description in
to NOTE at the

See the $language card description.

See the CHKPNT batch command
Section 2.6. Refer also
beginning of this section.

description in
to NOTE at the

See the $language card description.

5-5

SUBMITTING A JOB FROM CARDS

$CRRATE

Function

$CREATE is a File Card that directs the input spooler to copy all
cards following it into a data file on disk. If the appropriate
switcp is included, batch also prints this file on the line
printer.

Characteristics

The cards that you may use to terminate the copying vary
according to whether you use the /DOLLARS or the /NODOLLARS
switch. Refer to the brief switch descriptions below, or to
Appendix B for a more detailed explanation of the /DOLLARS and
/NODOLLARS switches.

By using the appropriate switches to the $ CREATE card you may
further direct the input spooler to send the newly created disk
file to any output queue.

The $CREATE card followed immediately by a $EOD or any other
appropriate terminator (depending upon your use of the /DOLLARS
or /NODOLLARS switch) will create a null file on disk.

Card Format

$CREATE dev:<directory>filename.ext /switch{es)

Where:

dev:

filename.ext

<directory>

switch (es)

is a device name that
system logical name.
is DSK:.

can be a
The default

is the user-assigned name and
extension/type of the file to be
created. If omitted, the filename
will be CR???? (where?
represents a character randomly
chosen by SPRINT to produce a
unique filename) On a TOPS-IO
system, SPRINT creates the file
DK???? if you omit the filename
with $DECK. (See the section,
Related Card, below.)

is a directory name, which may be
different from the one specified on
the $JOB card. If omitted, the
directory specified on the $JOB
card is used.

are switches that control the mode
of reading and interpreting of the
input stream and the placement of
the output (if desired) in the
appropriate output queue. All
available switches are described
below.

5-6

SUBMITTING A JOB FROM CARDS

Switches

The following is a brief description of the switches that you can
use on the $CREATE card. These switches are explained in detail
in Appendix B.

Switch

l026

/ASCII

/BCD

/BINARY (-10)

/CPUNCH

/DOLLARS

/NODOLLARS

/IMAGE:nn

/PLOT (-10)

/PRINT

/PROTECTION:nnn (-10)

Meaning

The card deck is read as 026 card
code.

The card deck is read as ASCII card
code.

This switch has exactly the same
effect as the /026 switch; that is,
the card deck is read as 026 card
code.

The card deck is read in
checksummed-binary card format.

The disk file created
$ CREATE card is placed
card punch output queue.

by the
into the

Only $JOB, $EOD, and $EOJ are
recognized as control cards. All
other cards with a dollar sign in
column 1 are treated as user data.

If a card has a dollar sign in
column 1, the contents of column 2
determine whether it is treated as
a SPRINT control card or user data.

The card deck is read in image
mode. The switch may be followed
by a decimal number in the range 2
through 80. Refer to Appendix B
for more complete information on
this switch.

The disk file created
$ CREATE card is placed
plotter output queue.

The disk file created
$ CREATE card is placed
line printer output queue.

by the
into the

by the
into the

The file being created is protected
according to the protection code
you specify with nnn (a 1- to
3-digit octal code) .

5-7

/SUPPRESS

/NOSUPPRESS

/TPUNCH

/WIDTH:nn

Related Card

$DECK

SUBMITTING A JOB FROM CARDS

When batch reads the cards in your
deck, it normally copies everything
on the card up to column 80 (or up
to any column you specify on the
/WIDTH switch). However if you do
not want trailing spaces copied (to
save space on the disk, for
example), you can tell batch, by
means of the /SUPPRESS switch, not
to copy any trailing spaces into
the disk file.

Trailing blanks are not suppressed.

The disk file created by the
$ CREATE card is placed into the
paper-tape punch output queue.

Only columns 1 through nn
(inclusive) of each card are read.
Specify nn as a decimal number.

$DECK performs the same function as $CREATE but is valid only
with TOPS-IO. It is recommended that you use the $CREATE card.

5-8

SUBMITTING A JOB FROM CARDS

$DATA

Function

$DATA is a File Card that causes SPRINT to copy the data deck
that follows it into a spooled card-reader file and to insert an
EXECUTE system command into the control file.

Characteristics

SPRINT maintains a list of filenames of all source or relocatable
programs that have been processed since the beginning of the job
or since the last $DATA or $EXECUTE card was read. Each time a
program is copied by SPRINT, its name is placed in the list.
When the $DATA card is read, SPRINT places an EXECUTE command
into the control file and copies the filenames of the programs
into the EXECUTE command string. When the next $language,
$ INCLUDE or $RELOCATABLE card is encountered, SPRINT clears the
list of filenames so that the next entries into the list reflect
only those· filenames copied since the last $DATA or $EXECUTE
command was read.

When the job is run, the programs are loaded and executed. No
compilation is performed because the programs are either in
relocatable binary form or were previously compiled because of
the $language card. If two $DATA cards appear in a row, the same
programs are reloaded and executed again.

When the program (comprised of the loaded programs) runs, it can
read the data deck by referencing the card reader. In FORTRAN,
the statement READ (2,F) refers to the card reader.

Card Format

$DATA /switch(es)

Where:

/switch (es)

Switches

are switches that control the mode
of reading and interpreting of the
input stream.

The following is a brie~ description of the switches that you can
use on the $DATA ~ard. These switches are explained in detail in
Appendix B.

Switch

/026

/ASCII

/BCD

/BINARY (-10)

Meaning

The card deck is read as 026 card code.

The card deck is read as ASCII card code.

This switch has exactly the same effect as
the /026 switch; that is, the card deck is
read as 026 card code.

The card deck is read in checksummed-binary
card format.

5-9

/DOLLARS

/NODOLLARS

/IMAGE:nn

/MAP

/NOMAP

/SUPPRESS

/NOSUPPRESS

/WIDTH:nn

SUBMITTING A JOB FROM CARDS

Only $JOB, $EOD, and $EOJ are recognized as
control cards. All other cards with a dollar
sign in column 1 are treated as user data.

If a card has a dollar sign in column 1, the
contents of column 2 determine whether it is
treated as a SPRINT control card or user
data.

The card deck is read in image mode. The
switch must be followed by a decimal number
in the range 2 through 80. Refer to Appendix
B for more complete information on this
switch.

A loader map will be generated and printed.

A loader map will not be generated.

When batch reads the cards containing your
data, it normally copies everything on the
card up to column 80 or up to any column you
specify on the /WIDTH switch. However, if
you do not want trailing spaces copied (to
save space on the disk, for example), you can
tell batch, by means of the /SUPPRESS switch,
not to copy any trailing spaces into the disk
file.

Trailing blanks are not suppressed.

Only columns 1 through nn (inclusive) of each
card are read. Specify nn as a decimal
number.

The defaults for all modes are reset by individual switches in
other control cards such as in the $CREATE card and $JOB card.

Restrictions

This card can be used only when the programs in the job have been
entered with a $language, $ INCLUDE, or $RELOCATABLE card, since
SPRINT maintains a list of the filenames of programs that are
input with these commands. If you wish only to have the programs
compiled, no $DATA or $EXECUTE card or EXECUTE command should
appear in the job.

5-10

SUBMITTING A JOB FROM CARDS

$DECK (-10)

Comment

$DECK has exactly the same function, characteristics, format, and
switches as the $ CREATE card. It is valid only with TOPS-10,
however. It is recommended that you use the $CREATE card.

$DUMP

Function

See the DUMP batch command description in Section 2.6.
also to NOTE at the beginning of this section.

Card Format

$ DUMP

5-11

Refer

SUBMITTING A JOB FROM CARDS

$EOD

Function

The $EOD card terminates the input that is preceded by a File
Card and that is being copied to a disk data file by SPRINT.
Refer to Section 5.3.1 for information on File Cards.

Card Format

$EOD

Comment

$EOJ

If the $EOD card does not follow the card input that was preceded
by a $CREATE card, batch recognizes the next card with a dollar
sign ($) in column one as a new batch command and as the end of
the card input; that is, an EOD card is assumed if one is not
present.

If SPRINT is not copying input and it encounters $EOD, it simply
ignores the card.

Function

The $EOJ card is the last card in a job deck; it terminates the
job. If you omit the $EOJ card, an error message is issued.
However, your job is still scheduled and may be processed if
another job follows it.

Card Format

$EOJ

Related Card

Standard end-of-file card

The standard end-of-file card has the same function as $EOJ; $EOJ
is recommended when running a job from a remote batch station,
however.

$ERROR

$NOERROR

See descriptions for the
NOERROR) in Section 2.6.
this section.

corresponding batch commands (ERROR,
Refer also to NOTE at the beginning of

'5-12

SUBMITTING A JOB FROM CARDS

$ EXECUTE

Function

The $EXECUTE card causes SPRINT to insert an EXECUTE system
command into the control file. This card is used when the
program requires no data or uses data already existing on disk.

Card Format

EXECUTE/switch

Where:

/switch

Switches

Switch

/MAP

/NOMAP

Related Card

$ DATA

is a switch indicating whether a loader map is to
be generated.

Meaning

A loader map will be generated and printed.

A loader map will not be generated. /NOMAP is
the default.

$EXECUTE performs the same function as $DATA; however, no data
deck follows $EXECUTE. Use $EXECUTE when there is no data or
when the data file already exists on disk (for example, through
the previous use of the $CREATE card) .

The files to be placed in the EXECUTE command string are
determined for $DATA in the same way as they are for $EXECUTE.

Comment

An $EXECUTE card following another $EXECUTE card in the control
file without intervening $language cards causes the program
executed by the first EXECUTE card to be loaded and executed
again.

5-13

SUBMITTING A JOB FROM CARDS

$FORTRAN

See the $language card description.

$GOTO

$IF

See the GOTO batch command description in Section 2.6.
also to NOTE at beginning of this section.

Refer

Comment

with $IF, SPRINT substitutes the appropriate system prompt
character for the dollar sign ($), making a batch command out of
the $IF SPRINT command. The function, characteristics, and
format are identical for $IF and the IF batch command, with the
exception noted below. Refer to Section 2.6, BATCH COMMANDS, for
details on IF.

$IF allows an option for the statement parameter that is not
available with the IF batch command. $IF permits you to specify
another SPRINT command, such as $GOTO, for the statement
parameter. This feature is useful for handling error and
nonerror conditions on a system independent basis. (Refer to
Section 5.4.2.1, $IF and System Independent Processing, for
further information.)

5-14

SUBMITTING A JOB FROM CARDS

$ INCLUDE

Function

The $INCLUDE card causes a relocatable binary file (.REL) that
already exists on disk to be loaded with your program.

Characteristics

A file specified on a $INCLUDE card is added to the list of
filenames remembered by SPRINT and included in the EXECUTE
command string generated by a $DATA or by a $EXECUTE card.

Card Format

$INCLUDE dev:<directory>filename.ext [/SEARCH]

Where:

dev:

filename. ext

<directory>

ISEARCH

Restrictions

is the name of the file structure that
contains the file to be loaded. If dev:
is omitted, DSK: is assumed.

is the name of the file to be loaded. The
extension is normally .REL. If the
filename is omitted, an error message is
issued and the job is terminated.

is a directory name, which may be different
from that specified on the $JOB card. If
omitted, the directory name on the $JOB
card is used.

indicates that the file will be
library search mode. This
optional.

loaded in
switch is

The file specified on the $INCLUDE card must be a relocatable
binary file and must already exist on a mounted disk.

You can name only one file per $INCLUDE card.

5-15

SUBMITTING A JOB FROM CARDS

$ JOB

Function

The $JOB card is the first card in your card deck. The $JOB
card, in conjunction with the $PASSWORD card, causes SPRINT to
create a control file in your disk area into which commands are
placed for the batch controller. It also causes SPRINT to create
a log file in the same area of the disk.

TOPS-IO Card Format

$JOB name [directory] /switch(es)

Where:

name

[directory]

/switch (es)

TOPS-20 Card Format

$JOB directory/switch(es)

is the user-assigned name for the
job; if omitted, SPRINT creates the
unique name JBxxxx (where x
represents characters randomly
chosen by SPRINT to produce a
unique name) .

SPRINT assigns the jobname to the
control and log files and appends
the extensions .CTL and .LOG to
them, respectively.

is your project-programmer number.
This argument is required. A space
or comma can separate this argument
from the job-name.

You may
designation
number in
example:

specify a wildcard
(#) for the programmer

the $JOB card; for

$JOB FLEX[4,#] or
$JOB FLEX<4,#>

SPRINT checks to determine if
wildcard programmer numbers are
permissible for the specified
project. If they are, then SPRINT
creates a unique programmer number.
If they are not allowed, SPRINT
issues an error message and the job
is terminated.

are optional switches to batch to
tell it the constraints that you
have placed on your job. They are
described below.

.5-16

SUBMITTING A JOB F~~ CARDS

Where:

directory

/switch(es)

Switches

is your assigned user name. This
field can contain from 1 to 39
alphanumeric and special
characters. This argument is
required. The user-name cannot be
a files-only directory; it must be
a directory that can be logged
into.

are switches from the following
group. These switches are
optional.

The following is a brief description of the switches that you can
use on the $JOB card. These switches are explained in detail in
Appendix B.

Switch·

/ACCOUNT:name

/AFTER:date-time

/AFTER:+hh:mm

/ASSISTANCE:arg

/BATCH-LOG:arg (-20)
/BATLOG:arg (-10)

/eARDS :nn

/CORE :nnK (-10)
/CORE:nnP (-10)

Meaning

The job's CPU time will be charged to
the account specified.

The .job cannot be run until after the
specified date and time. The date and
time are specified in the form
dd-mm-yy hh:mm (for example, 16-APR-ff8
17:15). If you omit this switch,
batch schedules your job based on the
time required and other parameters.

The job cannot be run until after the
time the card deck is read in plus the
amount of time specified. The amount
of time that the job must wait after
it has been entered is specified in
the form +hh:mm (for example,+1:30).

This switch specifies whether the job
The needs operator assistance.

argument is YES or NO.

The log file is written according to
the arguments you specify with this
switch: APPEND causes the log file to
be appended to an existing log file of
the same name; SPOOL causes the file
to be written to the system spooling
area; SUPERSEDE causes the log file to
overwrite another log file of the same
name.

The job can punch a maximum of nn
cards (up to 10,000 in decimal)

The job can use a maximum
words (decimal) or nn pages of
up to the maximum allowed
installation. The default is
32K or 64P.

5-17

of nnK
memory

at your
usually

SUBMITTING A JOB FROM CARDS

/DEPEND:nn

/FEET:nn

/JOBNAME:name

/LOCATE:name/number

/LOGDISP:arg

/NAME:name (-10)

/OUTPUT:arg

This switch specifies the initial
interjob dependency count (in decimal)
for the job. Refer to Section 3.5,
SUBMITTING RELATED JOBS, for details
on this switch.

The job can punch a maximum of nn
(decimal) feet of paper tape.

This switch assigns a 1- to
6-character name to the job. with
TOPS-la, using this switch has the
same effect as specifying the job name
in the name field of the $JOB card.
If you omit this switch, batch creates
a new name for your job. The name
created by batch is assigned to both
your control file and your log file.
Batch adds the file type .CTL to the
control file and the type .LOG to the
log file.

This switch specifies the network node
to whose line printer the job's output
is to be sent. Enter the remote
station name or, on TOPS-la, the
station number (in octal) .

This switch specifies the disposition
of the LOG file after the batch job
has been processed. The arguments are
DELETE (default), PRESERVE, and KEEP.
Note that KEEP and PRESERVE are
identical.

This switch specifies the user's name,
which can be up to 12 characters.
Enclose 'name' in quotes if 'name'
contains any blank characters. This
switch is optional unless your
installation requires the user's name
in addition to the project-programmer
number and password when you log in.

This switch determines whether or not
the log file is printed. The
arguments are: ALWAYS (print the
file), LOG (same as ALWAYS), NOLOG
(suppress printing), and ERROR
(TOPS-10)/ERRORS (TOPS-20) (print only
if an error occurs). ALWAYS or LOG is
the default.

5-18

SUBMITTING A JOB FROM CARDS

/PAGES:nn

/PPN: [p,pn] (-10)

/PRIORITY:nn

/RE S TART

/NORESTART

/SEQUENCE:nn

The job can print a maximum of nn
pages (in decimal). The default limit
is 200 pages; however, the system
administrator may change this value at
batch system generation time. If you
need more than 200 pages for your job,
you must include the /PAGES switch on
the $ JOB card to indicate the
approximate number of pages that your
job will print. If your output
exceeds either the maximum that batch
allows or the number that you
specified in the /PAGES switch, the
excess output will not be printed and
the message ?LPTPLE PAGE LIMIT
EXCEEDED will be written in the log
file. However, even if you exceed the
maximum, the first 10 pages of the log
file will be printed.

NOTE

Do not arbitrarily enter a
large PAGES value as this may
delay execution of your batch
job.

This switch specifies the TOPS-10
project-programmer number under which
the job will run. System-independent
jobs require this switch. (Refer to
Section 5.4, SYSTEM-INDEPENDENT JOBS.)

This switch assigns the job a priority
value (external priority) that
determines when the job will run
relative to other jobs in the specific
queue. The values you can specify for
nn range from 1 to 20 in decimal. See
Appendix B for more information on
this switch.

This switch specifies that the job may
be restarted after a system failure.

This switch specifies that the job may
not be restarted after a system
failure.

This switch allows you to specify an
identifying decimal number for the job
to distinguish it from others in the
input queue. If you omit this switch,
the system assigns a "sequence" number
to the job. The system also assigns a
request id number to jobs. It is
recommended that you use the request
id number when modifying or killing
jobs with duplicate names.

5-19

Comment

SUBMITTING A JOB FROM CARDS

/TIME:hh:mm:ss

/TPLOT:mm

/UNIQUE:arg

/USER:USERNAME(-20)

This switch sets specific limits upon
the amount of CPU time the job can
use. Normally, batch allows your job
to use up to five minutes of central
processor (CPU) time. CPU time is the
amount of time that your job runs in
memory, not the amount of time that it
takes batch to process your job. If
you need more than five minutes of CPU
time, you must include the /TIME
switch on the $JOB card to indicate
the approximate amount of time that
you will need. If you do not specify
enough time, batch terminates your job
when the time is up. However, if you
specify a large amount of time, batch
may hold your job in the queue until
it can schedule a large amount of time
for it.

The value in the /TIME switch is given
in the form hh:mm:ss
(hours:minutes:seconds) . If you
specify only one number, batch assumes
that you mean minutes. Two numbers
separated by a colon (:) are assumed
to mean hours and minutes. All three
numbers, separated by colons mean
hours, minutes, and seconds.

This switch specifies the maximum
amount of plotter time that the job
can use (in minutes) .

This switch specifies how jobs are to
be protected from the effects of other
batch jobs running in the same
directory. An argument of 0 or NO
means no protection; 1 or YES (the
default) means only one batch job at a
time is to be run, and 2 means that
the job is to be run in a unique SFD.
This last argument is valid only for
TOPS-IO systems.

This switch specifies the TOPS-20 user
directory under which the job will
run. System-independent jobs requ~re
this switch. (Refer to Section 5.4,
SYSTEM-INDEPENDENT JOBS.)

SPRINT assumes that the $JOB card is punched in the system
standard card code (usually ASCII); however, if SPRINT cannot
read the card correctly, it will then assume a card code of 026.
The default mode for the entire job is based upon one of the two
codes that produced a successful read of $JOB.

5-20

SUBMITTING A JOB FROM CARDS

$ LABEL

Function

The $LABEL card causes SPRINT to insert a label in the control
file.

Card Format

$LABEL label

Where:

label is a 1- to 6-character label as defined in Section
2.3.

Comment

Control cards such as $BACKTO and $CHKPNT can reference the label
supplied on this card.

5-21

SUBMITTING A JOB FROM CARDS

$ language

FWlction

The $language cards direct the input spooler to compile your
programs using the specified language processor.

Characteristics

From the table below, you can see that there is a $language card
for many of the language processors and interpreters supported by
your operating system. Also, note the particular extensions that
these translators expect of the files they process.

Card Name

Default
Filename
Extension/Type

$ALGOL
$BLISS
$COBOL
$ FORTRAN
$ MACRO
$SIMULA
$SNOBOL

.ALG

.BLI

.CBL

.FOR

. MAC

.SIM

.SNO

The following description applies to all the $language cards; you
need only substitute the name of the language desired (from the
above list) immediately after the dollar sign.

The $language card can be used with two different
conditions:

input

1. The source code immediately follows the $language card and
the $ language card does not specify a filename. In this
case, the $language card directs the input spooler to copy
the program onto disk, assign the program a unique filename
of the form LN???? with the appropriate filename extension
or type (shown in the above table), and insert a COMPILE
system command into the control file. The cards that you may
use to terminate copying of the program vary according to
whether you use the /DOLLARS or the /NODOLLARS switch.
(Refer to the brief switch descriptions below, or to Appendix

B for a more detailed explanation of these two switches.) The
source and object files will be deleted upon logout.

2. The source code of the program is already on disk and the
$language card specifies a filename. In this case, the
$language card directs the input spooler to insert a COMPILE
system command into the control file.

NOTE

A $language card specifying a filename,
followed by a deck containing the source
code, will cause an error message to be
issued.

5-22

SUBMITTING A JOB FROM CARDS

The $language card does not cause automatic execution of the
program after translation of the source code. Execution is
initiated by an EXECUTE system command or by a $DATA or a
$EXECUTE card. The $SNOBOL card is an exception. It is the only
$language card that is not used in conjunction with a $DATA or
$EXECUTE card to generate an EXECUTE command. The $SNOBOL card
itself initiates both compilation and execution.

TOPS-IO Card Format

If the source deck follows the $language card, the format of the
card is:

$language dev: [directory] (processor switches)/switch(es)

If the source code already exists on disk, the format of the card
is:

I I/LIST I
$language dev:filename.ext[directory] (processor switches) II/NOLIST I

Where:

dev:

filename.ext

[directory]

(processor switches)

/switch(es)

is the name of the file structure
that contains the program to be
compiled if the program is already
on disk. Otherwise, this is the
name of the file structure onto
which the program is copied. If
dev: is omitted, DSK: is assumed.

is the name of the file to be
compiled. The filename is
specified only when the file is
already on disk. If a filename is
specified and there is a card deck
to follow the $language card, an
error message will be issued.

is a project-programmer number,
which may be different from that
specified on the $ JOB card.
Directory specifications may also
be enclosed in angle brackets
« » .

are the switches to be passed to
the compiler. (Refer to
appropriate language manual and to
the COMPILE command for a
description of the processor
switches) . They must be enclosed
in parentheses and the slash (/)
must not appear in connection with
these switches.

are the switches that control the
mode of input interpretation and
the listing of the compiled
program. The only switch available
when the program is already on disk
is either the /LIST or the /NOLIST
switch.

5-23

SUBMITTING A JOB FROM CARDS

TOPS-20 Card Format

If the source deck follows the $language card the format of the
card is:

$language/switch(es)

If the source code is available from another device and if only
compilation is desired, the format of the card is:

$language dev:<directory>name.typ II/LIST I
II/NOLIST I

Where:

dev:

name.typ

<directory>

/switch (es)

Switches

is the name of the device that
contains the program to be
compiled. If dev: is omitted,
DSK: is assumed.

is the name of the file to be
compiled. Specify the name only
when the file already exists. If
you specify a filename when a card
deck follows the $language card,
the system issues an error message.

is a directory name
different from that
the $JOB card.

that may be'
specified on

are the switches that control the
mode of input interpretation and
the listing of the compiled
program. The only switch available
when the program is already on disk
is either the /LIST or the /NOLIST
switch.

The following is a brief description of the switches that you can
use with the $language cards. These switches are explained in
detail in Appendix B. Each of the $language cards can contain
any of the following switches, except in the case of the /CREF
switch which can be used only with the $FORTRAN and $MACRO cards.

Switch

/026

/ASCII

/BCD

/CREF

Meaning

The card deck is read as 026 card code.

The card deck is read as ASCII card code.

This switch has exactly the same effect as
the /026 switch; that is, the card deck is
read as 026 card code.

A cross-referenced listing is created by the
CREF program. This switch is available only
on the $FORTRAN and $MACRO cards.

,5-24

/DOLLARS

/NODOLLARS

/LIST

/NOLIST

/SUPPRESS

/NOSUPPRESS

/WIDTH:nn

SUBMITTING A JOB FROM CARDS

Only $JOB, $EOD, and $EOJ are recognized as
control cards. All other cards with a dollar
sign in column 1 are treated as user data.

If a card has a dollar sign in column 1, the
contents of column 2 determine whether it is
treated as a SPRINT control card or as user
data.

A compilation listing will be generated.
/LIST is the default.

Normally, the $language card tells batch to
ask the compiler to generate a compilation
listing of your source program. The listing
is then printed as part of your job's output.
If you do not want this listing, you can
include the /NOLIST switch on the $language
card to stop generation of the listing.

When batch reads the cards containing your
source program, it normally copies everything
on the card up to column 80 or any column you
may specify in the /WIDTH switch. However,
if you do not want trailing spaces copied (to
save space on the disk, for example), you can
tell batch, by means of the /SUPPRESS switch,
not to copy any trailing spaces into the disk
file.

Trailing blanks are not suppressed.
/NOSUPPRESS is the default.

Only columns 1 through nn (inclusive) of each
card are read. Specify nn as a decimal
number.

5-25

SUBMITTING A JOB FROM CARDS

$MACRO

See the $language card description.

$MESSAGE

FWlction

The $MESSAGE card causes the supplied text to be output to the
system operator's terminal at the time the job is run.

Card Format

$MESSAGE/switch text

Where:

/switch

text

Switches

Switch

/WAIT

/NOWAIT

$ OPERATOR

$NOOPERATOR

is a switch indicating whether operator
is required. The switch is optional
present, must immediately follow the
($MESSAGE) . Otherwise, an error message
issued and the job will be terminated.

is the message to be output to the
operator.

Meaning

response
but, if
command
will be

system

The job will wait for a response from the operator
before resuming its processing.

The job will continue after typing the message
without waiting for a response from the operator.
This is the default.

See descriptions for the corresponding batch commands (OPERATOR,
NOOPERATOR) in Section 2.6. Refer also to NOTE at beginning of
this section.

5-26

SUBMITTING A JOB FROM CARDS

$PASSWORD

Function

The $PASSWORD card helps ensure that an unauthorized person does
not have access to the system.

Characteristics

This card contains the password associated with the
project-programmer number specified on the $JOB card. If the
password does not match the password stored in the system for the
specified project-programmer number, SPRINT does not create any
files, issues an error message to the log file, and terminates
the job.

NOTE

The $PASSWORD card is not required if you are
submitting a card job from the terminal and the
directory you specified on the $JOB card matches the
directory under which you are logged in. (Refer to
Section 4.1.1 for details.)

Card Format

$PASSWORD password

Where:

password is a 1- to 39-character password

NOTE

There must be exactly one space between the end of the
card name ($PASSWORD) and the first character of the
password.

Requirements

If you use the $PASSWORD card, it must immediately follow the
$JOB card.

5-27

SUBMITTING A JOB FROM CARDS

$RELOCATABLE (-10)

Function

$RELOCATABLE is a File Card that causes SPRINT to copy a
relocatable binary program from cards to a file in y.our disk
area. The cards are read in binary mode.

Characteristics

Files created by a $RELOCATABLE card are added to the list of
files maintained by SPRINT to be included in the EXECUTE command
generated by a $DATA or $EXECUTE card.

Card Format

$RELOCATABLE filename.ext

Where:

filename.ext

Restrictions

is the name of the file into which the
binary data is copied. If you omit the
filename, SPRINT creates the filename
RL???? (where? represents a character
arbitrarily chosen by SPRINT to produce a
unique filename) . If you omit the
extension, .REL is assumed.

Relocatable binary programs can be read only when the input is
from cards.

Related Card

$CREATE/BINARY

The $CREATE card with the /BINARY switch is similar to the
$RELOCATABLE card in that it causes SPRINT to copy the binary
card deck that follows it to a disk file. However, there is an
important difference between the two cards. All files created by
a $RELOCATABLE card are added to the list of files maintained by
SPRINT to be included in the EXECUTE command generated by a $DATA
or $EXECUTE card. A file created by $ CREATE with the /BINARY
switch is not included unless there is a $INCLUDE card for the
file.

$ REQUEUE

$ REVIVE

See descriptions for the corresponding batch commands (REQUEUE,
REVIVE) in Section 2.6. Refer also to NOTE at the beginning of
this section.

5-28

SUBMITTING A JOB FROM CARDS

$ SEQUENCE

Function

The $SEQUENCE card specifies a unique number (sequence number)
for the job that helps distinguish it from other jobs within the
queues. If you omit this card, the system assigns a sequence
number to the job. This number is useful when modifying or
killing jobs to which you have assigned duplicate names. (Give
the number as an argument to the /SEQUENCE switch, and include
this switch on the modify or kill command line. Refer to Chapter
3, JOB CONTROL, for details on modify and kill commands.)

Card Format

NOTE

You may place the $SEQUENCE card anywhere in the
deck between the $PASSWORD and $EOJ cards. It is
not allowed in the first card position.

Also, you cannot use this card to terminate decks
to be copied to disk with the /DOLLARS switch in
effect.

$SEQUENCE n

Where: n is a decimal number

Related Items

1. Request ID Number

The system also assigns a unique request id number to every
job you submit to a queue. It is recommended that you use
the request id number rather than the sequence number when
modifying or killing jobs with duplicate names.

2. $JOB/SEQUENCE:nn

The $JOB card with the /SEQUENCE switch performs the same
function as the $SEQUENCE card.

$ SILENCE

See the SILENCE batch command description in Section 2.6.
also to NOTE at the beginning of this section.

$SIMULA

$ SNOBOL

See the $language card description.

5-29

Refer

$TOPS

$TOPSIO

$TOPS20

Function

SUBMITTING A JOB FROM CARDS

The $TOPS, $TOPSIO, and $TOPS20 cards direct the input spooler to
copy all cards following them into the batch control file. The
copying process is terminated by the next control card in the
deck. .

Characteristics

The cards following a $TOPS, $TOPSIO, or $TOPS20 card are
expected to contain batch, system, user, or system program
commands. These cards will not be processed by SPRINT. The
cards that you may use to terminate the copying of these commands
vary according to whether you specify the /DOLLARS or the
/NODOLLARS switch. Refer to the brief switch descriptions below,
or to Appendix B, for a more-detailed explanation of these two
switches.

As discussed in Section 5.4, SYSTEM-INDEPENDENT JOBS, all three
of these cards are valid for systems running TOPS-IO and TOPS-20.
However, the commands associated with $TOPSIO and $TOPS20 are
copied to the batch control file on a system dependent basis.
For instance, on a system running TOPS~20, the cards following
$TOPS20 are copied to the file. On a system running TOPS-IO the
cards following $TOPS-20 are ignored.

The $TOPS card is a system-independent version of $TOPSIO and
$TOPS20; that is, the cards following $TOPS are copied to the
batch control file whether or not you are on a TOPS-IO or TOPS-20
system. Use $TOPS for commands in a system-independent job that
you want to include for both TOPS-IO and TOPS-20. For example,
instead of writing your card file as:

$TOPSIO
. DAYTIME
.SYSTAT
. DIRECT
$EOD
$TOPS20
@DAYTIME
@SYSTAT
@DIRECT
$EOD

write:

$TOPS
DAYTIME
SYSTAT
DIRECT
$EOD

In this way, you can use one set of commands to accomplish the
same tasks on both systems.

Section 5.4 further discusses these three commands.

5-30

SUBMITTING A JOB FROM CARDS

NOTE

A single system or batch command or a group of
consecutive system and/or batch commands must be
preceded by a $TOPSI0 or $TOPS20 card and
followed by the appropriate terminating card. If
such commands are placed into the SPRINT input
stream but are not properly delimited, an error
message will be issued.

Card Format

$TOPS
or
$TOPSI0
or
$TOPS20

/switch(es)

/switch(es)

Switches

Switches that control the modes
which the input is read
interpreted.

in
and

The following is a brief description of the switches that you can
use on the $TOPS, $TOPSI0, or $TOPS20 card. These switches are
explained in detail in Appendix B.

Switch

/026

/ASCII

/BCD

/DOLLARS

/NODOLLARS

/SUPPRESS

/NOSUPPRESS

/WIDTH:nn

Meaning

The card deck is read as 026 card code.

The card deck is read as ASCII card code.

This switch has exactly the same effect as
the /026 switch; that is, the card deck is
read as 026 card code.

Only $JOB, $EOD, and $EOJ are recognized as
control cards. All other cards with a dollar
sign in column 1 are treated as user data.

If a card has a dollar sign in column 1, the
contents of column 2 determine whether it is
treated as a SPRINT control card or user
data.

Trailing blanks are suppressed.

Trailing blanks are not suppressed.

Only columns 1 through nn (inclusive) of each
card are read. Specify nn as a decimal
number.

5-31

SUBMITTING A JOB FROM CARDS

5.4 SYSTEM-INDEPENDENT JOBS

SPRINT can process certain card jobs under either the TOPS-10 or the
TOPS-20 operating system. Such jobs are system independent.

You might want to create a system-independent job if you have access
to both a TOPS-10 and a TOPS-20 system and you run a job on one system
that is very similar to a job you run on the other system.

Such jobs usually vary only to compensate for operating system
differences and are likely to exist where a particular application
runs on both systems. For example, the collection of system
accounting information is the kind of application that could be common
to both systems. In these cases, SPRINT's system-independent
capabilities allow you to coordinate the two jobs accomplishing the
tasks for the application. That is, all the SPRINT and batch commands
for both jobs can reside in one file, with those commands pertaining
to a specific operating system being executed only when the job is run
under that system.

The only system commands that you cannot use in a batch job are ATTACH
and SET TIME-LIMIT. Batch sends these commands to the EXEC, the EXEC
issues an error, and batch detects the error and terminates your job.
Also, you cannot use the LOGIN command in your batch job because you
will get an error that will terminate your job. Batch logs in your
job in accordance with your $JOB and $PASSWORD cards.

5.4.1 Creating a System-Independent Job

You create a system-independent job much like you create any other
card job. The major difference lies in the $JOB card: with
system-independent jobs you must specify both the /USER: and /PPN:
switches. These switches are to immediately follow $JOB on the $JOB
card as follows:

$JOB /USER:TUCKER/PPN: [27,13]/JOBNAME:SAMPLE

Observe that the /USER: switch replaces the user-name parameter you
are accustomed to putting on the $JOB card for TOPS-20
system-dependent jobs. /PPN: replaces the $JOB [proj,prog] parameter
you use for TOPS-10 system-dependent jobs. Also regarding TOPS-10,
the $JOB "name" parameter, valid on a system-dependent job, is
inappropriate for a system-independent job. Use the /JOBNAME: switch
to name a system-independent job as shown above.

The password appearing on the $PASSWORD card must equal the
corresponding to both your user name under TOPS-20
project-programmer number under TOPS-10. This means
passwords on the two systems must be identical.

password
and your

that the

Lastly, include in the one job both the $TOPS10 and $TOPS20 cards
along with all their subsequent data cards. Or you can use $TOPS.

5-32

SUBMITTING A JOB FROM CARDS

The following shows a sample system-independent job.

$JOB IUSER:TEST/pPN: [27,1531]/JOBNAME:TOPSXX
$PASSWORD 'rEN20
$!
$! This control file can be run with either TOPS-IO or TOPS-20.
$! The file lists itself then executes several monitor commands: it
$! performs the COPY, SYSTAT, and DIRECT commands.
$! All SPRINT commands are executed with both operating systems.
$!
$ NOERROR
$SILENCE
$TOPS20 !!!!!!!Start of TOPS-20 commands!!!!!!!
$!Executed under TOPS-20 only:
@COPY TOPSXX.CTL (TO) LPT:
@SYSTAT LPT
@DIRECT ,
@LPT
@
!End of TOPS-20 commands.
$EOD
$!
$TOPSIO !! !!!!!Start of TOPS-IO commands!!!!!!!
!executed under TOPS-IO only:
.COPY LPT:=TOPSXX.CTL
.SYSTAT/L
.DIRECT/L
!End of TOPS-IO commands.
$EOD
$EOJ

5.4.2 System-Independent Processing

As with other card jobs, SPRINT converts system-independent card jobs
to batch control files.

SPRINT determines that a card job is system-independent if the first
non-blank character after $JOB on the $JOB card is a slash (I). In
processing system-independent jobs, SPRINT conditionally translates
the cards following a $TOPSIO or $TOPS20 card on a system-dependent
basis. That is, the cards between a $TOPSIO card and the terminator
are translated on a TOPS-IO system; these cards are ignored on a
TOPS-20 system. Similarly, cards between the $TOPS20 card and the
terminator are translated only on a TOPS-20 system. By this action,
any command preceded by the system prompt character is read by the
appropriate system. Recall that the cards following a $TOPSlO or
$TOPS20 card contain such commands.

Cards following the $TOPS card are translated on both a TOPS-IO and a
TOPS-20 system.

The SPRINT commands are the same
requiring no special processing.
both systems, is treated uniquely.
$IF.

for both operating systems, thus
$IF, however, although the same for

The following section discusses

SPRINT chooses the directory for a system-independent job according to
the IUSER: and /PPN: switches you specify on the $JOB card. When
the job is run under TOPS-20, SPRINT refers to the IUSER: switch to
determine the directory; with TOPS-lO, SPRINT refers to the /PPN:
switch.

5-33

SUBMITTING A JOB FROM CARDS

5.4.2.1 $IF and System-Independent Processing - In processing a job,
SPRINT examines the first character after the right parenthesis of the
(condition) parameter on the $IF card. If this character is a dollar
sign ($), denoting a SPRINT command as the statement parameter, SPRINT
translates the dollar sign to the appropriate system prompt character,
creating an executable batch command from the SPRINT command. (Recall
from the NOTE at the beginning of Section 5.3.7, Control Card
Descriptions, that many SPRINT commands are convertible to batch
commands. In fact, all of the batch commands have their equivalents
among these convertible SPRINT commands.)

This method of handling the $IF card allows you to test for error and
nonerror conditions and to act upon those conditions on a
system-independent basis. You can do this in those instances where
you would specify a batch command for the statement parameter. For
example, the card:

$IF (ERROR) $GOTO END

causes processing to resume at the END label, whether an error occurs
on a TOPS-I0 system or a TOPS-20 system.

Use the IF batch command instead of $IF in those cases that require a
system or user program command for the statement parameter. Also, use
the IF command if you do not wish a particular IF statement to apply
for runs of the job under both operating systems.

5.5 SAMPLE JOBS

The following sample jobs illustrate the versatility of the batch
system. They show how to compile and run programs, list card decks on
the printer, and so forth.

Unless specified, the examples apply to both TOPS-I0 and TOPS-20. You
may have to change the monitor prompt character or a system command to
make an example fit your operating system. More important, however,
the sequence of card types you need to perform various system
functions is identical for the two systems. The following examples
are intended to provide these sequences.

5.5.1 Listing Cards on a Line Printer

METHOD 1

The following example shows the cards you need to list cards on a line
printer using method 1.

The $CREATE card creates a disk file in your directory with the
specified name and filename extension/type. All following data cards
are read into the file and the file is submitted to the print queue.
The .LST extension/type causes the file to be deleted after it has
been printed.

5-34

SUBMITTING A JOB FROM CARDS

The $EOD card is optional.

$ JOB
$PASSWORD
$CREATE name.LST/PRINT
data cards
$EOD
$EOJ

The extension .LST causes the file to be deleted after printing.

METHOD 2

This example shows the cards you need to list cards on a line printer
using method 2.

The $TOPS-20 card causes the batch controller to interpret all cards
up to the next control card as system commands.

The @PRINT card submits the previously created disk file to the" print
queue. The file is deleted after it is printed.

$ JOB
$PASSWORD
$CREATE filename
data cards
$EOD
$TOPS20
@PRINT filename/DELETE
$EOJ

5.5.2 Producing a MACRO CREF Listing

The following example shows how to produce a CREF listing of a MACRO
deck whether or not errors occur in the program.

$JOB
$PASSWORD
$MACRO/CREF
MACRO deck

$EOJ

5-35

SUBMITTING A JOB FROM CARDS

5.5.3 Using Error Processing Commands

The following example shows how to use the IF batch command to create
a CREF listing if no error occurs during a MACRO compilation.

$JOB
$PASSWORD
$CREATE TRIALI.MAC
MACRO deck

$MACRO TRIALI.MAC/CREF
$TOPSIO
.IF (NOERROR) .GOTO B
.GOTO A
B:: .CREF
A:: !HERE TO SKIP CREF
$EOJ

5.5.4 Creating a Comp1ex Card Job

The following example illustrates a MACRO assembly, two FORTRAN
compilations, the loading and execution of all three programs as a
single module, and shows how to enter monitor commands along with the
programs and the SPRINT control cards.

$JOB
$PASSWORD
$MACRO/CREF
MACRO source program

$FORTRAN
FORTRAN source program

$ FORTRAN
FORTRAN source program

$EXECUTE
$TOPSIO
.R BASIC
*NEW
BASIC source program

* RUN
*MONITOR
$EOJ

5-36

SUBMITTING A JOB FROM CARDS

5.5.5 Loading a FORTRAN Program with. a System Library

The following example shows how to load a FORTRAN program with a
system library. The $FORTRAN card causes the FORTRAN program to be
compiled. The $DATA card generates an EXECUTE system command and both
the FORTRAN program and the relevant subroutines from SYS:SSP.REL will
be included in the EXECUTE command string.

$JOB
$PASSWORD
$ FORTRAN
FORTRAN sourc~ program

$INCLUDE SYS:SSP.REL/SEARCH
$DATA
data deck

$EOJ

5.5.6 Reading from or writing to a Disk File

The following example shows the cards you need to compile and run a
program that reads from or writes to a disk file. $ FORTRAN , a
language card, causes the program to be assembled by the appropriate
compiler or assembler. The FORTRAN source program provides the disk
read/write instructions, and the $EXECUTE card causes the program to
be executed.

Your program should provide the necessary disk read/write statements.

$JOB
$PASSWORD
$ FORTRAN
FORTRAN source program

$EXECUTE
$EOJ

For other languages, use $COBOL, $ MACRO , $ALGOL, ...

5.5.7 Reading from or Writing to a Tape File

The following example shows the cards you need to compile
program that reads from or writes to a tape file.
introduced in this section are explained as follows:

and run a
Two cards

MOUNT command Causes a tape mount directive to be sent to
the system operator. The batch job will
not be processed beyond this command until
the operator has mounted the appropriate
tape. If you use this command, be sure to
give your tape to the operator before you
submit your job.

5-37

SUBMITTING A JOB FROM CARDS

DISMOUNT command Rewinds the magnetic tape onto one reel and
deassigns the tape drive from your job.
The tape drive is now available for use by
other jobs.

Your program should provide the necessary tape read/write statements.

$JOB
$PASSWORD
$TOPS20
@MOUNT
$ FORTRAN
FORTRAN source program

$EXECUTE
$TOPS20
@DISMOUNT
$EOJ

For other languages, use $COBOL, $ MACRO , $ALGOL, ...

5.5.8 Compiling and Running a Program that Reads Data from Cards

The following example shows the cards you need to compile and run a
program that reads data from cards. The $DATA card marks the
beginning of the data and contains an implicit EXECUTE command. Thus,
you do not have to specify a separate $EXECUTE card if you use the
$DATA card.

Your program should provide the necessary read statements. For
example, the following two FORTRAN statements would cause the system
to read data from a card reader:

OPEN (UNIT=2,ACCESS='SEQIN')
READ (2,100) Variable list

The $EOD card is optional.

$JOB
$PASSWORD
$FORTRAN
FORTRAN source program

$ DATA
data for program

$EOD
$EOJ

For other languages, use $COBOL, $ MACRO , $ALGOL ...

5-38

SUBMITTING A JOB FROM CARDS

5.5.9 Using an Interpretive Language (APL, BASIC, CPL, or SNOBOL)

The following example shows the cards you need to use an interpretive
language.

A card introduced in this section, MONITOR, provides the statement
1:hat returns control from the interpreter to the system. The format
for this statement changes according to the language you use as
follows:

Statement

MONITOR

) MONITOR

System prompt
character (use
without an asterisk)

$JOB
$PASSWORD
$TOPS20
@CPL
CPL statements

*MONITOR
$EOJ

Language

BASIC, CPL

APL

SNOBOL

For other languages, use APL, BASIC, SNOBOL.

5.5.10 Running a System. Program or Uti1ity

The following example shows the cards you need to run a system program
or utility. The @SORT card is a name card that can contain the name
of any utility or system program you wish to run.

NOTE

If a compiled and linked program (one with a .EXE
filename extension/type) is stored in your disk area,
you may run it by specifying:

@ RUN name

The command string card contains additional commands (if required) to
the program. Precede program commands with an asterisk (*).

5-39

SUBMITTING A JOB FROM CARDS

NOTE

TOPS-20:

A TOPS-20 system command (one of the commands
discussed in the Commands Reference Manual, such as
COPY) differs from a system program or utility in that
you must precede input lines for a command with an at
sign (@) rather than an asterisk. (See Section 2.2,
LINE IDENTIFIERS, for details.)

$JOB
$PASSWORD
$TOPS20
@SORT
*command string
$EOJ

5.5.11 Saving Cards in a Disk File

The following example shows the cards you need to save cards in a disk
file. The $ CREATE card creates a disk file with the specified
filename and stores all following data cards in the file. The file is
created in your disk area.

The $EOD card is optional.

$JOB
$PASSWORD
$CREATE filename
data cards

$EOD
$EOJ

5.5.12 Suppressing Printing of the Log File

If you have access to a timesharing terminal, you may desire (as a
papersaving measure) to suppress printing of the log file and to save
the log file in your disk area. You can then examine and delete it.
You can accomplish this by placing the following switches on the $JOB
card:

$JOB name/OUTPUT:NOLOG/LOGDISP:PRESERVE

The /OUTPUT:NOLOG switch suppresses printing of the log file. The
/LOGDISP:PRESERVE switch saves the log file in your disk area under
name.LOG where 'name' is the job name (not the user name) .

Alternatively, you may wish to have the log file printed only if an
error occurs during execution of the job. You can do this by placing
the following switch on the $JOB card:

$JOB name/OUTPUT:ERRORS

5-40

SUBMITTING A JOB FROM CARDS

5.5.13 nstacking ft Card Decks

Assign unique names to card decks that are "stacked" then later
accessed during batch processing. (To "stack" a deck is to write its
contents on the disk.) Otherwise, each succeeding card deck will
overlay the preceding one before the system executes any batch or
system commands; that is before the system even begins processing the
control file that SPRINT created from your job deck.

Recall that all card decks and commands in the job deck are sent to
separate disk files and that commands in the control file, one of the
newly-created disk files, not the sequence of commands in the original
job deck, govern the batch system. Thus, as in the following example,
files with duplicate names are overwritten as they are sent from the
card reader to disk, not as the batch system executes your job.

$JOB/PPN: [27,5344]/USER:SAMPLE
$PASSWORD
$CREATE DATA. TXT

(card deck)

$EOD
$TOPS
TYPE DATA. TXT
$CREATE DATA. TXT

(card deck)

$EOD
$TOPS
TYPE DATA. TXT
$EOJ

The job deck in this example will cause the second DATA. TXT file to
overlay the first upon being "stacked" and will produce the following
control file (commands are preceded by the appropriate system prompt
character) :

TYPE DATA. TXT
TYPE DATA. TXT

The second data file is typed twice.

5-41

CHAPTER 6

BATCH SYSTEM OUTPUT

The output from a batch job is normally in the form of printed
listings containing:

1. The job's log file.

2. Printer output you requested through commands in the control
file, such as compilation listings and program output. with
card jobs, compilation listings are produced from the
$language control card unless you specify otherwise. These
listings are automatically printed. You can also include the
COMPILE system command in your control file with switches to
produce listings.

6. 1 THE LOG FILE

NOTE

TOPS-20

As of version 5 of the EXEC, system messages are sent
to your log file if a batch job is run for you between
the time the message is sent and the time you log onto
your terminal. These messages are not typed on the
terminal as they usually are when you log in.

Like the terminal output that results from a timesharing session, the
batch system transaction log shows your commands (from the control
file) and the system's responses to those commands. Specifically,
into the log file go control file lines as they are passed to the job;
BATCON, SPRINT, and system messages; and the details of most operator
actions affecting the job. In addition, any output destined for your
terminal (through your use of the TYPE system command, for example)
goes to the log file.

with switches available for the $JOB card and for the SUBMIT command,
you can control:

1. How the log file is created.

The /BATLOG (-10) and /BATCH-LOG (-20) switches give you
control in this area. With these switches, you can append
the log file to an existing one of the same name (default),
replace an existing log file of the same name, or write the
log file to the system spooling area (from where it is
printed) .

6-1

BATCH SYSTEM OUTPUT

2. Whether the log file is printed.

The /OUTPUT switch gives you the options to print the log
file under all circumstances, only when errors occur during
processing, or not at all.

3. What the log file's disposition will be upon completion of
the job.

With card jobs, you can use the /LOGDISP switch with $JOB to
specify whether the'log file is to be removed from or saved
in your disk area.

Likewise, when submitting a job from the terminal under
TOPS-20, using the /LOGDISP switch (with the SUBMIT command)
provides you with the same two options.

When submitting a job from the terminal under TOPS-lO, the
/DELETE switch removes the log file from your disk area. The
/PRESERVE switch (default) saves the log file.

The following sections further describe the log file.

6.1.1 BATCON Log-Fi1e Output

The contents of the log file appear exactly as they would have if you
had been running at a timesharing terminal, with the following
exception: each line begins with a time stamp to indicate the time at
which the line was processed and a notation to indicate the type of
the line.

The time stamp has the format hh:mm:ss to indicate the time of day on
a 24-hour clock. The notation is next, followed by the line of input
or output. The notation is one of the following:

BATCH

CANCEL

COMMENT

DUMP

FALSE

HEADER

IGNORE

Indicates a batch command from the control file or
a command issued by BATCON.

Indicates that the job was canceled at the user's
request.

Indicates a comment line from the control file.

Identifies output lines resulting from execution
of the DUMP batch command.

Indicates that the condition tested in the IF
command was false. The statement parameter is
listed as a comment on the same line with the IF
command.

Identifies a command line in the header section of
the step or indicates the number of lines
processed in the step.

Identifies lines that were skipped when BATCON was
searching for the IF command or for one of the
reserved labels. This notation also identifies
blank lines in the control file.

6-2

LABEL

MONITR

OPERAT

T~E·

USER

BATCH SYSTEM OUTPUT

Identifies a label found in the control file. The
rest of the control file line is listed in the log
file on a separate line.

Indicates that the output line was from the
monitor or that the input line was to be processed
by the monitor as a system command.

Identifies a line entered by the operator.
Usually, the specific operator command or comment
appears in the log file.

Indicates that the condition tested in the IF
command was true. The statement parameter is
listed in the log file on a separate line.

Indicates that the output was sent from a job at
user (program) level or that the input was to be
sent to ~ running program.

Any lines in the log file that do not appear as described
error messages from the batch controller or comments.
Section 6.2, FATAL ERROR MESSAGES, WARNINGS, COMMENTS
information on batch system output.)

above are
(Refer to
for more

6.1.2 SPRINT Log-File Output

If you submitted your job on cards, the log file also lists the
control cards and contains a record of SPRINT's processing, of the
errors SPRINT detected, and of operator intervention that occurred
during SPRINT's operations. SPRINT output precedes the information
entered into the log file by BATCON; BATCON writes to the log file
only when the job is run (after SPRINT has processed the card deck) .

SPRINT follows the same format used by BATCON for log file lines. The
notation portion of a SPRINT line is taken from the following group:

STOAT

STMSG

STERR

STCRD

STSUM

STOPR

Gives the system name and SPRINT's version number.

Identifies any SPRINT non-error message.

Identifies any SPRINT error message.

Identifies SPRINT control cards.

Identifies the summary message at the end of the
job.

Identifies any operator actions that occurred
during SPRINT's processing.

The first entry in the log file for a card job always contains the
identifier STOAT and a message giving the current version of SPRINT
and the system name, for example:

14:54:15 STOAT SPRINT VERSION 104(4107) RZ123A KL #1026/1042

6-3

BATCH SYSTEM OUTPUT

Each control card is written into the log on an STCRD line. These
lines, beginning with the $JOB card, follow the STDAT entry. For
security reasons, the password you specify on the $PASSWORD card is
never written. If one of the control cards is a File Card, the line
immediately following contains a message of the form:

TOPS-IO:

14:17:40 STMSG file.ext Created - nn Cards read - nn Blocks
written

TOPS-20:

14:17:40 STMSG file.typ Created - nn Cards read

When the $EOJ card is read, SPRINT prints a summary message indicating
the status of the job (whether it was completed or aborted) and giving
the number of cards read, the number of files and blocks written, and
the number of each type of error that occurred. The summary is also
placed in the system accounting file. Two examples of job summaries
are given below.

1.

2.

14:17:42
14:17:42
14:17:42
14:17:43

16:18:22
16:18:22
16:18:23

STSUM End of Job Encountered
STSUM 423 Cards Read
STSUM 4 Hollerith Errors
STSUM Batch Input Request Created

STSUM Job Aborted due to Fatal Error
STSUM 10 Cards Read
STSUM 10 Hollerith Errors

Refer to Section 6.2.4, SPRINT Messages, for additional information on
SPRINT output.

6.2 FATAL ERROR MESSAGES, WARNINGS, CqMMENTS

The following conventions are used in describing the batch system
messages that appear in your log files:

$cardname Control card name

dev Device name

file.ext Filename and extension (-10)

file.typ Filename and file type (-20)

n Decimal number

p,pn Project-programmer number (-10)

x Alphabetic character

/switch Switch name

6-4

BATCH SYSTEM OUTPUT

Most messages fall into one of three categories. These categories are
determined by the beginning character of the message.

? at the start of the message indicates a fatal error message.
No further processing will be done and the job will be
terminated. For example, an unrecognizable control card (with a
card job) would generate a fatal error message.

% at the start of the message represents an advisory or warning
message. Processing will continue in this case unless you
specified otherwise with the ERROR batch command. For example,
an unrecognizable switch that can be ignored would generate a
warning message.

[at the start of the message indicates a comment line. It is
for your information only and does not affect the running of the
job.

In addition, each message issued has a six-letter prefix. The first
three letters indicate the program that issued the message (for
example, BAT for BATCON). The last three letters represent an
abbreviation of the text of the message. For example:

%SPTNAU NO AUXACC ENTRY

Error messages generated by a batch job will appear in your log file.
Error messages generated when you submit invalid commands to the
system via a terminal will be displayed at the terminal.

6.2.1 BATCON Messages

BATATX [Time limit exceeded; allowing HH:MM:SS extra time]

The job used up its alloted time (as determined by the /TIME
switch or the system default) and has been granted the specified
grace period.

BATBJC ? Job has been canceled - LOGIN failure

The system would not allow this job to log in.
specified in the output from the LOGIN program.

BATBJC [Batch job has been canceled]

The reason is

The reason the job was canceled is given in an accompanying
message.

BATBLA [Beginning processing at label <label name>]

The job is starting at the indicated label. This is an advisory
message that occurs either (1) after a system reload when you
have specified a CHKPNT label and the CHRPNT has been taken, or
(2) at the beginning of the job in accordance with the /TAG
switch.

BATBLI [Beginning processing at line <line number>]

The job is starting at the line specified with the /BEGIN switch.

6-5

BATCH SYSTEM OUTPUT

BATCFE ? Control file error for <control file spec> - <error text>

This message occurs for a variety of I/O errors. The reason is
given in a self-explanatory message in the format above. The
specification for the file involved is given with the message.

BATCST ? Cannot set time limit; job canceled

The system is unable to grant-your job extra time because of some
system error.

BATECF ? End of control file while searching for label <label name>

The end of the control file was reached while the batch
controller was searching for %xxxx, where xxxx is one of the
error recovery labels (CERR, ERR, TERR, or FIN) .

Or, the end of the control file was reached while the batch
controller was searching for the label specified in a GOTO or
BACKTO command. A common cause of a GOTO error is:

GO TO label

The space between GO and TO causes the system to take GO as the
GOTO command and TO as its label. GO is a valid abbreviation for
GOTO.

Another example of this error is:

BACKTO ABCD

ABCD:: command

The label specified in a BACKTO command must precede the command
in the control file.

BATECF ? End of control file while searching for line <line number>

The value specified for the /BEGIN switch exceeded the number of
lines in the control file.

BATEOF ? End of file during step header processing

The $ENDHDR command is missing at the end of the step header for
the job.

BATEPL ? BACKTO command has entered a possible loop

You may have created a loop in your control file through improper
use of the BACKTO command. For example, A:: BACKTO A is a loop
and would generate this message.

BATFFS [Found %FIN while searching for <label name> - proceeding from
%FIN]

A %FIN was encountered during a search initiated by a GOTO
command or an implicit GOTO (searches for %CERR, %ERR, or %TERR) .
%FIN takes precedence during searches for reserved labels or for
a label specified in a GOTO command.

6-6

BATCH SYSTEM OUTPUT

BATICS ? Illegal character specified for <command name> command

You specified a character that is an illegal signal character for
either the ERROR or OPERATOR command. The signal character for
these commands must not be a control character, an exclamation
point (!), or a semicolon (;) ..

BATIIC ? Illegal IF command argument or syntax error

The operand of the IF command could not be recognized,
format of the IF command is invalid.

BAT ILL % Incomplete last line in control file

or the

A carriage-return/line-feed is missing at the end of the control
file.

BATISL ? Illegal $STEP label

The $STEP label must conform to the standards established for all
other unreserved labels. Refer to Section 2.3, LABELS.

BATJNR ? Job canceled after a restart - it is not restartable

The job has a restart parameter of NO, and it has been reselected
after a system reload. In accordance with your /RESTART
specification, the job is being canceled.

BATJRQ [Job requeued by BATCON
user

Your batch job has been requeued. Other messages accompany this
message to indicate the reason.

BATMNS [MDA not supported - line ignored]

The Mountable Device Allocation software (MDA) is not installed
on your system; however, one of the commands or switches on your
command line requires MDA. Therefore, the batch controller
bypasses this control file line.

BATMOS ? More than one job step encountered - job canceled

The current version of this software allows only one job step per
control file.

BATMSL ? Missing $STEP label

A $STEP label is required if any step header commands are present
(for example, $MOUNT).

BATNBC % Job nnn no longer under BATCON's control; job canceled

Another user or the operator is attached to the job and now
controls it.

BATNLS ? No label specified or illegal syntax

The label was not specified for a command that requires one, or a
punctuation error was made.

6-7

BATCH SYSTEM OUTPUT

BATOIN ? Operator intervention not allowed in this stream - job
canceled

The /ASSISTANCE switch indicates that no operator assistance is
needed for the job. However, a command in your control file (for
example, MOUNT) calls for operator intervention.

BATSSE ? Step header syntax error - <error text>

You did not follow rules for entering commands in the step header
section of the control file. The particular violation is given
in a self-explanatory message in the format above.

BATTLE ? Time limit exceeded after allowing extra time; job canceled

The grace period has expired. Refer to error message BATATX for
details.

BATTLF [A temporary log file <file name> will be created, printed,
and deleted]

This error is most likely to occur if you do not have write
privileges for this directory.

6.2.2 LPTSPL Messages

LPEND SUMMARY: xxx PAGES OF OUTPUT
yyy DISK BLOCKS READ

Where:

xxx is the number of pages printed.
yyy is the number of disk blocks processed.

LPERR ?CAN'T ACCESS FILE xxx, yyy

Where:

xxx is the file to be printed.
yyy is the reason it cannot be printed.

LPERR ?ERROR READING INPUT FILE - xxx

Where:

xxx is the reason the file cannot be read.

LPERR ?INVALID ACCOUNT STRING SPECIFIED (xxx)

Where:

xxx is the specified account string.

LPERR ?LPT I/O ERROR OCCURRED DURING xxx, COPY:yyy,PAGE:zzz;STATUS
IS:foo

Where:

xxx is the file being printed.
yyy is the copy of the file.
zzz is the page of the file.
foo stands for the octal printer status bits.

6-8

BATCH SYSTEM OUTPUT

LPERR ?PAGE LIMIT EXCEEDED

LPMSG BACKSPACED TO BEGINNING OF xxx

Where:

xxx is the file to which you BACKSPACEd.

LPMSG FILE xxx BACKSPACED yyy COPIES

Where:

xxx is the file being BACKSPACEd.
yyy is the number of copies being BACKSPACEd.

LPMSG FILE xxx BACKSPACED yyy PAGES

Where:

xxx is the file being BACKSPACEd.
yyy is .the number of pages being BACKSPACEd.

LPMSG FILE xxx FORWARD SPACED yyy COPIES

Where:

xxx is the file being forward spaced.
yyy is the number of copies being skipped.

LPMSG FILE xxx FORWARD SPACED yyy PAGES

Where:

xxx is the file being forward spaced.
yyy is the number of pages being skipped.

LPMSG FILE xxx SKIPPED BY OPERATOR

Where:

xxx is the file being skipped.

LPMSG FINISHED FILE xxx

Where:

xxx is the file that was printed.

LPMSG JOB BEING RESTARTED AFTER xxx

Where:

xxx represents 'system failure' or 'requeue by operator'.

LPMSG JOB CANCELED BY USER xxx

Where;..

xxx represents the user who cancelled the job.

6-9

BATCH SYSTEM OUTPUT

LPMSG STARTING FILE xxx

Where:

xxx is the file that is being printed.

LPOPR JOB CANCELED BY THE OPERATOR
REASON: xxx

Where:

xxx is the reason the operator canceled the job.

LPOPR JOB REQUEUED BY THE OPERATOR

LPOPR JOB WILL RESTART AT THE BEGINNING OF THE xxx

Where:

xxx is the current copy or current file.

LPOPR JOB WILL RESTART AT THE CURRENT POSITION

LPOPR OPERATOR STOPPED CARRIAGE CONTROL SUPPRESSION

LPOPR OPERATOR SUPPRESSED CARRIAGE CONTROL FOR REST OF xxx

Where:

xxx is this file or this job.

LPOPR REQUEUE REASON IS: xxx

Where:

xxx is the reason the job was requeued.

6.2.3 QUEUE Messages -- TOPS-IO Only

%QUECLG CORE LIMIT OF nnP IS GREATER THAN CORMAX OF nnP

You specified a core limit (for a batch job) of nnP with the
/CORE switch. This amount is more than is available to any job
on the system. The job will be put in the queue but will not be
scheduled until the value of CORMAX is raised by the operator.

%QUECLR CORE LIMIT OF nnP RAISED TO MINIMUM OF nnP

The core limit of nnP that you specified with the /CORE switch
has been raised by the system to nnP.

?QUECMN CANNOT MODIFY /NOTIFY SWITCH

It is illegal to modify a job in order to set or reset the
/NOTIFY switch.

%QUECPB CAN'T PRINT BINARY filespec

You attempted to print the binary file (filespec) with the
switch, /PRINT:ASCII, specified (either explicitly or
implicitly). Note that /PRINT:ASCII is the default.

'6-10

BATCH SYSTEM OUTPUT

?QUEDMI /DEFER REQUEST MUST INCLUDE /CREATE OR /KILL

The /DEFER switch must be used in conjunction with either the
/CREATE or the /KILL switch.

?QUEDND INPUT DEVICE NOT A DISK dev:

An input device (dev:) specified in the QUEUE command is not a
disk. The QUEUE program can handle files only from disk.

?QUEDRF /DISPOSE:RENAME FAILED

The monitor rejected the request to rename the file to the spool
area.

?QUEFNI FILE NAME ILLEGAL IN DEFAULT PATH

There is a syntax error in the /PATH switch specification.

?QUEFRI FILENAME REQUIRED FOR INPUT QUEUE

You must specify a filename for your control file.

?QUEICC IMPROPER COMMAND CODE

This implies a problem with the QUEUE program that is not your
fault. You should notify the system administrator.

?QUEIDT INVALID DEVICE TYPE SPECIFIED
(Same as QUEIQN)

?QUEIFT ILLEGAL FORMAT IN TIME SPECIFICATION

You have given more than three values for the /TIME switch. For
example, /TIME:1:0:0 is legal and specifies a time of 1 hour, but
/TIME:1:0:0:0 is illegal and would result in the display of the
above message.

?QUEINF INCORRECT NUMBER OF FILES IN INPUT QUEUE REQUEST

Only two files may be specified in a SUBMIT (or QUEUE INP:)
command. The two file specifications are for the control and log
files.

?QUEIQN ILLEGAL QUEUE NAME name

The name of the queue specified in the QUEUE
valid queue name. Valid queue names are:
CDP:,PTP:, and PLT:.

?QUEIUR ILLEGAL USE OF /DISPOSE:RENAME

command is not a
INP:,LPT:,LL:,LU:,

You cannot modify or kill a job using this switch.

?QUEIUS INVALID UNIT NUMBER SPECIFIED

A unit number not in the range of 0-7 was specified.

?QUELFS LOGIN PLEASE TO· USE SWITCH xxx

You must be logged in to run the QUEUE program with the xxx
functions where xxx represents CREATE, MODIFY, or KILL.

6-11

BATCH SYSTEM OUTPUT

?QUELQU LISTED QUEUE USER CANNOT INCLUDE SFDS

You cannot ask for a list of queues by SFDs. For example, the
command PRINT [30,54,A]/L is illegal and would generate this
message.

?QUEMDC MOUNTABLE DEVICE COMMANDS NOT IMPLEMENTED

The version of QUEUE that is currently running is unable to
handle mountable device commands.

?QUENAF NOT ALL REQUESTED FILES EXIST

Some of the files in the QUEUE request do not exist and you
specified the /ALLFILES switch.

?QUENFI NO FILES IN REQUEST

You did not specify any files in your QUEUE request or none of
the files you specified exists.

?QUENQS NO QUEUE SPECIFIED IN /KILL OR /MODIFY

You must specify which queue contains the request you want to
kill or modify.

?QUENSD INPUT DEVICE DOES NOT EXIST dev:

You specified an input device (dev:) that does not exist. The
device may have been misspelled or it might not be on line.

?QUENSR JOBNAME OR /SEQUENCE OR/REQUESTID REQUIRED

You must specify either the jobname or sequence number (or both)
of the request(s) you want to modify or kill.

?QUEOEI OUTPUT EXTENSION IS ILLEGAL

The jobname must not have an extension.

%QUEOTE INPUT QUEUE REQUEST USES ONLY TWO ENTRIES

Only two files may be specified in a SUBMIT (or QUEUE INP:)
command. The two file specifications are for the control and log
files.

?QUEOWI OUTPUT WILDCARDS ARE ILLEGAL

The jobname specification on a QUEUE/CREATE command and the
output specification on a QUEUE/LIST command cannot have wildcard
constructions.

%QUEPII /PROTECT:777 IS ILLEGAL, CHANGED TO 677

A protection code of 777 for a queue request is not permissible.
The protection was changed to 677.

?QUESJN SPECIFY JOBNAME LEFT OF EQUAL SIGN

The jobname must be to the left of the equal sign.

?QUESVT SWITCH VALUE TOO LARGE n

You specified a value on the /DEPEND switch that is too large.

6-12

BATCH SYSTEM OUTPUT

?QUETCT TIME COMPONENT TOO LARGE n

The amount of time specified on the /AFTER or the /TIME switch is
too large. The value of hh:mm:ss for the /AFTER switch cannot be
greater than 23:59:59. The value for the /TIME switch cannot be
greater than 63:59:59.

?QUETTL TIME TOO LARGE n

A time field contains a value that is larger than the maximum
permissible.

?QUEUCI LISTED QUEUE USER CANNOT INCLUDE SFDS

SFDs may not be included as part of the jobname specification.

?QUEWDI WILDCARD ILLEGAL IN INPUT QUEUE FILE DIRECTORY

A wildcard construction is not permissible in an input queue file
specification. For example, the command SUBMIT JOB.CTL[40,*] is
illegal and would generate this message.

?QUEWID WILDCARD ILLEGAL IN DEFAULT PATH

A wildcard specification may not be used with the /PATH switch.

?QUEWIE WILDCARD ILLEGAL IN INPUT QUEUE FILE EXTENSION name

You must not specify a wildcard extension in your SUBMIT (or
QUEUE INP:) command. The command SUBMIT JOB.* is illegal.

?QUEWIN WILDCARDS ILLEGAL WITH/NEW

The use of /NEW implies that the files have not yet been created.
Therefore, it is not possible to perform a wildcard search for
the file.

?QUEWIQ WILDCARD ILLEGAL IN INPUT QUEUE FILE NAME filename

You must not specify a wildcard filename in your SUBMIT (or QUEUE
INP:) command. The command SUBMIT *.CTL is illegal.

6.2.4 SPRINT Messages

STERR ?SPTBFP Bad format for Project-Programmer Number on $JOB Card

STERR ?SPTCCF Error creating file xxx, yyy

Where:

xxx is the file specification.
yyy is the system error that resulted.

STERR ?SPTCNF Control Card not found when expected -Card #nnn

Where:

nnn is a number (in decimal) indicating the card's position
in the input stream.

6-13

BATCH SYSTEM OUTPUT

STERR ?SPTECC Error creating BATCH control (CTL) file, xxx

Where:

xxx is the system error that resulted.

STERR ?SPTECL Error creating BATCH log file, xxx

Where:

xxx is the system error that resulted.

STERR ?SPTERI Error reading input file

STERR ?SPTEWC Error writing BATCH control (CTL) file, xxx

Where:

xxx is the system error that resulted.

STERR ?SPTEWF Error writing file ,xxx, yyy

Where:

xxx is the file specification.
yyy is the system error that resulted.

STERR ?SPTFSE File specification error on $ccc card

Where:

ccc is the named control card.

STERR ?SPTIAS Illegal account string "aaa"

Where:

aaa is the user account string.

STERR ?SPTICC Illegal control card - card tnnn

Where:

nnn is a number (in decimal) indicating the card's position
in the input stream.

STERR ?SPTIFJ Improperly formatted $JOB card

STERR ?SPTIMP Incorrect or missing password card

STERR ?SPTIMP Specified password incorrect for user

STERR ?SPTIPN Invalid directory specification - uuu on job card

Where:

uuu is the user identification.

STERR ?SPTIUI Improper use of $INCLUDE

STERR ?SPTIUN Illegal or missing user name

STERR ?SPTJNF $JOB card not found

6-14

BATCH SYSTEM OUTPUT

STERR ?SPTMPP Missing Project-Programmer Number on $JOB Card

STERR ?SPTPNB Specified PPN may not run BATCH jobs.

STERR ?SPTRCI Improper use of $RELOC

STERR ?SPTTMB Too many illegal binary cards

The number of illegal binary cards has exceeded the limit
specified with the /ERROR switch on the $JOB card.

STERR ?SPTTMC Too many binary checksum errors

The number of binary checksum errors has exceeded the limit
specified with the /ERROR switch on the $JOB card.

STERR ?SPTTMH Too many Hollerith errors

The number of Hollerith errors has exceeded the limit specified
with the /ERROR switch on the $JOB card.

STERR ?SPTUUN Unrecognized User Name "uuu" on the $JOB card

Where:

uuu is the user identification.

6-15

APPENDIX A

COMMANDS

Appendix A contains an overview of the BATCON and SPRINT commands and
of commonly used batch-related system commands.

A.I BATCH COMMANDS

Use the following commands to control BATCON, the batch controller.
These commands, discussed in detail in Chapter 2, may appear in both
terminal and card jobs. Precede each command with the system prompt
character (. for TOPS-la, @ for TOPS-20).

BACKTO
CHKPNT
DUMP
ERROR
GOTO
IF
MESSAGE
NOERROR
NOOPERATOR
OPERATOR
PLEASE
REQUEUE
REVIVE
SILENCE

A.2 SPRINT COMMANDS

The following commands may be used only on control cards for SPRINT.
These comnlands are described in detail in Chapter 5.

Command

$ALGOL

$BACKTO

$BLISS

$CHKPNT

$COBOL

Applicable Switches

see $language

None

See $language

None

See $language

A-I

$ CREATE

$DATA

$DUMP

$EOD

$EOJ

$ ERROR

$EXECUTE

$ FORTRAN

$GOTO

$IF

$ INCLUDE

$JOB

COMMANDS

/026
/ASCII
/BeD
/BINARY (-10)
/CPUNCH
/DOLLARS
/NODOLLARS
/IMAGE
/PLOT (-10)
/PRINT
/PROTECT:
/SUPPRESS
/NOSUPPRESS
/TPUNCH
/WIDTH:

/026
/ASCII
/BCD
/BINARY (-10)
/DOLLARS
/NODOLLARS
/IMAGE
/MAP
/NOMAP
/SUPPRESS
/NOSUPPRESS
/WIDTH:

None

None

None

None

/MAP
/NOMAP

See $language

None

None

/SEARCH

/ACCOUNT:
/AFTER:
/ASSISTANCE:
/BATCH-LOG: (-20)
/BATLOG: (-10)
/CARDS:
/CORE: (-10)
/DEPEND:
/FEET:
/JOBNAME:
/LOCATE:
/LOGDISP:
/NAME: (-10)
/OUTPUT:
/PAGES:
/PPN: (-10)

A-2

$ LABEL

$language

/PRIORITY:
/RESTART
/NORESTART
/SEQUENCE:
/TIME:
/TPLOT:
/UNIQUE:
/USER: (-20)

None

COMMANDS

Substitute the following for 'language':
FORTRAN, MACRO, SIMULA, SNOBOL

/026
/ASCII
/BCD
/CREF
/DOLLARS
/NODOLLARS
/LIST
/NOLIST
/SUPPRESS
/NOSUPPRESS
/WIDTH:

$ MACRO See $language

$MESSAGE /WAIT
/NOWAIT

$NOERROR None

$NOOPERATOR None

$OPERATOR None

$PASSWORD None

$RELOCATABLE None

$REQUEUE None

$ REVIVE None

$ SEQUENCE None

$SILENCE None

$SIMULA See $;Language

$ SNOBOL See $;Language

$TOPS /026
$TOPSIO /ASCII
$TOPS20 /BCD

/DOLLARS
/NODOLLARS
/SUPPRESS
/NOSUPPRESS
/WIDTH:

A-3

ALGOL, BLISS, COBOL,

COMMANDS

A.3 SYSTEM COMMANDS

The system commands listed below are those that you as a batch system
user might commonly use. They allow you to examine your job,
manipulate it in various ways, and provide you with access to a number
of input/output devices.

A.3.1 Job Control Commands

Use the following job control commands to submit, modify, and cancel
jobs in the output or batch input queues. Chapters 3 and 4 discuss
these commands in detail.

NOTE

TOPS-20

These commands are EXEC commands that do not destroy
your core image. You can CTRL/C out of a program, use
one of these commands, and then return to your
program.

A.3.1.1 SUBMIT Command -

TOPS-IO Format:

SUBMIT jobname/switch(es)=/switch(es) control file/switch (es),
log file/switch(es)

TOPS-20 Format:

SUBMIT (BATCH JOB) /switch(es) control file/switch (es), ...

Applicable Switches:

/ACCOUNT:
/AFTER:
/ASSISTANCE:
/BATCH-LOG: (-20)
/BATLOG: (-10)
/BATOPT: (-10)
/BEGIN:
/CARnS:
/CHECK (-10)
/CONNECTED-DIRECTORY: (-20)
/CORE: (-10)
/DELETE
/DEPEND:
/DESTINATION: (-10)
/DEST~NATION-NODE: (-20)
/DISTRIBUTION: (-10)
/ERPROTECTION (-10)
/FAST (-10)
/FEET:
/JOBNAME:
/KILL (-10)
/LIST: (-10)
/LOGDISPOSITION: (-20)
/LOGNAME: (-20)

A-4

/NONOTIFY (-10)
/NORESTART (-10)
/NOTIFY:
/OKPROTECTION (-10)
/OPTION: (-10)
/OUTPUT:
/PAGES:
/PATH: (-10)
/PHYSICAL (-10)
/PRESERVE
/PRIORITY:
/PROCESSING: (-10)
/PROCESSING-NODE: (-20)
/PROTECTION: (-10)
/READER
/REQUESTID: (-10); with /KILL
or /MODIFY only)

/RESTART: (-10)
/RESTARTABLE: (-20)
/SEQUENCE:
/SITGO (-10)
/STREAM: (-10)
/TAG:
/TIME:

/METERS: (-10)
/MODIFY (-10)
/NEW (-10)
/NONEW (-10)

A.3.1.2 Modify Commands -

TOPS-IO Format:

COMMANDS

/TPLOT:
/UNIQUE:
/USER: (-20)
/USERNAME : (-1 0)

SUBMIT
PRINT
PLOT
CPUNCH
TPUNCH

jobname=/MODIFY/switches(es)

_ TOPS-20 Format:

MODIFY (REQUEST TYPE)

BATCH
CARDS
PAPER-TAPE
PLOT
PRINT

Applicable switches for batch requests:

/AFTER:
/BEGIN:
/CARDS:
/CORE: (-10)
/DEPEND:
/DESTINATION: (-10)
/DESTINATION-NODE: (-20)
/FEET:
/JOBNAME:
/METERS: (-10)
/OUTPUT:
/PAGES:
/PRESERVE
/PRIORITY:
/PROTECTION: (-10)
/RESTART:
/SEQUENCE:
/TAG:
/TIME:
/TPLOT:
/UNIQUE:
/USER: (-20)
(enabled wheel or enabled oper. only)

A-S

(ID) jobname or
request id/switch(es)

COMMANDS

A.3.1.3 Cancel Commands -

Refer to your operating system commands manual for
information on cancelling jobs.

additional

TOPS-l0 Format:

CANCEL

BATCH-REQUEST
CARD-PUNCH-REQUEST
MOUNT-REQUEST
PAPER-TAPE-REQUEST
PLOTTER-REQUEST
PRINTER-REQUEST

TOPS-20 Format:

CANCEL (REQUEST TYPE)

Applicable Switches:
/SEQUENCE:

BATCH
ARCHIVE
CARDS
MOUNT
PAPER-TAPE
PLOT
PRINT
RETRIEVE

request id, jobname, or
wild card job name

(ID) jobname or
request id/switch

/USER: (-20; enabled wheel or enabled operator only)

To cancel all jobs under your name, specify * as the jobname.

A.3.1.4 PRINT Command -

TOPS-l0 Format:

PRINT jobname/switch (es) =/switch (es) filespec/switch(es), ...

TOPS-20 Format:

PRINT (FILES) /switch(es) filespec/switch(es), ...

Refer to your system commands manual for a list of PRINT command
switches.

A.3.2 Information Commands

TOPS-l0 Format:

SUBMIT
PRINT
PLOT
CPUNCH
TPUNCH

/switch

In all cases, you can enter the command without switches to obtain
information on the queue.

A-6

COMMANDS

Applicable switches for the QUEUE-class information commands listed
above:

/LIST:
/FAST
/CHECK
/STREAM: (with SUBMIT only)
/DESTINATION:
/PROCESSING: (with SUBMIT only)

SHOW I ALLOCATION
I QUEUES/switch

or

Applicable switches for the SHOW QUEUES command:

/ALL
/BRIEF
/FULL
/USER: [P, pn]

TOPS-20 Format:

INFORMATION (ABOUT) I BATCH-REQUESTS
I OUTPUT-REQUESTS

/switch

Applicable Switches for the TOPS-20 INFORMATION Command:

/ALL
/FAST
/PROCESSING-NODE:
/user:

(with BATCH-REQUESTS only)

Refer to the TOPS-20 Commands Reference Manual for a complete
list of arguments (other than BATCH- or OUTPUT-REQUESTS) you can
specify with the INFORMATION command.

A.3.3 Tape Control Command Formats

Refer to your system commands manual and Tape Processing Manual for
descriptions of the tape control commands.

A-7

APPENDIX B

SWITCHES

B.l SWITCH DEFAULTS

If you commonly use the same switches and switch values with the
SUBMIT or output queue commands, you may wish to set your own default
values for the switches you use:

TOPS-l0:

For the SUBMIT command, enter a line into the file DSK:SWITCH.INI
[p,pn] consisting of the following:

SUBMIT/switch (es)

Every time you submit a batch job, these switches and the values
you specify for them take effect. They override the defaults set
at batch system installation.

You can set defaults for the output queue commands by following
the same format as above, substituting such commands as PRINT or
PLOT for SUBMIT.

Refer to the end of this section for the list of switches you can
put into DSK:SWITCH.INI [p,pn].

TOPS-20:

Set switch defaults by giving the SET DEFAULT command with an
argument of SUBMIT or one of the output queue commands, for
example:

1. SET DEFAULT (FOR) SUBMIT/switch (es)

2. SET DEFAULT (FOR) PRINT/switch (es)

You can place the SET DEFAULT command in three different command
files, which are read by the system at various times:

1. COMAND.CMD is read when you issue the LOGIN, PUSH, or
SUBMIT commands. This is the only command file that is
read when you PUSH.

2. LOGIN.CMD is read only when you log in.
read after COMAND.CMD.

This file is

3. BATCH.CMD is read only when you submit a batch job. This
file is also read after COMAND.CMD.

B-1

SWITCHES

When the system reads a command file, the switches you specified
therein take effect. Thus, you can override the options in
COMAND.CMD with those in LOGIN.CMD or BATCH.CMD.

If you have been resetting switch defaults manually and want to
return to the options in one of the command files, issue the TAKE
system command as follows:

@TAKE LOGIN.CMD

This will execute the commands in LOGIN.CMD, resetting your
switch defaults to their original values.

SUBMIT Switches Available for Defaulting with TOPS-IO and TOPS-20:

/ACCOUNT:
/AFTER:
/ASSISTANCE:
/BATCH-LOG: (-20)
/BATLOG: (-10)
/BATOPT: (-10)
/BEGIN:
/CARDS:
/CONNECTED-DIRECTORY: (-20)
/CORE: (-10)
/DELETE
/DEPEND: (-10)
/DEPENDENCY-COUNT: (-20)
/DESTINATION: (-10)
/DESTINATION-NODE: (-20)
/DISPOSE:
/DISTRIBUTION: (-10)
/ERPROTECTION (-10)
/FEET:
/JOBNAME:
/LOGNAME: (-20)
/NEW (-10)
/NONEW (-10)
/NOTIFY:
/OUTPUT:
/PAGES:
/PATH: (-10)
/PRESERVE
/PRIORITY:
/PROCESSING: (-10)
/PROCESSING-NODE: (-20)
/READER
/RESTART: (-10)
/RESTARTABLE: (-20)
/TAG:
/TIME:
/UNIQVE:
/USER: (-20)

(enabled wheel or enabled operator only)
/USERNAME: (-10)

B-2

SWITCHES

B.2 TIME AND DATE SWITCHES

The following rules apply to "all the switches for the $JOB card and
the TOPS-IO SUBMIT command that require a time and/or date to be
specified. See NOTE at the end of this section for important
differences with the TOPS~20 SUBMIT command. Refer to your system
commands manual for complete information on time and date formats for
your particular system.

When specifying a time of day (hh:mm:ss)

1. The colon (:) or colons must be included.

2. Times will be right aligned before they are interpreted.
That is, if all fields are not present, the rightmost field
is interpreted as the number of seconds in the case where an
argument of hh:mm:ss is required, and the rightmost field is
interpreted as the number of minutes when an argument of
hh:mm is required. Some examples are given below:

/TIME:30 means 30 seconds (see last NOTE
in this section)

/TIME:45:00 means 45 minutes (see last NOTE
in this section)

/TIME:1:15:00 means 1 hour and 15 minutes

When specifying a date, the format is dd-mmm-yy and:

1. The hyphen (-) must be included.

2. At least the day and the month are required.
in this section.)

(See last NOTE

NOTE

The month, "mmm," must be a 3-letter month
abbreviation (such as JAN for January).
Other date formats (such as 07 for July) are
accepted but are not recommended because they
could be ambiguous to the system.

3. If the year is omitted, the date (and its associated time, if
present) will be interpreted to mean the next occurrence of
that date (and time) .

4. If the time argument is omitted from a date specification,
the time is assumed to be midnight on the specified date,
that is, at the beginning of that date.

In the examples below assume
18-0CT-88.

/AFTER:19-0CT-88 means
/AFTER:17-0CT means

NOTE

with the TOPS-20 SUBMIT command,
minutes and /TIME:45:00 means
date format requires the year.

B-3

that the

midnight on
midnight on

/TlME:30
45 hours.

current date is

October 19,
October 17,

means 30
Also, the

1988
1988

/BATCH-LOG:arg (-20)
/BATLOG:arg (-10)

/BATOPT:arg (-10)

/BCD

.. ' SWITCHES
*

If you specify NO to this switch, and
the system encounters a request to the
~erator in your control file, it
terminates the job immediately.

(SUBMIT,$JOB)

Directs placement of the log
the disk. You may use one
following three arguments:

file on
of the

APPEND

SUPERSEDE

SPOOL

Examples:

The log file is appended to
an existing one of the same
name.

-The log
existing
name.

file replaces an
one of the same

The log file is written to
the system spooling area

_ rather than to your disk
area, thereby saving space
in your directory. The log
file is automatically
printed from the spooling
area. with SPOOL, the log
file is always deleted, even
if you specify /PRESERVE
(-10) or /LOGDISP:KEEP(-20).

1. If you submit a batch job with the
command SUBMIT FILA/BATCH-LOG:
SUPERSEDE, then FILA. LOG will be
written as a new log file. Any old
copy of FILA. LOG will be deleted.

2. If you submit a batch job with the
command SUBMIT ZFIL/BATCH-LOG:
SPOOL, then the log file will be
written to the system spooling area.

(SUBMIT,$JOB)

Specifies a LOGIN option line to read
for LOGIN switches to apply to the batch
job. The option name that you specify
with the /BATOPT switch must match a
line in the SWITCH.INI file that appears
as:

LOGIN: option-name/switches

(SUBMIT)

Causes the card deck to be read as 026
card format.

($ALGOL,$BLISS,$COBOL,
$CREATE,$DATA,
$FORTRAN,$MACRO,$SIMULA,
$SNOBOL,$TOPS,
$TOPS10,$TOPS20)

B-5

/BEGIN:n

/BTNARY (-10)

/CARDS:nn

/CHECK (-10)

SWITCHES

When used with SUBMIT, causes processing
to begin on the nth line of the control
file. When used with PRINT, causes
printing to begin on the nth page.

Use this switch for a control file or a
print file that can fit different
applications depending on where
processing begins. (See also the /TAG:
switch.) J

(SWBMIT,PRINT,MODIFY)

Causes the card deck to be read as
checksummed-binary card format.

($CREATE, $DATA)

Specifies- the maximum number of cards
(up to 10,000) that can be punched by
the.job (in decimal). If you omit this
switch, no cards will be punched.

($JOB,SUBMIT,MODIFY)

Lists all the jobs in the specified
queue that are under your
project-programmer number.

(SUBMIT, all output queue commands)

/CONNECTED-DIRECTORY:<directory> (-20)
Allows an enabled wheel or enabled
operator to run a job under a directory
different from the directory under which
the job is submitted.

The following example illustrates the
difference between using this switch and
using the /USER switch:

Assume that you are an enabled user
logged in as OPERATOR and that the
system you are using contains a
files-only directory, LIBRARY.

1. If you submit a batch job with the
command SUBMIT FOO.CTL/ USER:SMITH,
then the batch job is logged in to
user SMITH and connected to
directory SMITH. Accounting charges
are made to user SMITH.

2. If you submit a batch job with the
command SUBMIT FOO.CTL/
CONNECTED-DIRECTORY: LIBRARY, then
the batch job is logged in to user
OPERATOR and is connected to
directory LIBRARY. Accounting
charges are made to user OPERATOR.

This switch is equivalent to the /PATH:
switch on TOPS-10.

(SUBMIT)

B-6

/CORE: (-10)
nnK,nnP,
nnB, or nnW

/CPUNCH

/CREF

/DELETE

/DEPEND:nn

SWITCHES

Specifies the maximum amount of core (in
decimal) that can be used by the job up
to the maximum allowed at your
installation. You have the option of
specifying in either words, pages,
blocks, or K words. The default usually
is 32K words. The value is ignored if
core limits are not enforced at your
installation.

($JOB, SUBMIT)

Causes SPRINT to place the disk file
created with $CREATE into the card punch
output queue.

($CREATE)

Creates a file that the CREF program
processes to produce a cross-referenced
listing for your program. The default
is that no CREF listing is created.

($FORTRAN,$MACRO)

Causes the file to be deleted after the
job has completed execution. If you use
this switch to delete the log file under
TOPS-10, the file will not be delet~d
until it has been printed. For example,

.SUBMIT JOB=CONTROL, LOG/DELETE

causes the log file LOG to be deleted
immediately after being printed.

(SUBMIT, MODIFY,
commands)

all output queue

Allows you to coordinate the selection
of interdependent jobs for processing.
Specifically, this switch sets or
modifies the job's dependency count.
The job will not run unless the
dependency count is set to zero.

If you do not use this switch, no
dependency is assumed and the job is
selected to run based only upon such
factors as priority value, output
quantities, etc. (See section 3.5,
SUBMITTING RELATED JOBS, for more
information on this switch.)

($JOB,SUBMIT,MODIFY)

/DEPENDENCY-COUNT:nn (-20) Performs the same function
/DEPEND switch (above).

as the

(SUBMIT, MODIFY)

B-7

/DESTINATION: (-10)
/DESTINATION-NODE: (-20)

/DISTRIBUTION:arg (-10)

/DOLLARS

/ERPROTECTION (-10)

/FAST (-10)

SWITCHES-

Specifies the DECNET network node
or IBM remote job entry station to whose
line printer the log file and all
spooled output are to be sent. The node
name must be of six or fewer characters.
(On TOPS~20 systems, this switch is a
no-08 if the node name specified is a
DECnet node name.) On TOPS-IO systems,
you can use this switch to obtain queue
lisiings for the specified node.

(SUBMIT, all output queue commands)

Specifi~s text to place in the
distribution field on the banner page of
output listings. For batch input
requests, the distribution text is
printed on the banner page of the log
file listing. You can use this field to
include mailing information, or the
location where the operator should leave
the listing. The text field may be up
to 39 alphanumeric characters, including
punctuation and spaces if the text is
placed in quotation marks.

Normally, a dollar sign ($) in column 1
of a punched card indicates that the
card is a SPRINT control card and that a
SPRINT command immediately follows the
dollar sign. The /DOLLARS switch allows
a card with a dollar sign in column 1 to
be treated as program data (and not a
SPRINT control card), provided that the
card is not one of the following:

1. $JOB
2. $EOD
3.- $EOJ

NOTE

Any deck for which the
. /DOLLARS switch is specified
must terminate with one of the
three cards mentioned above.

($ALGOL,$BLISS,$COBOL,
$CREATE,$DATA,
$FORTRAN,$MACRO,$SIMULA,
$SNOBOL,$TOPS,$TOPS10,
$TOPS.20)

Returns an error message if processing
the request requires a violation of
protectiDn codes. The system defaults
to this action.

(SUBMIT, all output queue commands)

Lists the batch input queue entries in
an abbreviated format.

(SUBMIT, all output queue commands)

B-8

/FEET:nn

/IMAGE:nn

SWITCHES

Indicates the maximum number of feet
(decimal) of paper tape that will be
punched by the job. If you omit this
switch, no paper tape will be punched.

($JOB,SUBMIT,MODIFY)

Causes the card deck to be read in image
mode. The switch must be followed by a
decimal number in the range 2 thru 80.

This switch causes following cards to be
read in image mode until either the
end-of-file is reached or a card is read
that contains punches in all rows of
column 1 and in all rows of column nn
and blank otherwise. Neither $EOD nor
any other control card is recognized
until the system finds this card.

If you do not give a value for nn, the
system assumes 2.

A previously specified /WIDTH switch is
not acknowledged when cards are read in
image mode.

A typical control card, such as $ CREATE
TEST.IMG/IMAGE, causes the system to
read all cards following this card and
write them to the disk file TEST.IMG
until it encounters a card that is fully
punched in columns one and two and blank
otherwise.

A control card written as $ CREATE
FILX/IMAGE:5 causes the system to read
and write the cards following this card
until it encounters 'a card which is
fully punched in columns one and five
and blank otherwise. Specify an
argument for the /IMAGE switch, as in
this case, if for some reason you wish
to consider as data a card punched in
columns one and two.

The newly-created disk file looks like
this:

1. One 80-column card occupies 27 words
on disk (3 12-bit bytes per word - 1
indicates punch; 0 indicates no
punch) .

2. Each card column occupies one byte
with the 12-punch as the high-order
bit (leftmost bit of the byte) .

3. Byte number 81 is always zero (that
is, bits 24-35 of every 27th word
are zero).

Figure B-1 at the end of Appendix B
illustrates these three points.

($CREATE,$DATA)
B-9

/JOBNAME:name

/KILL (-10)

/LIST

/LIST:arg (-10)

/LOCATE:name/number

/LOGDISP:arg

SWITCHES

Assigns a 1- to 6-character name to the
associated job. If you omit this switch
from the $JOB card, then SPRINT creates
a name of the form JBxxxx (where x
represents a random character chosen by
SPRINT) for the control and log files.

If you omit this switch from the SUBMIT
command, 'the job name will be taken from
the.log file name on TOPS-10 and from
the 'control file name on TOPS-20. For
the PRINT command, the job name is taken
from the first six characters of the
first file in the request. . (

($JOB, SUBMIT, MODIFY, CANCEL (-20), all
output queue commands)

Allows you to cancel or kill the running
of a job by removing the specified entry
from the specified queue. You can use
this ~ switch even if the submitted
request has been started. Refer to
Chapter 3, JOB CONTROL, for examples.

(SUBMIT, all output queue commands)

Causes a program compilation listing to
be generated. The system defaults tD
this switch.

($ALGOL,$BLISS,$COBOL,
$FORTRAN,$MACRO,$SIMULA,
$SNOBOL)

Lists the entries for the specified
queue. The arguments are ALL, FAST, and
JOBS.

(SUBMIT, all output queue commands)

Specifies the network node to whose line
printer the job's output is to be sent.
with TOPS-10, /LOCATE accepts the node
number (in octal) or the node name.
with lOPS-20, only the node name is
accepted.

($JOB)

Specifies the disposition of the
file 'after the batch job has
processed. You may specify one of

_following three arguments:

LOG
been
the

1. DELETE - deletes the log file after
printing it. This is the default
for card jobs.

2. PRESERVE - saves the log file after
printing it. This is the default
for jobs submitted with the SUBMIT
command.

B-10

/LOGNAME:name (-20)

/MAP

/METERS:n (-10)

/MODIFY (-10)

/NAME:name (-10)

SWITCHES

3. KEEP - same as PRESERVE. Use this
argument instead of PRESERVE when
sUbmitting jobs from a timesharing
terminal under TOPS-20. You can use
KEEP or PRESERVE with card jobs.

($JOB,SUBMIT (-20»

Normally, the log file takes the name of
the control file and adds the extension
.LOG. This switch allows you to specify
your own logname (up to 39 characters)
and your own file extension (up to 39
characters) . If you specify a name but
do not specify an extension, the
extension will default to .LOG.

Note that use of the /READER switch
nullifies the effects of /LOGNAME.

This switch provides the only way for
you to specify a log filename. The
command, SUBMIT FIL1.CTL, FIL2.LOG, does
not specify that the log file for
FIL1.CTL will be FIL2.LOG. Instead, it
submits two batch jobs, one with a .CTL
extension and one with an .LOG
extension.

(SUBMIT)

Causes a loader map to be generated and
printed. The default is /NOMAP.

($DATA, $EXECUTE)

Specifies the number of meters of paper
tape that can be punched by the job.

(SUBMIT)

Allows.you to modify a job's parameters.
Refer to Chapter 3, JOB CONTROL, for
examples that use this switch.

(SUBMIT, all output queue commands)

Specifies a user's name that can be ~p
to 12 characters. Enclose 'name' ~n

quotes if 'name' contains any blank
characters.

This switch is optional unless your
installation requires the user's name in
addition to the project-programmer
number and password when you log in. If
this is the case, then the name supplied
here must match the name listed in the
accounting file for the specified
project-programmer number and password.
If the name does not match, an error
message will be issued and the job will
not be run.

B-11

/NEW (-10)

/NODOLLARS

SWIT-CHES

If your installation does not require a
name and one is specified, then the name
(if different) overrides the name in the
accounting file and will appear on the
output, as specified on the $JOB card.

($JOB)

Allows the request to be accepted
if the _file does not yet exist.
exam~le, you would use this switch
the disk structure containing the
is not iet mounted.

(SUBMIT, all output queue c:ommands)

even
For

when
file

If this switch is in effect and a card
beginning with a dollar sign ($) is
encountered, SPRINT examines column 2 of
the card. If column 2 contains a dollar
sign, then the first dollar sign is
ignored and all information from column
2 to the end of the card is treated as
data. This feature is useful if you
want to include a dollar sign as the
first character in your data.

If column 2 contains any nonalphabetic
character, then the entire card
(including column 1) is treated as data.

If column 2 contains an alphabetic
character, then the card is treated as a
SPRINT control card.

For example:

1. $ CREATE interpreted as SPRINT
control card '$CREATE'.

-2. $$CREATE -
, $CREATE' .
is ignored.)

interpreted as data
(The first dollar sign

3. $3CREATE - interpreted as data
, $3CREATE' .

/NODOLLARS is the default.

Any deck for which the /NODOLLARS switch
is in effect (either explicitly or by
default) can be terminated with any
SPRINT control card.

($ALGOL,$BLISS,$COBOL,
$CREATE,$DATA,
$FORTRAN, $MACRO, $SIMULA-,
$SNOBOL,$TOPS,$TOPSIO,
$TOPS20)

B-12

/NOLIST

/NOMAP

/NONEW (-10)

/NONOTIFY (-10)

/NORESTART

/NOSUPPRESS

/NOTIFY:arg

SWITCHES

Prevents a program compilation
from being generated. /LIST
default.

listing
is the

($ALGOL,$BLISS,$COBOL,
$FORTRAN,$MACRO,$SIMULA,
$SNOBOL)

Prevents a
generated.

loader map from
/NOMAP is the default.

($DATA, $EXECUTE)

being

Does not allow the request to be
accepted if the file does not exist.
Opposite of /NEW.

(SUBMIT, all output queue commands)

Same as /NOTIFY:NO

Specifies that the job should not be
restarted after the system has crashed
and been restored.

($JOB,SUBMIT (-10»

Prohibits suppression of trailing
blanks. /NOSUPPRESS is the default.

($ALGOL,$BLISS,$COBOL,
$CREATE,$DATA,
$FORTRAN,$MACRO,$SIMULA,
$SNOBOL,$TOPS,
$TOPS10,$TOPS20)

Forces the system to send a short
message to your terminal when the job
ends. For example, if you type

@SUBMIT TEST/NOTIFY

the system will respond as follows:

[Job TEST Queued, Request-ID 135, Limit 0:05:00]
@
[FROM SYSTEM: Job TEST request #135 finished executing at 09:57:49]

/NOWAIT

Arguments:YES
NO

The default is YES if you use the switch
but omit a value. The default is NO if
you do not use the switch.

(SUBMIT, all output queue commands)

Causes the job to continue after typing
a message without waiting for a response
from the operator. /NOWAIT is the
default.

($MESSAGE)

B-13

/OKPROTECTION (-10)

/OPTION:option (-10)

/OUTPUT:arg

/PAGES:n

/PATH: [dir] (-10)

/PHYSICAL (-10)

SWITCHES

Suppresses issuance of an error message
wheri a protection error occurs.

(SUBMIT, all output queue cOlTunands)

For batch requests, executes the line
beginning with 'SUBMIT:option' in the
SWITCH.INI file, where 'option' is the
identifier you choose for this line.
Substitute one of the output queue-class
commands for SUBMIT when applicable.
Section B.1, Switch Defaults y discusses
SWITCH. INI .

(SUBMIT, all output queue commands.)

Determines whether the log file should
be printed. You may specify one of the
following arguments:

1. ALWAYS - print the log file.

2. NOLOG - suppress printing of the
log file.

3. ERROR - print the log file only if
an error occurs.

4. LOG - print the log file.

If you omit this switch, the log file
will be printed. LOG and ALWAYS are
equivalent. However, with SUBMIT, LOG
applies to TOPS-10 only, and ALWAYS
applies to TOPS-20.

($JOB,SUBMIT,MODIFY)

Specifies the maximum number of pages
(in decimal) to be printed by the job,
including the log file and compilation
listings. The default is 200 pages.
The number of pages is a function of the
number of disk blocks (-10) or disk
pages (-20) to be printed and of the
number of copies of files to be printed.

($JOB,SUBMIT,MODIFY)

Runs the job from the specified
directory. This switch is equivalent to
the TOPS-20 /CONNECTED-DIRECTORY:
switch.

(SUBMIT)

Suppresses logical device names for the
specified file. The system defaults to
this switch after you give the KJOB
command.

(SUBMIT, all output queue commands)

B-14

/PLOT (-10)

/PPN: [p,pn] (-10)

/PRESERVE

/PRINT

SWITCHES

Causes SPRINT to place
created by the $ CREATE
plotter output queue.

the disk file
card into the

($CREATE)

Specifies a TOPS-I0 user directory other
than the one from which you submitted
your job. The job's password must
corre~ond to the directory you specify
with this switch.

System-independent
/PPN: and /USER:

($JOB)

jobs require
switches.

the

Saves the file after completion of the
job. with the SUBMIT command, /PRESERVE
saves the control file, or, on a TOPS-I0
system, can save the log file. This
switch is the default for all files
except those with the .LST extension.

The /PRESERVE switch has two uses. It:

1. Prevents files with
extension from being
completion of the job.

the .LST
deleted upon

2. Prevents a particular file from
being deleted when it is specified
with a command that has a global
/DELETE switch. For example:

PRINT/DELETE FILEl,FILE2/PRESERVE,FILE3

The command shown above will delete
FILEl and FILE3 after printing, but
it will not delete FILE2.

(SUBMIT, MODIFY,
commands)

all output queue

Causes SPRINT to place the disk file
created by the $ CREATE card into the
line printer output queue. If you omit
this switch the file is not printed.

($CREATE)

B-15

/PRIORITY:nn

/PROCESSING: (-10)
/PROCESSING-NODE: (-20)

/PROTECTION:nnn (-10)

/READER

SWITCHES

Assigns the job a priority value
(normally 1 to 20 in decimal for
unprivileged users; 1-63 for privileged)
which determines when the job will run
relative to other jobs in the specific
queue. The system always selects the
job with the highest priority value.

The highest value you can specify is
usually 20; only the operator or an
enabled wheel can exceed this value to a
maximum of 63. The system manager can
change your limit, which is set at batch
system installation time (through the
GALGEN program) .

The .default, also modifiable by the
operator, is usually 10 if you do not
use this switch. If you use the switch
but omit a value, the default is 20 on
TOPS-I0 systems; however, you get an
error message on TOPS-20 systems.

($JOB,SUBMIT,MODIFY,
commands)

all output queue

Specifies the IBM host system on whose
CPU the JCL batch job is to be run. The
node name must be of six or fewer
characters. If the local node name is
specified, then the batch job is
processed locally. However, if any
other DECnet node name is specified,
then the batch job is queued by QUASAR
but never executed. You can also use
this switch to obtain a batch queue
lis.ting for the specified node.

(SUBMIT,
INFORMATION BATCH-REQUESTS (-·20»

Specifies a protection code for the log
file or for queue listing files that are
written to your disk area. Refer to the
TOPS-I0 Operating System Commands Manual
for a discussion of protection codes.

with $ CREATE , this switch protects the
newly created file according to the
specified code.

($CREATE,
commands)

SUBMIT, all output queue

Causes a disk-resident card job to be
processed as though it had been punched
on cards and submitted through the card
reader. Create this file of card images
using one of the on-line editors
supported by your system.

(SUBMIT)

B-16

/REQUESTID:n (-10)

/RESTART

/RESTARTABLE:arg

/SE.ARCH

/SEQUENCE:nn

/SITGO (-10)

SWITCHES

Specifies the request id number of
job you wish to modify or kill.
request id number, assigned to your
by the system, distinguishes your
from others in the queue.

the
The
job
job

The sequence number (see /SEQUENCE:)
also identifies your job, but you can
assign the sequence number; whereas the
request id number is assigned
exclusively by the system. It is
recommended that you use the request id
number rather than the sequence number.

(with /KILL or /MODIFY
output queue commands)

SUBMIT, all

Specifies that the job may be restarted
after the system has crashed and been
restored.

($JOB)

Specifies whether the job should be
restarted after the system has crashed
and been restored. Only the first six
characters of this switch are valid for
TOPS-10 systems.

Arguments:YES
NO

Default: NO

(SUBMIT, MODIFY)

Causes the file to be loaded in library
search mode.

($INCLUDE)

Specifies the job's "sequence number"
(decimal) within the particular queue.
The system creates a unique sequence
number for the job if you do not use
this switch.

When used with one of the modify or
cancel commands, this switch allows you
to specify the sequence number of the
job you wish to modify or kill. This is
useful to distinguish between duplicate
jobnames. However, it is recommended
that you use the request id number for
these purposes.

($JOB, SUBMIT, MODIFY, CANCEL (-20), all
output queue commands)

Sends your job to the SITGO compiler
rather than to BATCON for processing.
You can use this switch only if your
system supports SITGO.

(SUBMIT)

B-1?

/STREAM: (-10)

/SUPPRESS

/TAG:label

/TIME:hh:nun:ss

/TPLOT:nun

SWITCHES

Specifies the batch stream whose queue
entries should be displayed. Refer to
the TOPS-I0 Operator's Conunand Language
Reference Manual for a discussion of
batch streams.

(SUBMIT)

Suppresses trailing blanks.
is the default.

($ALGOL,$BLISS,$COBOL,
$CREATE,$DATA,
$FORTRAN,$MACRO,$SIMULA,
$SNOBOL,$TOPS,
$TOPSI0,$TOPS20)

/NOSUPPRESS

Specifies a label
characters) for
file. Processing
will begin at
specified label.

(1 to 6 alphanumeric
a line in the control
of the control file

the line with the

For example, if the fifth line in your
control file was START::@EXECUTE TEST,
you could specify /TAG: STAR'll to force
execution of the control file to begin
on that line.

Use this switch for a control file that
can fit different applications depending
on where processing begins. (See also
the /BEGIN: switch.)

(SUBMIT)

Specifies the maximum allowable CPU time
for the associated job. If you do not
use the switch, the default time is 5
minutes. If you use the switch with
SUBMIT and you omit a value, the default
time is 1 hour. The $JOB card requires
an argument to the /TIME switch.

If your job exceeds the specified or
default time limit, it will be
terminated inunediately unless you have
made proper use of the %TERR or %FIN
label in your control file. (See
Section 2.5.3, Reserved Labels.)

Refer to Section B.2 for additional
information on time and date switches.

($JOB,SUBMIT,MODIFY)

Specifies the maximum amount of plotter
time that the job can use (in minutes) .
If you omit this switch, no plotter time
is allotted. If you use the switch with
SUBMIT and you omit a value, ten minutes
is allowed. The $JOB card requires an
argument to the /TPLOT: switch.

($JOB,SUBMIT,MODIFY)

B-18

/TPUNCH

/UNIQUE:n

/USER:name (-20)

SWITCHES

Causes SPRINT to place the disk file
created by the $ CREATE card into the
paper-tape punch output queue. If you
omit this switch, the file is not
punched.

($CREATE)

Specifies how jobs are to be protected
from the effects of other jobs running

·in the same directory.

n=O Means no protection; that is, more
than one batch job may be run
concurrently using the directory
that you specified on either the
$JOB card or with the SUBMIT
command.

n=l Means only one batch job at a time
can be run using the specified
directory.

·n=2 Means that the job is run in a
unique SFD. This argument is valid
for the $JOB card on TOPS-10
systems only.

n=NO Means the same as n=O.

n=YES Means the same as n=1.

The default value is 1 or YES. Use this
switch to prevent (or allow) two or more
jobs from updating the same file at the
same time.

($JOB,SUBMIT,MODIFY)

Unless this switch is specified with the
$ JOB card, it may be used by enabled
wheels or enabled operators only. It
has two uses:

1. When used with the $JOB card or with
the PRINT or SUBMIT co~nand, it
allows a job to be run under or
printed for a user name different
from the user name under which the
job was submitted.

2. When used with the MODIFY or CANCEL
command, it allows these commands to
be directed towards a particular
user's jobs.

The argument to this switch (name) must
be a valid user name. Also, the
password for this job must correspond to
the specified user name.

System
/USER:
card.

B-19

independent
and /PPN:

jobs require the
switches on the $JOB

/USERNAME:arg (-10)

SWITCHES

To see the difference
switch and
/CONNECTED-DIRECTORY
example given
/CONNECTED-DIRECTORY

between using
using

switch, see
under

switch.

this
the
the
the

($JOB,SUBMIT,MODIFY,CANCEL,
queue commands)

all output

Specif~es the user name field for the
banner page of output listings. For
batch input requests, the user name is
printed on the banner page for the log
file listing. This field can contain up
to 39 alphanumeric characters, and may
include punctuation and spaces if the
name is placed in quotation marks.

The following are alternative ways for
users running under [1,2] to submit a
batch job on behalf of another user:

.SUBMIT jobname[P,PN]=control file/switches, log file/switches

or

.SUBMIT [P,PN]=control file/switches, log file/switches

/WAIT

/WIDTH:nn

where: [P,PN] is the project-programmer
number of the desired user.

(SUBMIT)

Causes the job to stop and wait for a
response from the operator before
continuing. The operator may respond in
such a way as to either continue the job
or terminate the job.

($MESSAGE)

Causes columns 1 through nn (inclusive)
of each card to be read. The remaining
columns are ignored. If you do not use
this. switch or if you use it without
specifying an argument, SPRINT will
assume a value of 80.

If you do not specify an argument, a
warn1ng message will be issued, but
SPRINT will still assume a value of 80
for the /WIDTH switch.

($ALGOL,$BLISS,$COBOL,
$CREATE,$DATA,
$FORTRAN,$MACRO,$SIMULA,
$SNOBOL,$TOPS,
$TOPS10,$TOPS20)

B-20

SWITCHES

CARD:

----------------------------------/
HIGH / I I

ORDER-------->/ I I
BIT / I I I

/ I I I
I I I I

LOW I I I /
ORDER---> I I I I

BIT ---------------------------------------
A A

I I
COLUMNS 1 AND 2

OF CARD

CARDS ON DISK:

HIGH
ORDER

BIT
I LOW
I ORDER

BEGINNING OF
NEXT CARD IN ->

FILE

I
I
v
o

COL 1

eOL4

COL79

COL 1

BIT
I
v
11

HIGH HIGH
ORDER ORDER

BIT BIT
I LOW I
I ORDER I
I BIT I
I I I
v v v

12 23 24

COL2

eOLS

COL 80

COL 2

LOW
ORDER

BIT
I
v
3S

COL3

COL6

o

COL 3

<- CONTENTS OF
BYTE 81 IS
ZERO

Figure B-1. Layout of Card Data That is Transferred to Disk Using the
IIMAGE Switch with $CREATE or $DATA

B-21

APPENDIX C

CARD CODES

ASCII AND DEC-026 CARD CODES

Card Column Punches
Octal

Character Code ASCII DEC-026

NULL 00 12-0-9-8-1 12-0-9-8-1
CTRL-A 01 12-9-1 12-9-1
CTRL-B 02 12-9-2 12-9-2
CTRL-C 03 12-9-3 12-9-3
CTRL-D 04 9-7 9-7
CTRL-E 05 0-9-8-5 0-9-8-5
CTRL-F 06 0-9-8-6 0-9-8-6
CTRL-G 07 0-9-8-7 0-9-8-7
CTRL-H 10 11-9-6 11-9-6
TAB 11 12-9-5 12-9-5
LF 12 0-9-5 0-9-5
VT 13 12-9-8-3 12-9-8-3
FF 14 12-9-8-4 12-9-8-4
CR 15 12-9-8-5 12-9-8-5
CTRL-N 16 12-9-8-6 12-9-8-6
CTRL-O 17 12-9-8-7 12-9-8-7
CTRL-P 20 12-11-9-8-1 12-11-9-8-1
CTRL-Q 21 11-9-1 11-9-1
CTRL-R 22 11-9-2 11-9-2
CTRL-S 23 11-9-3 11-9-3
CTRL-T 24 9-8-4 9-8-4
CTRL-U 25 9-8-5 9-8-5
CTRL-V 26 9-2 9-2
CTRL-W 27 0-96 0-9-6
CTRL-X 30 11-9-8 11-9-8
CTRL-Y 31 11-9-8-1 11-9-8-1
CTRL-Z 32 9-8-7 9-8-7
ESCAPE 33 0-9-7 0-9-7
CTRL-\ 34 11-9-8-4 11-9-8-4
CTRL-] 35 11-9-8-5 11-9-8-5
CTRL- A 36 11-9-8-6 11-9-8-6
CTRL- 37 11-9-8-7 11-9-8-7
SPACE 40

41 12-8-7 12-8-7
42 8-7 0-8-5

43 8-3 0-8-6
$ 44 11-8-3 11-8-3
% 45 0-8-4 0-8-7
& 46 12 11-8-7

47 8-5 8-6

, C-l

CARD CODES

(50 12-8-5 0-8-4
) 51 11-8-5 12-8-4

* 52 11-8-4 11-8-4
+ 53 12-8-6 12

54 0-8-3 0-8-3
55 11 11
56 12-8-3 12-8-3

/ 57 0-1 0-1
0 60 0 0
1 61 1 1
2 62 2 2
3 63 3 3
4 64 4 4
5 65 5 5
6 66 6 6
7 67 7 7
8 70 8 8
9 71 9 9

72 8-2 11-8-2/11-0
73 11-8-6 0-8-2

< 74 12-8-4 12-8-6
75 8-6 8-3

> 76 0-8-6 11-8-6
? 77 0-8-7 12-8-2/12-0

100 8-4 8-4
A 101 12-1 12-1
B 102 12-2 12-2
C 103 12-3 12-3
D 104 12-4 12-4
E 105 12-5 12-5
F 106 12-6 12-6
G 107 12-7 12-7
H 110 12-8 12-8
I 111 12-9 12-9
J 112 11-1 11-1
K 113 11-2 11-2
L 114 11-3 11-3
M 115 11-4 11-4
N 116 11-5 11-5
0 117 11-6 11-6
p 120 11-7 11-7
Q 121 11-8 11-8
R 122 11-9 11-9
S 123 0-2 0-2
T 124 0-3 0-3
U 125 0-,4 0-4
V 126 0-5 0-5
W 127 0-6 0-6
X 130 0-7 0-7
y 131 0-8 0-8
z 132 0-9 0-9
[133 12-8-2 11-8-5
\ 134 0-8-2 8-7
] 135 11-8-2 12-8-5
A 136 11-8-7 8-5

137 0-8-5 8-2
, 140 8-1 8-1
a 141 12-0-1 12-0-1
b 142 12-0-2 12-0-2
c 143 12-0-3 12-0-3
d 144 12-0-4 12-0-4
e 145 12-0-5 12-0-5
f 146 12-0-6 12-0-6
g 147 12-0-7 12-0-7

C-2

CARD CODES

h 150 12-0-8 12-0-8
i 151 12-0-9 12-0-9
j 152 12-11-1 12-11-1
k 153 12-11-2 12-11-2
1 154 12-11-3 12-11-3
m 155 12-11-4 12-11-4
n 156 12-11-5 12-11-5
0 157 12-11-6 12-11-6

P 160 12-11-7 12-11-7
q 161 12-11-8 12-11-8
r 162 12-11-9 12-11-9
s 163 11-0-2 11-0-2
t 164 11-0-3 11-0-3
u 165 11-0-4 11-0-4
v 166 11-0-5 11-0-5
w 167 11-0-6 11-0-6
x 170 11-0-7 11-0-7

Y 171 11-0-8 11-0-8
z 172 11-0-9 11-0-9

173 12-0 12-0
174 12-11 12-11
175 11-0 11-0
176 11-0-1 11-0-1

DEL 177 12-9-7 12-9-7

C-3

APPENDIX D

BATCH COMPONENTS

The following sections describe the batch-system components.

The term 'spooling' is mentioned several times in the descriptions.
Spooling is the process whereby data goes to a holding area before
being sent to the intended destination. Section D.7, , LPTSPL, SPROUT'
discusses spooling as it relates to the slow-speed output devices.

D.l CDRIVE

CDRlVE reads cards from the physical card reader and places the
information on disk. CDRlVE provides the facility for reading ASCII
and image cards. (Refer to Appendix C for a table of card codes.)

D.2 BATCON

BATCON, the BATch CONtroller, is the heart of the batch system. It
initiates and controls all batch jobs. It accomplishes this by:

o Reading batch control files, created by users or by SPRINT.

o Passing data and system program commands back to the job.

BATCON records its processing of the control file and the job in a log
file in your disk area.

BAT CON is generally synonymous with the batch system; often the term
"batch processing" refers to BATCON's operations.

D.3 SPRINT

SPRINT is the Spooling PRocessor for INpuT; it performs the following
functions.

1. It reads a sequential input stream that either CDRlVE has
processed or that you have created on disk. (See the
description of the /READER switch in Appendix B.)

2. It separates the input by placing it in files according to
commands on the SPRINT control cards contained in the input
stream.

, D-l

BATCH COMPONENTS

3. It creates the job's log file and enters a report of its
processing.

4. It sends the job to the batch input queue (if the job
requires it) for subsequent pro6essing by BATCON.

Chapter 5 discusses SPRINT more thoroughly.

D.4 EXEC (TOPS-20)

EXEC is the TOPS-20 command processor; it allows you access to the
system queues. Through such EXEC commands as SUBMIT and MODIFY, you
can enter a job into the batch input queue and modify the parameters
for a job entered into a queue.

See Chapter 3, JOB CONTROL,
system-related EXEC commands.

for a description of the batch

D.S GLXLIB

GLXLIB is a library
batch-system components
GLXLIB's routines.

D.6 QUASAR

of common
except

GALAXY routines.
EXEC, MOUNTR, and

All of the
QUEUE call upon

QUASAR, the queue manager, is the program that builds and maintains
the system queues of tasks to be processed by BATCON and the output
spoolers. When you submit a batch job from the terminal, or when
SPRINT completes processing a batch job in card image, QUASAR makes an
entry in the batch input queue. QUASAR schedules the jobs in the
batch input queue to be run by BATCON.

Scheduling consists of computing and dynamically revising priorities
for the job, according to the job's parameters and the priorities
established by the system. While the job is running, the queue entry
is flagged to show it is in use. When the system logs the job out, it
usually makes an output queue entry and deletes the entry in the input
queue. QUASAR schedules jobs in the output queues to be processed by
LPTSPL and SPROUT, the output spoolers. The job's output queue entry
is deleted only when the output is completely finished.

D.7 LPTSPL, SPROUT

LPTSPL and SPROUT, the output spoolers, are programs that drive the
four slow-speed output devices - line printer, card punch, paper-tape
punch, and plotter. (Your system may not have all of these devices.)
These programs process a queue (or list) of requests that QUASAR
maintains. Instead of sending output directly to a slow-speed device,
the system sends output, requested by you or a program, to the disk,
and the appropriate output spooler later transfers the information to
the slow-speed output device.

D-2

BATCH COMPONENTS

One advantage of this automatic procedure is that you need not know or
be concerned if an output device is unavailable (for example, because
another program is using it); your program simply sends its output to
the disk. Another advantage is that since the disk is a high-speed
device, its acceptance of output intended for slow-speed devices
expedites a program's execution. That is, a program can avoid the
delay associated with writing to a slow-speed device.

LPTSPL can also drive printers connected to Local Area Transport (LAT)
servers.

On TOPS-20 systems, LPTSPL can spool print requests to remote nodes in
a Common File System (CFS) cluster and to VMS nodes.

D.8 OPR, ORION

OPR parses commands from the operator and sends them to ORION. ORION
routes these commands to the appropriate component and receives all
messages intended for the operator. These messages are in turn
relayed to OPR.

D.9 QUEUE (TOPS-I0)

The QUEUE component is the TOPS-IO user interface to the system
queues. With the QUEUE command or any of the queue-cl~ss commands
(SUBMIT, PRINT, CPUNCH, TPUNCH, PLOT), you can enter jobs into the
batch input queue or the output queues. You can also modify
parameters for jobs entered into these queues and cancel the running
of these jobs.

Chapter 3, JOB CONTROL, discusses the QUEUE command and the
queue-class commands for the batch input and output queues.

D.I0 PULSAR (TOPS-I0)

PULSAR is responsible for 'recognizing' newly-mounted disk packs and
magnetic tapes by reading the home blocks (for disks) or the volume
labels (for tapes) either automatically or upon operator command.
Home blocks and volume labels contain identifying information for
disks and tape reels. PULSAR also writes tape labels. Refer to the
TOPS-IO Tape Processing Manual for additional information on PULSAR.

D.l1 MOUNTR (TOPS-20)

MOUNTR controls mountable devices (disk and tape drives) on TOPS-20
systems. It permits and facilitates user access to these devices and
performs Automatic Volume Recognition for labelled tapes. Refer to
the TOPS-20 Tape Processing Manual for additional information on
MOUNTR.

D-3

BATCH COMPONENTS

D.12 NEBULA

On TOPS-20 systems, NEBULA is the CFS cluster GALAXY
It routes operator messages to remote nodes in
receives responses from those nodes.

mes$age router ..
the cluster and

On TOPS-IO systems, NEBULA is the output spooler for the Distributed
Queue Service (DQS). It handles requests for print jobs destined for
printers connected to remote systems.

D.13 CATLOG (TOPS-l0)

CATLOG, the System Catalog Manager, maintains a database of DECtapes,
ANSI-labelled magtape volume sets, and disk structures. QUASAR
consults the database when processing user mount requests. Management
of the database is performed through commands to OPR.

D-4

BATCH COMPONENTS

-A-

/ACCOUNT switch, B-4
/AFTER switch, B-3, B-4
ALLOCATE command (TOPS-lO), 2-44
ASCII card codes, C-l
/ASCII switch, B-4
/ASSISTANCE switch, B-4
Asterisk (*), 2-2
At sign (@), 2-3, 2-4

-B-

$BACKTO card, 5-5
BACKTO command, 2-16
Batch commands, 1-5, 2-14, 5-30
Batch components, D-l

diagram, 1-3
Batch controller, 1-5
Batch input queue, 3-1

examining (TOPS-lO), 3-3
examining (TOPS-20), 3-5

Batch output, 1-6, 6-1
Batch processing, 1-6
/BATCH-LOG switch (TOPS-20), B-5
BATCON, 1-3, 1-5, D-1
BATCON messages, 6-5
/BATLOG switch (TOPS-10), B-5
/BATOPT switch (TOPS-10), B-5
/BCD switch, B-5
/BEGIN switch, B-6
/BINARY switch (TOPS-lO), B-6

-C-

Cancelling jobs, 3-8, A-6
Card jobs, 5-1
Cards

ASCII codes, C-l
DEC-026 codes, C-1
reading data from, 5-38
saving in disk file, 5-40
stacking, 5-41
writing to disk, 5-41

/CARDS switch, B-6
CDRIVE, 1-3, 5-2, D-1
%CERR label, 2-11
CFS (TOPS-20), 3-6, D-3, D-4
/CHECK switch (TOPS-10), B-6
$CHKPNT cardl 5-5.
CHKPNT command, 2-18
Circumflex (A), 2-5
Commands

batch, 1-5, 5-30
job control, 1-6
privileged (TOPS-20), 2-4
QUEUE-class (TOPS-10), 3-1
system, 5-30
system program, 5-30

INDEX

Commands (Cont.)
user, 5-30

Comments, 2-4, 2-6
card jobs, 5-4

/CONNECTED-DIRECTORY switch
(TOPS-20), B-6

Continuation, 5-4
Control cards, 1-5, 5-2

end of file, 5-5
$language, 5-22
listing on printer, 5-34
parameter defaults, 5-5

Control characters, 2-5
Control file, 1-5, 2-1

reading data from, 4-14
COpy command (TOPS-20), 2-3
/CORE switch (TOPS-lO), B-7
/CPUNCH switch, B-7
$CREATE card, 5-6

/IMAGE switch, B-21
/CREF switch, B-7

-D-

Data
reading from cards, 5-38
reading from control file, 4-14

$DATA card, 5-9
/IMAGE switch, B-21

Date and time, B-3
DEC-026 card codes, C-1
$DECK card (TOPS-10), 5-11
DECnet node, B-16
Defaults

control card parameters, 5-5
switches, B-1

/DELETE switch, B-7
/DEPEND switch, 3-9, B-7
Dependency count, 3-10
/DEPENDENCY-COUNT switch

(TOPS-20), B-7
/DESTINATION switch (TOPS-10),

B-8
/DESTINATION-NODE switch

(TOPS-20), B-8
Dialogue mode, 2-30, 2-31
Disk file

layout of card data in, B-21
reading from, 4-12, 5-37
saving cards in, 5-40
writing cards to, 5-41
writing to, 4-12, 5-37

/DISTRIBUTION switch (TOPS-10),
B-8

Dollar sign ($), 2-4
/DOLLARS switch, B-8
$DUMP card, 5-5
DUMP command (TOPS-10), 2-20

Index-1

BATCH COMPONENTS

-E-

End-of-file card, 5-5
$EOD card, 5-12
$EOJ card, 5-12
Equal sign (=), 2-3
/ERPROTECTION switch (TOPS-10),

B-8
%ERR label, 2-11
$ERROR card, 5-5
Error character, 2-23
ERROR command, 2-23
Error messages, 6-4
Error packets, 2-11
Error processing, 2-7
Errors

DUMP command (TOPS-10), 2-20
IF command, 2-26
recovery from, 1-7, 2-8
system, 2-13
time-limit, 2-11, 2-13
user, 2-13

Examples, 4-11, 5-34
Exclamation point (!), 2-4

card jobs, 5-4
dialogue mode, 2-31
error signal, 2-23

EXEC (TOPS-20), 1-3, D-2
$EXECUTE card, 5-13

-F-

/FAST switch (TOPS-10), B-8
/FEET switch, B-9
File cards, 5-3
Files

loading relocatable, 5-15
log, 6-1

%FIN label, 2-14
Form feed (FF), 2-4
FORTRAN

loading program with system
library, 5-37

-G-

GLXLIB, 1-3, D-2
$GOTO card, 5-5
GOTO command, 2-25

-H-

Hyphen (-), 5-4

-I-

$IF card, 5-14
IF command, 2-8, 2-26
/IMAGE switch, B-9, B-21
$INCLUOE card, 5-15
Interpretive languages, 4-15,

5-39

-J-

JCL batch job, B-16
$JOB card, 5-16
Job control, 3-1

TOPS-10, 3-1
TOPS-20, 3-5

Job control commands, 1-6
/JOBNAME switch, B-10
Jobs, 1-2

card, 5-1
multiple from same directory,

1-2
related, 3-9
samples, 4-11, 5-34
submitting for other users,

B-20
system-independent, 5-30, 5-32

-K-

/KILL switch (TOPS-I0), B-I0
Killing jobs, 3-8

-L-

$LABEL card, 5-21
Labels, 2-6

BACKTO command, 2-16
CHKPNT command, 2-18
GOTO command, 2-25
reserved, 2-10

Language cards, 5-3, 5-22
Languages

interpretive, 4-15, 5-39
LAT, 0-3
Line identifiers, 2-2

error processing, 2-10
/LIST switch, B-I0
/LIST: switch (TOPS-I0), B-I0
Local Area Transport, D-3
/LOCATE switch, B-I0
Log file, 6-1

BATCON messages, 6-5
BATCON output, 6-2
formatting, 2-4
LPTSPL messages, 6-8
QUEUE messages (TOPS-I0), 6-10
SPRINT messages, 6-13
SPRINT output, 6-3
suppressing printing, 4-17,

5-40
/LOGDISP switch, B-I0
LOGIN command, 2-2
/LOGNAME switch (TOPS-20), B-l1
LOGOUT command, 2-2
LPTSPL, 1-3, 0-2
LPTSPL messages, 6-8

-M-

MACRO CREF listing, 5-35
/MAP switch, B-ll

Index-2

BATCH COMPONENTS

$MESSAGE card, 5-26
MESSAGE command, 2-28
/METERS switch (TOPS-10), B-11
/MODIFY switch (TOPS-10), B-11
Modifying jobs

(TOPS-10), 3-4
(TOPS-20), 3-7

Monitor statement
card jobs, 5-39
terminal jobs, 4-15

MOUNT command (TOPS-10), 2-44
Mountable devices (TOPS-10), 2-44
MOUNTR (TOPS-20), 1-3, D-3

-N-

/NAME switch (TOPS-10), B-11
NEBULA, 1-3, D-4
/NEW switch (TOPS-10), B-12
/NODOLLARS switch, B-12
$NOERROR card, 5-5
NOERROR command, 2-29
/NOLIST switch, B-13
/NOMAP switch, B-13
/NONEW switch (TOPS-10), B-13
/NONOTIFY switch (TOPS-10), B-13
$NOOPERATOR card, 5-5
NOOPERATOR command, 2-30
/NORESTART switch, B-13
/NOSUPPRESS switch, B-13
/NOTIFY switch, B-13
/NOWAIT switch, B-13

-0-

/OKPROTECTION switch (TOPS-10),
B-14

Operator
messages to, 2-32, 2-37
messages to (card jobs), 5-26
TOPS-20, 2-4, B-6, B-16

$OPERATOR card, 5-5
OPERATOR command, 2-31
OPR, 1-3, D-3
/OPTION switch (TOPS-10), B-14
ORION, 1-3, D-3
Output queues

examining (TOPS-20), 3-7
/OUTPUT switch, B-14

-p-

/PAGES switch, B-14
$PASSWORD card, 5-27
Passwords

card jobs, 5-27
/PATH switch (TOPS-10), B-14
Percent sign (%), 2-4, 2-7
Period (.), 2-3
/PHYSICAL switch (TOPS-10), B-14
PLEASE command, 2-32
/PLOT switch (TOPS-10), B-15
/PPN switch (TOPS-10), B-15

/PRESERVE switch, B-15
Print queue

TOPS-10, 3-5
/PRINT switch, B-15
Printer

listing cards on, 5-34
Printing files, 4-16
Priority, 3-10
/PRIORITY switch, 3-10, B-16
Privileged commands (TOPS-20),

2-4
/PROCESSING switch (TOPS-10),

B-16
/PROCESSING-NODE switch (TOPS-20),

B-16
Program level (TOPS-20), 2-3
Programs, 4-16, 5-39

relocatable binary, 5-28
/PROTECTION switch (TOPS-10),

B-16
PULSAR (TOPS-10), 1-3, D-3

-Q-

QUASAR, D-2
Question mark (?), 2-7, 2-23
QUEUE, D-3
Queue manager, D-2
QUEUE messages (TOPS-10), 6-10
QUEUE-class commands (TOPS-10),

3-1

-R-

/READER switch, B-16
Relocatable binary files

loading, 5-15
Relocatable binary programs, 5-28
$RELOCATABLE card (TOPS-10), 5-28
Request id number (TOPS-20), 3-9,

3-10
/REQUESTID switch (TOPS-10), 3-5,

3-10, B-17
$REQUEUE card, 5-5
REQUEUE command, 2-33
%RERR label, 2-11
Restart, 2-18
/RESTART switch, 2-18, B-17
/RESTARTABLE switch, B-17
$REVlVE card, 5-5
REVIVE command, 2-35

-8-

/SEARCH switch, B-17
Semicolon (;), 2-4

card jobs, 5-4
dialogue mode, 2-31
error signal, 2-23

$SEQUENCE card, 5-29
Sequence number, 5-29
/SEQUENCE switch, 5-29, B-17
$SILENCE card, 5-5

Index-3

BATCH COMPONENTS

SILENCE command, 2-36
/SITGO switch (TOPS-10), B-17
Spooling, 0-1
SPRINT, 1-3, 5-2, 0-1
SPRINT messages, 6-13
SPROUT, 0-2
Stacking cards, 5-41
Step header (TOPS-10), 2-18, 2-33,

2-44
/STREAM switch (TOPS-10), B-18
Subcommands (TOPS-20), 2-4
SUBMIT command, 4-3

switches, 4-6
/SUPPRESS switch, B-18
/026 switch, B-4

to $ CREATE , 5-7
to $OATA, 5-9
to $language, 5-24

/026 switch to $TOPS cards, 5-31
Switches, B-4

defaults, B-1
System command level (TOPS-20),

2-3
System command processor, EXEC

(TOPS-20), 2-3
System commands, 5-30

job control, 3-1
System failure, 2-18
System program commands, 5-30
System programs, 4-16, 5-39
System utilities, 4-16, 5-39
System-independent jobs, 5-30,

5-32

-T-

/TAG switch, B-18

Tape file
reading from, 4-13, 5-37
writing to, 4-13, 5-37

Terminal
submitting jobs from, 4-1

Terminating jobs, 3-8
%TERR label, 2-13
Time and date, B-3
/TIME switch, B-3, B-18
Time-limit errors, 2-11

IF command, 2-26
NOERROR command, 2-29

Timesharing~ 2-1
$TOPS card, 5-30
$TOPS-10 card, 5-30
$TOPS-20 card, 5-30
/TPLOT switch, B-18
/TPUNCH switch, B-19

-u-

/UNIQUE switch, B-19
User commands, 5-30
/USER switch (TOPS-20), B-19
/USERNAME switch (TOPS-10), B-20
Utilities, 4-16, 5-39

-v-

vertical tab (VT) , 2-4

-w-

/WAIT switch, B-20
Warnings, 6-4
Wheel (TOPS-20), 2-4, B-6, B-16
/WIOTH switch, B-20

'Index-4

TOPS-I0/TOPS-20
Batch Reference Manual

AA-H374B-TK
READER'S COMMENTS

Your comnlents and suggestions help us to improve the quality of our publications.
For which tasks did you use this manual? (Circle your responses.)
(a) Installation (c) Maintenance (e) Training
(b) Operation/use (d) Programlning (f) Other (Please specify.) ----------

Did the manual meet your needs? Yes D No D Why? -----------

Please rate the manual in the following categories. (Circle your responses.)
Excellent Good Fair Poor Unacceptable

Accuracy (product works as described)
Clarity (easy to understand)
COlllpleteness (enough information)
Organization (structure of subject
lllatter)

5 4 3 2 1
5 4 3 2 1
5 4 3 2 1
5 4 3 2 1

Table of Contents, Index (ability to
find topic)

5 4

Illustrations, exalllples (useful) 5 4
Overall ease of use 5 4
Page Layout (easy to find information) 5 4
Print Quality (easy to read) 5 4
What things did you like most about this manual?

3 2 1

3 2 1
3 2 1
3 2 1
3 2 1

-~~~--------

What things did you like least about this manual? ______________ _

Please list and describe any errors you found in the manual.
Page Description/Location of Error

Additional comments or suggestions for improving this manual:

Name ________________ __ Job Title ________________ _
Street ______________ _ Company _____________ _
City ________________ _ Departlllent _____________ _
State/Country ___________ __ Telephone Number __________ _
Postal (ZIP) Code ________ _ Date ____ -,--________ _

- - - - - - - - - - - - Fold Here and Tape - - - - - - -

DIGITAL EQUIPMENT CORPORATION

CORPORATE USER PUBLICATIONS
200 FOREST STREET MR01-3/L 12

MARLBOROUGH, MA 01752-9101

Affix
Stamp
Here 1

1

I
I
1

I
I
1

1

1

1

1

I
I
I
I

1

- - - - - - - - - - - - - Fold Here - - - - - - - - - - - - _I
1

I
I
I
1

I
I
I
I
I
r

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	index-1
	index-2
	index-3
	index-4
	replyA
	replyB

